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We consider crystalline organic microcavities in the strong coupling regime. Using a microscopic theory to
describe the Frenkel excitons and their coupling to the cavity photon modes, we derive the cavity exciton-
polariton dispersion relations and quantum states, for the two cases of anisotropic organic crystals with one and
two molecules per unit cell. In the most general case, the cavity exciton polaritons are a coherent superposition
of both Davydov exciton branches and of both cavity mode polarizations. The polarization mixing, which
occurs also in the case of a single molecule per unit cell, is in contrast to the case of typical inorganic
semiconductor cavities in which TM and TE polarizations do not mix. We derive the transmission, reflection,
and absorption coefficients for organic cavities by applying the quasimode approximation for high quality
cavities. The crossed polarized spectra, e.g., the TM polarized reflected light for TE polarized incident light,
clearly show the optical anisotropy of organic microcavities in the regime of strong coupling.

DOI: 10.1103/PhysRevB.71.235316 PACS numberssd: 71.36.1c, 71.35.Cc, 78.40.Me, 78.66.Qn

I. INTRODUCTION

Recently there has been much interest in organic and in-
organic microcavities, for their ability to control the coupling
between photons and electronic excitations.1 In the strong
coupling regime, where the photon-exciton interaction is
larger than the exciton and photon damping rates, the cavity
photons and the excitons are coherently coupled to produce
the system eigenmodes which are the cavity exciton
polaritons.2 The polariton dispersion relation splits into two
branches which are separated by the Rabi splitting frequency,
which is proportional to the transition dipole moment. The
exciton polaritons in inorganic semiconductor microcavities
have been much investigated both theoretically and
experimentally.3 In typical quantum-well microcavities, the
coupling between the Wannier-Mott excitons and the cavity
photons yields Rabi splitting values of the order of 10 meV.

The large oscillator strength of the organic materials
makes the use of organic microcavities more attractive. The
strong coupling between the Frenkel excitons in organic ma-
terials and the cavity photons results in a Rabi splitting
which is easily an order of magnitude larger than that of
inorganic microcavities.4 In particular, a strong coupling re-
gime has been observed in an organic microcavity containing
J aggregates of cyanine dye,5 which have an absorption line-
width of about 40 meV, where the Rabi splitting is between
80 and 300 meV, at room temperature.6 Such materials are
disordered, but the case of crystalline organic media is also
of great current interest.7

In this paper, we study the Frenkel-exciton polaritons of
an organic microcavity in the strong coupling regime and
their linear optics spectra on the basis of the microscopic
theory.8 There are only a few previous works on crystalline
organic microcavities. M. Litinskaiaet al.9 have investigated
such system in the framework of the macroscopical approach
based on the use of the dielectric tensor, and have derived the
polariton dispersion equations for one or two molecules per
unit cell in the case in which the molecular transition dipole
moments are parallel to the microcavity plane. At the same
time, Balagurov and one of us10 have calculated the linear

optics spectra of such system using a phenomenological
uniaxial dielectric tensor appropriate for the case of one mol-
ecule per unit cell and as434d transfer matrix formalism
which allows for the polarization mixing.11 The presentmi-
croscopictheory not only recovers all those results, but also
includes the most general case of two molecules per unit cell
with general dipole orientations. In particular, in the latter
case, four cavity polariton branches are expected with a sig-
nificant mixing of both Davydov exciton branches when the
Rabi splitting is comparable or larger than the Davydov
splitting.12

In order to develop the microscopic theory, we consider
the simplest possible model describing the physically rel-
evant features of a crystalline organic microcavity. The opti-
cal confinement in the microcavity is provided by two paral-
lel mirrors at a distance of the order of an optical
wavelength. At the center of the microcavity is placed a slab
of the organic crystal of width small compared to an optical
wavelength, made of monolayers parallel to the microcavity
planes. The organic crystal is composed of molecules which
are all chemically identical and have inversion symmetry.
For the case of two molecules per unit cell, they differ only
for the orientation of their transition dipole moments. Ini-
tially, for the purpose of calculating the cavity polariton dis-
persion curves, the mirrors are assumed to be perfect and no
dissipation mechanism is included. Then, in order to calcu-
late the linear optics spectra of the microcavity, the quasi-
mode approach is used to couple the cavity polaritons to the
external photons and the exciton nonradiative damping is
also included. Our results will be illustrated showing for sev-
eral cases plots of the cavity polariton dispersion curves as
well as of the transmission, reflection, and absorption spectra
in the different polarizations.

The paper is organized as follows. In Sec. II the cavity
modes are introduced. The Frenkel excitons in an anisotropic
crystal slab are described in Sec. III. In Sec. IV the corre-
sponding organic cavity exciton polaritons are studied. The
organic cavity transmission, reflection, and absorption spec-
tra are calculated in Sec. V. Our conclusions are presented in
Sec. VI.
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II. THE MICROCAVITY PHOTON

In this section, we consider the microcavity photons. The
two infinite and parallel perfect mirrors are in thesx−yd
plane, separated by a distanceL on thez axis, one mirror is
at z=L /2, and the other atz=−L /2, see Figs. 1 and 2. The
electromagnetic field is confined in thez direction, and is
free in the cavity plane. The in-plane wave vector is denoted
by q, and thez component of the wave vector,qz, is quan-
tized and has the valuesqz=mp /L, wheresm=1, 2, 3,…d.
The cavity-mode frequencies are given by

vqm =
c
Îe
Îq2 + Smp

L
D2

, s1d

wheree is the background dielectric constant of the medium
between the mirrors,c is the light velocity, and where
q= uqu.

For each in-plane wave vectorq there are two possible
polarizations:13 sTEd modes with transverse electric field,
which is denoted byssd, and sTMd modes with transverse
magnetic field, which is denoted byspd. The cavity-mode
Hamiltonian reads

Hcav = o
qml

"vqmaqml
† aqml, s2d

whereaqml
† andaqml are the creation and annihilation opera-

tors of thesqmld photon, respectively, withsl=s,pd, and
which obey the boson commutation relations. The simple
cavity model considered here leads to two degenerate mode
polarizations, which is, however, not always the case for
more complicated realizations of optical confinement.14 We
will assume only one relevant cavity mode at a time in thez

direction, the one which is close to resonance with the or-
ganic slab excitons. In fact, from the cavity mode dispersion
of Eq. s1d, at zero in-plane wave vectorq=0, the
difference between each two adjacent cavity modes is
DEn="vn+1−"vn=shcd / s2ÎeLd. Taking e=4 as an average
value for the medium filling the cavity and assuming
L=1700 Å, we getDEn<1.8 eV. As this difference is large
enough compared to the typical values of Rabi splitting,
Davydov splitting and cavity-exciton detuning considered
below, we will include only one relevant cavity mode at a
time.

The cavity electric field operator15 is

Êsr ,zd = − i o
qml

Î4p"vqm

LAe
hCl

msq,zdeiq·raqml

− Cl
m*sq,zde−iq·raqml

† j, s3d

where the location inside the cavity issr ,zd, and A is the
in-plane quantization area. The electric field vector functions
are

Cs
msq,zd = sinFmp

L
Sz+

L

2
DGn̂q,

Cp
msq,zd = − S cmp

ÎeLvqm
DHi sinFmp

L
Sz+

L

2
DGêq

−
uquL
mp

cosFmp

L
Sz+

L

2
DGêzJ , s4d

where the unit vectors are:n̂q= êq3ez in the direction per-
pendicular toq stransverse componentTd, and êq=q / uqu in

FIG. 1. A molecular crystal slab of widthL0 is located between
the cavity mirrors which are separated by distanceL. TheL, T, and
Z components of them=1 cavity modes and the first exciton mode
are plotted.

FIG. 2. A molecular crystal slab of widthL0 is located between
the cavity mirrors which are separated by distanceL. TheL, T, and
Z components of them=2 cavity modes and the first exciton mode
are plotted.
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the direction parallel toq slongitudinal componentLd. The
spd modes include both longitudinalL and Z components,
and thessd modes include the transverseT component only.
The cavity mode Z component is of the order of
sqcd / sÎevqmd, which is small in the spectral region of inter-
est. The cavity modes withsm=1d are illustrated in Fig. 1,
and those withsm=2d in Fig. 2.

III. FRENKEL EXCITONS IN AN ANISOTROPIC
ORGANIC CRYSTAL SLAB

The cavity optically resonant material is an anisotropic
organic molecular crystal, e.g., an aromatic crystal,16 which
has a proper translational symmetry. In organic crystals the
molecules retain their identity, where the wave function over-
laps are neglected, and the molecules are bounded by the van
der Waals forces. TheFrenkel exciton, which is an electronic
excitation typical of molecular crystals, can transfer between
the crystal molecules due to the electrostatic interactions.17

Such an excitation is described by a wave that propagates in
the crystal with wave vectork. In this section we calculate
the Frenkel exciton dispersion relations in an anisotropic or-
ganic slab. We follow the microscopic theory which is ap-
plied to derive the Frenkel exciton dispersion relations in
organic bulk crystals,8,12 where we emphasize the distinc-
tions for the case of organic crystal slabs. Other approaches
have been applied to study such a system, for instance in
Ref. 18 the classical oscillator theory of excitons and polari-
tons in molecular crystals is used. For each molecule in the
crystal we consider the possibility of a single excitation,
where the other excited state energies are far from the one
considered. We treat the case of very low concentration of
excitons. Then, the exciton-exciton interactions can be ne-
glected. In the limit of low exciton concentrations, to a good
approximation, the excitons behave as Boson particles.19

We assume a thin slab, where the slab widthL0 is much
smaller than the distance between the mirrors. Therefore, we
can neglect the interactions between the slab excitons and the
cavity mirrors. Consequently, the excitons are free in the slab
plane, and are confined in the perpendicular direction, and in
this direction the exciton wave vector has discrete values.
The slab can be divided intoN interacting monolayers,
where each monolayer includesM @1 in-plane unit cells, as
appear in Fig. 3. In the following we consider the two cases
of anisotropic organic crystals with one and two molecules
per unit cell.

A. One molecule per unit cell

The Frenkel exciton Hamiltonian in an organic crystal
slab with one molecule per unit cell, by applying the Heitler-
London approximation, is given by

Hex= "sv0 + Ddo
n

Bn
†Bn + o

n,m
JnmBn

†Bm, s5d

whereBn
† andBn are the creation and annihilation operators

of an excitation at siten, respectively. The first term de-
scribes the excitations of the molecules, wherev0 is the in-
dependent molecule frequency transition, andD is the gas to

solid molecule frequency shift due to the interactions of an
excited molecule with the other crystal molecules which are
at the ground state, whereD being usually negative. Note
that D for molecules in the outer monolayers of the slab is
different from that of the internal ones, as the molecules of
the outer monolayers have different neighbor molecules than
those of the internal monolayers.20 Such small differences in
D are in the following neglected. The second term in the
Hamiltonian describes the excitation transfer between mol-
ecules at different sites, whereJnm is the interaction param-
eter between two molecules at sitesn andm.

In the slab we assume interactions only between nearest
neighbor monolayers. This assumption enables us to treat
easily the broken symmetry in the perpendicular direction.
The above Hamiltonian can be easily diagonalized by the
transformation

Bn =Î 2

MsN + 1d ok,kz

sinskzzndeik·niBk,kz
, s6d

where the site location is defined byn=sni ,znd, with ni as
the location of the site in the monolayer plane, andzn as the
location of the monolayer on thez axis. We assumed
N+2 monolayers, which are located atzn=an with
sn=0,1,… ,N,N+1d, anda is the distance between each two
neighbor monolayers. As a boundary condition we take the
monolayerssn=0d andsn=N+1d as nodal planes for the ex-
citon wave functions. Here,k is the in-plane exciton wave
vector, which takesM @1 values, as the number of unit cells
in each monolayer.kz is the exciton wave vector in thez
direction, is discrete and takes the valueskza=pl / sN+1d,
with sl =1,2,… ,Nd, as the monolayers number in the slab.
The first two modes are plotted in Fig. 3.

The diagonal Hamiltonian reads

FIG. 3. A slab ofN interacting monolayers. The first two exciton
modes in thez direction are plotted.
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Hex= o
k,kz

Esk,kzdBk,kz

† Bk,kz
, s7d

where the exciton energies are

Esk,kzd = "sv0 + Dd + Vsk,kzd s8d

with

Vsk,kzd = Jsk,0d + Jsk,kzd. s9d

We obtained two exciton dynamical matrices. The exciton
dynamical matrixJsk ,0d, for interactions between molecules
in the same monolayer, is defined by

Jsk,0d = o
L

JsL ,0deik·L , s10d

where we assumed that the interaction parameter is a func-
tion of the distance between the molecules, namely
Jnm=JsL d, with L =mi−ni inside the same monolayer. The
exciton dynamical matrixJsk ,kzd, for interactions between
molecules from two nearest neighbor monolayers, is defined
by

Jsk,kzd = 2Ho
L

JsL ,adeik·LJcosskzad. s11d

To get the explicit exciton dispersion relation one need to
calculate the above dynamical matrices for a crystal with a
specific symmetry. Several summation methods for the bulk
case have been developed, i.e. in Ref. 21. For illustration, we
calculated these matrices for the case of a cubic crystal with
lattice constanta, where each molecule has the same transi-
tion dipole momentmW =smx,my,mzd. The cubic axes of the
crystal arex̂, ŷ, and ẑ. The interaction between the crystal
molecules is given by the dipole-dipole interaction

JsM d =
umW u2uM u2 − 3smW ·M d2

uM u5
, s12d

where we haveM =sL ,Zd=aslx, ly, lzd, with lx and ly are the
in-plane indexes of each monolayer, andlz is the perpendicu-
lar direction index. The dynamical matrix can be written as

Vsk,kzd = o
i,j

Vi,jsk,kzd, s13d

with

Vi,jsk,kzd =
mim j

a3 hDi,jsk,lz = 0d + 2 cosskzadDi,jsk,lz = 1dj,

s14d

where

Di,jsk,lzd = o
lx,ly

8
Di,jslx,ly,lzdeiaskxlx+kylyd, s15d

we usedk =skx,kyd, with

Di,jslx,ly,lzd =
di,j

slx
2 + ly

2 + lz
2d3/2 − 3

l il j

slx
2 + ly

2 + lz
2d5/2, s16d

wheresi , j =x,y,zd. The sum is over all the unit cells in the
monolayer, and the prime on the sum indicates that when
lz=0 then the term withlx= ly=0 is excluded. Due to the fact
that the sum converges very slowly in an oscillatory manner,
we should convert this sum into a series which converges
very rapidly. To calculate the summation of the exciton dy-
namical matrix we adopt the procedure that is suggested by
Benson and Mills22 for spin waves in thin films. Philpott18

used the results of Ref. 22 to derive the exciton and polariton
dispersions in molecular mono-layers by using a classical
dielectric theory.

In the limit of long waves, that iska!1, where
k=Îkx

2+ky
2, the diagonal dynamical matrix elements are

Vxx
absk,kzd =

mx
amx

b

a3 H4p cosskzad
kx

2a

k
e−ak − FJ ,

Vyy
absk,kzd =

my
amy

b

a3 H4p cosskzad
ky

2a

k
e−ak − FJ ,

Vzz
absk,kzd =

mz
amz

b

a3 H2F −
4p

3
cosskzadkae−akJ , s17d

where

F = 4
9p2 + 32

3 o
n=1

`

o
l=1

`

p2n2K2s2lpnd, s18d

and whereK2sxd is the modified Bessel function of the sec-
ond order.23 The off-diagonal dynamical matrix elements are

Vxy
absk,kzd = Smx

amy
b

a3 D4p cosskzad
kxkya

k
e−ak,

Vxz
absk,kzd = − iSmx

amz
b

a3 D4p cosskzadkxae−ak,

Vyz
absk,kzd = − iSmy

amz
b

a3 D4p cosskzadkyae−ak, s19d

with Vji
absk ,kzd=hVij

absk ,kzdj* .
In the present case of one molecule per unit cell the in-

dexesa and b in Eqs. s17d and s19d can be dropped. We
added them here for later use in the case of two molecules
per unit cell, where they stand for the two orthogonal transi-
tion dipole moments defined below. Identical results are ob-
tained by Fuchs and Kliewer24 for optical phonons in ionic
crystals.

The terms that includeF in Eqs.s17d stem from the sum-
mation of Eq.s10d for interactions between molecules in the
same monolayer. The other terms stem from the summation
of Eq. s11d for interactions between molecules from two ad-
jacent monolayers. All these terms include the factorskade−ak

and lead to a weak anisotropy effect of the order ofka. We
note that also the interaction with next nearest monolayers
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and more distant ones would be small compared to that
within the same monolayer of orderF. We obtain that the
exciton dispersion relation is an analytical function, where in
the limit of k→0 we get the same result for different direc-
tions, which is in contrast to the bulk case where the disper-
sion exhibits a nonanalytical behavior at small wave
vectors.25

By summing all the above matrix elements, the exciton
dynamical matrix for one molecule per unit cell crystals is
given by

Vsk,kzd =
4p

3a3cosskzade−akskadh3smW i · k̂d2 − mz
2j

+
F

a3h2mz
2 − mi

2j, s20d

where the in-plane transition dipole moment ismW i=smx,myd,
and k̂=k /k. From Eq.s20d we see that the two-dimensional
exciton dispersion, at small values ofk, shows for theL and
Z modes a linear dependence onk, which is due to the long
range contribution of the Coulomb interactionsas also dis-
cussed in Refs. 18 and 26d. For zero in-plane wave vector,
k=0, we have Vs0d=sF /a3dh2mz

2−mi
2j. For the case of

mz=0 we getVs0d=−sF /a3dmi
2, and for the case ofmi=0 we

haveVs0d=s2F /a3dmz
2. This difference between the exciton

dynamical matrix for thez and the in-plane dipole moment
cases, atk=0, is a polarization splittingsalso known as de-
polarization shiftd, and was obtained also in inorganic semi-
conductor thin layers.18,26

B. Two molecules per unit cell

In this section we consider an anisotropic molecular crys-
tal slab with two molecules per unit cell, where the two
molecules are chemically identical, but they have different
orientations. The Frenkel exciton Hamiltonian, in the Heitler-
London approximation, is

H = "sv0 + Ddo
n,i

Bni
† Bni + o

nm,i j
Jijsn − mdBni

† Bm j , s21d

wheresi , j =1, 2d, for the two kinds of molecules in each unit
cell. Here, the interaction parameterJijsn−md, which is a
function of the distance between the two molecules, includes
interactions between two different sites, which are
J11sn−md, J22sn−md, J21sn−md and J12sn−md; and in-
cludes interactions between the two different molecules in
the same site, which areJ12=J21. We assume that the mol-
ecules have the transition dipole momentsmW 1 andmW 2, where
umW 1u= umW 2u. We define the two orthogonal transition dipole
moments

mW + =
mW 1 + mW 2

Î2
, mW − =

mW 1 − mW 2

Î2
, mW + ' mW −. s22d

In the following we calculate the exciton dispersion rela-
tions. We will deal separately with the two cases:sid in-plane
dipole moments andsii d general dipole moments which in-
clude z components. Due to the broken symmetry in thez
direction, we will get different dispersion relations for the
two cases.

1. In-plane molecule dipole moments

To diagonalize the above exciton Hamiltonian, as before,
the slab is divided intoN interacting monolayers, where each
monolayer includesM @1 unit cells. We assume interactions
only between the nearest neighbor monolayers. The diagonal
Hamiltonian reads

H = o
kkz,n

Ensk,kzdBkkz

n† Bkkz

n , s23d

where we obtained two exciton branches which are denoted
by sn=a,bd. To diagonalize the Hamiltonian, the following
transformation is used:

Bn1 =Î 1

MsN + 1dokkz

sinskzzndeik·nihBkkz

a + Bkkz

b j,

Bn2 =Î 1

MsN + 1dokkz

sinskzzndeik·nihBkkz

a − Bkkz

b j. s24d

The two exciton dispersion branches, corresponding to the
two orthogonal dipole moments, are

Eask,kzd = "sv0 + Dd + J12 + V++sk,kzd,

Ebsk,kzd = "sv0 + Dd − J12 + V−−sk,kzd, s25d

whereVabsk ,kzd=Jabsk ,0d+Jabsk ,kzd, with the exciton dy-
namical matrices

Jabsk,0d = o
L

8
JabsL ,0deik·L ,

Jabsk,kzd = 2Ho
L

8
JabsL ,adeik·LJcosskzad. s26d

The first term represents the sum over interactions between
molecules in the same monolayer, and the second represents
interactions between molecules from two nearest neighbor
monolayers. The prime indicates that the interactions be-
tween molecules from the same unit cell are excluded. The
interactions in the same unit cell,J12, are included explicitly
in the above diagonal energies Eqs.s25d. The dynamical ma-
trix elements for the case of a crystal with cubic symmetry
are given in Eqs.s17d–s19d. The exciton band splits into the
two branchessad and sbd which are separated by the Davy-
dov splitting energy, which is

DD = 2J12 + V++sk,kzd − V−−sk,kzd. s27d

This splitting is due to the existence of two molecules per
unit cell. TheBk,kz

a and Bk,kz

b excitons include, respectively,
only themW + andmW − orthogonal dipoles.

Now, we will examine the exciton dynamical matrix in
detail. The relations between the exciton dynamical matrix
elements in terms of the orthogonal dipole moments and that
in terms of the original dipole moments, are given by
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V++sk,kzd = FV11sk,kzd + V22sk,kzd + V21sk,kzd + V12sk,kzd
2

G ,

V−−sk,kzd = FV11sk,kzd + V22sk,kzd − V21sk,kzd − V12sk,kzd
2

G ,

V+−sk,kzd = FV11sk,kzd − V22sk,kzd + V21sk,kzd − V12sk,kzd
2

G .

s28d

In the case of bulk crystal with inversion symmetry,12 we get

V11sk,kzd = V22sk,kzd, V12sk,kzd = V21sk,kzd, s29d

that is the exciton dynamical matrix is real and symmetric.
Hence, we getV+−sk ,kzd=0. These results still hold here also
in our system of an organic crystal slab in the case of in-
plane dipole moments, wheremW n ·ẑ=0. It is seen from the
results of Eqs.s17d and s19d, for the case of cubic crystals,
that in the case of in-plane dipole moments, the dynamical
matrix is real and symmetric, where we retain the inversion
symmetry in the slab plane. This fact leads to the exciton
energies of Eqs.s25d. In comparison with the results of or-
ganic crystal bulks with inversion symmetry,12 the differ-
ences stem from the exciton confinement in the perpendicu-
lar direction and from the assumption of interaction between
nearest neighbor monolayers only.

2. General molecule dipole moments

In the case of general dipole moments withz components,
wheremW n ·ẑÞ0, the results of Eqs.s29d are not satisfied in
general, and we haveV+−sk ,kzdÞ0. We show that this leads
to different dispersion relations for the exciton branches. In
the following we obtain that each Davydov exciton branch is
related to both the orthogonal dipole moments,mW ±. The di-
agonal Hamiltonian is still given by Eq.s23d, but with the
diagonal energies

Eask,kzd = SA+sk,kzd + A−sk,kzd
2

D + Dsk,kzd,

Ebsk,kzd = SA+sk,kzd + A−sk,kzd
2

D − Dsk,kzd, s30d

where

A+sk,kzd = E+ + V++sk,kzd,

A−sk,kzd = E− + V−−sk,kzd, s31d

and where

D2sk,kzd = S2sk,kzd + uV+−sk,kzdu2,

Ssk,kzd =
A+sk,kzd − A−sk,kzd

2
, s32d

and with E±="sv0+Dd±J12. The exciton dynamical matrix
is Vabsk ,kzd=Jabsk ,0d+Jabsk ,kzd, where Jabsk ,0d and

Jabsk ,kzd are defined in Eqs.s26d, and their matrix element
summations, for long wave lengths and in cubic crystals, are
given in Eqs.s17d–s19d. We obtain two exciton branches,a
andb, which are separated by the Davydov energy splitting
Eask ,kzd−Ebsk ,kzd=2Dsk ,kzd. By substitutingV+−sk ,kzd=0,
the results of the previous section for the case of in-plane
dipole moments are recovered. The general transformation,
which is used in order to diagonalize the whole Hamiltonian,
is given by

Bn1 =
1

ÎMsN + 1d
o
kkz

sinskzzrdeik·ni

3 o
n=ab

fRn
+sk,kzd + Rn

−sk,kzdgBkkz

n ,

Bn2 =
1

ÎMsN + 1d
o
kkz

sinskzzrdeik·ni

3 o
n=ab

fRn
+sk,kzd − Rn

−sk,kzdgBkkz

n , s33d

where

Ra
+sk,kzd =ÎDsk,kzd + Ssk,kzd

2Dsk,kzd
,

Ra
−sk,kzd =

V−+sk,kzd
Î2Dsk,kzdfDsk,kzd + Ssk,kzdg

,

Rb
+sk,kzd = −ÎDsk,kzd − Ssk,kzd

2Dsk,kzd
,

Rb
−sk,kzd =

V−+sk,kzd
Î2Dsk,kzdfDsk,kzd − Ssk,kzdg

. s34d

Due to thez direction broken symmetry, and in the existence
of the dipole momentz components, each one of the Davy-
dov exciton branches,a andb, includes both the orthogonal
dipole moments,s+d and s−d. This fact is clear from the
existence of a nonvanishingV+−sk ,kzd dynamical matrix. In
the limit of V+−sk ,kzd→0 we get Ra

+, Rb
−→1 and Ra

−, Rb
+

→0, recovering the results of Eqs.s24d for the case of in-
plane dipole moments.

IV. ANISOTROPIC ORGANIC CAVITY EXCITON
POLARITONS

The excitons in the organic slab and the cavity modes are
coherently coupled to produce the cavity exciton polaritons.
The anisotropic organic slab of widthL0!L is located in the
middle between the cavity mirrors, atz,0, and is parallel to
the cavity mirrors, see Figs. 1 and 2. For the excitons we
assume only one dominant mode in thez direction, the low-
est energy mode which has no nodes, with thez component
wave vectorkza=p / sN+1d. For the coupling between the
excitons and the cavity modes we use the dipole approxima-

tion. The coupling Hamiltonian isV=−m̂ ·Ê, wherem̂ is the
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organic slab dipole moment operator, andÊ is the cavity
electric field operator. Due to the thin slab approximation,
that is qzL0!1, whereqz is the z component of the cavity
photon wave vector, the electric field is evaluated atz=0.
Furthermore, we will apply the rotating wave approximation
in deriving the coupling Hamiltonian. In the cavity we as-
sume only one relevant cavity mode in thez direction at a
time, thesm=1d or the sm=2d one. In the following we in-
vestigate the two cases of organic cavities with one and two
molecules per unit cell.

A. One molecule per unit cell

For the case of an organic crystal slab with one molecule
per unit cell, the dipole moment operator of the molecule at
site n is m̂n=mW Bn

†+mW *Bn. The transition exciton dipole mo-
ment is in general coupled with both cavity-mode polariza-
tions,ssd andspd. This fact is in contrast to the case of usual
inorganic semiconductor crystals,26 where thessd modes in-
teract with theT exciton components, and thespd modes
interact with theL and Z exciton components. The coupled
exciton and cavity-mode Hamiltonian reads

H = o
k
H"vk

exBk
†Bk + o

l=s,p
"vk

cavakl
† akl

+ o
l=s,p

"ffklBk
†akl + fkl

* akl
† BkgJ . s35d

The coupling is between excitons and cavity-modes of both
polarization with the same in-plane wave vector, as dictated
by in-plane translational symmetry. The coupling parameter
is given by

fkl = iÎ 8pM"vk
cav

LAesN + 1d
fmW ·ClskdgcotF p

2sN + 1dG , s36d

where Clskd is defined by Eqs.s4d evaluated atz=0, and
where cotsxd=1/ tansxd.

The diagonalization of the above Hamiltonian gives the
polariton Hamiltonian

Hpol = o
kr

"VrskdAk
r†Ak

r , s37d

with the polariton dispersion relations

V±skd =
vk

ex+ vk
cav

2
± Dk, V0skd = vk

cav, s38d

where we obtain three polariton branches. The upper,s+d,
and the lower,s−d, branches are separated by the Rabi split-
ting energy, 2Dk, whereDk

2=dk
2+ fk

2. We define the exciton
and cavity-mode detuningdk =svk

ex−vk
cavd /2, and the general

exciton and cavity-mode coupling parameterfk
2=olufklu2.

The polariton operators are defined by

Ak
± = Ck

±Bk + o
l

Xkl
± akl, Ak

0 = o
l

Xkl
0 akl, s39d

where

Ck
± = ±ÎDk ± dk

2Dk
, Xkl

± =
fkl

Î2DksDk ± dkd
,

Xks
0 =

fkp
*

fk
, Xkp

0 = −
fks
*

fk
. s40d

The upper and the lower branches mix the excitons and the
two cavity-mode polarizations, while the middle,s0d, polar-
iton branch includes only the two cavity-mode polarizations.
Due to the existence of a polarization direction where the
excitons and the cavity modes are decoupled, we get a pure
photonic branch. The inverse operator transformation is
given by

Bk = o
r

Ck
r*Ak

r , akl = o
r

Xkl
r* Ak

r . s41d

Now, we going to study the two cases of cavity modes with
sm=1d, andsm=2d.

1. (m=1) cavity modes

The active mode in thez direction is chosen to be the first
one withsm=1d, which is illustrated in Fig. 1, then the cou-
pling parameters, by using Eqs.s4d and s36d, are given by

fks = iSskdsmW · n̂kd, fkp = SskdÎ1 −
k2

Q2smW · êkd, s42d

where

Sskd =Î 8pM"vk
cav

LAesN + 1d
cotF p

2sN + 1dG , s43d

with A /M =a2 for cubic crystals. Here

Q =Îk2 + Sp

L
D2

, s44d

and vk
cav is given in Eq.s1d with sm=1d. The Z polarized

cavity mode is not coupled with the slab excitons. The mol-
ecule dipole moment ismW =smx,my,mzd. The unit vectors can
be written as

êk = cosfx̂ + sinfŷ, n̂k = − sinfx̂ + cosfŷ, s45d

wheref is the angle between the in-plane wave vectork and
the x̂ axis. If the molecule dipole moment ismW =smx,0 ,mzd,
then the coupling parameters read

fks = iWskdsinf, fkp = WskdÎ1 −
k2

Q2cosf, s46d

whereWskd=Sskdmx. The upper and lower polariton branch
dispersion relations are

V±skd =
vk

ex+ vk
cav

2

±ÎSvk
ex− vk

cav

2
D2

+ W2skdS1 −
k2

Q2cos2 fD .

s47d

The anisotropy effect in the polariton dispersions is from the
order ofk2/Q2. In the limit of long waves, that isQ@k, the
anisotropy effect is negligible and the dispersion relations are
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similar to that of isotropic materials. In this case, identical
results were obtained in Ref. 9 by using a macroscopic
theory. In Fig. 4 the cavity exciton polaritons are plotted as a
function of the in-plane wave vector,k, in the limit of small
in-plane wave vector. The exciton and the cavity-mode dis-
persions mix and split to produce the two polariton branches.
For large wave vectors the upper branch coincides with the
cavity-mode dispersion, and the lower branch coincides with
the exciton one. The Rabi splitting appears at the exciton-
cavity mode intersection point. We used typical parameters
for organics: the exciton energy, in the limit of small wave
vector, is"vex=2 eV, the dielectric constant ise=4, and the
distance between the cavity mirrors isL=1700 Å. In the case
of N=10 and for lattice constant ofa=15 Å, we get
S<0.01ÎeV/Å3, and then the exciton-cavity mode coupling
parameter is "W=0.1 eV, for dipole moment of
mx=10ÎeV Å3.

2. (m=2) cavity modes

Now, the active mode in thez direction is chosen to be the
second one withsm=2d, which is illustrated in Fig. 2, then
the coupling parameters, by using Eqs.s4d and s36d, are
given by

fks = 0, fkp = − iSskd
k

Q
smW · êzd, s48d

where hereQ=Îk2+s2p /Ld2, andSskd is as defined in Eq.
s43d. It is seen that only theZ polarizedsm=2d cavity mode
is coupled with the exciton slab. From Eqs.s4d, it is seen that
the cavity modeZ component yields coupling parameter
from the order ofk/Q. The upper and lower polariton branch
dispersion relations are

V±skd =
vk

ex+ vk
cav

2
±ÎSvk

ex− vk
cav

2
D2

+ S2skdmz
2 k2

Q2 ,

s49d

wherevk
cav is given in Eq.s1d with sm=2d. In the limit of

long waves, that isQ@k, the excitons and cavity-modes cou-
pling is very weak, and the Rabi splitting disappears.

B. Two molecules per unit cell

Each unit cell in the organic crystal slab contains two
molecules, the molecules are chemically identical and have
different orientations, where the dipole moments aremW 1 and
mW 2. The exciton band splits into two branches,sad and sbd,
which are separated by the Davydov splitting energy. Each
exciton branch is coupled with the two cavity-mode polar-
izations,ssd and spd. The total Hamiltonian, of the coupled
exciton branches and cavity modes, is given by

H = o
k
Ho

n

"vn
exskdBk

n†Bk
n + o

l

"vk
cavakl

† akl

+ o
ln

"sfkl
n Bk

n†akl + fkl
n* akl

† Bk
ndJ . s50d

The coupling is between excitons and cavity-modes with the
same in-plane wave vector. We assumed, as before, only one
active cavity-mode in thez direction. In this section we con-
sider only cavity-modes withsm=1d. For the excitons we
assume only one dominant quantized mode in thez direction,
which is the first one. To get the polariton dispersion rela-
tions we diagonalize the above Hamiltonian. The diagonal
Hamiltonian is as given in Eq.s37d. From the coupling be-
tween the two exciton branches and the two cavity-mode
polarizations we obtain four polariton branches. The polar-
iton dispersion relations are the solutions of the relation

hfVrskd − va
exskdgfVrskd − vk

cavg − sufks
a u2 + ufkp

a u2dj

3hfVrskd − vb
exskdgfVrskd − vk

cavg − sufks
b u2 + ufkp

b u2dj

= usfks
a* fks

b + fkp
a* fkp

b du2. s51d

In the following we will treat separately the two cases of
in-plane dipole moments, and general dipole moments withz
components.

1. In-plane molecule dipole moments

Here, we consider the case where the molecule dipole
moments are in the slab plane, that is thez components are
zero. We use the results of Sec. III B 1. The coupling param-
eters are

fkl
a = iSskdfmW + ·Clskdg, fkl

b = iSskdfmW − ·Clskdg,

s52d

whereSskd is defined in Eq.s43d. The coupling parameters
are given in terms of the orthogonal dipole moments which
are defined in Eqs.s22d. The electromagnetic field vector
functions are evaluated atz=0. At this point we assume that
the dipole momentmW + is in the x̂ direction, and the dipole

FIG. 4. The two cavity exciton-polariton energies vs in-plane
wave vectork. The horizontal dotted line is the exciton dispersion,
and the parabolic dotted line is the cavity-mode dispersion.
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momentmW − is in the ŷ direction, andf is as defined before.
The coupling parameters are given by

fks
b = − iSskdm− cosf, fkp

b = SskdÎ1 −
k2

Q2m− sinf,

fks
a = iSskdm+ sinf, fkp

a = SskdÎ1 −
k2

Q2m+ cosf,

s53d

with Q of Eq. s44d. The dispersion relation of Eq.s51d is
reduced to

HfVrskd − va
exskdgfVrskd − vk

cavg − Wa
2skdS1 −

k2

Q2cos2 fDJ
3HfVrskd − vb

exskdgfVrskd − vk
cavg

− Wb
2skdS1 −

k2

Q2sin2 fDJ
= Wa

2skdWb
2skdS k4

Q4Dsin2 f cos2 f, s54d

whereWa
2skd=S2skdum+u2, and Wb

2skd=S2skdum−u2. The right
hand side is from the order ofk4/Q4, and is responsible for
the mixing between the two exciton Davydov branches. In
the limit of small in-plane wave vectors, wherek!Q, we
can ignore the right hand side of the above relation. The
solution of this equation gives the four polariton frequencies,
which are

V1,2skd =
va

exskd + vk
cav

2

±ÎFva
exskd − vk

cav

2
G2

+ Wa
2skdS1 −

k2

Q2
cos2 fD ,

V3,4skd =
vb

exskd + vk
cav

2

±ÎFvb
exskd − vk

cav

2
G2

+ Wb
2skdS1 −

k2

Q2
sin2 fD .

s55d

The anisotropy effect is from the order ofk2/Q2, which is
very weak. The macroscopic theory of Ref. 9 gave identical
results for the present case. In the limit of long waves it is
seen that the coupling of the excitons and the cavity modes
does not mix the two Davydov exciton branches.

In Figs. 5–8 the cavity exciton polaritons are plotted as a
function of the in-plane wave vector,k, in the limit of small
in-plane wave vector. The four polariton branches appear in
the figures, two upper and two lower branches. For large
wave vectors the two upper branches coincide with the
cavity-mode dispersion, and the lower branches coincide
with the two Davydov exciton dispersions. We use typical
numbers for organics: the two exciton branch energies at

small wave vectors are"va,b
ex ="v0

ex±DD, with "v0
ex=2 eV,

the dielectric constant ise=4, and the distance between the
cavity mirrors isL=1700 Å. In Fig. 5 the energies are plot-
ted in the case ofWa,Wb,DD, with a Davydov splitting of
DD=0.1 eV. In Fig. 6 the energies are plotted in the case of
Wa,Wb@DD, with a Davydov splitting ofDD=0.03 eV.
Due to the smallness of the Davydov splitting, the two upper
branches are close from each other, and the two lower
branches too, whereas we have large Rabi splitting between
the upper and lower branches. Figure 7 is for the case of

FIG. 5. The four cavity exciton-polariton energies vs in-plane
wave vector k, for in-plane dipole moments, in the case of
Wa,Wb,DD, whereDD=0.1 eV andWa=Wb=0.15 eV. The hori-
zontal dotted lines are the two Davydov exciton branches, and the
parabolic dotted line is the cavity-mode dispersion.

FIG. 6. The four cavity exciton-polariton energies vs in-plane
wave vector k, for in-plane dipole moments, in the case of
Wa,Wb@DD, where DD=0.03 eV and Wa=Wb=0.15 eV. The
horizontal dotted lines are the two Davydov exciton branches, and
the parabolic dotted line is the cavity-mode dispersion.
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Wa,Wb!DD, with a Davydov splitting ofDD=0.1 eV. Fig-
ure 8 is for the case ofWa@Wb,DD, where polaritons in-
cluding the upper Davydov exciton branch have large Rabi
splitting, but those including the lower Davydov branch have
not.

The polariton operators are defined by the canonical trans-
formation

Ak
r = o

n

Ckn
r Bk

n + o
l

Xkl
r akl, s56d

where

Cka
1,2= ±ÎDk

a ± dk
a

2Dk
a , Ckb

3,4= ±ÎDk
b ± dk

b

2Dk
b ,

Ckb
1,2= 0, Cka

3,4= 0, s57d

and

Xkl
1,2=

fkl
a

2Dk
asDk

a ± dk
ad

, Xkl
3,4=

fkl
b

2Dk
bsDk

b ± dk
bd

, s58d

and where we defined

Dk
n2 = dk

n2 + ufk
nu2, dk

n =
vn

exskd − vk
cav

2
,

ufk
nu2 = ufks

n u2 + ufkp
n u2. s59d

The inverse transformation is

Bk
n = o

r

Ckn
r* Ak

r , akl = o
r

Xkl
r* Ak

r . s60d

Each one of the four polariton branches is related to both
cavity-mode polarizations, whereas the two polariton
branchess1d and s2d are related to thesad exciton branch,
and thes3d and s4d polariton branches are related to thesbd
exciton branch. Thus, in the case of in-plane dipole mo-
ments, and in the limit of long waves, the exciton-cavity-
mode coupling does not mix the two exciton branches,sad
and sbd.

2. General molecule dipole moments

In the case of general molecule dipole moments, we use
the results of Sec. III B 2. This case, which is not treated in
Ref. 9, leads to a mixing between the two exciton Davydov
branches.

The coupling parameters between the exciton branches
and the cavity modes, in terms of the orthogonal dipole mo-
ments, are given by

fkl
n = iSskdo

a=±
Rn

a*skdfmW a ·Clskdg, s61d

whereSskd is as defined before in Eq.s43d, and the functions
Rn

a*skd are given in Eqs.s34d, which are the amplitude pa-
rameters of the orthogonal dipole moments in each exciton
Davydov branch. We remind that the indexesa=± stand for
the two orthogonal dipole moments, andn=a,b for the two
Davydov exciton branches. We consider only cavity modes
with sm=1d. Furthermore, for the molecule transition dipole
moments we choose a general case ofmW 1=sm1

x ,m1
y ,m1

zd and
mW 2=sm2

x ,m2
y ,m2

zd, which yield the two general orthogonal di-
pole momentsmW +=sm+

x ,m+
y ,m+

zd and mW −=sm−
x ,m−

y ,m−
zd. Sub-

stituting Clskd from Eqs.s4d evaluated atz=0, and with the
definitions of Eqs.s45d for the unit vectors, we get

FIG. 7. The four cavity exciton-polariton energies vs in-plane
wave vector k, for in-plane dipole moments, in the case of
Wa,Wb!DD, where DD=0.1 eV and Wa=Wb=0.015 eV. The
horizontal dotted lines are the two Davydov exciton branches, and
the parabolic dotted line is the cavity-mode dispersion.

FIG. 8. The four cavity exciton-polariton energies vs in-plane
wave vector k, for in-plane dipole moments, in the case of
Wa@Wb,DD, where DD=0.01 eV and Wa=0.15 eV,Wb

=0.015 eV.
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fkp
n =Î1 −

k2

Q2hWkn
x cosf + Wkn

y sinfj,

fks
n = − ihWkn

x sinf − Wkn
y cosfj, s62d

where

Wkn
x = SskdhRn

+*skdm+
x + Rn

−*skdm−
xj,

Wkn
y = SskdhRn

+*skdm+
y + Rn

−*skdm−
yj, s63d

andQ is as defined in Eq.s44d. In spite of the fact that thez
component of the dipole moments does not couple to the
sm=1d cavity modes, when the slab is located atz=0, thez
component of the dipole moment is included in theRn

a*skd
parameters of Eqs.s34d via the exciton dynamical matrix
V+−sk ,kzd.

By substituting Eqs.s62d in the relation of Eq.s51d, in the
long wave limit wherek!Q, we get

hfVrskd − va
exskdgfVrskd − vk

cavg − uWkau2j

3hfVrskd − vb
exskdgfVrskd − vk

cavg − uWkbu2j

= usWka
x* Wkb

x + Wka
y* Wkb

y du2, s64d

where

uWkau2 = uWka
x u2 + uWka

y u2,

uWkbu2 = uWkb
x u2 + uWkb

y u2. s65d

It is seen that the explicit dependence onf has been can-
celed out, and we note that the small anisotropy effects con-
tained in theR functions can be neglected in the long wave-
length limit. Here, the right hand side of the relation is not
negligible in the limit of long wave lengths. In the following
we treat the two cases of small and large Davydov splitting
compared to the Rabi splitting in the strong coupling regime.
sid Small Davydov splitting. As an example we will solve Eq.
s64d in the limit of strong coupling between the excitons and
the cavity modes, assuming that the Rabi splitting between
the polariton branches is much bigger than the Davydov
splitting between the exciton branches. Hence, in this limit
we can assume that the two exciton branch energies are very
close to each other. Therefore, we can assume that
va

exskd.vb
exskd=v0

exskd. The four polariton dispersion rela-
tions are

V1,2,3,4skdFv0
exskd + vk

cav

2
G ± ÎG±skd, s66d

where

G±skd =
2dk

2 + uWkau2 + uWkbu2

2

±ÎSuWkau2 − uWkbu2

2
D2

+ usWka
x* Wkb

x + Wka
y* Wkb

y du2,

s67d

with the detuningdk =fv0
exskd−vk

cavg /2. In this case, the two

exciton branchessad andsbd are mixed with the two cavity-
mode polarizationsssd andspd, where each polariton branch
is a coherent superposition of both exciton branches and both
cavity-mode polarizations.

The four polariton dispersion branches are plotted in Fig.
9 for small wave vectors. TheV1 branch stands fors++d of
Eq. s66d, V2 for s−+d , V3 for s+−d, andV4 for s−−d. As we
assumed, the two Davydov exciton dispersions are very close
to each other, and in the figure they coincide. For large wave
vectors the branchesV1 and V3 tend to the cavity mode
dispersion, and the branchesV2 and V4 tend to the exciton
branch. For small wave vectors the branchV3 is closer to the
exciton one than the branchV1; and the branchV4 is closer
to the cavity mode dispersion than theV2 branch. These
results are due to the following exciton cavity mode strong
coupling parameters. The parametersWkn

x,y of Eqs. s63d are
assumed to be constants in the limit of long wave lengths,
and the transition molecules dipole moments are chosen in
such a way to ensure strong coupling parameters. For the
case when the Davydov splitting is dominated by the exciton
dynamical matrix V+−skkzd, from Eqs. s32d we have
uDsk ,kzdu,uV+−sk ,kzdu, and from Eqs.s34d in the long wave
limit, we get Ra

+=Ra
−=Rb

−<1/Î2 and Rb
+<−1/Î2. These

numbers, for example, are obtained by using the orthogonal
dipole moments mW +=m0s−1,3,2d and mW −=m0s5,5,−5d,
wherem0=10ÎeV Å3. The two Davydov exciton branch en-
ergies at small wave vectors are"va

exskd."vb
exskd=2 eV.

While the other parameters of the cavity are as for Fig. 4. As
a result, we get large Rabi splitting relative to the Davydov
splitting; the obtained values are:Wa

x=0.2 eV, Wb
x=0.3 eV,

Wa
y=0.4 eV, andWb

y=0.1 eV, which are used in Fig. 9.
As a second example, we consider the case with orthogo-

nal dipole momentsmW +=sm+
x ,0 ,0d andmW −=s0,m−

y ,m−
zd. From

FIG. 9. The four cavity exciton-polariton energies vs in-plane
wave vectork, for general dipole moments. The horizontal dotted
line is the two Davydov exciton branches, where we assumed that
they are very close to each other. The parabolic dotted line is the
cavity-mode dispersion. The two Davydov exciton branches are
strongly coupled with the cavity modes.
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Eqs. s17d, we obtainV+−sk ,kzd=0, then we haveRa
+=Rb

−=1
and Ra

−=Rb
+=0. Hence, Eqs. s63d yield Wka

x =Sskdm+
x,

Wkb
y =Sskdm−

y, andWkb
x =Wka

y =0. In this special case there is
no mixing between the two exciton Davydov branches,
which is similar to the in-plane dipole moment case. In Fig.
10 the four polariton branches are plotted, when the transi-
tion dipole moments are chosen in such a way thatm+

x @m−
y.

For the case ofm+
x =20ÎeV Å3 andm−

y =2ÎeV Å3 we get that
the sad Davydov exciton branch is coupled with the cavity
modes, with coupling parameterWa

x=0.2 eV, while thesbd
Davydov exciton branch is coupled with the cavity modes
with coupling parameterWb

y=0.02 eV. The result is that the
V1 andV2 polariton branches have large Rabi splitting, but
the V3 andV4 polariton branches have small Rabi splitting.
As the Davydov branches are not mixed, the polariton dis-
persions in Fig. 10 are similar to that of Fig. 8.

sii d Large Davydov splitting. Here, we consider the case
when the Davydov splitting energy is from the order of the
Rabi splitting energy in the strong coupling regime. The four
polariton branches are a coherent superposition of the two
exciton Davydov branches and the two cavity mode polar-
izations, as in Eqs.s56d here are rewritten as

Ak
r = akrBk

a + bkrBk
b + gkraks + dkrakp, s68d

where the coefficientsakr, bkr, gkr, and dkr are the ampli-
tudes of thesad and sbd Davydov excitons,ssd and spd po-
larization cavity modes in each polariton branchsrd, respec-
tively, and which obeyuakru2+ ubkru2u + ugkru2+ udkru2=1. We
solve the system numerically to get the four polariton disper-
sions, with the excitonic and the photonic weights in each
polariton branch. The two exciton Davydov energies are cho-
sen to be"va

ex=1.8 eV and"vb
ex=2 eV. For the cavity we

use the dielectric constante=4, and the distance between the
mirrors is L=1635 Å. The exciton-photon coupling param-
eters are Wa

x=0.15 eV, Wa
y=0.3 eV, Wb

x=0.2 eV, and

Wb
y=0.1 eV. At k=0 the cavity dispersion falls between the

two Davydov exciton branches. The four polariton branches
are plotted in Fig. 11. The excitonic and photonic weights in
each polariton branch are plotted in Figs. 12–15. It is seen
that each polariton branch is a mix between the two Davydov
excitons and the two cavity photon polarizations. For small
in-plane wave vectors there is strong mixing between the two
Davydov excitons in each polariton branch. At large in-plane
wave vectors the two upper polariton branches,s3d and s4d,
tend to the cavity photon dispersion, the first lower polariton,
s1d, tend to thesad Davydov exciton dispersion, and the sec-
ond lower polariton,s2d, tend to thesbd Davydov exciton
dispersion.

For the case when the distance between the two cavity
mirrors is L=1900 Å, where the cavity dispersion falls be-

FIG. 10. The four cavity exciton-polariton energies vs in-plane
wave vectork, for general dipole moments. Thesad exciton Davy-
dov branch is with large Rabi splitting, and thesbd exciton Davydov
branch is with small Rabi splitting.

FIG. 11. The four cavity exciton-polariton energies vs in-plane
wave vectork. The two horizontal dotted lines are for the two
Davydov exciton branches. The parabolic dotted line is the cavity-
mode dispersion.

FIG. 12. The excitonic and photonic weights for the first polar-
iton branch, which isV1 in Fig. 11.
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low the two Davydov dispersions atk=0, and by using the
same numbers as above, the four polariton dispersions are
plotted in Fig. 16.

V. TRANSMISSION, REFLECTION, AND ABSORPTION
COEFFICIENTS FOR ANISOTROPIC ORGANIC

CAVITIES

Up to this point, the discussion was limited to the case of
a cavity with ideal mirrors, where the electromagnetic fields
are confined inside the cavity. To observe the physical prop-
erties of the organic cavity, we need to couple the internal
cavity fields with the external ones. One way to do this is by
applying the quasimode formalism.27 We assume nonideal
cavity mirrors, which allow a coupling between the confined
cavity modes and the external fields, to the left and the right

sides of the cavity. The quasimode model is applicable only
for a cavity with high quality mirrors.

We consider an organic cavity, where the optically reso-
nant material is taken to be an anisotropic crystal slab. As
discussed before, the excitons and the two cavity-mode po-
larizations,ssd and spd, are mixed together to produce the
cavity polaritons. The absorption in the cavity medium is
included phenomenologically by the decay of the system ex-
citons into a heat reservoir, which describes the exciton finite
lifetime. By applying the quasimode model, we can calculate
the transmission, reflection, and absorption coefficients of
the organic cavity for a given input field.

In general, the organic cavity Hamiltonian in terms of the
system polaritons, is as given by Eq.s37d. For the polariton

FIG. 13. The excitonic and photonic weights for the second
polariton branch, which isV2 in Fig. 11.

FIG. 14. The excitonic and photonic weights for the third polar-
iton branch, which isV3 in Fig. 11.

FIG. 15. The excitonic and photonic weights for the fourth po-
lariton branch, which isV4 in Fig. 11.

FIG. 16. The four cavity exciton-polariton energies vs in-plane
wave vectork. The two horizontal dotted lines are for the two
Davydov exciton branches. The parabolic dotted line is the cavity-
mode dispersion.
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operatorsAk
r†, Ak

r , and frequenciesVrskd, later we will use
the results we obtained above for the two cases of organic
crystal with one and two molecules per unit cell.

The continuum of external fields, to the left and the right
sides of the cavity, are defined by the Hamiltonians

HFR = o
kl
E dvk"vkbkl

† svkdbklsvkd,

HFL = o
kl
E dvk"vkckl

† svkdcklsvkd, s69d

wherebkl
† svkd , bklsvkd , fckl

† svkd ,cklsvkdg are the creation
and annihilation operators of an external mode at the right
sidesat the left sided, with in-plane wave vectork, polariza-
tion l, and frequencyvk, respectively. The cavity modes and
the external fields, to the left and the right sides, are coupled
via the nonideal cavity mirrors, by the coupling Hamiltonian

V = io
kl
E dvk"usvkdfaklbkl

† svkd − bklsvkdakl
† g,

+ io
kl
E dvk"vsvkdfaklckl

† svkd − cklsvkdakl
† g,

s70d

whereusvkd , fvsvkdg is the coupling parameter of the right
sleftd side mirror. The coupling is between cavity modes and
external modes with the same in-plane wave vectors and po-
larizations. The system can be treated for each in-plane wave
vectork separately. The equations of motion for the external
field operators, for a fixedk, are given by

d

dt
blsvd = − ivblsvd + usvdo

r

Xl
r*Ar ,

d

dt
clsvd = − ivclsvd + vsvdo

r

Xl
r*Ar , s71d

and for the polariton operators

d

dt
Ar = − iVrA

r − o
l
E dvXl

r husvdblsvd + vsvdclsvdj,

s72d

where we droppedk. The cavity-mode operators have been
represented in terms of the polariton operators byal

=orXl
r*Ar. For simplicity, we assume two similar mirrors,

that isusvd=vsvd. We takeusvd to be an independent func-
tion of frequency, over a frequency band which includes the
relevant organic cavity frequencies. Namely, we assume
u2svd=g /2p, which is a good approximation for high qual-
ity mirrors, where g is related to the mirror reflectivity
sg~1−Rd.27

We solved the above system of Eqs.s71d and s72d, for a
given initial external input field from the right side, with a
fixed polarization, to get the external output fields from the
left and the right sides.28 Due to the anisotropic organic ma-
terial, the output fields contain the two polarizations,ssd and

spd, although the input field is with one polarization only,ssd
or spd. From the solutions we derive the transmission, reflec-
tion, and absorption coefficients.

The absorption of the medium is included phenomeno-
logically, by replacing the exciton frequency with a complex
one, namelyvex→vex− iG, where G is the nonradiative
damping rate of the excitons. In the case of more than one
exciton branch, as the case for crystals with two molecules
per unit cell where two Davydov exciton branches are ob-
tained, in principle there are different damping ratesGn for
each exciton branchn. Another approach to include the sys-
tem dissipations phenomenologically,29 which is applicable
in the strong coupling regime when the exciton damping rate
is smaller than the Rabi splitting, is by making the replace-
mentVr →Vr − iGr, whereGr is the damping rate of therth
polariton branch. These damping terms stem from the damp-
ing of the excitonic part of the polaritons. For example, in
the case of organic cavity with one molecules per unit cell,
the damping rates for the three polariton branches,
sr =1,2,3d, are Gr = uCru2G, where theuCru2 parameters de-
scribe the excitonic weights in each polariton branch, and
which are defined in Eqs.s40d. While the latter approach
would also be applicable for our system, in the following we
use the former approach.

In the following we give the transmission, reflection, and
absorption coefficients, for the two cases ofssd andspd input
fields. The coefficients are given in terms of the organic cav-
ity matrix

Llm = o
r

Xl
r Xm

r*

sv − Vrd
. s73d

sid For the case ofssd polarized external input field from
the right side, the reflection and transmission coefficients are

Ts
ssd =

g2uiLss+ gsLspLps− LssLppdu2

uDu2,

Tp
ssd = Rp

ssd =
g2uLspu2

uDu2
, Rs

ssd =
u1 + igLppu2

uDu2
, s74d

where

uDu2 = u1 − g2LppLss+ g2LspLps+ igsLss+ Lppdu2.

s75d

The absorption coefficient,Assd, is obtained from the relation

Ts
ssd + Tp

ssd + Rs
ssd + Rp

ssd + Assd = 1. s76d

Although the input field isssd polarized, the organic material
gives rise also tospd polarized transmitted and reflected
fields. Thespd polarized reflection and transmission coeffi-
cients are equal, this being due to the mirrors similarity.

sii d For the case ofspd polarized external input field from
the right side, the reflection and transmission coefficients are

Tp
spd =

g2uiLpp + gsLspLps− LssLppdu2

uDu2
,
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Ts
spd = Rs

spd =
g2uLpsu2

uDu2
, Rp

spd =
u1 + igLssu2

uDu2
. s77d

The absorption parameter,Aspd, is obtained from the relation

Ts
spd + Tp

spd + Rs
spd + Rp

spd + Aspd = 1. s78d

Although the input field isspd polarized, the organic material
gives rise also tossd polarized transmitted and reflected
fields. Thessd polarized reflection and transmission coeffi-
cients are equal, this being due to the mirrors similarity.

For the case of organic cavity with one molecule per unit
cell, we obtained in Sec. IV A three polariton branches
sr =1, 2, 3d, with the frequenciesVr, which are given in Eqs.
s38d, and theXl

r parameters are given in Eqs.s40d. We con-
centrate in the case ofssd polarized input field from the cav-
ity right side. In the following figures we used the organics
typical numbers, that was used in Fig. 4. We consider the
case of the transition dipole momentmW =smx,0 ,mzd. The
exciton-cavity mode coupling parameters are defined in Eqs.

s46d for the sm=1d cavity modes, where the anglef is be-
tween the in-plane wave vectork and thex axis. The param-
eterWskd is assumed to be a constant for the limit of small
wave vectors, withS<0.02ÎeV/Å3, and formx=10ÎeV Å3

we haveW=0.2 eV. The cavity mirror damping rate, which
is derived from the mirrors reflectivity, is estimated to be
"g=0.01 eV, and the exciton damping rate is"G=0.02 eV.
For the direction withf=p /4, Eqs.s74d–s76d are plotted in
Figs. 17–20. Thessd polarized field transmissionTs

ssd is plot-
ted in Fig. 17, for different in-plane wave vectorsk. We have
transmission at resonance points with the polariton branches.
Large transmitted field is obtained from regions where the
polariton branch is more photonic than excitonic; this is for
the lower branch to the left of the exciton-cavity mode inter-
section point, and for the upper branch to the right, plus the
purely photonic branch. Thessd polarized field reflectionRs

ssd

is plotted in Fig. 18. The reflection dip at resonance points
where the polariton branch is more photonic is deeper than
where the polariton branch is more excitonic. Around the
intersection point we have three resonance points corre-
sponding to the three polariton branches. In Fig. 19 thespd
polarized field transmission and reflection,Tp

ssd andRp
ssd, are

plotted, note that in this case the reflection and transmission

FIG. 17. Thessd polarized field transmissionTs
ssd vs wave vector

k, for ssd polarized input field, in the case of crystals with one
molecule per unit cell.

FIG. 18. Thessd polarized field reflectionRs
ssd vs wave vectork,

for ssd polarized input field, in the case of crystals with one mol-
ecule per unit cell.

FIG. 19. Thespd polarized field transmission and reflection,Tp
ssd

andRp
ssd, vs wave vectork, for ssd polarized input field, in the case

of crystals with one molecule per unit cell.

FIG. 20. The absorptionAssd vs wave vectork, for ssd polarized
input field, in the case of crystals with one molecule per unit cell.
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are equal. Here, the transmitted and reflected fields are strong
at resonance points where the polariton branches correspond
to a significant mixing of both polarizations. The absorption
Assd are plotted in Fig. 20. The absorption is strong at reso-
nance points with the polariton branches in the regions where
both the photonic and the excitonic components are signifi-
cant. This is due to the fact that in these regions there is more
penetration of the external field into the cavity than in the
regions where the polariton states are predominantly exci-
tonic. We have absorption resonance points at the upper and
lower polariton branches, and there is no absorption from the
pure photonic polariton branch. Good agreement is obtained
between the presentssd−spd polarization mixing results and
those of Ref. 10, which are derived in applying a macro-
scopic dielectric theory, by using thes434d transfer matrix
formalism, where a thin slab of oriented molecular aggre-
gates is considered as an uniaxial organic material, and the
optical axis is determined by the orientation of the transition
dipole moment.

In a direction with f=p /2, we have fks= iWskd and
fkp=0, thenLsp=Lps=Lpp=0, where we get

Ts
ssd =

g2uiLssu2

uDu2
, Rs

ssd =
1

uDu2
, Tp

ssd = Rp
ssd = 0, s79d

with uDu2= u1+igLssu2. There are no mixing between the two
photon polarizations. Two resonance points will appear in the
transmission, reflection, and absorption spectra at each in-
plane wave vector. This thing is obtained due the fact that
only the ssd polarized cavity photons are coupled with the
excitons. For the case withf=0, in the long wave limit, we
havefkp<Wskd and fks=0. Forssd polarized input fields the
cavity photon polarization is orthogonal the transition dipole
moments. Therefore, the obtained spectra are identical to that
of empty cavity, where for each in-plane wave vector we get
a single resonance point at the cavity frequency.

For an organic cavity with two molecules per unit cell,
and with in-plane dipole moments, we obtained in Sec.
IV B 1 four polariton branchessr =1, 2, 3, 4d, with the fre-
quenciesVr, which are given in Eqs.s55d, and where theXl

r

parameters are given in Eqs.s58d. We assume that the two

exciton branches have the same damping ratesGa=Gb=G.
Also here we concentrate in the case ofssd polarized input
field from the cavity right side. In the following figures we
used "va

ex=2.1 eV and "vb
ex=1.9 eV, with the Davydov

splitting of DD=0.2 eV. As in the one molecule per unit cell
case, the distance between the cavity mirrors isL=1700 Å,
and the cavity medium dielectric constant ise=4. We con-
sider the case with orthogonal transition dipole moments of
mW +=mx

+x̂ andmW −=my
−ŷ. The two exciton branches and the two

cavity mode polarizations coupling parameters are defined in
Eqs. s53d for the sm=1d cavity modes, whereas above the
anglef is between the in-plane wave vectork and thex axis.
The parametersWaskd andWbskd, which appear in the polar-
iton dispersions of Eqs.s55d, are assumed to be constants in
the limit of small wave vectors, withS<0.02ÎeV/Å3. For
mx

+=10ÎeV Å3 and mx
−=5ÎeV Å3, we haveWa=0.2 eV and

Wb=0.1 eV. The cavity mirror damping rate is taken to be
"g=0.01 eV, and the exciton damping rate is"G=0.03 eV.
In the direction off=p /4 the results of Eqs.s74d–s76d are
plotted in Figs. 21–24. Thessd polarized field transmission

FIG. 21. Thessd polarized field transmissionTs
ssd vs wave vector

k, for ssd polarized input field, in the case of crystals with two
molecules per unit cell. FIG. 22. Thessd polarized field reflectionRs

ssd vs wave vectork,
for ssd polarized input field, in the case of crystals with two mol-
ecules per unit cell.

FIG. 23. Thespd polarized field transmission and reflection,Tp
ssd

andRp
ssd, vs wave vectork, for ssd polarized input field, in the case

of crystals with two molecules per unit cell.
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Ts
ssd is plotted in Fig. 21, for different in-plane wave vectors

k. Four resonance peaks appear at the four polariton disper-
sions. The transmission from regions of photonic like polar-
iton dispersion is larger than that of excitoniclike ones. The
ssd polarized field reflectionRs

ssd is plotted in Fig. 22. Four
reflection dips are obtained at resonances with the four po-
lariton dispersions. The reflection dips at resonances with the
polariton dispersions at the photoniclike regions are deeper
than that at the excitoniclike ones. In Fig. 23 thespd polar-
ized field transmission and reflection,Tp

ssd andRp
ssd, are plot-

ted, note that in this case the reflection and transmission are
equal. Four reflection and transmission peaks appear around
the intersection point corresponding to the four polariton
branches. Large transmission is obtained at resonances with
the four polariton dispersions where polarization mixing is
large. The absorptionAssd are plotted in Fig. 24. Here, four
absorption peaks are present at resonances with the four po-
lariton branches.

In all of the above spectra we assumed equal exciton non-
radiative damping rates for both Davydov branches. For ex-
ample the reflection spectrum of thessd polarized field, that

appears in Fig. 22, is replotted in Fig. 25 for in-plane wave
vector q=10−4 Å−1, and damping rates of"Ga="Gb
=0.05 eV. With in-plane dipole moments, no mixing be-
tween the two Davydov branches exists in the formation of
the polaritons. Then changing the damping rate of one Davy-
dov branch will affect only the width of dips at resonance
with polaritons that are related to this Davydov branch. In
Fig. 26 the above reflection spectrum is plotted in the case of
two different damping rates, which are"Ga=0.05 eV and
"Gb=0.005 eV. It is seen that significant changes are ob-
tained at the polariton dips which are related to thesbd Davy-
dov branch.

As the other side, in the case of general dipole moments
with z components, from the results of Sec. IV B 2, we get
that the two exciton Davydov branches are mixed in the
formation of polaritons. Hence, we expect smaller changes in

FIG. 24. The absorptionAssd vs wave vectork, for ssd polarized
input field, in the case of crystals with two molecules per unit cell.

FIG. 25. Thessd polarized field reflectionRs
ssd vs wave vectork,

for ssd polarized input field. In the case of"Ga="Gb=0.05 eV.

FIG. 26. Thessd polarized field reflectionRs
ssd vs wave vectork,

for ssd polarized input field, in the case of"Ga=0.05 eV and
"Gb=0.005 eV.

FIG. 27. Thessd polarized field reflectionRs
ssd vs wave vectork,

for ssd polarized input field. In the case of"Ga="Gb=0.05 eV.
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the spectra by considering different damping rates for the
two Davydov branches. The reflection spectrum of thessd
polarized field from an organic cavity, that is described by
the polariton dispersions of Fig. 11, is plotted in Fig. 27, at
the in-plane wave vectorq=10−4 Å−1, and for the case of
damping rates of"Ga="Gb=0.05 eV. In Fig. 28 the same
reflection spectrum is replotted for two different damping
rates, which are"Ga=0.05 eV and"Gb=0.005 eV. No sig-
nificant differences are obtained in this case, all reflection
dips remaining of similar width, as opposed to Fig. 26.

VI. CONCLUSIONS

We have developed a microscopic theory for Frenkel-
exciton polaritons in organic microcavities in the strong cou-

pling regime. The Frenkel exciton states in an organic crystal
slab with one or two molecules per unit cell and general
dipole orientations have been presented and used to obtain
the cavity polariton states calculating their coupling to the
cavity photon modes microscopically. The dispersion curves
of the organic cavity polaritons we calculate reproduce and
extend the results previously derived within the macroscopi-
cal approach.9 In the most general case, each one of the four
cavity polariton branches is a coherent superposition of both
Davydov exciton bands and both cavity mode polarizations.

Using the quasimode approach to couple the cavity polar-
iton states to the continuum of external photons, we have
then calculated the linear optical response spectra of the or-
ganic microcavity. These results reproduce and extend those
previously obtained through as434d transfer matrix formal-
ism employing a phenomenological uniaxial dielectric tensor
appropriate for the simplest case of one molecule per unit
cell.10 Aside from the higher number of cavity polariton
branches involved, the spectra of the organic microcavity
show a mixing between TM and TE polarizations which does
not occur in the usual inorganic microcavities made of iso-
tropic semiconductors.

The formalism presented here can also be used to con-
sider more complex microcavity configurations containing
several layers of different organic materials.
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