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Microscopic theory of anisotropic organic cavity exciton polaritons
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We consider crystalline organic microcavities in the strong coupling regime. Using a microscopic theory to
describe the Frenkel excitons and their coupling to the cavity photon modes, we derive the cavity exciton-
polariton dispersion relations and quantum states, for the two cases of anisotropic organic crystals with one and
two molecules per unit cell. In the most general case, the cavity exciton polaritons are a coherent superposition
of both Davydov exciton branches and of both cavity mode polarizations. The polarization mixing, which
occurs also in the case of a single molecule per unit cell, is in contrast to the case of typical inorganic
semiconductor cavities in which TM and TE polarizations do not mix. We derive the transmission, reflection,
and absorption coefficients for organic cavities by applying the quasimode approximation for high quality
cavities. The crossed polarized spectra, e.g., the TM polarized reflected light for TE polarized incident light,
clearly show the optical anisotropy of organic microcavities in the regime of strong coupling.
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I. INTRODUCTION optics spectra of such system using a phenomenological

Recently there has been much interest in organic and indniaxial dielectric tensor appropriate for the case of one mol-
organic microcavities, for their ability to control the coupling €Sul€ Per unit cell and &> 4) transfer matrix formalism
between photons and electronic excitatiéris. the strong Which allows for the polarization mixin: The presentni-
coupling regime, where the photon-exciton interaction is_croscoplctheory not only recovers all those results, but also
larger than the exciton and photon damping rates, the cavitycludes the most general case of two molecules per unit cell
photons and the excitons are coherently coupled to produdgith general dipole orientations. In particular, in the latter
the system eigenmodes which are the cavity excitorf@Se: four cavity polariton branches are expected with a sig-
polaritons? The polariton dispersion relation splits into two n'f'g‘?‘nt rpmng .Of both Davgldov e>|<C|ton b:]anchﬁs When(;he
branches which are separated by the Rabi splitting frequenc a}' ; spllzttlng Is comparable or larger than the Davydov
which is proportional to the transition dipole moment. The plitting.

) X S . . . . In order to develop the microscopic theory, we consider
exciton polaritons in inorganic semiconductor microcavities he simplest possible model describing the physically rel-
have been much investigated both theoretically an

. . . L vant features of a crystalline organic microcavity. The opti-
experimentally? In typical quantum-well microcavities, the

. ) . ~_cal confinement in the microcavity is provided by two paral-
coupling between the Wannier-Mott excitons and the cavityig| mirrors at a distance of the order of an optical

photons yields Rabi splitting values of the order of 10 meV.yayelength. At the center of the microcavity is placed a slab
The large oscillator strength of the organic materialsof the organic crystal of width small compared to an optical
makes the use of Organic microcavities more attractive. ThWave|ength, made of mono|ayers para||e| to the microcavity
strong coupling between the Frenkel excitons in organic maplanes. The organic crystal is composed of molecules which
terials and the cavity photons results in a Rabi splittingare all chemically identical and have inversion symmetry.
which is easily an order of magnitude larger than that ofFor the case of two molecules per unit cell, they differ only
inorganic microcavitie4.In particular, a strong coupling re- for the orientation of their transition dipole moments. Ini-
gime has been observed in an organic microcavity containingally, for the purpose of calculating the cavity polariton dis-
J aggregates of cyanine dyayhich have an absorption line- persion curves, the mirrors are assumed to be perfect and no
width of about 40 meV, where the Rabi splitting is betweendissipation mechanism is included. Then, in order to calcu-
80 and 300 meV, at room temperatdr8uch materials are late the linear optics spectra of the microcavity, the quasi-
disordered, but the case of crystalline organic media is alsmode approach is used to couple the cavity polaritons to the
of great current interest. external photons and the exciton nonradiative damping is
In this paper, we study the Frenkel-exciton polaritons ofalso included. Our results will be illustrated showing for sev-
an organic microcavity in the strong coupling regime anderal cases plots of the cavity polariton dispersion curves as
their linear optics spectra on the basis of the microscopiavell as of the transmission, reflection, and absorption spectra
theory? There are only a few previous works on crystalline in the different polarizations.
organic microcavities. M. Litinskaiat al® have investigated The paper is organized as follows. In Sec. Il the cavity
such system in the framework of the macroscopical approacimodes are introduced. The Frenkel excitons in an anisotropic
based on the use of the dielectric tensor, and have derived tloeystal slab are described in Sec. Ill. In Sec. IV the corre-
polariton dispersion equations for one or two molecules pesponding organic cavity exciton polaritons are studied. The
unit cell in the case in which the molecular transition dipoleorganic cavity transmission, reflection, and absorption spec-
moments are parallel to the microcavity plane. At the saméra are calculated in Sec. V. Our conclusions are presented in
time, Balagurov and one of #shave calculated the linear Sec. VI.
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FIG. 1. A molecular crystal slab of width, is located between FIG. 2. Amolecular crystal slab of width, is located between

the cavity mirrors which are separated by distahc&hel, T, and  the cavity mirrors which are separated by distabc&hel, T, and
Z components of then=1 cavity modes and the first exciton mode Z components of then=2 cavity modes and the first exciton mode
are plotted. are plotted.

[l. THE MICROCAVITY PHOTON direction, the one which is close to resonance with the or-

In this section, we consider the microcavity photons. Thedanic slab excitons. In fgct, from the cavity mode dispersion
two infinite and parallel perfect mirrors are in tife-y) ~ ©f Ed. (1), at zero in-plane wave vectog=0, the
plane, separated by a distaricen thez axis, one mirror is  difference between each two adjacent cavity modes is
atz=L/2, and the other at=—L/2, see Figs. 1 and 2. The AEn=fiony—fiwn=(hc)/(2Vel). Taking e=4 as an average
electromagnetic field is confined in tiedirection, and is Vvalue for the medium filling the cavity and assuming
free in the cavity plane. The in-plane wave vector is denoted=1700 A, we getAE,~1.8 eV. As this difference is large
by g, and thez component of the wave vectay,, is quan- enough com_pz_ared to the .typ|callvalues of. Rabi sphttlng,
tized and has the valugg=mm/L, where(m=1, 2, 3,...). Davydov splitting and cavity-exciton detuning considered

The cavity-mode frequencies are given by below, we will include only one relevant cavity mode at a
time.
c mar |2 The cavity electric field operatbtis
o= () @ ' :

Ve £ _ E 47Tﬁw9m cm i
wheree is the background dielectric constant of the medium r2)= Iqu LAe (G2 agm,
between the mirrorsc is the light velocity, and where . -
a=|q|. - Cy (9,2 agm}, 3

For each in-plane wave vector there are two possible
polarizations'® (TE) modes with transverse electric field,
which is denoted by(s), and (TM) modes with transverse

where the location inside the cavity {s,z), and A is the
in-plane quantization area. The electric field vector functions

magnetic field, which is denoted k). The cavity-mode are
Hamiltonian reads m | mar L\ |.
CJ(qg,2) =sin T z+5 Ng.»
Hea = 2 hwqmagm)\aqua (2
gqmA

t . T m cmmr | mm L.
Whereaqrm andayny, are the creation and annihilation opera- Co@,2=-|—F i sin e zZ+ > €y
tors of the(gm\) photon, respectively, witliA=s,p), and VeLwgn
which obey the boson commutation relations. The simple /L mar L\ .
cavity model considered here leads to two degenerate mode e e z+ 5 € (» (4)

polarizations, which is, however, not always the case for
more complicated realizations of optical confineméritve  where the unit vectors arét, =€, X e, in the direction per-
will assume only one relevant cavity mode at a time inzhe pendicular toq (transverse componef, and&,=q/|q] in
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the direction parallel tay (longitudinal componentL). The
(p) modes include both longitudindl and Z components,
and the(s) modes include the transver$ecomponent only.
The cavity mode Z component is of the order of B T k=1
(0)/ (Vewqm), which is small in the spectral region of inter-
est. The cavity modes wittm=1) are illustrated in Fig. 1,
and those witim=2) in Fig. 2.

IIl. FRENKEL EXCITONS IN AN ANISOTROPIC
ORGANIC CRYSTAL SLAB

The cavity optically resonant material is an anisotropic k=2'--.__
organic molecular crystal, e.g., an aromatic crystakhich )
has a proper translational symmetry. In organic crystals the
molecules retain their identity, where the wave function over-
laps are neglected, and the molecules are bounded by the van
der Waals forces. Therenkel excitonwhich is an electronic
excitation typical of molecular crystals, can transfer between
the crystal molecules due to the electrostatic interacfidns.
Such an excitation is described by a wave that propagates in FIG. 3. Aslab ofN interacting monolayers. The first two exciton
the crystal with wave vectdk. In this section we calculate modes in thez direction are plotted.
the Frenkel exciton dispersion relations in an anisotropic or-

ganic slab. We follow the microscopic theory which is ap-gqjiq molecule frequency shift due to the interactions of an

plied to derive the ankel exciton disper§ion relat?ons Nexcited molecule with the other crystal molecules which are
organic bulk crystal$; wh'ere we emphasize the distinc- at the ground state, whei® being usually negative. Note
tions for the case of organic crystal slabs. Other approach%at D for molecules in the outer monolayers of the slab is

have been apph_ed to st_udy such a system, for INStance Witarent from that of the internal ones, as the molecules of
Ret. 18 the classical oscnlgtor theory of excitons and pplar"the outer monolayers have different neighbor molecules than
tons in molecular crystals is used. For each molecule in thﬂwose of the internal monolaye¥sSuch small differences in

crystal we consider the possibility of a single excitation,, are in the following neglected. The second term in the
where the other excited state energies are far from the ongg, miitonian describes the excitation transfer between mol-

considered. We treat the case of very low concentration 0f. a5 at different sites, wheds,, is the interaction param-
excitons. Then, the exciton-exciton interactions can be ne;

I d.In the limit of | ’ ) deter between two molecules at siteg@ndm.
glected. In the limit of low exciton concentrations, to a goo In the slab we assume interactions only between nearest
approximation, the excitons behave as Boson partifles.

) o neighbor monolayers. This assumption enables us to treat
We assume a thin slab, where the slab widghs much d 4 P

easily the broken symmetry in the perpendicular direction.
smaller than the distance between the mirrors. Therefore, y y Y berp

| he i X b he slab : dw?he above Hamiltonian can be easily diagonalized by the
can neglect the interactions between the slab excitons and the, . <tomation

cavity mirrors. Consequently, the excitons are free in the slab

plane, and are confined in the perpendicular direction, and in

this direction the exciton wave vector has discrete values. 2

The slab can be divided int® interacting monolayers, Bn= v/ ————, sin(k,z,)€¥ "By, (6)
where each monolayer includ&> 1 in-plane unit cells, as M(N+ 1)kvkz -

appear in Fig. 3. In the following we consider the two cases

of anisotropic organic crystals with one and two molecules _ o ) _
per unit cell. where the site location is defined ly=(n,z,), with n, as

the location of the site in the monolayer plane, ap@s the
location of the monolayer on the axis. We assumed
N+2 monolayers, which are located at,=an with

The Frenkel exciton Hamiltonian in an organic crystal (n=0,1,...,N,N+1), anda is the distance between each two
slab with one molecule per unit cell, by applying the Heitler- neighbor monolayers. As a boundary condition we take the

Lo

A. One molecule per unit cell

London approximation, is given by monolayergn=0) and(n=N+1) as nodal planes for the ex-
t + citon wave functions. Herek is the in-plane exciton wave
Hex=fi(wo+ D)2 BIBn + 2 JymBlBu, (5 vector, which takes! > 1 values, as the number of unit cells

n n,m

in each monolayerk, is the exciton wave vector in the
whereB! andB,, are the creation and annihilation operatorsdirection, is discrete and takes the vallga=ml/(N+1),

of an excitation at siten, respectively. The first term de- with (I=1,2,...,N), as the monolayers number in the slab.
scribes the excitations of the molecules, wheggis the in-  The first two modes are plotted in Fig. 3.

dependent molecule frequency transition, &ni$ the gas to The diagonal Hamiltonian reads
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Hex= 2 E(k,k)B kBrk, (7 (o) = A - il 16
k,k, I]( X1y Z) (|)2(+|)2/+|§)3/2 (|>2(+|§+|§)5/2' ( )
where the exciton energies are where(i,j=X,y,2). The sum is over all the unit cells in the
monolayer, and the prime on the sum indicates that when
E(k,k) =fi(wo+ D) +V(K,k) (8 1,=0 then the term witth,=1,=0 is excluded. Due to the fact
with that the sum converges very slowly in an oscillatory manner,

we should convert this sum into a series which converges
V(K,k,) = J(k,0) + I(k k). (9) very rapidly. To calculate the summation of the exciton dy-
namical matrix we adopt the procedure that is suggested by
We obtained two exciton dynamical matrices. The excitonBenson and Mill& for spin waves in thin films. Philpdtt
dynamical matrixi(k , 0), for interactions between molecules Used the results of Ref. 22 to derive the exciton and polariton

in the same monolayer, is defined by dispersions in molecular mono-layers by using a classical
dielectric theory.
J(k,0)0=> J(L,0)ekL, (10) In_the limit of long waves, that iska<1, where
L k=\IZ+IJ, the diagonal dynamical matrix elements are

2
where we assumed that the interaction parameter is a func- B Mx,U«x a _
tion of the distance between the molecules, namely Vi (K, g) = {4 cos(kza) F}’
Jam=J(L), with L=m;—n, inside the same monolayer. The
exciton dynamical matrixJ(k k), for interactions between Wil E)ZL
molecules from two nearest neighbor monolayers, is defined V(K. k,) = _u 4 cogka) e~ F r,
by &
Ik, kp) = 2{2 J(L ,a)e’k'L}COS(kza). (11) VEB(k k) = F2E ég{ZF - ?cos(kza)kae‘ak}, (17)
L

To get the explicit exciton dispersion relation one need towhere
calculate the above dynamical matrices for a crystal with a Y
specific symmetry. Several summation methods for the bulk _a 32 5
case have been developed, i.e. in Ref. 21. For illustration, we F=gm+ 2, > mn’Ky(21m)
calculated these matrices for the case of a cubic crystal with
lattice constanf, where each molecule has the same transiand whereK,(x) is the modified Bessel function of the sec-
tion dipole momentu= (s, iy, 1,). The cubic axes of the ond ordef® The off-diagonal dynamical matrix elements are
crystal areX, ¥, andz. The interaction between the crystal v
molecules is given by the dipole-dipole interaction V(K k) = ( >4 cos(kza)—kLe

(18)
n=11=1

|alAM|2 = 3(a - M)?

JM) = M :

(12
VEA(Kk,ky) = (’u;’uz )4 cogk,a)kae 3,
where we haveV =(L ,2)=a(ly,ly,l,), with I, andl, are the

in-plane indexes of each monolayer, dni the perpendicu-
lar direction index. The dynamical matrix can be written as Vf,‘f(k,kz) = (M My Mz )477 cos(kza)kyae (19)
a
Vik,kp) = 2V (ko). (13 with Vo, k) ={VE(k k)T
" In the present case of one molecule per unit cell the in-
with dexesa and B in Egs. (17) and (19) can be dropped. We

added them here for later use in the case of two molecules
per unit cell, where they stand for the two orthogonal transi-
Viji(k,kp) = {D| i(k,1,=0) +2 cogk,a)D; j(k,1,=1)}, tion dipole moments defined below. Identical results are ob-
tained by Fuchs and Kliewé& for optical phonons in ionic
(14 crystals.

The terms that includ€ in Egs.(17) stem from the sum-
mation of Eq.(10) for interactions between molecules in the
same monolayer. The other terms stem from the summation

jakyd ) of Eq. (11) for interactions between molecules from two ad-
Dijlk.l) = 2 Dijllolyl)e (19 jacent monolayers. All these terms include the fackaye 2«
and lead to a weak anisotropy effect of the ordekafWe
we usedk:(kx,ky), with note that also the interaction with next nearest monolayers

where
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and more distant ones would be small compared to that 1. In-plane molecule dipole moments
within the same monolayer of ordér. We obtain that the

exciton dispersion relation is an analytical function, where inthe slab is divided intd\ interacting monolayers, where each

the limit of k— 0 we get the same result for different direc- monolayer include#1 > 1 unit cells. We assume interactions

tions, which is in contrast to the bulk case where the disperg .y hetween the nearest neighbor monolayers. The diagonal
sion exhibits a nonanalytical behavior at small wave

To diagonalize the above exciton Hamiltonian, as before,

Hamiltonian reads

vectors?®

By summing all the above matrix elements, the exciton H=> E,(kk)B B (23)
dynamical matrix for one molecule per unit cell crystals is e T kg Ty
given by !

Ao where we obtained two exciton branches which are denoted
V(k,k,) = ?cos(kza)e‘ak(ka){B(ﬁ” k)2 - w2} by (v:a,b)._ To_diagonalize the Hamiltonian, the following
a transformation is used:

F
+—{2uZ - puf, (20) _ 1 . mraa . ab
a By = m% sin(kyz,) € "By + By

where the in-plane transition dipole momentus= (i, uy),

andk=k/k. From Eq.(20) we see that the two-dimensional 1
exciton dispersion, at small values lkofshows for thel and Bno= \/ ————, sin(k,z,) ek "{B2, - BEkZ}. (24)
Z modes a linear dependence kirwhich is due to the long M(N+1) i z

range contribution of the Coulomb interacti¢as also dis- . . . .
cussed in Refs. 18 and R&For zero in-plane wave vector, The two exciton dispersion branches, corresponding to the

k=0, we have V(O):(F/a3){2,u§—,uf}. For the case of (WO orthogonal dipole moments, are

u,=0 we getV(O):—(zF/af)Mf,. and for the case qf,=0 we E.(K.k,) = i(wg+ D) + Jyp+ VF(K,Ky),
have V(0)=(2F/a% uZ. This difference between the exciton
dynamical matrix for the and the in-plane dipole moment _ _
cases, ak=0, is a polarization splittingalso known as de- En(k,kp) = fi(wg + D) = Jio+ V(K k), (25
polarizationhghilﬂ, angi8 \ZAéas obtained also in inorganic Semi-wherevaﬁ(k,kz):Jaﬁ(k,O)+Jaﬂ(k,kz), with the exciton dy-
conductor thin layers® namical matrices

B. Two molecules per unit cell

In this section we consider an anisotropic molecular crys- JB(k,0)= >, J*A(L,0)gk L,
tal slab with two molecules per unit cell, where the two L

molecules are chemically identical, but they have different

orientations. The Frenkel exciton Hamiltonian, in the Heitler- /

London approximation, is JB(Kk k) =2y >, I*A(L,a)é*" (cogk,a). (26)
H=%(wp+ D)2 BlBy+ > J(n-m)BlBy;, (21) -
ni nm.ij The first term represents the sum over interactions between

where(i,j=1, 2), for the two kinds of molecules in each unit Molecules in the same monolayer, and the second represents
cell. Here, the interaction parametdi(n—m), which is a  intéractions between molecules from two nearest neighbor
function of the distance between the two molecules, include§'0nolayers. The prime indicates that the interactions be-
interactions between two different sites, which arefween molecules from the same unit cell are excluded. The
JMn-m), IZn-m), Yn-m) and J*%n-m): and in- interactions in the same unit cell,,, are included explicitly

cludes interactions between the two different molecules i the above diagonal energies E(25). The dynamical ma-

; ; _ trix elements for the case of a crystal with cubic symmetry
the same site, which ar®,=J,,. We assume that the mol- _ . ; L
ecules have the transitionzdipzéle momepisand i, where are given in Eqs(17)—19). T_he exciton band splits into the
1| =|4,]. We define the two orthogonal transition dipole WO Pranchesa) and (b) which are separated by the Davy-
dov splitting energy, which is

moments
Ry P il 7 SR Ap=2)15+ V(K k) =V (K k). (27)
My =" = M= f~ ’ M+ 1 M- (22)

\ \ This splitting is due to the existence of two molecules per

In the following we calculate the exciton dispersion rela-unit cell. TheBg, and BE,kZ excitons include, respectively,
tions. We will deal separately with the two cas@gin-plane  only the &, and &_ orthogonal dipoles.
dipole moments andii) general dipole moments which in- Now, we will examine the exciton dynamical matrix in
clude z components. Due to the broken symmetry in the detail. The relations between the exciton dynamical matrix
direction, we will get different dispersion relations for the elements in terms of the orthogonal dipole moments and that
two cases. in terms of the original dipole moments, are given by
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. [ VALK k) + V2K, k,) + V2K, k,) + V(K k) | J*8(k ,k,) are defined in Eq926), and their matrix element

V7(k k) = 2 ' summations, for long wave lengths and in cubic crystals, are

- : given in Egs.(17)—(19). We obtain two exciton branches,

M1 22 2l 12 T andb, which are separated by the Davydov energy splitting
Vi kg = | YKk T VK k) — VK k) ~ VK ko) E, (k. k) —Ey(k k) =2A(k k). By substitutingv*~(k ,k,) =0,

L 2 i the results of the previous section for the case of in-plane

_ i} dipole moments are recovered. The general transformation,

k) = V(K k,) — V23K, k,) + V2K k,) - V*2(k,k,) which is used in order to diagonalize the whole Hamiltonian,
\Y (,z)—_ 5 |© is given by
28
29 Bn = —————2, sin(k,z,)e* ™
In the case of bulk crystal with inversion symmetfyyve get v M(N 1) kk,
V(K k) = V2K k), V2K k)=VKkk), (29 X >, [Ri(k,k,) +R;(k, ko) 1By
v=ab

that is the exciton dynamical matrix is real and symmetric. ‘
Hence, we gev* (k,k,) =0. These results still hold here also
in our system of an organic crystal slab in the case of in- Bp, = —————2, sin(k,z)ek™
plane dipole moments, whelg,-2=0. It is seen from the \M(N 1) ki,
results of Eqs(17) and (19), for the case of cubic crystals,
that in the case of in-plane dipole moments, the dynamical Xv_zab[R (k,kp) =R, (k, kZ)]Bkk’ (33

matrix is real and symmetric, where we retain the inversion
symmetry in the slab plane. This fact leads to the excitorwhere
energies of Egs(25). In comparison with the results of or-

ganic crystal bulks with inversion symmet?/ the differ-

ences stem from the exciton confinement in the perpendicu-

lar direction and from the assumption of interaction between
nearest neighbor monolayers only.

2. General molecule dipole moments

In the case of general dipole moments witbomponents,
where i1,-2# 0, the results of Eqg29) are not satisfied in
general, and we haw¢*~(k,k,) # 0. We show that this leads
to different dispersion relations for the exciton branches. In
the following we obtain that each Davydov exciton branch is

Ak, k) + S(k, k)
Ralkkp) = \/ 20k k)

VK, k,)
V2A (K, k)[A(K,k,) + S(K,K,)]

co o [AlGk) = Sk
Rb(k’kz)‘\/ 20(kk)

R (k,ky) =

V7 (k,ky)

related to both the orthogonal dipole momenis, The di-

Ry(k.ky) = (34)

V2A (K, k)[A(K, k) = S(k,k,)]

agonal Hamiltonian is still given by Ed23), but with the

diagonal energies

Ak, k) + A (K,k)
2

Ea(k,ky) :(

ALK, k) + A_(k,k)
2

Eb(k,kz) =(

where

Ak k) =B, + V(K Ky,

A(k,k)=E_+V(k k),
and where

A%k k) = S?(K k) + [V (k k)2,

Ak, k) - A(k,k)

S(k.ky) = 5

)+A(k,kz),

) -Akk), (30

Due to thez direction broken symmetry, and in the existence
of the dipole moment components, each one of the Davy-
dov exciton branches andb, includes both the orthogonal
dipole moments(+) and (-). This fact is clear from the
existence of a nonvanishing (k,k,) dynamical matrix. In
the limit of V*“(k k) —0 we getR;, R;—1 andR;, R;

— 0, recovering the results of Eq&4) for the case of in-
plane dipole moments.

IV. ANISOTROPIC ORGANIC CAVITY EXCITON
POLARITONS

(31 The excitons in the organic slab and the cavity modes are

coherently coupled to produce the cavity exciton polaritons.
The anisotropic organic slab of widtly<L is located in the
middle between the cavity mirrors, at- 0, and is parallel to
the cavity mirrors, see Figs. 1 and 2. For the excitons we
assume only one dominant mode in thdirection, the low-

(32 est energy mode which has no nodes, with zlemponent

wave vectork,a=w/(N+1). For the coupling between the

and with E,=fi(w+D)+J;,. The exciton dynamical matrix €xcitons and the cavity modes we use the dipole approxima-

is V(K ,k,)=J"¥(k,0+J%(k k), where J*¥(k,0) and

tion. The coupling Hamiltonian i¥=-x-E, whereu is the
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fi fi
Xes= (L Xep=—=2". (40)

organic slab dipole moment operator, aRdis the cavity
electric field operator. Due to the thin slab approximation,
that is g,Lo<<1, whereq, is the z component of the cavity ] )
photon wave vector, the electric field is evaluatedzad. ~ The upper and the lower branches mix the excitons and the
Furthermore, we will apply the rotating wave approximationtwo cavity-mode polarizations, while the middi€), polar-

in deriving the coupling Hamiltonian. In the cavity we as- iton branch includes only the two cavity-mode polarizations.
sume only one relevant cavity mode in thelirection at a Due to the existence of a polarization direction where the
time, the(m=1) or the (m=2) one. In the following we in- exuton_s and the cavity modes are decoupled, we get_a pure
vestigate the two cases of organic cavities with one and tw@hotonic branch. The inverse operator transformation is
molecules per unit cell. given by

A. One molecule per unit cell By=2 CL AL,  an =2 XOAL. (41
For the case of an organic crystal slab with one molecule ' '

per unit cell, the dipole moment operator of the molecule aiNow, we going to study the two cases of cavity modes with
site n is f1,= B!+ B,. The transition exciton dipole mo- (m=1), and(m=2).

ment is in general coupled with both cavity-mode polariza-

tions, (s) and(p). This fact is in contrast to the case of usual 1. (m=1) cavity modes

inorganic semiconductor crysté$where the(s) modes in- The active mode in thedirection is chosen to be the first
teract with theT exciton components, and th@) modes  one with(m=1), which is illustrated in Fig. 1, then the cou-

interact with theL and Z exciton components. The coupled pling parameters, by using Eqgl) and(36), are given by
exciton and cavity-mode Hamiltonian reads

. . K2 .o

H=> {ﬁwﬁxslsk + > hoi®al,ag, fs=iS(K) (- Ay),  frp=Sk) /1 -@(M-eK), (42)

k A=sp

x where
+ > A[fBlag + kaalek]}- (35
NS 8mMi ™
_— . . SK) =/ Ko |, (43)
The coupling is between excitons and cavity-modes of both LAe(N+1) 2(N+1)

polarization with the same in-plane wave vector, as dictated 5 )
by in-plane translational symmetry. The coupling parametetVith A/M=a“ for cubic crystals. Here

is given by a2
— 2 -
[ 8TMAw® . T Q=yk+ ( L) ’ (49
fn =i m[u'cx(k)]wt >N+ 1) | (36)
€ and o™ is given in Eq.(1) with (m=1). The Z polarized
where C,(k) is defined by Eqs(4) evaluated az=0, and cavity mode is not coupled with the slab excitons. The mol-
where cotx)=1/tan(x). ecule dipole moment ig = (uy, uy, ;). The unit vectors can
The diagonalization of the above Hamiltonian gives thebe written as

polariton Hamiltonian

& =cos¢X +singy, N =-singX+cosedy, (45

- +
Hpoi = kE A (K)AC A, (37) where¢ is the angle between the in-plane wave ve&ta@nd
' the X axis. If the molecule dipole moment = (u,,0,u,),
with the polariton dispersion relations then the coupling parameters read
WS+ K2
0.0 ==~ +h, Q) =wg®, (39 fs=IW(k)sing,  fip=W(k) /1~ 5c086, (46

where we obtain three polariton branches. The upfer,  whereW(k)=S(k)u,. The upper and lower polariton branch
and the lower(-), branches are separated by the Rabi splitdispersion relations are

ting energy, 2, where AZ=&2+f2. We define the exciton

and cavity-mode detuning, = (o}~ w*)/2, and the general 0. (K) = Wy + o
exciton and cavity-mode coupling parametg==, f,,|2 * 2
The polariton operators are defined by o a2 >
+_ + 0 0 + \/(u> +W2(k)<1—k—0052¢>
A=CiB+ 2 Xhan, A= Xhan, (39 - 2 Q? '
A X
(47)
where ) ) . ) ) ]
The anisotropy effect in the polariton dispersions is from the
Cte + [A £ & Xt = fin order ofk?/ Q2. In the limit of long waves, that iQ>k, the
k=~ 27, kA V2A (A % 8) ' anisotropy effect is negligible and the dispersion relations are
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FIG. 4. The two cavity exciton-polariton energies vs in-plane
wave vectork. The horizontal dotted line is the exciton dispersion,

and the parabolic dotted line is the cavity-mode dispersion.

similar to that of isotropic materials. In this case, identical
results were obtained in Ref. 9 by using a macroscopic

PHYSICAL REVIEW B71, 235316(2005

k2

wEX + wﬁav ex_ wEav
2 Q'

+ \/<‘*’k_
2~ 2
(49)

where w2 is given in Eq.(1) with (m=2). In the limit of
long waves, that iQ> k, the excitons and cavity-modes cou-
pling is very weak, and the Rabi splitting disappears.

2
0.(k) = ) + Sk

B. Two molecules per unit cell

Each unit cell in the organic crystal slab contains two
molecules, the molecules are chemically identical and have
different orientations, where the dipole moments ayeand
[p. The exciton band splits into two branchéa) and (b),
which are separated by the Davydov splitting energy. Each
exciton branch is coupled with the two cavity-mode polar-
izations,(s) and (p). The total Hamiltonian, of the coupled
exciton branches and cavity modes, is given by

H=> {E ho®(K)BLBL + >, hwt®al, ag,
k v N

+ S (1B a0 + L3l B } (50
AV

theory. In Fig. 4 the cavity exciton polaritons are plotted as al he coupling is between excitons and cavity-modes with the

function of the in-plane wave vectdy, in the limit of small

same in-plane wave vector. We assumed, as before, only one

in-plane wave vector. The exciton and the cavity-mode disactive cavity-mode in the direction. In this section we con-
persions mix and split to produce the two polariton branchessider only cavity-modes witfm=1). For the excitons we
For large wave vectors the upper branch coincides with th@ssume only one dominant quantized mode irzttigection,
cavity-mode dispersion, and the lower branch coincides withvhich is the first one. To get the polariton dispersion rela-
the exciton one. The Rabi splitting appears at the excitontions we diagonalize the above Hamiltonian. The diagonal
cavity mode intersection point. We used typical parametersiamiltonian is as given in Eq37). From the coupling be-
for organics: the exciton energy, in the limit of small wave tween the two exciton branches and the two cavity-mode

vector, ishw®™=2 eV, the dielectric constant is=4, and the
distance between the cavity mirrordis 1700 A. In the case
of N=10 and for lattice constant oA=15A, we get

S~0.01yeV/A3, and then the exciton-cavity mode coupling

parameter is AW=0.1 eV, for moment  of

uy=10VeV A3,

dipole

2. (m=2) cavity modes

Now, the active mode in thedirection is chosen to be the
second one witim=2), which is illustrated in Fig. 2, then
the coupling parameters, by using Edq4) and (36), are
given by

k
fks=0, fkp:_is(k)a(/&'éz)! (48)

where hereQ=\k?+(27/L)?, andSk) is as defined in Eq.
(43). It is seen that only th& polarized(m=2) cavity mode
is coupled with the exciton slab. From E@4), it is seen that

polarizations we obtain four polariton branches. The polar-
iton dispersion relations are the solutions of the relation

{1(K) = 0T (k) = 0] = (fed? + [Fpl)
XL (K) = 0 T (K) = o] = (T2 + |2}
= |(flsfis+ it (59)
In the following we will treat separately the two cases of

in-plane dipole moments, and general dipole moments avith
components.

1. In-plane molecule dipole moments

Here, we consider the case where the molecule dipole
moments are in the slab plane, that is theomponents are
zero. We use the results of Sec. Il B 1. The coupling param-
eters are

& =iS(K)[s - Cy(K)], By =iSK)[4- - CL(K)],

(52
whereS(k) is defined in Eq(43). The coupling parameters
are given in terms of the orthogonal dipole moments which

the cavity modeZ component yields coupling parameter are defined in Eqs(22). The electromagnetic field vector
from the order ok/Q. The upper and lower polariton branch functions are evaluated at 0. At this point we assume that

dispersion relations are

the dipole momeniz, is in the X direction, and the dipole

235316-8
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momentg_ is in they direction, and¢ is as defined before. 3
The coupling parameters are given by

k2
foe=—iS(k)u_cose, fP,=Sk)/1- i sin ¢,

. . k?
ks=iS(K)p, sing,  fg,=S(k) 1-Gzhe cOSS,

(53

with Q of Eq. (44). The dispersion relation of Eq51) is
reduced to

The cavity exciton—polariton energies [eV]

k2
{[Qr(k) — wg (K [Q (k) - 0] - VV§(k)(1 - &cosz ¢>)}

1.6 ; : *
o ca 0 05 1 15 2
X4 [ (k) = wp (k) [ (k) = 0] K[A™T] x 10
W2 k> FIG. 5. The four cavity exciton-polariton energies vs in-plane
- Wy(k) 1‘_25”‘2(15 wave vectork, for in-plane dipole moments, in the case of

W, ~W,~ Ap, whereAp=0.1 eV andW,=W,=0.15 eV. The hori-

k? . zontal dotted lines are the two Davydov exciton branches, and the
= V\/i(k)\/\/ﬁ(k)(—[l sirf ¢ cos ¢, (54) parabolic dotted line is the cavity-mode dispersion.

where WA(k) =S(k)| u. |2, and WA(k) =S(k)| u_|2. The right
hand side is from the order &/Q*, and is responsible for
the mixing between the two exciton Davydov branches. |

the limit of small in-plane wave vectors, wheke<Q, we ted in the case OfV,~ W, ~ Ap, with a Davydov splitting of

can ignore the right hand side of the above relation. TheAD:O.l eV. In Fig. 6 the energies are plotted in the case of
solution of this equation gives the four polariton frequenciesw ~W,>Ap, with a Davydov spliting 0fAp=0.03 eV
a 1 . .

small wave vectors aréwj,=fiwg"+Ap, with iwg=2 eV,
the dielectric constant is=4, and the distance between the
ncavity mirrors isL=1700 A. In Fig. 5 the energies are plot-

which are Due to the smallness of the Davydov splitting, the two upper
oK) + 0P branches are close from each other, and the two lower
Qg 4k) = e branches too, whereas we have large Rabi splitting between
2 the upper and lower branches. Figure 7 is for the case of
we k _wcau 2 |(2
+ \/l%] +V\/§(k)<1—&co§¢ , 3

2.8
wop(K) + o

2

weX(k)_wcav 2 k2 -
+ \/l%} +\N§(k)<1—&sm2 ¢>

(55)

The anisotropy effect is from the order &f/Q? which is
very weak. The macroscopic theory of Ref. 9 gave identical£
results for the present case. In the limit of long waves it is °
seen that the coupling of the excitons and the cavity modesc
does not mix the two Davydov exciton branches.

In Figs. 5-8 the cavity exciton polaritons are plotted as a 18 05 ] e
function of the in-plane wave vectds, in the limit of small ' KA ' <107
in-plane wave vector. The four polariton branches appear in
the figures, two upper and two lower branches. For large FIG. 6. The four cavity exciton-polariton energies vs in-plane
wave vectors the two upper branches coincide with thevave vectork, for in-plane dipole moments, in the case of
cavity-mode dispersion, and the lower branches coincidev,~W,>Ap, where Ap=0.03 eV andW,=W,=0.15 eV. The
with the two Davydov exciton dispersions. We use typicalhorizontal dotted lines are the two Davydov exciton branches, and
numbers for organics: the two exciton branch energies ahe parabolic dotted line is the cavity-mode dispersion.

O54k) =
34(K) el

2.4r

avity exciton—polariton energies [eV]
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FIG. 7. The four cavity exciton-polariton energies vs in-plane
wave vectork, for in-plane dipole moments, in the case of
W,~W,<Ap, where Ap=0.1eV and W,=W,=0.015 eV. The
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horizontal dotted lines are the two Davydov exciton branches, and

the parabolic dotted line is the cavity-mode dispersion.

W,,W,<Ap, with a Davydov splitting ofAp=0.1 eV. Fig-
ure 8 is for the case olV,>W,~ Ap, where polaritons in-

cl2- 4 kE O C34= 4 ARE &
ka = T 202 ) kb = T ZAE )
Ciy=0, Ci'=0, (57)
and
1,2 E)\ 3,4 fE)\
= Xt = 58
NT2AARE ST TR 2AD(AR £ &) (58)
and where we defined
e k _ Caw
IV I Sl )2 e
[Fil? = [l + [ficpl>. (59
The inverse transformation is
Br=2 Ci Ak @ = 2 XAl (60)
r r

Each one of the four polariton branches is related to both
cavity-mode polarizations, whereas the two polariton

cluding the upper Davydov exciton branch have large Rabpranches(1) and (2) are related to théa) exciton branch,
Spllttlng, but those |nC|Ud|ng the lower DaVydOV branch haVeand the(s) and (4) polariton branches are related to m

not.

exciton branch. Thus, in the case of in-plane dipole mo-

The polariton operators are defined by the canonical transments, and in the limit of long waves, the exciton-cavity-

formation
‘= > Ci,Bi + > X8 (56)
v A

where

The cavity exciton—polariton energies [eV]

1.6

0 05 1 15 2
k[AT"] x10°

mode coupling does not mix the two exciton brancHes,
and(b).

2. General molecule dipole moments

In the case of general molecule dipole moments, we use
the results of Sec. Il B 2. This case, which is not treated in
Ref. 9, leads to a mixing between the two exciton Davydov
branches.

The coupling parameters between the exciton branches
and the cavity modes, in terms of the orthogonal dipole mo-
ments, are given by

i =iS(K) 2 R (K)[ &g - Cr(K)], (62)

a=t

whereSk) is as defined before in E¢43), and the functions
R‘f(k) are given in Eqgs(34), which are the amplitude pa-
rameters of the orthogonal dipole moments in each exciton
Davydov branch. We remind that the indexes+ stand for

the two orthogonal dipole moments, anda,b for the two
Davydov exciton branches. We consider only cavity modes
with (m=1). Furthermore, for the molecule transition dipole
moments we choose a general caseuof (uy, 1, 13) and
o= (u3, ud, u5), which yield the two general orthogonal di-

FIG. 8. The four cavity exciton-polariton energies vs in-plane pc_)Ie _momentS'L:(Mi'/-LXaMi) and ﬁ—:(Mi,Mz,ME)-_ Sub-
wave vectork, for in-plane dipole moments, in the case of stituting C,(k) from Egs.(4) evaluated az=0, and with the

Wo>W,~Ap, where Ap=0.01eV and W,=0.15eV,W,
=0.015 eV.

definitions of Eqs(45) for the unit vectors, we get
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K2 3.2
fin =\ 1~ zWh, oS + W, sin g, < .
<2,
3
= —I{WE, sin ¢~ WY, cos e}, 62 g
where j%j
W, = SI{R; (k) + R, ()}, 5
a
|
WY, = SR (k) + Ry () ), 63 2
x
andQ is as defined in Eq44). In spite of the fact that the =~ £
component of the dipole moments does not couple to th<‘§
(m=1) cavity modes, when the slab is locatedzat0, thez o
component of the dipole moment is included in mﬁ(k) =
parameters of Eq9.34) via the exciton dynamical matrix 1o , , ,
Vo (k,ky). ) 05 1 15 2
By substituting Eqs(62) in the relation of Eq(51), in the k[A™"] x 107
long wave limit wherek<Q, we get
o o 5 FIG. 9. The four cavity exciton-polariton energies vs in-plane
{{Q, (k) - wax(k)][Qr(k) -] = |Wka| 1 wave vectork, for general dipole moments. The horizontal dotted
_ e _ ca _ 2 line is the two Davydov exciton branches, where we assumed that
X{[Q(K) = wp (k) [Q(K) = 0] = [Wi|?} they are very close to each other. The parabolic dotted line is the
= |(\/\/’,§*a\/\/§b+\/\/{;\/v{b)|2, (64) cavity-mode dispersion. The two Davydov exciton branches are
h strongly coupled with the cavity modes.
where
W2 = W 2+ W 2, exciton branchega) and(b) are mixed with the two cavity-
@ & mode polarizationgs) and(p), where each polariton branch
IWiep 2 = [WELJ2 + W, 2 (65) is a coherent superposition of both exciton branches and both
kb kb kbl - cavity-mode polarizations.
It is seen that the explicit dependence dtas been can- The four polariton dispersion branches are plotted in Fig.

celed out, and we note that the small anisotropy effects cor® for small wave vectors. Th@, branch stands fof++) of
tained in theR functions can be neglected in the long wave-Eq. (66), (), for (—+), Q3 for (+-), and(}, for (--). As we
length limit. Here, the right hand side of the relation is notassumed, the two Davydov exciton dispersions are very close
negligible in the limit of long wave lengths. In the following to each other, and in the figure they coincide. For large wave
we treat the two cases of small and large Davydov splittingsectors the branche®, and Q; tend to the cavity mode
compared to the Rabi splitting in the strong coupling regimedispersion, and the branchés and (), tend to the exciton

(i) Small Davydov splittingAs an example we will solve Eq. branch. For small wave vectors the braiehis closer to the

(64) in the limit of strong coupling between the excitons andexciton one than the brandl,; and the branclf), is closer

the cavity modes, assuming that the Rabi splitting betweero the cavity mode dispersion than tif®, branch. These
the polariton branches is much bigger than the Davydovesults are due to the following exciton cavity mode strong
splitting between the exciton branches. Hence, in this limitcoupling parameters. The paramet®) of Egs. (63) are

we can assume that the two exciton branch energies are veggsumed to be constants in the limit of long wave lengths,
close to each other. Therefore, we can assume thaind the transition molecules dipole moments are chosen in
(k)= w{k)=wg{k). The four polariton dispersion rela- such a way to ensure strong coupling parameters. For the

tions are case when the Davydov splitting is dominated by the exciton
o o dynamical matrix V*~(kk,), from Eqgs. (320 we have
Q45 3‘(k){M} +1G.(K), 66) |Ak,k)|~|V(k k)|, and from Eqs(34) in the long wave
o 2 B limit, we get R'=R;=R;~1/y2 and R;~-1/y2. These

numbers, for example, are obtained by using the orthogonal

where . - >
dipole moments p,=up(-1,3,2 and p_=pue(5,5,-5,
200+ W2+ Wi ? where uy=10veV A3, The two Davydov exciton branch en-
G:(k) = 2 ergies at small wave vectors afief(k)=rwp{k)=2 eV.

W W2 While the other parameters of the cavity are as for Fig. 4. As
Wal” = Wk ) * * 2 a result, we get large Rabi splitting relative to the Davydov
* \/( 2 + | (WeaWao + WeWeo) splitting; the obtained values ar@%=0.2 eV, W{=0.3 eV,
67) W/=0.4 eV, andW}=0.1 eV, which are used in Fig. 9.
As a second example, we consider the case with orthogo-
with the detuningd, =[wg{k)-w>]/2. In this case, the two nal dipole momentg:, =(u¥,0,0 anda_=(0,uY, u?). From
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FIG. 10. The four cavity exciton-polariton energies vs in-plane  FIG. 11. The four cavity exciton-polariton energies vs in-plane
wave vectork, for general dipole moments. Tia) exciton Davy-  wave vectork. The two horizontal dotted lines are for the two
dov branch is with large Rabi splitting, and tti® exciton Davydov ~ Davydov exciton branches. The parabolic dotted line is the cavity-
branch is with small Rabi splitting. mode dispersion.

o P W/=0.1 eV. Atk=0 the cavity dispersion falls between the
Eqs.(l_?), Vi’e obtainv*~(k, k,) =0, then_we hav&a:szxl twtz) Davydov exciton branches. The four polariton branches
and R;=R,=0. Hence, Egs.(63 vyield W,=Sk)ui,  gre plotted in Fig. 11. The excitonic and photonic weights in
Wip=S(k) ul, and Wi, =Wg,=0. In this special case there is each polariton branch are plotted in Figs. 12-15. It is seen
no mixing between the two exciton Davydov branchesihat each polariton branch is a mix between the two Davydov
which is similar to the in-plane dipole moment case. In Fig.excitons and the two cavity photon polarizations. For small
10 the four polariton branches are plotted, when the transim-plane wave vectors there is strong mixing between the two
tion dipole moments are chosen in such a way gt 1”.  Davydov excitons in each polariton branch. At large in-plane
For the case of;=20VeV A’ and u?=2\eV A® we get that  wave vectors the two upper polariton branch@,and (4),

the (a) Davydov exciton branch is coupled with the cavity tend to the cavity photon dispersion, the first lower polariton,
modes, with coupling paramet&/,=0.2 eV, while the(b) (1), tend to the(a) Davydov exciton dispersion, and the sec-
Davydov exciton branch is coupled with the cavity modesond lower polariton,(2), tend to the(b) Davydov exciton
with coupling parameteW?=0.02 eV. The result is that the dispersion.

), and (), polariton branches have large Rabi splitting, but  For the case when the distance between the two cavity

the (3 and ()4 polariton branches have small Rabi splitting. mirrors is L=1900 A, where the cavity dispersion falls be-
As the Davydov branches are not mixed, the polariton dis-

persions in Fig. 10 are similar to that of Fig. 8. 1

(ii) Large Davydov splittingHere, we consider the case 09l
when the Davydov splitting energy is from the order of the
Rabi splitting energy in the strong coupling regime. The four 2 08f
polariton branches are a coherent superposition of the twcz 71
exciton Davydov branches and the two cavity mode polar--
izations, as in Eqs56) here are rewritten as

Ark = a’krB? + BkrBE + Ykrdgst 5krakpa (68)

where the coefficientsy, Bk, Y and §,, are the ampli-
tudes of the(a) and (b) Davydov excitons(s) and (p) po-
larization cavity modes in each polariton brar(ch respec-
tively, and which obey|ay|?+| B %] +| Vi [2+ | 0| ?=1. We
solve the system numerically to get the four polariton disper- .1}
sions, with the excitonic and the photonic weights in each
polariton branch. The two exciton Davydov energies are cho- ]
sen to befiw=1.8 eV andhw; =2 eV. For the cavity we KA
use the dielectric constaat4, and the distance between the

mirrors isL=1635 A. The exciton-photon coupling param-  FIG. 12. The excitonic and photonic weights for the first polar-
eters are Wy=0.15eV, W/=0.3 eV, W;=0.2 eV, and iton branch, which i€, in Fig. 11.

hts

IC

The excitonic and photon
(=]
~

235316-12



MICROSCOPIC THEORY OF ANISOTROPIC ORGANIC. PHYSICAL REVIEW B 71, 235316(2005

0.9 T T T 0.7

08f

0.7t

0.6

0.5¢

0.4t 1

0.3} 1

0.21

The excitonic and photonic weights
The excitonic and photonic weights

0.1

0 1 L

K[A™"] x10° k[AT] x10°

FIG. 13. The excitonic and photonic weights for the second FIG. 15. The excitonic and photonic weights for the fourth po-
polariton branch, which i$), in Fig. 11. lariton branch, which i€}, in Fig. 11.

low the two Davydov dispersions &0, and by using the sides of the cavity. The quasimode model is applicable only
same numbers as above, the four polariton dispersions afer a cavity with high quality mirrors.

plotted in Fig. 16. We consider an organic cavity, where the optically reso-

nant material is taken to be an anisotropic crystal slab. As

V. TRANSMISSION, REFLECTION, AND ABSORPTION discussed before, the excitons and the two cavity-mode po-
COEFFICIENTS FOR ANISOTROPIC ORGANIC larizations, (s) and (p), are mixed together to produce the
CAVITIES cavity polaritons. The absorption in the cavity medium is

included phenomenologically by the decay of the system ex-
Up to this point, the discussion was limited to the case ofcitons into a heat reservoir, which describes the exciton finite
a cavity with ideal mirrors, where the electromagnetic fieldsjifetime. By applying the quasimode model, we can calculate
are confined inside the cavity. To observe the physical propthe transmission, reflection, and absorption coefficients of
erties of the organic cavity, we need to couple the internathe organic cavity for a given input field.
cavity fields with the external ones. One way to do this is by In general, the organic cavity Hamiltonian in terms of the

applying the quasimode formalisth.We assume nonideal system polaritons, is as given by E&7). For the polariton
cavity mirrors, which allow a coupling between the confined

cavity modes and the external fields, to the left and the right »g

0.7 T T T 2.6
% § 2.2
2 05 I
2 ©
5 c
£ 04y £
T 3
5 S
o 03} o
5 =
9 oz2f
(0]
£
01 r 12 1 1 L
0 05 1 15 2
0 - - - KIAT] x 107
0 05 1 1.5 2
K[A™"] x 107 FIG. 16. The four cavity exciton-polariton energies vs in-plane

wave vectork. The two horizontal dotted lines are for the two
FIG. 14. The excitonic and photonic weights for the third polar- Davydov exciton branches. The parabolic dotted line is the cavity-
iton branch, which i€} in Fig. 11. mode dispersion.
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operatorsAl', A}, and frequencie$),(k), later we will use  (p), although the input field is with one polarization onlg)
the results we obtained above for the two cases of organior (p). From the solutions we derive the transmission, reflec-

crystal with one and two molecules per unit cell. tion, and absorption coefficients.
The continuum of external fields, to the left and the right The absorption of the medium is included phenomeno-
sides of the cavity, are defined by the Hamiltonians logically, by replacing the exciton frequency with a complex
one, namely ®*— «®*~iI', where I' is the nonradiative
Her= 2, dwkﬁwkbl)\(a’k)bk)\(“’k)a damping rate of the excitons. In the case of more than one
kA exciton branch, as the case for crystals with two molecules

per unit cell where two Davydov exciton branches are ob-
+ tained, in principle there are different damping rakgsfor
He=2 daniwy Cyy (@) S (wxc), (69) each exciton branch. Another approach to include the sys-
kA tem dissipations phenomenologicafywhich is applicable
where b}, (@), b (@), [¢f (w1),Ca(wi)] are the creation  in the strong coupling regime when the exciton damping rate
and annihilation operators of an external mode at the rights smaller than the Rabi splitting, is by making the replace-
side (at the left sidg, with in-plane wave vectok, polariza- ~ ment€,—Q,—iI’,, wherel’, is the damping rate of theth
tion \, and frequencys,, respectively. The cavity modes and Polariton branch. These damping terms stem from the damp-
the external fields, to the left and the right sides, are coupletnd of the excitonic part of the polaritons. For example, in
via the nonideal cavity mirrors, by the coupling Hamiltonian the case of organic cavity with one molecules per unit cell,
the damping rates 2for the threT |£)0Iarit0n branches,
—i + _ t (r=1,2,3, areI',=|C"|°T’, where the|C'|? parameters de-
v I% dandit(w)l b (@) = Balw)a ) scribe the excitonic weights in each polariton branch, and
which are defined in Eq940). While the latter approach
+H> dwkﬁv(wk)[ak)\cl)\(wk) _ Ck)\(wk)al)\], would also be applicable for our system, in the following we
K use the former approach.
(70) In the following we give the transmission, reflection, and
absorption coefficients, for the two caseg®fand(p) input
whereu(wy), [v(w,)] is the coupling parameter of the right fields. The coefficients are given in terms of the organic cav-
(left) side mirror. The coupling is between cavity modes andty matrix
external modes with the same in-plane wave vectors and po- C o
larizations. The system can be treated for each in-plane wave AL=S XK (73)
vectork separately. The equations of motion for the external M " (w—Q,)°

field operators, for a fixe#, are given by ) ) ) ]
(i) For the case ofs) polarized external input field from

Eb)\(w) =~ jwby(w) + U(w) > XUAT the right side, the reflection and transmission coefficients are
dt p ’
TO = 72|iAss+ Y(AspAps_ Asg\pp)|2
d o o s ID|2,
GO (@ = gy (@) + v(w) X XJA, (71)
r
Agg? 1+iyAyy?
and for the polariton operators TY=Ry = YZ||D—|52p‘ RY = % (74)
d
d—tA“ =-iQA -2 f doX\{u(w)by(w) +v(w)c\(w)}, where
A
(72) |D|2 = |1 - '}’ZAppAss"' 'yzAspAps"' iy(Ags+ App)|2'

where we dropped. The cavity-mode operators have been (75)
represented in terms of the polariton operators &y  The absorption coefficiend®, is obtained from the relation
=3 X{ A". For simplicity, we assume two similar mirrors,

that isu(w) =v(w). We takeu(w) to be an independent func- TS + TE)S) +RY + Rés) +A® =1, (76)
tion of frequency, over a frequency band which includes the ) S ) ) )
relevant organic cavity frequencies. Namely, we assumélthough the input field igs) polarized, the organic material
u(w) = y/ 27, which is a good approximation for high qual- gives rise also to(p) polarized transmitted and reflected
ity mirrors, wherey is related to the mirror reflectivity fields. The(p) polarized reflection and transmission coeffi-

(y*x1-R).27 cients are equal, this being due to the mirrors similarity.

We solved the above system of E@&1) and(72), for a (i) For the case ofp) polarized external input field from
given initial external input field from the right side, with a the right side, the reflection and transmission coefficients are
fixed polarization, to get the external output fields from the ) )
left and the right side€ Due to the anisotropic organic ma- TP = 7’2|'App+ Y(AspAps— AssApp)|
terial, the output fields contain the two polarizatio(s,and P ID|? ’
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0.4 <
0.34

0 0.2

=

0.1

1

0.5

0 k[A™

ha/(21) [eV] 0

FIG. 17. The(s) polarized field transmissioﬁ(ss) VS wave vector
k, for (s) polarized input field, in the case of crystals with one
molecule per unit cell.

_ Pl

~ IpP

|l+i7Asst

T(Sp) - R(SD) |D|2

. RP= (77)

The absorption parametek”, is obtained from the relation

T(Sp) + T;)p) + Rép) + R(pp) + AP =1, (79)
Although the input field i$p) polarized, the organic material
gives rise also to(s) polarized transmitted and reflected
fields. The(s) polarized reflection and transmission coeffi-
cients are equal, this being due to the mirrors similarity.
For the case of organic cavity with one molecule per uni

(r=1, 2, 3, with the frequencie§),, which are given in Egs.
(38), and theX| parameters are given in Eqg0). We con-
centrate in the case ¢$) polarized input field from the cav-

ity right side. In the following figures we used the organics

case of the transition dipole momepi=(u,,0,u,). The
exciton-cavity mode coupling parameters are defined in Eq

\

14 k
0.84 ” >~
™~
9006
0.4

0

he/(27) [eV] 0

k[A™"]

FIG. 18. The(s) polarized field reflectioer) VS wave Vectok,
for (s) polarized input field, in the case of crystals with one mol-
ecule per unit cell.

t
cell, we obtained in Sec. IV A three polariton branches

PHYSICAL REVIEW B 71, 235316(2005

hw/(2m) [eV] o

0 kA ™Y
FIG. 19. The(p) polarized field transmission and reflectidr X
and R(S>, vs wave vectok, for (s) polarized input field, in the case

of crystals with one molecule per unit cell.

(46) for the (m=1) cavity modes, where the angigis be-
tween the in-plane wave vecthrand thex axis. The param-
eterW(k) is assumed to be a constant for the limit of small
wave vectors, with5=0.02/eV/A3, and for u,=10yeV A3

we haveW=0.2 eV. The cavity mirror damping rate, which
is derived from the mirrors reflectivity, is estimated to be
hy=0.01 eV, and the exciton damping ratesilE=0.02 eV.

For the direction withp=7/4, Eqgs.(74)—(76) are plotted in
Figs. 17-20. Thés) polarized field transmissio?ﬁf) is plot-

ted in Fig. 17, for different in-plane wave vectdsWe have
transmission at resonance points with the polariton branches.
Large transmitted field is obtained from regions where the
polariton branch is more photonic than excitonic; this is for
the lower branch to the left of the exciton-cavity mode inter-
section point, and for the upper branch to the right, plus the
purely photonic branch. Thes) polarized field reerctioer)

is plotted in Fig. 18. The reflection dip at resonance points

Svhere the polariton branch is more photonic is deeper than

where the polariton branch is more excitonic. Around the

Sntersection point we have three resonance points corre-

sponding to the three polariton branches. In Fig. 19(ihe
polarized field transmission and reflectiai® and R, are
plotted, note that in this case the reflection and transmission

0.25 <

0.5

ho/(27) [eV] 0 o

K[A™Y

FIG. 20. The absorptioA® vs wave vectok, for (s) polarized
input field, in the case of crystals with one molecule per unit cell.
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0.4 \
N \ \
14 W
\\
g @ 0.24 084 N
S
0.1+ a0 0.6
O>
4 0.4

ha/(2r) [eV] 0 o0 KA
FIG. 21. The(s) polarized field transmissioﬁ(ss) VS wave vector hw/(27) [eV] 0 0 K A™]
k, for (s) polarized input field, in the case of crystals with two
molecules per unit cell. FIG. 22. The(s) polarized field reflectiorRS) VS wave vectok,

for (s) polarized input field, in the case of crystals with two mol-
are equal. Here, the transmitted and reflected fields are strormgules per unit cell.
at resonance points where the polariton branches correspond
to a significant mixing of both polarizations. The absorptionexciton branches have the same damping raigsl’,=T.
A" are plotted in Fig. 20. The absorption is strong at resoAlso here we concentrate in the case(sf polarized input
nance points with the polariton branches in the regions wherge|d from the cavity right side. In the following figures we
both the photonic and the excitonic components are signifiyged ho*=2.1eV andhof*=1.9 eV, with the Davydov
cant. This is due to the fact that in these regions there is morgyjitting of Ap=0.2 eV. As in the one molecule per unit cell
penetration of the external field into the cavity than in thecase, the distance between the cavity mirrors3sL700 A,
regions where the polariton states are predominantly exciand the cavity medium dielectric constantes4. We con-
tonic. We have absorption resonance points at the upper angder the case with orthogonal transition dipole moments of
lower polariton branches, and there is no absorption from th%:,u;)? andz_=pu,y. The two exciton branches and the two
pure photonic polariton branch. Good agreement is obtainegayity mode polarizations coupling parameters are defined in
between the preseii) - (p) polarization mixing results and Eqs, (53) for the (m=1) cavity modes, whereas above the
those of Ref. 10, which are derived in applying a macro-gngleq is between the in-plane wave vectoand thex axis.
scopic dielectric theory, by using thiéd X 4) transfer matrix — The parametergV,(k) andW,(k), which appear in the polar-
formalism, where a thin slab of oriented molecular aggre4ton dispersions of Eqg55), are assumed to be constants in

gates is considered as an uniaxial organic material, and th@e |imit of small wave vectors, witls~0.02/eV/A3. For
optical axis is determined by the orientation of the tran5|t|onM;:10\;eV A3 and ,u;:S\s‘”—eV A3, we havew,=0.2 eV and

dipole moment. _ W,=0.1 eV. The cavity mirror damping rate is taken to be
In a direction with =7/2, we havef,=iW(k) and  7,=0.01 eV, and the exciton damping rate#E=0.03 eV.
fkp=0, thenAsp=Ap=Ap,=0, where we get In the direction of=m/4 the results of Eq(74)—(76) are
VA2 1 plotted in Figs. 21-24. Thés) polarized field transmission
TO = —S’ (s) — — T = RO = 0, 79
T pp - R Tpp TR0 9
0.25+
with |D|?=|1+iyA?. There are no mixing between the two
0.24

photon polarizations. Two resonance points will appear in the
transmission, reflection, and absorption spectra at each ing-= g 15 |
plane wave vector. This thing is obtained due the fact that g
only the (s) polarized cavity photons are coupled with the 2= '3
excitons. For the case witth=0, in the long wave limit, we 0.05 4
havef,,~W(k) andf,s=0. For(s) polarized input fields the
cavity photon polarization is orthogonal the transition dipole 2’
moments. Therefore, the obtained spectra are identical to the
of empty cavity, where for each in-plane wave vector we get 2
a single resonance point at the cavity frequency.

For an organic cavity with two molecules per unit cell, hev(2m) [eV] 0 0 KA
and with in-plane dipole moments, we obtained in Sec.
IV B 1 four polariton brancheér=1, 2, 3, 4, with the fre- FIG. 23. The(p) polarized field transmission and reflectid’rés,)
quencies),, which are given in Eq¥55), and where the&]  andR", vs wave vectok, for (s) polarized input field, in the case
parameters are given in Eq&8). We assume that the two of crystals with two molecules per unit cell.
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0.4+ 1
0.3 091
< 924 0.8}
0.1 o7l
0 T
4 06}
05r
hw/(2r) [eV] 0 o KA 04l
FIG. 24. The absorptioA® vs wave vectok, for (s) polarized 03 . . . . . .
input field, in the case of crystals with two molecules per unit cell. 1.2 1.4 16 1.8 2 22 2.4 26

hay(2n) [eV]
T(SS) is plotted in Fig. 21, for different in-plane wave vectors . _ 9
k. Four resonance peaks appear at the four polariton disper- FIG- 26. The(s) polarized field reflectiom;” vs wave vectok,
sions. The transmission from regions of photonic like polarSfor () polarized input field, in the case ofl’;=0.05 eV and
iton dispersion is larger than that of excitoniclike ones. The1'5=0.005 eV.
(s) polarized field reﬂectimR‘ss) is plotted in Fig. 22. Four o _ o .
reflection dips are obtained at resonances with the four pc@Ppears in Fig. 22, is replotted in Fig. 25 for in-plane wave
lariton dispersions. The reflection dips at resonances with théector g=10*A™%, and damping rates offil',=#l,
polariton dispersions at the photoniclike regions are deeper0.05 eV. With in-plane dipole moments, no mixing be-
than that at the excitoniclike ones. In Fig. 23 g polar-  tween the two Davydov branches exists in the formation of
ized field transmission and reflectioR’® andR®, are plot- the poIantons._Then changing the.damplng_ rate of one Davy-
ted, note that in this case the reflection and transmission a@V Pranch will affect only the width of dips at resonance
equal. Four reflection and transmission peaks appear arouffjth Polaritons that are related to this Davydov branch. In
the intersection point corresponding to the four polariton”'9- 26 the above reflection spectrum is plotted in the case of
branches. Large transmission is obtained at resonances wity© different damping rates, which arél’;=0.05 eV and
the four polariton dispersions where polarization mixing is’*L b=0-005 eV. It is seen that significant changes are ob-
large. The absorptioA® are plotted in Fig. 24. Here, four tained at the polariton dips which are related toheDavy-
absorption peaks are present at resonances with the four pgoV Pranch. o .
lariton branches. As the other side, in the case of general dipole moments
In all of the above spectra we assumed equal exciton nonith Z components, from the results of Sec. IV B 2, we get
radiative damping rates for both Davydov branches. For exthat the two exciton Davydov branches are mixed in the
ample the reflection spectrum of the polarized field, that formation of polaritons. Hence, we expect smaller changes in

1 T T T " 1

0.95[
w 0 0.95F
o
09} c
S
g O 9 -
0.851 B
& S
08r 8 ossf
s
[o]
0.75[ a
@
08}
07}
0.65 . . : : : . 0.75 . : : . : :
1.2 1.4 1.6 1.8 2 22 2.4 26 1.2 1.4 1.8 1.8 2 22 24 2.6
h/(2n) [eV] he/(2r) [eV]
FIG. 25. The(s) polarized field reflectiorR(SS) VS wave vectok, FIG. 27. The(s) polarized field reﬂectionR(:) VS wave Vectok,
for (s) polarized input field. In the case éf ,=%1",=0.05 eV. for (s) polarized input field. In the case éf",=#%1",=0.05 eV.
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1 ; - - pling regime. The Frenkel exciton states in an organic crystal
Y slab with one or two molecules per unit cell and general
0951 dipole orientations have been presented and used to obtain
| the cavity polariton states calculating their coupling to the
g ' cavity photon modes microscopically. The dispersion curves
T oash ] of the organic cavity polaritons we calculate reproduce and
%—j extend the results previously derived within the macroscopi-
% 08} ] cal approacH.In the most general case, each one of the four
T cavity polariton branches is a coherent superposition of both
5 075} 1 Davydov exciton bands and both cavity mode polarizations.
g Using the quasimode approach to couple the cavity polar-
g 07 1 iton states to the continuum of external photons, we have
then calculated the linear optical response spectra of the or-
0.65} . :
ganic microcavity. These results reproduce and extend those
06 ) ) , ) , ) previously obtained through(@ X 4) transfer matrix formal-
1.2 1.4 1.6 1.8 2 22 24 26 ism employing a phenomenological uniaxial dielectric tensor

ha/(2m) [V] appropriate for the simplest case of one molecule per unit

) _ e cell’® Aside from the higher number of cavity polariton
FIG. 28. The(s) polarized field reflectiof;” vs wave vectok,  pranches involved, the spectra of the organic microcavity
for (s) polarized input field, in the case dfl',=0.05eV and  ghow a mixing between TM and TE polarizations which does
#I',=0.005 eV. not occur in the usual inorganic microcavities made of iso-

L . . tropic semiconductors.
the spectra by considering different damping rates for the The formalism presented here can also be used to con-

two II_)avyd.ov branches. The _reflec’qon spegtrum Of, tee sider more complex microcavity configurations containing
polarized field from an organic cavity, that is described bygayeral layers of different organic materials.
the polariton dispersions of Fig. 11, is plotted in Fig. 27, at
the in-plane wave vecton=10* A%, and for the case of
damping rates ofil',=AI'y,=0.05 eV. In Fig. 28 the same
reflection spectrum is replotted for two different damping
rates, which aréil';=0.05 eV andhI',=0.005 eV. No sig- H.Z. gratefully acknowledges the support of the European
nificant differences are obtained in this case, all reflectiorCommission via the 5th Framework Research Training Net-
dips remaining of similar width, as opposed to Fig. 26. work HPRN-CT-2002-00315The physics of hybrid organic-
inorganic heterostructures for photonics and telecommunica-
tions’ (HYTEC). We would like to thank Vladimir
We have developed a microscopic theory for Frenkel-Agranovich, and Franco Bassani for very fruitful discus-
exciton polaritons in organic microcavities in the strong cou-sions.
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