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We have developed a computationally efficient rate equation model to study transformations between amor-
phous and crystalline phases of network forming materials. Amorphous and crystalline phases are treated in
terms of their atomic ring distributions. The transformation between the two phases is considered to be driven
by the conversion of one set of rings into another, following the Wooten-Winer-Weaire bond-switching algo-
rithm. Our rate equation model describes both the generation and collapse of amorphous regions in thin
crystalline films, the processes crucial for phase-change data storage materials. It is found that the amorphous
spot collapse is assisted by the motion of certain crystal facets.
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I. INTRODUCTION

Data storage devices utilizing the properties of phase-
change materials are expected to play an important role in
multimedia applications in the near future.1–5 Well-known
phase-change materials are based on chalcogenide alloy sys-
tems, such as In-Sb-Te, Ge-Sb-Te, and Ag-In-Sb-Te.6 A bit of
information can be stored in such materials by amorphizing/
crystallizing a small region by a short heat pulse due to a
laser or electron beam or current. One of the key problems in
phase-change material applications is the density of data
storage, which is determined mainly by the bit size. To com-
pete with other technologies the bit size in the new genera-
tion of phase-change data storage materials must be below
30 nm. This implies 4 Gbyte capacity for a data storage
module approximately the size of a coin.

Evaluating the amorphous/crystalline bit lifetime requires
a reliable model describing the amorphous-to-crystalline
phase transition. Traditional approaches involve either atom-
istic simulations using molecular dynamics7–12 and Monte
Carlo methods,13,14 or continuum descriptions of the phase
transformation.15–21 Atomistic simulations are computation-
ally very expensive, so that they cannot be performed for
large systems on a realistic time scale. Typically systems of
only a few thousands atomsssystem size,3−5 nmd can be
studied on the nanosecond scale. The continuum approach
allows a much longer time scale to be accessed, but it has
limited applicability on the nanometer scale, i.e., the scale of
immediate interest to phase-change data storage applications.
In order to address the problem on realistic time and length
scales we have developed a model for treating the
amorphous-to-crystalline phase transformation in network
materials as a transformation between the distributions of
atomic rings characteristic for each phase. The model com-
bines atomistic and continuum approaches by using micro-
scopic parameters for the ring distributions and energetics,
but continuous ring concentration variables to describe the
amorphous and crystalline phases.

II. THE RATE EQUATION MODEL

For illustrating our approach let us first consider a two-
dimensionals2Dd network of atoms and bonds, in which all

the atoms are four-fold coordinatedssee Fig. 1d. The crystal-
line phase in such a system is represented by a square lattice.
We define an atomic ring as the shortest closed path through
nearest-neighbor atoms with each bond passed only once.22

The crystalline structure is therefore characterized by a ring
distribution, which contains only four-members rings,
whereas an amorphous structure involves three-, four-, five-,
etc.,k-member rings. In any amorphous system the smallest
ring sNmind is a three-member one, but there is no particular
reason to define a maximum ring sizesNmaxd. The latter must
be identified in each particular case. For instance, the largest
ring size in simulated bulk amorphous silicon and amor-
phous carbon networks is 9 and 12, respectively.23,24

The ring distribution is a characteristic of the material
topology. If the atomic coordination numbers are the same in
both the amorphous and crystalline phases of a 2D network,
then the total number of rings is conserved. The structural
difference between the phases may, therefore, be attributed to
their different ring distributions. Our model evaluates these
distributions by assuming that the total energy of the system
can be approximated by a sum over the elastic energy of all
the different rings, namely

E = o
k=Nmin

Nmax

Eknk, s1d

whereEk andnk are the average elastic energy and ring con-
centrations of ak-member ring, respectively. All ring ener-
gies in our model are measured with respect to the four-
member ring. The ring energies may, therefore, be regarded
as energy penalties with respect to the ground state crystal-
line phase.

To model the crystalline-to-amorphous transformation in
a network material, we use the Wooten-Winer-Weaire
sWWWd bond switching algorithm,25 which converts one set
of atomic rings into another. According to this algorithm four
atoms are chosen randomly to form a nearest-neighbor chain
in the network, such as the atoms ABCD shown in Fig. 1.
The WWW move involves breaking the two bonds AB and
CD, and creating two new bonds AC and BD. Note that a
WWW move conserves the original atomic coordination, as
the atoms ABCD are chosen such that no double bonds or
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bond crossing is generated after the bond switching. The new
structure in our model is accepted with the probability de-
fined by the relative rate,

pin,fi = expS−
Efi − Ein

2kBT
D , s2d

where Efi and Ein are the energies of the final and initial
states given by Eq.s1d, T is the system temperature, andkB is
the Boltzmann constant. It follows from Eq.s2d that a high
amorphous-to-crystalline transition enthalpy slows down the
direct transformation but speeds up the reverse
transformation.26 The symmetric form of the detailed balance
given by Eq. s2d has been used in kinetic Monte Carlo
simulations,27 as well as in analytical calculations.28,29

The difference between the initial and final energies in Eq.
s2d can be expressed in terms of the energy penalties for the
rings as follows. As we have seen from Fig. 1 the WWW
move results in the size of the ringsI and J decreasing by
one, but the size of the ringsL andR increasing by one. The
corresponding change in energy is, therefore,

Efi − Ein = EL+1 + ER+1 + EI−1 + EJ−1 − EL − ER − EI − EJ.

s3d

To derive the rate equation for the concentration of
k-member rings, we introduce the probabilityPhL,I,J,Rj of
finding the ring configurationhL ,I ,J,Rj. This probability de-
pends on the concentrations of ringsnkstd sk=L, I, J, andRd
at time t and on the ring sizes, namely,

PhL,I,J,Rj =
1

Z

2LIJR

sI − 1dsJ − 1d
nLstdnIstdnJstdnRstd, s4d

whereZ is a normalization factor. The configurational pref-
actor in Eq. s4d describes all possible permutations for a
given hL ,I ,J,Rj configuration. The factor 2 reflects the fact
that only two possibilities exist in two dimensions to arrange
the atoms A and D around a given bond BC if bond crossing
after the WWW move is to be avoided. It follows from Eq.
s2d that the rate of transformation from the configuration
hL ,I ,J,Rj to the new configurationhL+1,I −1,J−1,R+1j is
given by

WhL,I,J,Rj = PhL,I,J,Rjpin,fi expS−
Ea

kBT
D , s5d

where we have introduced an activation energy barrierEa for
any WWW move. Finally, the rate equation for the concen-
tration of k-member rings may be written as

dnkstd
dt

= o
L=Nmin

Nmax−1

o
I=Nmin+1

Nmax

o
J=Nmin+1

Nmax

o
R=Nmin

Nmax−1

ChL,I,J,Rj
k WhL,I,J,Rj,

s6d

where the coefficientsChL,I,J,Rj
k are defined by

ChL,I,J,Rj
k = dL+1,k + dI−1,k + dJ−1,k + dR+1,k − dL,k − dI,k − dJ,k

− dR,k, s7d

with di,j as the Kronecker symbol. The coefficientChL,I,J,Rj
k is

therefore an integer between −4 and 4. The actual value of
this coefficient is equal to the number of rings with sizek
generated with the rateWhL,I,J,Rj minus the number of disap-
pearing rings of sizek during a transition fromhL ,I ,J,Rj to
hL+1,I −1,J−1,R+1j. For example,Ch4,4,4,4j

4 is equal to −4
in the transition shown in Fig. 1 as all 4-member rings dis-
appear in that configuration. The other two nonzero coeffi-
cients in that configuration areCh4,4,4,4j

3 and Ch4,4,4,4j
5 . They

both are equal to 2, as two three- and two 5-member rings
were generated by the particular reaction shown in Fig. 1.

III. SPATIALLY INHOMOGENEOUS CASE

In order to simulate the process of amorphous spot gen-
eration or collapse in the crystalline matrix, we need to gen-
eralize our rate equation model to account for the inhomoge-
neous variation in temperature and ring concentrations along
the phase-change material. In addition, we need to introduce
explicitly the interface energy between the amorphous and
crystalline phases. We will assume that the thickness of the
phase-change material deposited on a substrate is sufficiently
small for temperature and ring distributions to be constant
through the depth of the film, depending only on the in-plane
coordinatesx andy.

We coarse grain our atomistic model by dividing the 2D
hxyj space into cells, which are chosen to take the same

FIG. 1. A configurational change in the WWW method involving two neighbors A and D about the bond BC. Left-hand panel: schematic
four four-member rings in crystalline phase. Right-hand panel: WWW bond switching event in which bonds AB and CD are broken and AC
and BD created, thereby forming two three- and two five-member rings and changing the ring statistics. In general, the WWW move causes
the size of a ring having the BC bond and one of the AB or CD bondssrings I andJd to decrease by one, but the size of the rings having
only AB or CD bondssrings L andRd to increase by one.
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symmetry as the underlying crystalline lattice. For the four-
fold coordinated system shown in Fig. 1, the cells would be
arranged in a square lattice with the lattice constant equal to
three times that of the atomic lattice to incorporate four
rings, as shown in Fig. 2. This figure also illustrates the cell
in our simulations of the three-fold coordinated honeycomb
lattice, which will be discussed in the next section. Each cell
is then regarded as homogeneous with uniform temperature
Tm and ring concentrationnk

m, wherem is the cell number.
The rate equation for thek-member ring concentrationnk

m is

dnk
m

dt
=

1

2 o
m8,m9

SSm8,m9 o
L,I,J,R

ck;hL,I,J,Rj
m8,m9 WhL,I,J,Rj

m8,m9 D , s8d

where the coefficientsck;hL,I,J,Rj
m8,m9 are defined by

ck;hL,I,J,Rj
m8,m9 = dm,m8sdL+1,k + dI−1,k − dL,k − dI,kd

+ dm,m9sdR+1,k + dJ−1,k − dR,k − dJ,kd, s9d

and the ratesWhL,I,J,Rj
m8,m9 are given by

WhL,I,J,Rj
m8,m9 =

1

Z

2LIJR

sI − 1dsJ − 1d
nL

m8nI
m8nJ

m9nR
m9pin,f i expS−

Ea

kBT
D .

s10d

The indicesm8 andm9 run over themth cell and its nearest
neighbors. Since we require bond conservation within each
cell, the WWW move in the inhomogeneous system involves
either all four rings from themth cell sm8=m9=md, or two
rings from themth cell and the other two rings from one of
the neighboring cellssm8=m and m9Þm, m9=m and
m8Þmd, as expressed by Eq.s9d. In the latter case the two
rings in each cell are chosen such that one ring size increases
while the other ring size decreases after the WWW move.
The appropriate statistical weight for the intracell and inter-
cell reactions is taken into account by the termSm8,m9 in Eq.
s8d, which is equal to 1 for thesm8=m9=md case and to 0.25
otherwise.

The rate equation model accounts for all possible micro-
scopic WWW moves that result in creation and destruction
of a k-member ring in cellm, as seen on the right-hand side
of Eqs.s8d–s10d. For a given set ofnk

m there could be many
different microscopic ring configurations for many different
WWW moves. To account for all possible configurations in

Eqs.s8d–s10d we use proper statistical factors and continuous
ring concentrations to model the amorphous and crystalline
phases. For a given microscopic configuration the underlying
atomic aligment is known. Therefore, to be consistent, the
correct statistical weight also includes the energy difference
of the initial and final states, which is described by the term
pin,fi in Eq. s10d.

The amorphous-crystalline interface is described by intro-
ducing an environment-dependent energy penalty. For a
k-member ring in themth cell this can be defined by

Ek
m = EkF1 + o

m8Þm

lQsn4
m8 − n4

cdG , s11d

wheren4
m is the concentration of four-member rings in the

mth cell, andn4
c is the concentration of four-member rings,

above which the phase is considered as crystalline.
Qsn4

m−n4
cd is a step function equal to unity if the expression

in brackets is positive, and equal to zero otherwise. The in-
dex m8 runs over the nearest neighbors of themth cell. The
energy penalty given by Eq.s11d suggests that the generation
of non-four-member rings requires more energy in the crys-
talline phase than it does in the amorphous phase.

The total energy of the system can be decomposed in
terms of bulk and interface contributions using Eqs.s1d and
s11d, and is given by

Etot = o
k,m

Eknk
m + lS o

mPinterfaceH o
k,m8Þm

fEknk
mQsn4

m8 − n4
cdgJD

= Ebulk + Einterface. s12d

The interface energy is proportional to parameterl and as
we will see in the next section it influences recrystallization
from the interfaces. By definition the interface energy de-
pends on the number of crystalline cells in the nearest neigh-
borhood to the amorphous cell. Therefore, it depends on the
crystallographic orientation of the interface, i.e., on the crys-
tal facet.

We illustrate the method by choosing the same energy
penaltiesEk as those for amorphous silicon. They were ob-
tained by analyzing the ring distributions in five different
amorphous silicon structures that had been simulated by a
Monte Carlo technique.23 We found that 95% of the energy
of amorphous silicon structures could be accounted for by
considering in Eq.s1d only 5-, 6-, 7-, and 8-member rings,
with energy penalties E5

Si=0.6 eV, E6
Si=0.0 eV,

E7
Si=−0.2 eV,E8

Si=0.8 eV. The fact thatE7
Si is negative does

not have any physical implications, as it is not possible to
generate a state consisting solely of seven-member rings.
Due to conservation of rings, the seven-member rings energy
is balanced by those of five- and eight-member rings. The
energy penalties in three-dimensional silicon are measured
with respect to the six-member rings of the crystalline dia-
mond lattice. Since the crystal structure in our model is the
square lattice, the ring energies should be counted with re-
spect to the four-member rings. Therefore, as a convenient
first guess we have assigned the energy penalties asE3
=0.6 eV,E4=0.0 eV,E5=−0.2 eV,E6=0.8 eV.

The crystallization of amorphous structures usually occurs
by either shrinking the amorphous phase due to the

FIG. 2. A schematic illustration of the cell in our coarse grained
model. Left-hand panel: the lattice constanta is equal to three times
that of the atomic lattice to incorporate four rings of the WWW
bond switching event from Fig. 1. Right-hand panel: the configura-
tion involved in WWW bond switching in a honeycomb lattice.
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amorphous-crystalline interface motion, or nucleation and
growth of crystallites inside the amorphous phase. In our
model only the first mechanism is considered. We chosel
equal to 0.5 to ensure re-crystallization from the interfaces
and the activation energy to be equal toEa=2 eV in order to
ensure a reasonable lifetime for the amorphous spot. This
latter value is within the range of published experimental
activation energies for the Ge-Sb-Te phase-change
material.15 The parametern4

c sEq. s11dd was chosen to be
equal to 0.75. We also note here that the choice ofa3a cell
of course limits the size of the rings that can be considered.
In Fig. 2 for the square lattice the coarse graining is shown
for a=3. In principle, an eight-membered ring could be eas-
ily fitted within this cell, as its diameter would be equal to
2a. Nevertheless, this eight-member ring would have an
enormous energy penalty in our two-dimensional square lat-
tice, and this is the reason why we do not take into account
ring sizes larger than the 6-member rings in our square lattice
simulations. Nevertheless, if required, the size ofa can be
increased to any value. The only criterion is that the proper
statistical weight for the intracell and intercell reactions
Sm8,m9 should be taken into account.

IV. RESULTS

We are interested in the lifetime and stability of an amor-
phous spot generated by a heat pulse. A finite size amorphous

spot stypically with a radius of 10-100 nmd always re-
crystallizes due to the energy difference between the crystal-
line and amorphous phases. The time scale of this recrystal-
lization can be associated as the lifetime of the amorphous
spot. For simplicity, we assume that heat pulse generates a
temperature profile of Gaussian form,

Tsx,y,td = Te expS−
x2 + y2

s2 DexpS−
st − t0dQst − t0d

t
D + Tsub.

s13d

The prefactorTe is the excess temperature generated by the
heat pulse,Tsub is the substrate temperature, the coordinatesx
andy are measured from the pulse center in units of the cell
size,s is the width of the pulse in cell size units,t0 is the
duration of the heat pulse, andt is the decay time determined
by the heat transport from the 2D layer to the substrate. We
neglect any heat transport within thehxyj plane.

During the time periodt, t0 the heat pulse amorphizes
the material within a distances from the center of the pulse.
After switching off the heat pulse the material will not re-
crystallize during the decrease of the temperature toTsub if t
is small. The amorphous spot is characterized by a lower
concentration of four-member rings than the surrounding
crystalline material, as seen in Fig. 3. We note here that
during the time periodt, t0 the system may be in the liquid
phase. However, it is not the objective of the rate equation
model to describe the liquid phase after melting. In the liquid
phase the coordination number might be different to that of
crystalline and amorphous phases and therefore we may not
describe it as a network. For example, in case of silicon the
coordination number in liquid is equal to six, whereas in the
crystalline and amorphous phase it is four. Therefore, the rate
equation model describes the crystalline and amorphous
s“frozen liquid”d states via Eqs.s8d and s13d.

Snapshots of a simulated amorphization-crystallization
process are shown in Figs. 4sad–4sed. During the early stages
of the amorphization processst, t0d the spot has a circular
shape corresponding to the shape of the temperature profile
sFigs. 4sadd. In the latter stages the spot acquires a square

FIG. 3. Snapshot of an amorphous spot: concentration of four-
member rings in the system att0 when the pulse switched off. The
contour line at the bottom is plotted forn4=0.75.

FIG. 4. Snapshots of “amorphization-recrystallization” computer experiments showing contour lines of 75% of 4- and 6-member ring
concentrations for squaressad–sedd and honeycombssfd–sjdd lattices, respectively. The amorphous spots att= t0 have a faceted shape
according to the square latticesbd and honeycomb latticesgd. Recrystallization process is mediated by the fastest moving facetsssdd, sedd and
ssid, sjdd. The substrate and excess temperatures have been chosen askBTsub=0.025 eV andkBTe=0.750 eV, respectively, witht0=1.3E
+04 andt=13.
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shape in accordance with Eqs.s8d ands11d, which show that
the crystal facets with the lowest number of nearest neigh-
bors for each amorphous cellslow energy facetsd move
faster. After the heat pulse is switched off att0, the amor-
phous spot is stable for a long time at room temperature
skBT=25 meVd, showing low energy facetssFig. 4scdd. The
changes in the shape of the amorphous spot are observed
when the high energy crystal facets eventually move for-
ward, shrinking the size of the spot. The high energy facets
are oriented at 45 deg with respect to the low-energy facets
sFigs. 4sdd and 4sedd. Such a transformation of the spot shape
is accounted for by Eqs.s8d ands11d, which predict the fast-
est moving facets during crystallization to be those with the
most number of nearest neighboring crystalline cells for each
amorphous cell.

Faceting depends on the symmetry of the crystalline
phase. To reveal such dependence we have also performed
simulations in a three-fold coordinated system with a honey-
comb structure, where the crystalline phase is characterized
by six-member rings. According to the change of the crystal
ring size in Eq.s11d, the subscript 4 should be replaced by
subscript 6. The 2D space is now divided into cells, which
have the same symmetry as the underlying honeycomb lat-
tice, as shown in Fig. 2. The coefficientsSm8,m9 describing
the statistical weight for the intracell and intercell reactions
in Eq. s8d are equal to 1 for them8=m9=m case and to 0.166
otherwise. We assigned energy penaltiesEk the same as those
for silicon, which were derived earlier in the previous sec-
tion.

The stable amorphous spot now resembles the underlying
honeycomb lattice, as illustrated in Fig. 4sgd. During recrys-
tallization the amorphous spot facets are rotated by 30 deg
compared to the stable amorphous spotsFigs. 4sid and 4sjdd.
Therefore, we observed again that the recrystallization pro-
cess is mediated by the fastest moving facetssFig. 4d. Ac-
cording to the definition of the facetsinterfaced energy given
by Eq. s12d, the fastest moving facets are those with the
highest interface energy. Crystal faceting during crystalliza-
tion is often observed in atomistic simulations14 and in real
systems.30,31

The time step was chosen as ten times smaller than
expfEa/ skBTe+kBTsubdg for the time periodt, t0. This en-
sures that by the given parameter set in our simulations the
largest rate occurring on the right-hand side of Eq.s8d is
smaller than 5310−2. After the switch of the pulsest. t0d
we used a dynamic time step. Namely, the time step was
chosen in a way that the largest rate has never exceeded the
value of 10−4 in Eq. s8d. In the experiments the amorphous
spots in phase-change materials are written during a time
period of the order of nanosecondsst0d. A calibration of the
time scale in the rate equation model to this value would
mean the spot lifetime of the order of 1010 ss,100 yearsd in
the square lattice simulations, which is within the required
stability period of 10 years for industrial phase-change data
storage.

We have studied the dependence of the lifetime of the
amorphous spot upon its size by controlling the width of the
heat pulse through parameters in Eq. s13d. For constant
values of the activation energyEa and the decay timet we

have found that the lifetime is a linear function of the spot
radius, if the latter is large compared to the cell size, as seen
in Fig. 5. The linear dependence of the lifetime upon the spot
radius is consistent with faceting during the crystallization
process: the facets move nearly independently of each other,
spreading as plane waves with constant speed. In practice,
the linear dependence would most likely be violated due to
facet pinning by defects and impurities. The linear depen-
dence breaks down for spot sizes comparable to the cell size
due to the coarse-grained nature of our model. The time scale
of the amorphization-crystallization process in the square
and honeycomb lattice simulations is somewhat different for
the same parameter set. This is due to the difference in the
number of nearest-neighbor cells appearing in Eq.s11d.

V. CONCLUSION

We have developed a rate equation model, which de-
scribes the amorphization of a network material due to local
heating, and its recrystallization after switching off the heat
pulse. The model combines atomistic and continuum ap-
proaches by using microscopic parameters for the ring dis-
tributions and ring energetics, but continuous ring concentra-
tion variables are used to describe the amorphous and
crystalline phases. Using this rate equation model we have
studied the generation and collapse of amorphous spots
within the crystalline matrix, processes that are central to
phase-change data storage. We have found that the shape of
the amorphous spot changes during its lifetime. It is deter-
mined by the low-energy crystal facets during the growth
and long time period after, until it starts collapsing due to the
motion of the high-energy facets. The motion of the high-
energy facets leads to a linear dependence of the spot life-
time upon the spot size. The rate equation model could be
generalized for the case of 3D network materials, assuming
that the number of rings is conserved on average. However,
further theoretical developments would be required to extend
this model to non-network materials.
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