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Modeling the amorphous-to-crystalline phase transformation in network materials
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We have developed a computationally efficient rate equation model to study transformations between amor-
phous and crystalline phases of network forming materials. Amorphous and crystalline phases are treated in
terms of their atomic ring distributions. The transformation between the two phases is considered to be driven
by the conversion of one set of rings into another, following the Wooten-Winer-Weaire bond-switching algo-
rithm. Our rate equation model describes both the generation and collapse of amorphous regions in thin
crystalline films, the processes crucial for phase-change data storage materials. It is found that the amorphous
spot collapse is assisted by the motion of certain crystal facets.
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[. INTRODUCTION the atoms are four-fold coordinatésee Fig. 1. The crystal-
line phase in such a system is represented by a square lattice.

Data storage devices utilizing the properties of phasey, . yogne an atomic ring as the shortest closed path through

char)ge material_s are expected to play an important role IHearest-neighbor atoms with each bond passed only Bnce.
multimedia appllcathns in the near future. WeII-.known The crystalline structure is therefore characterized by a ring
phase-change materials are based on chalcogeﬁnlde_ alloy SYR<tribution. which  contains only four-members rings

tems, su_ch as In-Sb-Te, G(_a-Sb-Te, and Ag-In-S Adit Of_ . yvhereas an amorphous structure involves three-, four-, five-,
information can be stored in such materials by amorphlzmgetc_ k-member rings. In any amorphous system the smallest

crystallizing a small region by a short heat pulse due to .Ting (N,in) is a three-member one, but there is no particular
laser or electron beam or current. One of the key problems in

phase-change material applications is the density of datrgeazon :? d((jaf_me a r::amr;!un? ring Smlg‘ax)'. Tr:e Iatte:hmulst ¢
storage, which is determined mainly by the bit size. To com- € identihied in each particular case. For instance, the larges

pete with other technologies the bit size in the new generar-Ing size in simulated bulk amorphous silicon and amor-

tion of phase-change data storage materials must be beIoWous carbon networks is 9 and 12, respectivefy.

30 nm. This implies 4 Gbyte capacity for a data storaget TTe ”r‘l?tﬁ'Strt'bUt.'on 'Sc?. crtlgracterlsbtlc of thf;] matena!
module approximately the size of a coin. opology. e atomic coordination numbers are the same in

Evaluating the amorphous/crystalline bit lifetime requiresboth the amorphous and crystalline phases of a 2D network,

a reliable model describing the amorphous-to-cwstallinethen the total number of rings is conserved. The structural

phase transition. Traditional approaches involve either atomglfference between the phases may, therefore, be attributed to

istic simulations using molecular dynamic® and Monte their different ring distributions. Our model evaluates these
Carlo methodd or continuum descriptions of the phase distributions by assuming that the total energy of the system

transformatiort>-2* Atomistic simulations are computation- <21 be approximated by a sum over the elastic energy of all
ally very expensive, so that they cannot be performed fthe different rings, namely

large systems on a realistic time scale. Typically systems of Nmax
only a few thousands atongsystem size-3—5 nm) can be E= E = (1)
studied on the nanosecond scale. The continuum approach k=Npin

allows a much longer time scale to be accessed, but it has

limited applicability on the nanometer scale, i.e., the scale OyvhereEk andn, are the average elastic energy and ring con-

immediate interest to phase-change data storage applicatior?sentratlons of &-member ring, respectively. All ring ener-

In order to address the problem on realistic time and Iengﬂ%’Ies in our model are measured with respect to the four-

) member ring. The ring energies may, therefore, be regarded
scales we have developed a model for treating the . .

i . as energy penalties with respect to the ground state crystal-
amorphous-to-crystalline phase transformation in networlf.ne phase

materials as a transformation between the distributions of To model the crystalline-to-amorphous transformation in
aFom|c rings gharactensu.c for each phase. The m'odel COM:  network material, we use the Wooten-Winer-Weaire
bines atomistic and continuum approaches by using mlcro(-WWW) bond switching algorithnd® which converts one set
scopic parameters for the ring distributions and energeticsdf atomic rings into another Accor,ding to this algorithm four
but continuous ring concentration variables to describe the ' . .
hous and crystalline phases. atoms are chosen randomly to form a nearest-nag_hbo_r chain
amorp in the network, such as the atoms ABCD shown in Fig. 1.
The WWW move involves breaking the two bonds AB and
CD, and creating two new bonds AC and BD. Note that a
For illustrating our approach let us first consider a two-WWW move conserves the original atomic coordination, as

dimensional(2D) network of atoms and bonds, in which all the atoms ABCD are chosen such that no double bonds or

II. THE RATE EQUATION MODEL
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FIG. 1. A configurational change in the WWW method involving two neighbors A and D about the bond BC. Left-hand panel: schematic
four four-member rings in crystalline phase. Right-hand panel: WWW bond switching event in which bonds AB and CD are broken and AC
and BD created, thereby forming two three- and two five-member rings and changing the ring statistics. In general, the WWW move causes
the size of a ring having the BC bond and one of the AB or CD bdridgs | andJ) to decrease by one, but the size of the rings having
only AB or CD bonds(rings L andR) to increase by one.

bond crossing is generated after the bond switching. The new E,
structure in our model is accepted with the probability de- WiL 1R = PiLi,arPin i exp(— T/ (5
fined by the relative rate, B
where we have introduced an activation energy baEjgor
Eq — Epn any WWW move. Finally, the rate equation for the concen-
Pin.fi = ex;{— kT ) (20 tration ofk-member rings may be written as
. . Lo Nmax 1 Nmax Nmax  Nmax1
where E; and E;, are the energies of the final and initial dnk(t) DD S ¢k W,
states given by Ed1), T is the system temperature, akglis dt L3N 12N+ 32Nt 1 ReNo (LA RTALLIRY
the Boltzmann constant. It follows from E¢R) that a high )
amorphous-to-crystalline transition enthalpy slows down the
direct transformation but speeds up the reversayvhere the coefﬁuenté:{L 12 are defined by
transformatiorf® The symmetric form of the detailed balance
given by Eq.(2) has been used in kinetic Monte Carlo C{LYLJVR}: OLaikt O-1kt O1-1k* Ore1k— Ok~ Ok~ Ok
simulations’” as well as in analytical calculatioR%?°
The difference between the initial and final energies in Eq. = R (7

(2) can be expressed in terms of the energy penalties for thgith 5., as the Kronecker symbol. The Coefﬁci@ﬁ LR 1S

rings as folltlows tk?s we ha;vti seen fro:jnJFcllg 1 the ngwtherefore an integer between -4 and 4. The actual value of
move resulis in the size of the ringsan ecreasing by this coefficient is equal to the number of rings with ske

one, but the size of the rindsandR increasing by one. The generated with the rat | ; minus the number of disap-

corresponding change in energy is, therefore, pearing rings of siz& during a transition fror{L,I,J,R} to
4 .
Ei—E=E s +Epey +E_y+Ey,—E —Eg-E - E,. {L+1,1-1,0-1,R+1}. For exampleCy, , , 4 is equal to -4
3) in the transition shown in Fig. 1 as all 4-member rings dis-
appear in that configuration. The other two nonzero coeffi-
X . ' . 3 5

To derive the rate equation for the concentration ofCi€Nts in that configuration ar€y, ,, 4 and Cy 4, 4. They
k-member rings, we introduce the probabili | ;5 of  both are equal to 2, as two three- anq two 5—membgr rings
finding the ring configuratiofiL,1,J,R}. This probability de- ~ Were generated by the particular reaction shown in Fig. 1.
pends on the concentrations of ringgt) (k=L, I, J, andR)

at timet and on the ring sizes, namely, Ill. SPATIALLY INHOMOGENEOUS CASE
1 2LIR In order to simulate the process of amorphous spot gen-
= (O (ONy(ONa(), 4 erat_lon or collapse in .the crystalline matrix, we need to gen-
LRT 7 (1 -1)3-1) LOM OO @ eralize our rate equation model to account for the inhomoge-

neous variation in temperature and ring concentrations along
whereZ is a normalization factor. The configurational pref- the phase-change material. In addition, we need to introduce
actor in Eq.(4) describes all possible permutations for aexplicitly the interface energy between the amorphous and
given{L,l,J,R} configuration. The factor 2 reflects the fact crystalline phases. We will assume that the thickness of the
that only two possibilities exist in two dimensions to arrangephase-change material deposited on a substrate is sufficiently
the atoms A and D around a given bond BC if bond crossingmall for temperature and ring distributions to be constant
after the WWW move is to be avoided. It follows from Eq. through the depth of the film, depending only on the in-plane
(2) that the rate of transformation from the configurationcoordinates< andy.
{L.1,J,R} to the new configuratiofL+1,I-1,J-1,R+1}is We coarse grain our atomistic model by dividing the 2D
given by {xy} space into cells, which are chosen to take the same
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Eqgs.(8)—(10) we use proper statistical factors and continuous

ring concentrations to model the amorphous and crystalline
phases. For a given microscopic configuration the underlying
atomic aligment is known. Therefore, to be consistent, the
correct statistical weight also includes the energy difference
of the initial and final states, which is described by the term

Pinsi in EQ. (10).

— . The amorphous-crystalline interface is described by intro-

ducing an environment-dependent energy penalty. For a
k-member ring in themth cell this can be defined by

FIG. 2. A schematic illustration of the cell in our coarse grained
model. Left-hand panel: the lattice constarn$ equal to three times
that of the r_:ltomlc lattice to_lncorpc_)rate four nngs.of the WWW Erk”= E1+ E A@(n&”, _ “Z) ’ (11)
bond switching event from Fig. 1. Right-hand panel: the configura-
tion involved in WWW bond switching in a honeycomb lattice.

m’#m
wherenj' is the concentration of four-member rings in the

symmetry as the underlying crystalline lattice. For the four-Mth cell, andn is the concentration of four-member rings,
fold coordinated system shown in Fig. 1, the cells would beaboxe Q’Vh'Ch the phase is considered as crystalline.
arranged in a square lattice with the lattice constant equal t§(N2 —4) is a step function equal to unity if the expression
three times that of the atomic lattice to incorporate fourin brackets is positive, and equal to zero otherwise. The in-
rings, as shown in Fig. 2. This figure also illustrates the celdexm’ runs over the nearest neighbors of thth cell. The

in our simulations of the three-fold coordinated honeycomk£nergy penalty given by E¢11) suggests that the generation
lattice, which will be discussed in the next section. Each celPf non-four-member rings requires more energy in the crys-
is then regarded as homogeneous with uniform temperatuf@lline phase than it does in the amorphous phase. _
T, and ring concentration’, wherem is the cell number. The total energy of the system can be decomposed in

The rate equation for the-member ring concentration" is ~ terms of bulk and interface contributions using Es.and
(11), and is given by

dr‘lE1 1 ! n,.{! ’ /! ’
ot 2 (Sm’w 2 CQ{LM,R}V"{mR})’ ®  Eu=SEMA X ]S [Eafen) -]
m’,m’ LIJR k,m meinterface | i m’ #m
where the coefficientsrk‘?g'LT’fJ’R} are defined by = Epuik + Einterface (12
PN R S YRS S S The i_nterfac_e energy is pro_por'_[io_nal to parameteand_ as
e L we will see in the next section it influences recrystallization
+ Smmr(Ore1k* S3-1k~ k=3, (9)  from the interfaces. By definition the interface energy de-
-~ pends on the number of crystalline cells in the nearest neigh-
and the ratey\/?ﬂ’i’JVR} are given by borhood to the amorphous cell. Therefore, it depends on the
crystallographic orientation of the interface, i.e., on the crys-
’ n.{/ 1 2LIJR m/ m/ I'T"I” rr(/ Ea tal facet
LIJRT S n_ Ny Ny N Pinsi €XPL— 77— ). L .
e Z(1-1)J-1 ' ke T We illustrate the method by choosing the same energy

(10) penaltiesE, as those for amorphous silicon. They were ob-
tained by analyzing the ring distributions in five different
The indicesm’ andm” run over themth cell and its nearest amorphous silicon structures that had been simulated by a
neighbors. Since we require bond conservation within eaclvonte Carlo techniqué® We found that 95% of the energy
cell, the WWW move in the inhomogeneous system involvesf amorphous silicon structures could be accounted for by
either all four rings from themth cell (m'=m"=m), or two  considering in Eq(1) only 5-, 6-, 7-, and 8-member rings,
rings from themth cell and the other two rings from one of with  energy  penalties E;'=0.6 eV, Eg'=0.0eV,
the neighboring cells(m'=m and m"#m, m'=m and E3'=-0.2 eV,E3'=0.8 eV. The fact thaE3' is negative does
m’ #m), as expressed by E¢). In the latter case the two not have any physical implications, as it is not possible to
rings in each cell are chosen such that one ring size increasgenerate a state consisting solely of seven-member rings.
while the other ring size decreases after the WWW moveDue to conservation of rings, the seven-member rings energy
The appropriate statistical weight for the intracell and inter-is balanced by those of five- and eight-member rings. The
cell reactions is taken into account by the te®m . in Eq.  energy penalties in three-dimensional silicon are measured
(8), which is equal to 1 for thém’=m"=m) case and to 0.25 with respect to the six-member rings of the crystalline dia-
otherwise. mond lattice. Since the crystal structure in our model is the
The rate equation model accounts for all possible microsquare lattice, the ring energies should be counted with re-
scopic WWW moves that result in creation and destructiorspect to the four-member rings. Therefore, as a convenient
of ak-member ring in celim, as seen on the right-hand side first guess we have assigned the energy penaltie§sas
of Egs.(8)<(10). For a given set ofiy' there could be many =0.6 eV,E,=0.0 eV,Es=-0.2 eV,E¢=0.8 eV.
different microscopic ring configurations for many different  The crystallization of amorphous structures usually occurs
WWW moves. To account for all possible configurations inby either shrinking the amorphous phase due to the
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spot (typically with a radius of 10-100 njmalways re-
crystallizes due to the energy difference between the crystal-
line and amorphous phases. The time scale of this recrystal-
lization can be associated as the lifetime of the amorphous
spot. For simplicity, we assume that heat pulse generates a
temperature profile of Gaussian form,

2 -
T(x,y,1) = Teex +y) p( M) “To

FIG. 3. Snapshot of an amorphous spot: concentration of four- (13
member rings in the system gtwhen the pulse switched off. The The prefactorT, is the excess temperature generated by the
contour line at the bottom is plotted foy=0.75. heat pulseT,pis the substrate temperature, the coordinates

andy are measured from the pulse center in units of the cell
amorphous-crystalline interface motion, or nucleation andize, o is the width of the pulse in cell size unitk, is the
growth of crystallites inside the amorphous phase. In oudluration of the heat pulse, ands the decay time determined
model only the first mechanism is considered. We chose by the heat transport from the 2D layer to the substrate. We
equal to 0.5 to ensure re-crystallization from the interfacesieglect any heat transport within tkey} plane.
and the activation energy to be equaBEg=2 eV in order to During the time period <t, the heat pulse amorphizes
ensure a reasonable lifetime for the amorphous spot. Thithe material within a distance from the center of the pulse.
latter value is within the range of published experimentalafter switching off the heat pulse the material will not re-
activation energies for the Ge-Sb-Te phase-changerystallize during the decrease of the temperaturgjgif =
material*> The parameten; (Eq. (11)) was chosen to be is small. The amorphous spot is characterized by a lower
equal to 0.75. We also note here that the choicaf cell  concentration of four-member rings than the surrounding
of course limits the size of the rings that can be consideredsrystalline material, as seen in Fig. 3. We note here that
In Fig. 2 for the square lattice the coarse graining is showriuring the time period<t, the system may be in the liquid
for a=3. In principle, an eight-membered ring could be easphase. However, it is not the objective of the rate equation
ily fitted within this cell, as its diameter would be equal to model to describe the liquid phase after melting. In the liquid
2a. Nevertheless, this eight-member ring would have amphase the coordination number might be different to that of
enormous energy penalty in our two-dimensional square laterystalline and amorphous phases and therefore we may not
tice, and this is the reason why we do not take into accoundiescribe it as a network. For example, in case of silicon the
ring sizes larger than the 6-member rings in our square latticeoordination number in liquid is equal to six, whereas in the
simulations. Nevertheless, if required, the sizeaofan be  crystalline and amorphous phase it is four. Therefore, the rate
increased to any value. The only criterion is that the propeequation model describes the crystalline and amorphous
statistical weight for the intracell and intercell reactions(“frozen liquid”) states via Eqs(8) and(13).
Sy v should be taken into account. Snapshots of a simulated amorphization-crystallization
process are shown in Figsi@#4(e). During the early stages
of the amorphization process<tg) the spot has a circular

We are interested in the lifetime and stability of an amor-shape corresponding to the shape of the temperature profile
phous spot generated by a heat pulse. Afinite size amorphouBigs. 4a)). In the latter stages the spot acquires a square

IV. RESULTS
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FIG. 4. Snapshots of “amorphization-recrystallization” computer experiments showing contour lines of 75% of 4- and 6-member ring
concentrations for squarga)—(e)) and honeycomb((f)—(j)) lattices, respectively. The amorphous spots =i, have a faceted shape
according to the square lattiB) and honeycomb lattic@). Recrystallization process is mediated by the fastest moving féckige)) and
((i), (). The substrate and excess temperatures have been chokghygs 0.025 eV andkgT,=0.750 eV, respectively, witly=1.3E
+04 andr=13.
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shape in accordance with Ed8) and(11), which show that 6
the crystal facets with the lowest number of nearest neigh-
bors for each amorphous ceflow energy facets move
faster. After the heat pulse is switched off tgt the amor-
phous spot is stable for a long time at room temperature
(kgT=25 me\), showing low energy facetd=ig. 4(c)). The
changes in the shape of the amorphous spot are observed
when the high energy crystal facets eventually move for-

Lifetime [102]
(V)

ward, shrinking the size of the spot. The high energy facets Lr

are oriented at 45 deg with respect to the low-energy facets 0 L
(Figs. 4d) and 4e)). Such a transformation of the spot shape 0O 2 4 6 8 10 12 14 16
is accounted for by Eq$8) and(11), which predict the fast- Radius [Cell number]

est moving facets during crystallization to be those with the
most number of nearest neighboring crystalline cells for each FIG. 5. Lifetime of amorphous spots in a 2D square lattice with
amorphous cell. activation energye, equal to 2 eV.

Faceting depends on the symmetry of the crystalline
phase. To reveal such dependence we have also performbdve found that the lifetime is a linear function of the spot
simulations in a three-fold coordinated system with a honeyfadius, if the latter is large compared to the cell size, as seen
comb structure, where the crystalline phase is characterized Fig. 5. The linear dependence of the lifetime upon the spot
by six-member rings. According to the change of the crystafradius is consistent with faceting during the crystallization
ring size in Eq.(11), the subscript 4 should be replaced by process: the facets move nearly independently of each other,
subscript 6. The 2D space is now divided into cells, whichspreading as plane waves with constant speed. In practice,
have the same symmetry as the underlying honeycomb lathe linear dependence would most likely be violated due to
tice, as shown in Fig. 2. The coefficier, ,» describing facet pinning by defects and impurities. The linear depen-
the statistical weight for the intracell and intercell reactionsdence breaks down for spot sizes comparable to the cell size
in Eq. (8) are equal to 1 for the’=m’=m case and to 0.166 due to the coarse-grained nature of our model. The time scale
otherwise. We assigned energy penalligshe same as those of the amorphization-crystallization process in the square
for silicon, which were derived earlier in the previous sec-and honeycomb lattice simulations is somewhat different for
tion. the same parameter set. This is due to the difference in the

The stable amorphous spot now resembles the underlyingumber of nearest-neighbor cells appearing in @&d).
honeycomb lattice, as illustrated in Figigd During recrys-
tallization the amorphous spot facets are rotated by 30 deg
compared to the stable amorphous s@gs. 4i) and 4j)).
Therefore, we observed again that the recrystallization pro- We have developed a rate equation model, which de-
cess is mediated by the fastest moving fad€ig. 4). Ac-  scribes the amorphization of a network material due to local
cording to the definition of the facéinterface energy given heating, and its recrystallization after switching off the heat
by Eq. (12), the fastest moving facets are those with thepulse. The model combines atomistic and continuum ap-
highest interface energy. Crystal faceting during crystallizaproaches by using microscopic parameters for the ring dis-
tion is often observed in atomistic simulatidhsnd in real  tributions and ring energetics, but continuous ring concentra-
systems0:31 tion variables are used to describe the amorphous and

The time step was chosen as ten times smaller thaorystalline phases. Using this rate equation model we have
exd E./ (kgTet+kgTgun] for the time periodt<t, This en- studied the generation and collapse of amorphous spots
sures that by the given parameter set in our simulations theithin the crystalline matrix, processes that are central to
largest rate occurring on the right-hand side of E8).is  phase-change data storage. We have found that the shape of
smaller than 5 1072, After the switch of the pulsét>t,) the amorphous spot changes during its lifetime. It is deter-
we used a dynamic time step. Namely, the time step wagined by the low-energy crystal facets during the growth
chosen in a way that the largest rate has never exceeded taad long time period after, until it starts collapsing due to the
value of 104 in Eq. (8). In the experiments the amorphous motion of the high-energy facets. The motion of the high-
spots in phase-change materials are written during a timenergy facets leads to a linear dependence of the spot life-
period of the order of nanosecon(s). A calibration of the time upon the spot size. The rate equation model could be
time scale in the rate equation model to this value wouldgeneralized for the case of 3D network materials, assuming
mean the spot lifetime of the order of ¥G&(~100 yearsin  that the number of rings is conserved on average. However,
the square lattice simulations, which is within the requiredfurther theoretical developments would be required to extend
stability period of 10 years for industrial phase-change datahis model to non-network materials.
storage.

V. CONCLUSION
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