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We derive a set of coupled nonlinear algebraic equations for the asymptotics of the Poisson kernel distri-
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evidences that these equations are equivalent to a much simpler polynomial equation calculated from a recent
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I. INTRODUCTION

Random-matrix theory has proved to be a powerful tool
for describing generic features of quantum chaotic
systems.1,2 For closed systems it offers an accurate statistical
description of both energy levels and wave-functions charac-
teristics with overwhelming numerical and experimental
confirmation. In this case, the central hypothesis is to replace
the Hamiltonian of the system by a matrix with random in-
dependent Gaussian entries obeying certain fixed exact sym-
metries, such as time reversal and spin rotation. The resulting
ensembles are known in the literature as the Gaussian en-
sembles. For open systems, such as ballistic chaotic cavities
and disordered wires attached to external leads, the major
role is shifted from the Hamiltonian to the appropriate matrix
associated with the description of electron transport, viz., the
scattering matrix or the transfer matrix. Here, the justifica-
tion of the specific ensemble is a subtle procedure, because,
unlike the previous case, one needs to take into account
subtle correlations between the entries of the matrix induced
by flux conservation and quantum diffusionsfor disordered
wiresd.

For ballistic chaotic cavities, a general procedure to ob-
tain such an ensemble was developed by Mello and
Baranger.3 It consists of evoking themaximum information
entropy principlealong with certain generic assumptions,
such as analyticity, unitarity, and some specific symmetries
that are exactly preserved in the presence of chaotic dynam-
ics. The resultingS-matrix distributionPsSd turns out to be a
multidimensional generalization of the Poisson kernel, usu-
ally found in two-dimensional electrostatics. Its general form
reads

PsSd ~ udets1 − S̄†Sdu−sbM+2−bd, s1d

where bP h1,2,4j is a parameter identifying distinct sym-
metry classes,4 M =2N is the total number of open scattering

channelssN for each waveguided and S̄ is a subunitary ma-

trix, i.e., the eigenvalues ofS̄S̄† may be less than unity. For a

two-terminal system, consisting of a ballistic chaotic cavity
or quantum dot coupled to two waveguides, the scattering
matrix can be conveniently written as3

S= S r t

t8 r8
D , s2d

wheret ,t8 andr ,r8 are, respectively, transmission and reflec-
tion matrices. The presence of barriers of arbitrary transpar-
encies at the interface between the chaotic cavity and the
waveguides can be accounted for by specifying the average
sor optical partd of the scattering matrix.1,3

S̄= Sr1 0

0 r2
D , s3d

wherer1 and r2 are reflection matrices for barriers 1 and 2,
respectively.

In mesoscopic physics, one is usually concerned with the
description of a well-defined measurement, such as the full
counting statisticssFCSd of a two-terminal system, whose
cumulant generating function is given by the Levitov-
Lesovik formula.5

Fsld = − M0Tr lnf1 + seil − 1dtt†g, s4d

whereM0=eVT0/h@1 is the number of attempts to transmit
an electron during the observation timeT0, t is the transmis-
sion matrix andV is the voltage. Physical observables can be
obtained from the series expansion

Fsld = − o
k=1

`
sildk

k!
qk, s5d

where

qk = −
dk

dsildkuFsldul=0 s6d

are the irreducible cumulants of the FCS. Some well-known
examples are the dimensionless conductance and shot-noise
power, which are given, respectively, by
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g = q1/M0 = Trstt†d, s7d

which is the Landauer formula, and

p = q2/M0 = Trftt†s1 − tt†dg. s8d

The third cumulant has also attracted some recent interest,
including an experimental observation in tunnel junctions.6 It
is given by

k = q3/M0 = Trftt†s1 − tt†ds1 − 2tt†dg. s9d

The above expressions for the cumulants of the FCS are
sample specific, which means for a chaotic cavity that an
average over the Poisson kernel distribution is necessary in
order to make comparisons with real experimental data. Such
calculations can in principle be performed exactly for arbi-
trary values of M and b using the method of
supersymmetry7,8 and some very general results are in fact
already available in the literature.9,10 Albeit powerful and
general, this method can become very cumbersome and
sometimes unwieldy. Fortunately, if one is interested only in
the semiclassical regime, where one neglects quantum inter-
ference contributions, defined mathematically by the
asymptotic conditionM @1, much simpler alternative tech-
niques exist.

Two well-known methods to deal with the semiclassical
regime are the diagrammatic analysis of the unitary group,
presented by Brouwer and Beenakker11 and Nazarov’s circuit
theory.12 In its original form circuit theory does not allow for
a direct comparison with the diagrammatic approach in the
entire range of parameters, i.e., for arbitrary values of the
barrier’s transparencies, because of the intrinsic difficulty to
determine the average pseudocurrent-voltage characteristics
of an arbitrary circuit element. This is related to the well-
known problem of breakdown of semiclassical transport
equations close to boundaries and interfaces, where pure
quantum effects become dominant. This difficulty was re-
cently removed by a systematic treatment presented in Ref.
13, in which circuit theory is combined with the supersym-
metric nonlinear sigma model yielding a powerful technique
with a very convenient algebraic structure. This extended
version of circuit theory raises the natural question as to
whether its information content coincides with that of the
diagrammatic method in all ranges of the input parameters.
This is a highly nontrivial question, because the semiclassi-
cal concatenation principle, which is the basis of circuit
theory, does not have a direct representation in the diagram-
matic formulation. In particular, there is no obvious way how
to extend this concatenation principle to account for quantum
corrections, such as weak localization. We remark that the
semiclassical concatenation principle is directly related to the
independence of the leading asymptotic contribution on the
symmetry parameterb. By contrast, the weak localization
correction is stronglyb dependent11 and, in particular, van-
ishes forb=2, i.e., for systems with broken time-reversal
symmetry. Interestingly, for the particular case of symmetric
barriers a direct comparison between both approaches was
presented in Ref. 13 and complete agreement was found.

Motivated by this result, we present in this work a de-
tailed comparison between the diagrammatic approach and
the extended version of circuit theory for the case of asym-
metric barriers with arbitrary transparencies, thus completing
the analysis of Ref. 13 and providing strong evidence for the
full equivalence between these semiclassical techniques.
This result is particularly relevant in practical applications
because of the great algebraic advantage of the calculations
in circuit theorysin our case study the problem is reduced to
a polynomial equation of fourth orderd in comparison with
alternative approaches. In fact, we believe that circuit theory
equations reach the ultimate irreducible form in terms of
simplifying the description. Furthermore, when combined
with the scaling theory presented in Ref. 13 for the balistic-
diffusive crossover in phase-coherent metallic conductors, in
which the present results enters as an initial condition, we
end up with a very powerful formalism for performing con-
crete calculations in realistic conductors. Applications might
include spintronics14 and normal-superconducting hybrid
systems.15

II. DIAGRAMMATIC TECHNIQUE

In this section we present a detailed account of the appli-
cation of the diagrammatic method to the calculation of the
semiclassical limit of a double barrier chaotic ballistic cavity.
It contains the central result of this paper and complements a
previous analysis by Brouwer and Beenakker.11

We start by noting that all cumulants of the FCS can be
generically written in the form

A = Trfastt†dg, s10d

whereasxd is an arbitrary smooth function. It means that the
ensemble averages of transport observables can be fully de-
scribed by the following density function:

rstd = kTrdst − tt†dl, s11d

so that

kAl =E
0

1

dtastdrstd. s12d

The problem is thus reduced to the calculation ofrstd in the
asymptotic regimeM =2N@1.

In the diagrammatic formalism, one starts by introducing
the generating functions

F1szd = kC1sz− S†C2SC1d−1l, s13d

and

F2szd = kC2sz− SC1S
†C2d−1l, s14d

whereS is the M 3M scattering matrix defined in Eq.s2d
and the auxiliary matricesC1 andC2 are defined as

C1 = S0 0

0 1N
D, C2 = S1N 0

0 0
D , s15d

in which 1N is theN3N unit matrix. It can be easily verified
that

A. L. R. BARBOSA AND A. M. S. MACÊDO PHYSICAL REVIEW B71, 235307s2005d

235307-2



rstd = −
1

p
Imff1st + i0+dg = −

1

p
Imff2st + i0+dg, s16d

where f iszd;TrfFiszdg, i =1,2.
The next step is to define the matrix generating function

F̂szd = S 0 F1szd
F2szd 0

D , s17d

which can be written as a sum of two terms that can be

averaged separately,F̂szd=s2zd−1fF̂+szd+F̂−szdg. Each term is
given by

F̂sszd = Ĉ + sÂs1̂ − ŜsĜs
0d−1ŜsB̂, s18d

whereÂ=ĈL̂, B̂=aT̂Ĉ, with a;z−1/2 and the following ma-
trices have been defined:

Ĉ = S 0 C1

C2 0
D, L̂ = SL 0

0 L†D , s19d

and

T̂ = ST 0

0 T†D, R̂= SR 0

0 R†D . s20d

The submatricesL, T, and R describe transmission and re-

flection coefficients of the barriers and are related toS̄of Eq.
s3d via the condition that

Û = SS̄ L

T R
D , s21d

be unitary. The remaining matrices in Eq.s18d are the “free
propagator”

Ĝs
0 = R̂+ saT̂ĈL̂ s22d

and the “self-energy” matrixŜs. They satisfy a Dyson equa-
tion

Ĝs = Ĝs
0 + Ĝs

0ŜsĜa = Ĝs
0 + ĜsŜsĜs

0 . s23d

Summation over planar diagrams11 yields the following ex-
pression for the self-energy matrix:

Ŝs = P̂szsP̂s
2d, s24d

where

P̂s = S 0 TrsGs
12d

TrsGs
21d 0

D ^ 1M , s25d

in which Gs
12 and Gs

21 are off-diagonal blocks of the full
Green’s function

Ĝs = SGs
11 Gs

12

Gs
21 Gs

22D . s26d

The function zszd is defined by the planar series,
zszd=on=1

` wnz
n−1, in which wn are symmetry coefficients

given by

wn =
s− 1dn+1s2n − 2d!
n!sn − 1d!M2n−1 . s27d

Evaluating the sum we obtain the closed expression

z2zsz2d = 1
2sÎ4z2 + M2 − Md. s28d

Using Eq.s28d we may write Eq.s24d in the form

ŜsP̂sŜs + MŜs = P̂s. s29d

To proceed, we introduce the variables

u1s =
1

N
TrsGs

12d = su1 s30d

and

u2s =
1

N
TrsGs

21d = su2, s31d

which implies the following simple form for the matrixP̂s:

P̂s = NsS 0 u1

u2 0
D ^ 1M . s32d

Using the ansatz

Ŝs = sS 0 b1

b2 0
D ^ 1M s33d

in Eq. s29d, we obtain the following coupled system:

H b1
2u2 + 2b1 = u1

b2
2u1 + 2b2 = u2.

J s34d

At this stage we need to further specify the nature of the
contacts between the cavity and the leads. We assume the
presence of asymmetric barriers withN equivalent transmit-
ting channels. The adequate choices for the matricesT, L,
andR are therefore given by

T = SiÎG1 0

0 iÎG2
D ^ 1N = L s35d

and

R= SÎ1 − G1 0

0 Î1 − G2
D ^ 1N = S̄, s36d

in which G1 andG2 represent the transmission coefficients of
each channel in barriers 1 and 2, respectively. Combining
these expressions with the ansatzs33d for the self-energy
matrix, we may calculate explicitly the full Green’s function,
from which fafter using Eq.s25dg we obtain

u1 =
aG2 + s1 − G2db1

1 − ab2G2 − b1b2s1 − G2d
+

s1 − G1db1

1 − ab1G1 − b1b2s1 − G1d
s37d

and
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u2 =
aG1 + s1 − G1db2

1 − ab1G1 − b1b2s1 − G1d
+

s1 − G2db2

1 − ab2G2 − b1b2s1 − G2d
.

s38d

Combining Eqs.s37d and s38d with Eq. s34d, we obtain the
following nonlinear algebraic system:

as1 − G1dG2b1b2
3 + hfa2G1G2 + s2G1 − 1dG2 − G1gb1 − as1

+ G1dG2jb2
2 + fsG1 − 2G1G2dab1 + a2G1G2 + G1 + G2gb2

− aG1 = 0 s39d

and

as1 − G2dG1b2b1
3 + hfa2G1G2 + s2G2 − 1dG1 − G2gb2 − as1

+ G2dG1jb1
2 + fsG2 − 2G1G2dab2 + a2G1G2 + G1 + G2gb1

− aG2 = 0. s40d

Finally, inserting the ansatz Eq.s24d into Eq. s18d yields

f1szd = a2NF1 −
aG2b2

1 − s1 − G2db1b2
G−1

, s41d

and

f2szd = a2NF1 −
aG1b1

1 − s1 − G1db1b2
G−1

. s42d

Equationss39d, s40d, s42d, ands41d are the central results of
this section. Together with Eq.s16d they represent the com-
plete solution of the problem. It extends the calculations of
Brouwer and Beenakker11 to include the case of asymmetric
barrierssalthough in their solution of the symmetric case the
channels in the barriers were considered nonequivalentd. Be-
fore presenting a complete analysis of the generic situation,
we shall discuss below some important particular cases.

A. Chaotic cavity with symmetric barriers

The case of symmetric barriers is described by setting
G1=G=G2 and b1=b=b2 in Eqs. s39d, s40d, s42d, and s41d,
so that we find

sab2 − 2b + adfs1 − Gdb2 + aGb − 1g = 0, s43d

and

f1szd = a2NF1 −
aGb

1 − s1 − Gdb2G−1

= f2szd. s44d

The physical root of Eq. s43d is given by b=s1
−Î1−a2d /a=Îz−Îz−1, which yields f1szd= fszd= f2szd,
where

fszd
N

=
2sÎz− Îz− 1ds1 − Gd + G/Îz− 1

2zsÎz− Îz− 1ds1 − Gd + GÎz
. s45d

Inserting Eq.s45d into Eq. s16d we find the average density

rstd =
N

p

Gs2 − Gd
sG2 − 4Gt + 4tdÎts1 − td

, s46d

in agreement with Ref. 13. The solution obtained by Brou-
wer and Beenakker11 is, in fact, a generalization of Eq.s46d
for nonequivalent channels. It reads

rstd = o
n=1

N
Gns2 − Gnd

psGn
2 − 4Gnt + 4tdÎts1 − td

, s47d

which, of course, reproduces Eq.s46d whenGn=G for all n.

B. Chaotic cavity with two tunnel junctions

This system is described by applying the conditions
G1,G2!1 in Eqs.s39d, s40d, s42d, ands41d. We get

b2
2aG2 − b2sG1 + G2d + aG1 = 0,

b1
2aG1 − b1sG1 + G2d + aG2 = 0, s48d

together with

f1szd = a2NF1 −
aG1b1

1 − b1b2
G−1

, s49d

and

f2szd = a2NF1 −
aG2b2

1 − b1b2
G−1

. s50d

From the physical roots of Eq.s48d, we obtain
f1szd= fszd= f2szd, where

fszd =
N

zF1 +
G1G2

sG1 + G2dÎzsz− t0dG , s51d

in which t0=4G1G2/ sG1+G2d2. Inserting Eq.s51d into Eq.
s16d we obtain

rstd =
NG1G2

psG1 + G2d
1

t3/2Ît0 − t
, s52d

in agreement with Refs. 12 and 16.
Using Eq.s52d we can compute the average value of sev-

eral physical observables. Of particular interest are the first
three cumulants of the FCS, defined in Eqs.s7d–s9d. We find

kglTJ = N
G1G2

G1 + G2
, s53d

for the average conductance

S kpl
kgl

D
TJ

=
G1

2 + G2
2

sG1 + G2d2 , s54d

for the Fano factor, and

S kkl
kpl

D
TJ

=
G1

4 − 2G1
3G2 + 6G1

2G2
2 − 2G1G2

3 + G2
4

sG1 + G2d2sG1
2 + G2

2d
, s55d

for the ratio between the average third cumulant and the
average shot-noise power. The subscript TJ stands forTunnel
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Junction. Equations s53d–s55d are well known in the
literature.17

III. GENERAL ANALYSIS AND COMPARISON
WITH CIRCUIT THEORY

In this section we compare the predictions of the above
diagrammatic approach with those of the extended version of
circuit theory. The exact agreement that we found for various
quantities strongly suggests the full equivalence of these
semiclassical techniques in the entire range of input param-
eters.

A. Circuit theory

Circuit theory was invented by Nazarov12 and represents a
very powerful tool for computing ensemble averages of
quantum chaotic systems in the semiclassical regime. It con-
sists of a finite element approach in which the spatial support
of the system is partitioned into a network, containing edges
sor connectorsd, and verticessnodes or terminalsd. In its sim-
plest version, there are only two terminals and the system is
subject to a fictitious pseudo-potentialF with fixed values at
the terminals and unknown values at the internal nodes. The
basic principles ares1d a general law of pseudocurrent-
voltagesI-Vd characteristics for a connectorsi , jd subject to a
pseudopotential dropDFi j

I i jsDFi jd =E
0

1

dt
tri jstdsinsDFi jd

1 − t sin2sDFi j /2d
, s56d

where I ijsDFi jd is a pseudocurrent andri jstd=kTrdst
− tij ti j

†dl is the average transmission eigenvalue density of the
connector. We definedtij as the sample specific transmission
matrix of the connector.s2d A generalized Kirchhoff law for
pseudocurrent conservation at each node.

The power of this approach depends crucially on the ap-
propriate choice of the connectors, which in turn depends on
our ability to calculate the correspondent pseudo-I-V charac-
teristics. This is the point where the extended approach, put
forward in Ref. 13, differs from Nazarov’s original formula-
tion. In Ref. 13 the functionI ijsDFi jd was calculated directly
from the supersymmetric nonlinears model. The advantage
of this procedure is the possibility to take full account of
quantum effects in the description, whenever necessary, such
as near barriers and interfaces, without the need to introduce
additional assumptions for performing the ensemble aver-
ages.

As an example, consider the system studied in previous
section, i.e., a double barrier chaotic billiard withN equiva-
lent channels at each contact. In the extended circuit theory,
we end up with only two equations13

Isfd = I1sf − ud = I2sud, s57d

where

I jsfd =
NG j sinsfd

1 − G j sin2sf/2d
s58d

is the pseudo-I-V characteristics of barrierj , interpreted as a
connector. We remark that these equations contain all quan-

tum information that remain relevant in the semiclassical re-
gime after ensemble averaging. They are therefore a direct
consequence of the maximum entropy principle. In Ref. 16 it
was found to be convenient to introduce the following modi-
fied pseudocurrent:

Ksxd =
i

2
Is− 2ixd, s59d

which yields the conservation law

Ksxd = K1sx − yd = K2syd, s60d

where

Kjsxd =
N

2
FtanhSx +

1

2
a jD + tanhSx −

1

2
a jDG , s61d

in which we introduced the constantsa j via the relation
G j =sech2sa j /2d. Insertings61d into Eq. s60d yields

tanhsx − y + 1
2a1d + tanhsx − y − 1

2a1d
= tanhsy + 1

2a2d + tanhsy − 1
2a2d , s62d

which after using the trigonometric identity

tanhsx − yd =
tanhx − tanhy

1 − tanhx tanhy
, s63d

yields the following polynomial equation for the variablej
=tanhy

fG1s1 − G2dtanhxgj4 − s3G1G2 tanhxdj2 + fsG1G2 + G2 − G1d

3tanh2 x + 2G1G2 − G1 − G2gj3 + fsG1G2 + G1 − G2d

3tanh2x + G1 + G2gj − G1 tanhx = 0. s64d

This equation must be supplemented by

Ksxd =
NG2j

1 − s1 − G2dj2 . s65d

Equationss64d and s65d were presented in Ref. 16 and are
the circuit theory equations for the double barrier chaotic
billiard. In the next section we shall compare them with Eqs.
s39d, s40d, s42d, and s41d, obtained from the diagrammatic
method.

B. Comparison between circuit theory and the diagrammatic
approach

In order to facilitate comparison, let us first establish
a direct relation between the generating function
f jszd=TrFjszd of the diagrammatic technique and the modi-
fied pseudo-currentKsxd of circuit theory. From Eq.s13d we
obtain

F1szd = o
n=0

`

kC1sS†C2SC1dnl
1

zn+1 , s66d

and
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F2szd = o
n=0

`

kC2sSC1S
†C2dnl

1

zn+1 . s67d

Inserting Eqs.s2d and s15d into the above equations we get

F1szd = o
n=0

`
1

zn+1S0 0

0 st†tdnD , s68d

and

F2szd = o
n=0

`
1

zn+1Sstt†dn 0

0 0
D .

Performing the trace, we obtainf1szd= fszd= f2szd, where

z2fszd = Nz+ hs1/zd, s69d

and we introduced the functionhszd, defined as

hszd =KTrS tt†

1 − ztt†
DL =E

0

1

dt
trstd
1 − zt

. s70d

From Eq.s56d, one realizes that

Isfd = hfsin2sf/2dgsinf, s71d

which when combined with Eq.s69d yields

fszd =
1

z
USN +

Isfd
2Îz− 1

DU
sinsf/2d=1/Îz

. s72d

Using the relation betweenKsxd and Isfd, Eq. s59d, we may
rewrite the above equation as

fszd =
1

z
usN − Ksxdtanhxdusinh x=1/Î−z. s73d

Let us consider two simple applications of Eq.s73d. For a
chaotic cavity with symmetric barriers, Eqs.s64d and s65d
yield

Ksxd =
NG sinhx

2 − G + Gcoshx
. s74d

Inserting Eq.s74d into Eq. s73d we find

fszd =
N
Îz
S s2 − GdÎz− 1 +GÎz

Îz− 1fs2 − GdÎz+ GÎz− 1g
D , s75d

which can be easily shown to agree with Eq.s45d. For a
chaotic cavity with two tunnel junctions, we obtain from
Eqs.s64d and s65d the following expression:

Ksxd =
NG1G2 sinh 2x

2ÎG1
2 + G2

2 + 2G1G2 cosh 2x
. s76d

Inserting Eq.s76d into Eq. s73d we obtain

fszd =
N

zF1 +
G1G2

sG1 + G2dÎzsz− t0dG , s77d

in agreement with Eq.s51d.
We can also invert Eq.s73d to obtainKsxd from the dia-

grammatic approach

Ksxd = cothsxdusN − zfszdduz=−sinh−2sxd. s78d

In particular, we can calculate the average of the cumulants
of the FCS using the formula

hk+1 ; kTrfstt†dk+1gl =
s− 1dk2k

k!
U dkHsxd

dfcoshs2xdgkU
x=0

,

s79d

whereHsxd;2Ksxd /sinhs2xd. The first three cumulants are
then given by

kgl = h1, kpl = h1 − h2, kkl = h1 − 3h2 + 2h3. s80d

We remark that the functionHsxd can also be obtained di-
rectly from fszd via the relation

Hsxd = zuszfszd − Nduz=−sinh−2sxd. s81d

Motivated by strong numerical evidences,16 our basic conjec-
ture is that one obtains thesamefunction Hsxd either from
Eqs. s39d, s40d, s42d, and s41d or from Eqs.s64d and s65d.
Although explicit analytic evaluation ofHsxd in both ap-
proaches, for generalG1 and G2, is too cumbersomesalbeit
possible in principled, we can still make some analytical
progress in verifying our conjecture by expandingHsxd in
powers ofx, and evaluating the coefficients as explicit func-
tions of G1 and G2. This procedure yields,in both ap-
proaches, the following closed expressions:

kgl = N
G1G2

G1 + G2
= kglTJ s82d

for the conductance

kpl
kgl

=
G1 + G2 − G1G2

G1 + G2
S kpl

kgl
D

TJ
s83d

for the Fano factor, and

kkl
kpl

=
G1 + G2 − 2G1G2

G1 + G2
S kkl

kpl
D

TJ
s84d

for the ratio between the average third cumulantkkl and the
average shot-noise powerkpl. We also found agreement for
the fourth cumulant. Note that for tunnel junctions, we have
G1,G2!1, and Eqs.s82d–s84d reduce to Eqs.s53d–s55d, as
expected. The above expressions together with the fourth
cumulant are in complete agreement with the semiclassical
cascade approach presented in Ref. 18. They represent strong
analytical evidences for the mathematical equivalence be-
tween Eqs.s39d, s40d, s42d, and s41d of the diagrammatic
technique and Eqs.s64d and s65d of circuit theory, in the
description of the asymptotic semiclassical domain of the
Poisson kernel distribution.

IV. SUMMARY AND PERSPECTIVES

We presented a detailed comparison between two well
known semiclassical approaches, the diagrammatic analysis
of the unitary group and circuit theory, in the description of
quantum transport through double-barrier chaotic billiards.
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The problem was reduced to a comparison between a pair of
coupled non-linear algebraic equationssdiagrammatic tech-
niqued and a polynomial equation of fourth orderscircuit
theoryd. Exact agreement was found for a variety of quanti-
ties, such as the first four average cumulants of the full
counting statistics and the average transmission eigenvalue
density for symmetric barriers and tunnel junctions. The
complete equivalence of these approaches is a non-trivial
result, because the semiclassical concatenation principle,
used to derive circuit theory equations, has no obvious coun-
terpart in the diagrammatic method and leads to a substantial
algebraic simplification of the whole problem. It is quite
amusing to observe that circuit theory turns out to yield a
irreducible description that intuitively satisfies the “Occam’s
razor” principle of descriptive simplicity.19

An interesting consequence of our result would be the
extension of circuit theory to deal with quantum corrections,
which can be systematically treated in both the supersym-
metric non-linears-model and in the diagrammatic tech-
nique. From a broader perspective, we expect our result to
help establishing a direct connection between several recent
independent developments of both circuit theory and the dia-
grammatic S-matrix approach, such as those in mag-
netoelectronics20 with obvious technical advantages.
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