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Diagrammatic analysis of the unitary group for double-barrier ballistic cavities: Equivalence
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We derive a set of coupled nonlinear algebraic equations for the asymptotics of the Poisson kernel distri-
bution describing the statistical properties of a two-terminal double-barrier chaotic biliafzhllistic quan-
tum doj. The equations are calculated from a diagrammatic technique for performing averages over the unitary
group, proposed by Brouwer and Beenakk&r Math. Phys.37, 4904 (1996]. We give strong analytical
evidences that these equations are equivalent to a much simpler polynomial equation calculated from a recent
extension of Nazarov’s circuit theopA. M. S. Macédo, Phys. Rev. B6, 033306(2002]. These results offer
interesting perspectives for further developments in the field via the direct conversion of one approach into the
other.
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[. INTRODUCTION two-terminal system, consisting of a ballistic chaotic cavity
or quantum dot coupled to two waveguides, the scattering

Random-matrix theory has proved to be a powerful too'matrix can be conveniently written %s

for describing generic features of quantum chaotic
systems:? For closed systems it offers an accurate statistical (rt
description of both energy levels and wave-functions charac- S= t )
teristics with overwhelming numerical and experimental

confirmation. In this case, the central hypothesis is to replac&heret,t’ andr,r’ are, respectively, transmission and reflec-
the Hamiltonian of the system by a matrix with random in- tion matrices. The presence of barriers of arbitrary transpar-
dependent Gaussian entries obeying certain fixed exact syrincies at the interface between the chaotic cavity and the
metries, such as time reversal and spin rotation. The resulting;’iVegUi0|es can be accounted for by specifying the average
ensembles are known in the literature as the Gaussian ef@r optical par} of the scattering matrik?

(2

sembles. For open systems, such as ballistic chaotic cavities — [, O
and disordered wires attached to external leads, the major S= (0 ) (3)
role is shifted from the Hamiltonian to the appropriate matrix r2

associated with the description of electron transport, viz., theuherer, andr, are reflection matrices for barriers 1 and 2,
scattering matrix or the transfer matrix. Here, the justifica-respectively.

tion of the specific ensemble is a subtle procedure, because, |n mesoscopic physics, one is usually concerned with the
unlike the previous case, one needs to take into accourfescription of a well-defined measurement, such as the full
subtle correlations between the entries of the matrix inducegdounting statisticYFCS of a two-terminal system, whose
by flux conservation and quantum diffusi¢for disordered cumulant generating function is given by the Levitov-

wires). Lesovik formula®
For ballistic chaotic cavities, a general procedure to ob- B i +
tain such an ensemble was developed by Mello and ®(A) == MqTrin[1+(e" - 1tt'], (4)

Barange? It consists of evoking thenaximum information whereMy=eVTy/h>1 is the number of attempts to transmit
entropy principlealong with certain generic assumptions, an electron during the observation tiffig t is the transmis-
such as analyticity, unitarity, and some specific symmetriegjon matrix andv is the voltage. Physical observables can be
that are exactly preserved in the presence of chaotic dynangptained from the series expansion

ics. The resultings-matrix distributionP(S) turns out to be a

oo

multidimensional generalization of the Poisson kernel, usu- o) =-3 M 5)
ally found in two-dimensional electrostatics. Its general form B = kK G
reads
. where
P(S)  |det 1 - S'g)[AM*2A), (1) d
. o =~ 7% PM)=0 (6)
where Be{1,2,4 is a parameter identifying distinct sym- d(in)

metry classe$,M=2N is the total number of open scattering are the irreducible cumulants of the FCS. Some well-known

channels(N for each waveguideandSis a subunitary ma-  examples are the dimensionless conductance and shot-noise
trix, i.e., the eigenvalues &' may be less than unity. For a power, which are given, respectively, by
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9= /Mg = Tr(tth, (7) Motivated by this result, we present in this work a de-
tailed comparison between the diagrammatic approach and
which is the Landauer formula, and the extended version of circuit theory for the case of asym-
metric barriers with arbitrary transparencies, thus completing
p=0,/Mo = TrttT(1 - tth)]. (8) the analysis of Ref. 13 and providing strong evidence for the

full equivalence between these semiclassical techniques.
'[his result is particularly relevant in practical applications
Pecause of the great algebraic advantage of the calculations
in circuit theory(in our case study the problem is reduced to
a polynomial equation of fourth ordem comparison with

B B + + + alternative approaches. In fact, we believe that circuit theory
K= Qg/Mo = Trtt! (1 —tt)(1 - 2At)]. 9 equations reach the ultimate irreducible form in terms of

The above expressions for the cumulants of the FCS aréimplifying the description. Furthermore, when combined
sample specific, which means for a chaotic cavity that aWith the scaling theory presented in Ref. 13 for the balistic-
average over the Poisson kernel distribution is necessary ififfusive crossover in phase-coherent metallic conductors, in
order to make comparisons with real experimental data. Sucihich the present results enters as an initial condition, we
calculations can in principle be performed exactly for arbi-€nd up with a very powerful formalism for performing con-
trary values of M and B using the method of Crete calcul_at|on§ in realistic conductors. Appl|cgt|ons m|ght
supersymmet’? and some very general results are in factinclude spintronics' and normal-superconducting hybrid
already available in the literatufé® Albeit powerful and ~ Systems?®
general, this method can become very cumbersome and
sometim_es un_wieldy. _Fortunately, if one is interested onI_y in IIl. DIAGRAMMATIC TECHNIQUE
the semiclassical regime, where one neglects quantum inter-
ference contributions, defined mathematically by the In this section we present a detailed account of the appli-
asymptotic conditiorM > 1, much simpler alternative tech- cation of the diagrammatic method to the calculation of the
nigues exist. semiclassical limit of a double barrier chaotic ballistic cavity.

Two well-known methods to deal with the semiclassicallt contains the central result of this paper and complements a
regime are the diagrammatic analysis of the unitary groupprevious analysis by Brouwer and BeenakKer.
presented by Brouwer and Beenakkemd Nazarov’s circuit We start by noting that all cumulants of the FCS can be
theory?? In its original form circuit theory does not allow for generically written in the form
a direct comparison with the diagrammatic approach in the
entire range IOof parameters, i.e.,gfor arbitraryp\ealues of the A=Trath], (10)
barrier’s transparencies, because of the intrinsic difficulty toyherea(x) is an arbitrary smooth function. It means that the
determine the average pseudocurrent-voltage characteristisgsemble averages of transport observables can be fully de-
of an arbitrary circuit element. This is related to the well- scribed by the following density function:
known problem of breakdown of semiclassical transport
equations close to boundaries and interfaces, where pure p(7) = (Tra(r~tt"), (11
quantum effects become dominant. This difficulty was re-gq that
cently removed by a systematic treatment presented in Ref.

13, in which circuit theory is combined with the supersym- !

metric nonlinear sigma model yielding a powerful technique (A= f dra(7)p(7). (12)
with a very convenient algebraic structure. This extended 0

version of circuit theory raises the natural question as tdrhe problem is thus reduced to the calculatiorp@f) in the
whether its information content coincides with that of theasymptotic regimév=2N>1.

diagrammatic method in all ranges of the input parameters. In the diagrammatic formalism, one starts by introducing
This is a highly nontrivial question, because the semiclassithe generating functions

cal concatenation principle, which is the basis of circuit _ + 1

theory, does not have a direct representation in the diagram- F1(2) =(C4(z-S'C,SC)™), (13
matic formulation. In particular, there is no obvious way how g4

to extend this concatenation principle to account for quantum

corrections, such as weak localization. We remark that the Fo(2) =(Cy(z-SCS'Cy ™, (14

semiclassical concatenation principle is directly related to th(\a/vheres is the M X M scattering matrix defined in Eq2)

independence of the leading asymptotic contrlbuthn on th%nd the auxiliary matrice€, andC, are defined as
symmetry parameteB. By contrast, the weak localization

correction is strongly3 dependerit and, in particular, van- 00 1y O
ishes for8=2, i.e., for systems with broken time-reversal Ci= (O 1 ) 2= ( 0 O)’

symmetry. Interestingly, for the particular case of symmetric N

barriers a direct comparison between both approaches was which 1 is theN X N unit matrix. It can be easily verified
presented in Ref. 13 and complete agreement was found. that

The third cumulant has also attracted some recent intere
including an experimental observation in tunnel junctibits.
is given by

(15
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p(7) _1 Im[f1(¢+i0+)]:—£Im[f2(7+i0+)], (16)
s T

wheref(z2) =Tr{F;(2)],i=1,2.

The next step is to define the matrix generating function

0
Fx(2)

Fi(2)

0 (17)

)

Ha:(

which can be written as a sum of two terms that can be

averaged separatel&‘l(z):(22)‘1[|3+(z)+ IE_(z)]. Each term is
given by

F,(2=C+0A(1-3,6%713,B, (18)

whereA=CL, B=aTC, with e=2z"Y2 and the following ma-
trices have been defined:

. (0 Cc\ -~ (L O

““lc, o) "o 1) (19
and

~ (T 0oy -~ (RO

T=ly 1) R=lg at): (20)

The submatrice$, T, and R describe transmission and re-

flection coefficients of the barriers and are relate® td Eq.
(3) via the condition that

)

be unitary. The remaining matrices in H48) are the “free
propagator”

(21)

é(o, =R+ ¢aTCL (22

and the “self-energy” matrii,,. They satisfy a Dyson equa-
tion
8,=G0+6%5,6,=82+6,3,82. (29

Summation over planar diagrathyields the following ex-
pression for the self-energy matrix:

3,=P,L(P?), (24)
where
. (0 Tr(G}f))
P,= (Tr(Gil) 0 ® 1y, (25)

in which G2 and G are off-diagonal blocks of the full
Green’s function

. [gk g

Go:(Gzl G22>'

The function {(z) is defined by the planar series,
{2==7_w,2"Y, in which w,, are symmetry coefficients
given by

(26)
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_(=p™2n-2)!

M i n - Mzt @7

Evaluating the sum we obtain the closed expression

2U2) = 2422 + M2 - M). (28)
Using Eq.(28) we may write Eq(24) in the form
S,PS,+MS, =P, (29)
To proceed, we introduce the variables
= THGE) = o8, (30
and
b= THGE) = 0t (31

which implies the following simple form for the matrﬁe,,:

P,=N (0 &>®1 (32
o— NO 02 0 M+
Using the ansatz
2 0 ﬁl)
= ®1 33
20' O-(Bz 0 M ( )
in Eq. (29), we obtain the following coupled system:
2
0,+2B1=06
{ Bty 28,20, o
B2b1+2B2= 6.

At this stage we need to further specify the nature of the
contacts between the cavity and the leads. We assume the
presence of asymmetric barriers whhequivalent transmit-
ting channels. The adequate choices for the matriGels,
andR are therefore given by

i\T, 0
T= —le1=L (35)
0 NI,
and
R—(Vl_rl 0 )@1 =S (36)
\ o yi-r,/) "7

in whichT'; andT', represent the transmission coefficients of
each channel in barriers 1 and 2, respectively. Combining
these expressions with the ans&88) for the self-energy
matrix, we may calculate explicitly the full Green’s function,
from which [after using Eq(25)] we obtain

al’,+(1-T,)B; (1-T')g;

T l-aBolo- BiBl-Ty)  1-apls- BuBo(l-T1)
(37)

1

and
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(1-T))B,
1-aBl'y— B1B(1-T) -
(38)

g = al’'1+(1-T9pB,
2T 1-aBil - BiBo(1-Ty)

Combining Eqgs(37) and (38) with Eq. (34), we obtain the
following nonlinear algebraic system:

a1 =T )TB: 85 +{[aPl o+ (20 - DI, - T1]B, - (1
+ T8+ (T - 2T Ty aBy + o T T+ T+ 1516,
—al,=0 (39)
and
a1 =TT B3 +{[@T 1T, + (20, = DIy = T5)B, - a(l
+ Tl BT +[(Fo= 20T ) e, + T4, + Ty + 1) 8,
—al,=0. (40)

Finally, inserting the ansatz E{R4) into Eq. (18) yields

T',8; 1
f()=a®N|1-—2P2 | 41
@=e [ 1-(1-T2BpB: 4y
and
) .y -
f - 2N 1_# . 42
22 =N L ) 6, ) (42
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N re-r
p(T) = 2 I ’
T =4Al'r+An)Vr(1-17)
in agreement with Ref. 13. The solution obtained by Brou-
wer and Beenakkétis, in fact, a generalization of E¢46)
for nonequivalent channels. It reads

N
r,2-r,
p(T) = E 2 . n [ L]
n=1 m(I'y— 47+ 4Nl - 7)

(46)

(47)

which, of course, reproduces E@6) whenI',=I" for all n.

B. Chaotic cavity with two tunnel junctions

This system is described by applying the conditions
I';,I'b<1 in Egs.(39), (40), (42), and(41). We get

Baaly— By(T1+T,) +al'; =0,

Bial = BTy +T5) +al’,=0, (48)
together with
[ al’18; 1
f(2)=a®N|1-—"| (49
' |7 1-B1B ]
and
[ al’,f8; 1
f(2)=aN|1-—=5| . (50)
? |7 1-BiBs ]

Equations(39), (40), (42), and(41) are the central results of From  the physical roots of Eq.(48), we obtain
this section. Together with Eq416) they represent the com- f,(2)=1(2)=f,(2), where
plete solution of the problem. It extends the calculations of

Brouwer and Beenakk®rto include the case of asymmetric
barriers(although in their solution of the symmetric case the

channels in the barriers were considered nonequivalBet

I,
(T +ToNz(z - 1) ’

f(2) = g 1+ (52

fore presenting a complete analysis of the generic situatiorin which 7,=40'1T',/(I';+I',)% Inserting Eq.(51) into Eq.

we shall discuss below some important particular cases.

A. Chaotic cavity with symmetric barriers

(16) we obtain
NI, I, 1
m(T1+T) A2\ ry— 7'

p(7) = (52)

The case of symmetric barriers is described by setting

I')=I'=T", and 8;=8=2, in Egs.(39), (40), (42), and (41),
so that we find

(af?-28+a)[(1-T)B2+al'B-1]=0, (43

and

F -1
o B )ﬁz] Sh(2). (44

-2 -
fl(Z)—CY N|:1 1—(1—F

The physical root of Eq.(43) is given by B=(1

—V1-a?)/a=\z—\z-1, which vyields f,(2)=f(2)=fx(2),
where

f2 _20z-\Vz-D(A-) +T\z-1

N 2z20z-Vz-1)(1-T)+TVz

(45)

in agreement with Refs. 12 and 16.

Using Eq.(52) we can compute the average value of sev-
eral physical observables. Of particular interest are the first
three cumulants of the FCS, defined in EGB—(9). We find

(@r= Nrffﬁz, (53)
for the average conductance
() _ TE+T3
<@)TJ: ([ +T)? (54
for the Fano factor, and
( (k) ) _ I- 23T, +6Iar5 - 2l I3+ T 55
P/ ([ +T)AIi+19 ,

for the ratio between the average third cumulant and the

Inserting Eq.(45) into Eq. (16) we find the average density average shot-noise power. The subscript TJ standBuionel
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Junction Equations (53)—(55) are well known in the tum information that remain relevant in the semiclassical re-

literaturel” gime after ensemble averaging. They are therefore a direct
consequence of the maximum entropy principle. In Ref. 16 it
ll. GENERAL ANALYSIS AND COMPARISON was found to be convenient to introduce the following modi-
WITH CIRCUIT THEORY fied pseudocurrent:

In this section we compare the predictions of the above i
diagrammatic approach with those of the extended version of K(x) = =I(- 2ix), (59
circuit theory. The exact agreement that we found for various 2
quantities strongly suggests the full equivalence of thesgich yields the conservation law
semiclassical techniques in the entire range of input param-
eters. K(x) =Ky (x=y) = Ky(y), (60)

A. Circuit theory where

Circuit theory was invented by Nazaréand represents a N 1 1
very powerful tool for computing ensemble averages of Kj(x) = 2 tan?‘<x+ Eaj) + tan!‘(x— Eai> , (61
quantum chaotic systems in the semiclassical regime. It con-

sists of a finite element approach in which the spatial support; which we introduced the constantg via the relation

of the system is partitioned into a network, containing edgeg . =secR(«;/2). Inserting(61) into Eqg. (60) yields
(or connectorg and verticegnodes or terminajsIn its sim- ) )

plest version, there are only two terminals and the system is tanh{x—y + ;) + tanHx -y - 2oy
. r e 291 2%
subject to a fictitious pseudo-potentilwith fixed values at N N
the terminals and unknown values at the internal nodes. The = tanl‘(y+ E“z) + tanr(y— Eaz)a (62)

basic principles arg1) a general law of pseudocurrent-

voltage(l-V) characteristics for a connect@r, j) subject to a which after using the trigonometric identity

pseudopotential droad;; tanhx — tanhy
tanhx-y)= ——————, (63
L (Psin(Ad;) 1 - tanhx tanhy
II](ACI)U) = f d7 p” . . , (56
o 1-7sir(Ad;/2) yields the following polynomial equation for the variakfe

where [;;(Ad;) is a pseudocurrent ang;(7)=(Trd(r =tanly

—tijtfg» Ls th\(/ava\(/jer?ge transﬂr:wission Tigenva_lft_;etdensity o_f the[", (1 - I',))tanhx]&* - (3T [, tanhx) & + ([, + [, —T'y)

connector. We definet} as the sample specific transmission

matrix of the connecttgl(.Z) A generalized Kirchhoff law for Xtant? x+ 2040, =Ty = Tp]& + (N4 + Ty = T)

pseudocurrent conservation at each node. Xtanttx+ 'y +I',]é =T, tanhx=0. (64)
The power of this approach depends crucially on the ap-

propriate choice of the connectors, which in turn depends orf his equation must be supplemented by

our ability to calculate the correspondent pseliddeharac- NI

teristics. This is the point where the extended approach, put K(x) = —25_

forward in Ref. 13, differs from Nazarov’s original formula- 1-(1-Tp#&

tion. In Ref. 13 the functiot;;(Ad;;) was calculated directly

(65)

from the supersymmetric nonlinearmodel. The advantage Equations(64) and (65) were presented in Ref. 16 and are
persy ) 9€ the circuit theory equations for the double barrier chaotic

of this procedure is the possibility to take full account of illiard. In the next section we shall compare them with Egs.

quantum effects in the description, whenever necessary, su . . .
as near barriers and interfaces, without the need to introdué((mégihéﬁo)’ (42), and (41), obtained from the diagrammatic

additional assumptions for performing the ensemble aver-

ages. . o . .
As an examp'e, consider the System studied in previousB. Comparison between circuit theory and the diagrammatic
section, i.e., a double barrier chaotic billiard withequiva- approach
lent channels at each contact. In the extended circuit theory, | order to facilitate comparison, let us first establish
we end up with only two equatiohs a direct relation between the generating function
_ o = fi(z2)=TrF.(2) of the diagrammatic technique and the modi-
| =1 0) =1,(6), 57 J ] o
(@) =11(¢-0)=15(6) S fied pseudo-currer(x) of circuit theory. From Eq(13) we
where obtain
NI; sin(¢) %
()= —L—"—— 58 1
=TT s °9 Fi(2)= 3 (CS'CSG)) s, (66
n=0

is the pseuda-V characteristics of barrigr, interpreted as a
connector. We remark that these equations contain all qua@nd
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©

Fa(2) = 2 <C2(SCLSTC2)n>

n=0

ot (67)

Inserting Eqs(2) and(15) into the above equations we get

0O O
Fi(2) = 2 n+1<0 (tTt)n)’ (69)
and
(tth" o
Fa(2) = E M( 0 o)
Performing the trace, we obtaiq(z)=f(z) =f,(z), where
Z*f(z) =Nz+h(1/2), (69)
and we introduced the functidm(z), defined as
tt !
h(Z)=<Tr( T>> :f LG (70
1 —ztt 0 1- T
From Eq.(56), one realizes that
1(¢) = h[sir?(¢/2)]sin ¢, (71)
which when combined with Eq69) yields
1 1(¢)
f(z)=- <N ——> (72
z 2VZ2=1/ | singr2)=11z

Using the relation betwedd(x) andl(¢), Eq.(59), we may
rewrite the above equation as

1
f(2) = E (N = K(x)tanhx)|sinh x=1/,=2- (73)

Let us consider two simple applications of E@3). For a
chaotic cavity with symmetric barriers, Eq&64) and (65)
yield

NI" sinhx

KX)=0——F——. 74
Y 2 -T" +T'coshx (74
Inserting Eq.(74) into Eq. (73) we find
N (2-T)\z-1+T\z
f(2) = 7( , 7 ) (75)
VzZ\vVz=- (2 -T)Vz+T'\Vz-1]

which can be easily shown to agree with Ed5). For a
chaotic cavity with two tunnel junctions, we obtain from
Egs.(64) and (65) the following expression:

NI'4I", sinh
KX =—=— . (76)
27+ 5+ 24, cosh X
Inserting Eq.(76) into Eq. (73) we obtain
N rir
f(z):—[1+ 2 ] (77
z (T +T)vz(z—- 7p)

in agreement with Eq(51).
We can also invert Eq73) to obtainK(x) from the dia-
grammatic approach

PHYSICAL REVIEW B71, 235307(2005

K(x) = coth(x) (N - Zf(z))|z:—sinh‘2(x)- (78)

In particular, we can calculate the average of the cumulants
of the FCS using the formula

(- 12
k!

d*H(x)
dlcosh2x)1¥| =0’
(79

where H(x) = 2K(x)/sinh(2x). The first three cumulants are
then given by

(@=hy, (p=hy—hy (k)=hy-3n,+2h;. (80

We remark that the functiokl(x) can also be obtained di-
rectly from f(z) via the relation

H(x) =

hyeq = (Tr{(tth 1)) =

2(zf(2) = N)| =sinr2(x - (81)

Motivated by strong numerical evidenc€yur basic conjec-
ture is that one obtains th@amefunction H(x) either from
Egs. (39), (40), (42), and (41) or from Egs.(64) and (65).
Although explicit analytic evaluation oH(x) in both ap-
proaches, for generdl; andI',, is too cumbersoméalbeit
possible in principlg we can still make some analytical
progress in verifying our conjecture by expandiHgx) in
powers ofx, and evaluating the coefficients as explicit func-
tions of I'y and I',. This procedure yieldsin both ap-
proaches the following closed expressions:

rr,
()= NF T, =(0)1; (82
for the conductance
(py _ T1+Ip— FlFZ( (p))
— =" — (83)
(@ r+I, (/13
for the Fano factor, and
(k) T1+T5- 2r1F2< <K>)
—= " — (84)
(P r+I5 P/ 13

for the ratio between the average third cumulagtand the
average shot-noise powgp). We also found agreement for
the fourth cumulant. Note that for tunnel junctions, we have
I';,I'b<1, and Eqs(82—(84) reduce to Eqs(53—(55), as
expected. The above expressions together with the fourth
cumulant are in complete agreement with the semiclassical
cascade approach presented in Ref. 18. They represent strong
analytical evidences for the mathematical equivalence be-
tween EQgs.(39), (40), (42), and (41) of the diagrammatic
technique and Eqs64) and (65) of circuit theory, in the
description of the asymptotic semiclassical domain of the
Poisson kernel distribution.

IV. SUMMARY AND PERSPECTIVES

We presented a detailed comparison between two well
known semiclassical approaches, the diagrammatic analysis
of the unitary group and circuit theory, in the description of
quantum transport through double-barrier chaotic billiards.
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The problem was reduced to a comparison between a pair of An interesting consequence of our result would be the
coupled non-linear algebraic equatioftiagrammatic tech- extension of circuit theory to deal with quantum corrections,
nique and a polynomial equation of fourth ordécircuit  which can be systematically treated in both the supersym-
theory. Exact agreement was found for a variety of quanti-metric non-linears-model and in the diagrammatic tech-
ties, such as the first four average cumulants of the fulhique. From a broader perspective, we expect our result to
counting statistics and the average transmission eigenvalugsip establishing a direct connection between several recent
density for symmetric barriers and tunnel junctions. Thejndependent developments of both circuit theory and the dia-
complete equivalence of these approaches is a non-trivig),ammatic S-matrix approach, such as those in mag-

result, because the semiclassical concatenation principl@egeectronic® with obvious technical advantages.
used to derive circuit theory equations, has no obvious coun-

terpart in the diagrammatic method and leads to a substantial
algebraic simplification of the whole problem. It is quite
amusing to observe that circuit theory turns out to yield a
irreducible description that intuitively satisfies the “Occam’s  This work was patrtially supported by CNPqg and FACEPE
razor” principle of descriptive simplicit}? (Brazilian Agencies
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