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nonequilibrium Green’s functions and exploits the Hubbard operators, which allows us to treat formally exactly
all electron correlations within the molecule. The procedure reproduces exact results in the limiting cases: for
a weak molecule-lead coupling and for high temperaturessi.e., Coulomb blockade limitd, and for the limit of
vanishing electron interactions. Between these limits the method can be applied as an interpolating scheme. As
an example of an application we present the results obtained for a two-atom molecule.
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I. INTRODUCTION

A great effort is focused on electronic transport through a
single molecule attached to metallic electrodes, which is the
crucial issue for further progress in the molecular
electronics.1,2 The future of this new field depends, however,
on solving some basic problems. From the experimental side
the main issue is to achieve an unambiguous contacts be-
tween the molecule and the electrodes.3 An important aspect
of theory is to take into account a geometry of chemical
bonds, a contribution of various molecular orbitals as well as
Coulomb interactions between electrons at the molecule. The
electronic spectra of a single molecule can be determined
with a high precision by quantum chemical procedures. For
the molecule connected to electrodes the problem is much
more complex, because one has to apply methods known in
solid state calculations of the electronic structures, for ex-
ample, the density functional theory combined with an em-
pirical or anab initio tight-binding approach,4 which can be
extended for a nonequilibrium situation with the electric cur-
rent flowing through the molecule. The commonly used
codes, which are based on a one-electron approximation and
use a mean-field-type approach, neglect many-body effects.5

Electron interactions can lead to new phenomena, for ex-
ample, to the Coulomb blockadesCBd. The effect was exten-
sively studied in single quantum dots and in systems of
coupled quantum dotssartificial atoms and moleculesd.6–11 In
order to study the CB effect in the coherent transport the
nonequilibrium Green’s function technique12 within an ap-
proximation, which includes many-electron states9,10,13is be-
ing used. For simple cases, e.g., for a two-atomic molecule,
one can determine the current treating exactly all many-
electron states and the molecule-electrode coupling to the
lowest order. These approximations correspond to high tem-
peratures, when electrons at the molecule are weakly corre-
lated with electrons in the electrodes. At a low temperature
one has to include in calculations higher-order tunneling pro-
cesses between the molecule and the electrodes, which can
lead to the Kondo resonance.14,15These calculations of elec-
tronic transport were performed for simplified models, which
are far from real molecules. The methods are complex and it
will be difficult to incorporate them into ab initio codes.

In this work we apply the technique of the Hubbard
operators,16 for a determination of the transport characteris-

tics of molecular systems. The elegant description of simple
systems was performed by Kikoin and Avishai14 and Kuz-
menkoet al.15 Using the symmetry of the Hubbard operators
sthe symmetry of the many-electron spaced they were able to
study the Kondo resonance for various electron occupancies
and geometries of the system. Since charge excitations were
neglected in these studies, they are limited to electronic
transport at low temperatures and low source-drain voltages
sin the limit of the linear responsed. Fransson and Eriksson17

used the Hubbard operator technique in the limit of the infi-
nitely strong on-site electron repulsion. They studied the
many-electron effects in the current-voltage characteristics,
in particular asymmetries in the current-voltage curve and in
negative differential conductance. The technique was applied
also for magnetic devices to show a role of electronic corre-
lations in electronic transport.18 It is worth mentioning that
the Hubbard operators were also implemented into the slave
boson approach and satisfactorily described the Fano reso-
nance for the correlated electron system.19

Our purpose in this work is to show how the Hubbard
operator method can be used to take into account the charge
fluctuations in an arbitrary molecular junction. The problem
of the charge fluctuations is important for electronic transport
and was studied for simple models.8,10,13,20,21For strong Cou-
lomb interactions and a weak molecule-lead coupling one
gets the Coulomb blockade effect8,10 and the negative differ-
ential conductance,20 when radiative relaxation processes are
included. Our method is complementary to those used in the
past8,10,20,21 and can be applied in the Coulomb blockade
limit si.e., for the Coulomb interactionU larger than the
molecule-electrode couplingGd as well as for the strong
molecule-electrode couplingsG@Ud in the nonlinear trans-
port regime. The method is simpler and more general one
than the previous approaches using the decoupling procedure
for the equation of motion6,7,9,13and therefore we hope that it
can be easier implemented in the codes used in calculations
for real molecules.

A general model of a molecular junction and a method of
computation of the electric current is presented in Sect. II. In
Sect. III we present the equation of motion for the Green’s
functions, which are approximately solved in Sect. IV. In
Sect. V we exemplify the application of the method to the
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two-atom molecule. We show that various charge and spin
correlation functions at the molecule can be determined,
which allows a study of the influence of many-electron ef-
fects on electronic transport. The general conclusions are
presented in Sect. VI.

II. THE MODEL AND COMPUTATION OF THE CURRENT

The general considerations presented in this section hold
for the system which can be described using a Hamiltonian
defined as

H = o
a

Ha + HM + HT. s1d

The first part of the Hamiltonian describes noninteracting
leadsswhere a=L for the left lead anda=R for the right
leadd,

Ha = o
ks

ekackas
† ckas. s2d

It is assumed that the one-particle energy in the both leads is
uniformly shifted by the bias voltageV=VL−VR, eka

→ekas0d+eVa. The molecular HamiltonianHM is written
quite generally using the diagonal Hubbard operators,16 Xll,

HM = o
l

ElXll. s3d

The Hubbard operators are defined in terms of the exact
eigenstatesull of the isolated molecule,Xlm= ullkmu. Both
the eigenenergy valuesEl and the eigenstates are voltage
dependent, i.e., they take into account the effect of the exter-
nal electric field created at the molecule by the biassor gated
voltage.

The last term in Eq.s1d describes the tunneling of elec-
trons between the molecule and the leads,

HT = o
kas

svkackas
† das + H . c .d. s4d

Above, we assumed single-atom contacts with the both
leads,das is the electron operator for the atom of the mol-

ecule contacting with the leftsfor a=Ld or the rightsfor a
=Rd electrode, andvka is the tunnelingshoppingd parameter.
In the present paper we restrict ourselves to the single orbital
per atom, keeping in mind that the generalization to the mul-
tiorbital description is straightforward.

The computation of the current is based on the use of the
formula valid generally for the interacting molecular junction
with noninteracting leads,22

I =
ie

h
o
s
E dv GLffLsGLLs

r − GLLs
a d + GLLs

, g. s5d

In Eq. s5d, Gr,a,, denotes the retarded, advanced, and lesser
Green’s function in the site and frequency representation and
GL stands for the coupling function,

Ga = 2po
k

dsv − ekaduvkau2, a = L,R, s6d

and fL is the Fermi function for the left lead.

III. EQUATION OF MOTION FOR THE
GREEN’S FUNCTION

In order to obtain the Green’s function, we study the more
general Green’s function defined in terms of the Hubbard
operators,

Gll8,ms = kkXll8
F udms

† ll, s7d

where superscriptF at the Hubbard operator means the op-
erator reducing number of particles in the system by onesa
fermioniclike operatord. The Green’s function in the site rep-
resentation can be obtained from the above defined Green’s
function as

kkdjsudms
† ll = o

ll8

kkXll8
F udms

† llpjs
ll8, pjs

ll8 = kludjsul8l.

s8d

The retarded Green’s functionkkXll8
F udms

† ll fulfills the fol-
lowing equation of motionsEOMd:

sv − El8 + EldkkXll8
F udms

† ll = khXll8
F ,dms

† jl − o
kals8

vka,lo
m8

kkXlm8
B2 ckas8

† udms
† ll pls8

l8m8 − o
kals8

vka,lo
m

kkXml8
B2 ckas8

† udms
† ll pls8

ml

+ o
kals8

vka,l
* o

m

kkXlm
B ckas8udms

† ll pls8
ml8* + o

kals8

vka,l
* o

m8

kkXm8l8
B ckas8udms

† ll pls8
lm8* . s9d

To obtain the above equation, we differentiated the two-time
Green’s function with respect to the left time argument
and performed the Fourier frequency transform of
the result. Here, the bosoniclike Hubbard operators
Xll8

B sXll8
B2 d do not change the number of electrons in the

stateul8l sreduce the number of electrons in the stateul8l by
twod.

In order to compute the single particle Green’s functions
one needs the thermodynamic averages of the anticommuta-
tors khXll8

F ,dms
† jl. These averages play a role of the residua

of the Green’s functions of the molecule in the limitG→ 0.
They may be represented in terms of the linear combination
of the “bosonic” Hubbard operators, which do not change the
number of particles in the system,
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khXll8
F ,dms

† jl = o
n8

pms
ln8*kXn8l8

B l + o
n

pms
nl8*kXln

B l. s10d

Using the Keldysh lesser Green’s functions,Gll8,ms
,

=kkXll8
F udms

† ll,, we can calculate the needed averages both
in the equilibrium and nonequilibrium case. We first note that
standard application of the lesser Green’s function,

kdms
† Xll8

F l =E dv

2pi
Gll8,ms

, , s11d

does not allow us directly to single out the needed bosonic
averages. To proceed we follow the Hubbard original work16

and use the fact that the molecular HamiltonianHM com-
mutes with the electron number operator for the molecule.
From the multiplication rules of the Hubbard operators we
have

o
l

pms
lg dms

† Xll8
F = o

l

pms
lg dms

† Xlg
F Xgl8

B = o
lg8

pms
lg8dms

† Xlg8
F Xgl8

B

= dms
† dmsXgl8

B ; s12d

hence

o
mls

pms
lg dms

† Xll8
F = o

s

N̂sXgl8
B = NgXgl8

B s13d

whereNg is the number of electrons in the molecular state
ugl. The average of any bosonic Hubbard operatorsexcept
kX00l, whereu0l denotes the empty stated can be obtained as

kXgl8
B l =

1

Ng
o
lsm

pms
lg E dv

2pi
Gll8,ms

, . s14d

The remaining average,kX00l, can be computed using
the other ones with the completeness relationkX00l
=1−olÞ0kXlll.

IV. APPROXIMATE SOLUTION OF THE EOM FOR THE
GREEN’S FUNCTION

Below we discuss a decoupling scheme which, although
still valid only above the Kondo temperatureTK, correctly

reproduces both the limit of the Coulomb blockade as well as
the results for the noninteracting case. In the simplest MFA-
like approximation scheme,6 the higher-order Green’s func-
tions from the rhs of Eq.s9d are decoupled in a mean-field-
like manner and the system of equations for the Green’s
functions is closed. Here we write EOM for all the higher-
order Green’s functions which appear on the rhs of Eq.s9d
rather than just decoupling them,

sv − Ez8 + Ez + ekadkkXzz8
B2 ckas8

† udms
† ll = khXzz8

B2 ckas8
† ,dms

† jl

+ o
pbs9 j

vpb,jkkfXzz8
B2 ckas8

† ,cpbs9
† djs9gudms

† ll

+ o
pbs9 j

vpb,j
* kkfXzz8

B2 ckas8
† ,djs9

† cpbs9gudms
† ll, s15d

sv − Ez8 + Ez − ekadkkXzz8
B ckas8udms

† ll = khXzz8
B ckas8,dms

† jl

+ o
pbs9 j

vpb,jkkfXzz8
B ckas8,cpbs9

† djs9gudms
† ll

+ o
pbs9 j

vpb,j
* kkfXzz8

B ckas8,djs9
† cpbs9gudms

† ll. s16d

To proceed, we first compute the commutators in the higher-
order Green’s functions on the rhs of Eqs.s15d ands16d and
next we decouple the resulting operators in a MFA-like way,
neglecting the correlations of fluctuations between the elec-
trons from the leads and the molecule.7 In this decoupling,
the correlations of fluctuations within the molecule itself are
still treated exactly. As a result of this procedure, the higher-
order Green’s functions are approximated by the products of
the lowest-order Green’s functions,Gll8,m and the Fermi oc-
cupation factors of the electrons from the leads. Note that
this is just the point where the correlations leading to the
Kondo effect are neglected, since certain averages omitted
herese.g., the averages of the anticommutators on the rhs of
Eqs. s15d and s16dd develop the logarithmic singularities as
T→TK.

After inserting the result of this approximation for the
higher-order Green’s functions into the EOM, Eq.s9d, we
obtain the set oflinear equations for the lowest-order Green
functionsGll8,m,

sv − El8 + EldGll8,m = khXll8
F ,dms

† jl − o
mns8 jl

Rjl
hs− v + Em − Eldpls8

l8mpjs8
ln*Gnm,m − o

mns8 jl

Rjl
es− v + Em − Eldpls8

l8mpjs8
nm*Gln,m

− o
mns8 jl

Rjl
hs− v + El8 − Emdpls8

ml pjs8
mn*Gnl8,m − o

mns8 jl

Rjl
es− v + El8 − Emdpls8

ml pjs8
nl8*Gmn,m

+ o
mns8 jl

Rlj
hsv − Em + Eldpls8

ml8*pjs8
mn Gln,m + o

mns8 jl

Rlj
esv − Em + Eldpls8

ml8*pjs8
nl Gnm,m

+ o
mns8 jl

Rlj
hsv − El8 + Emdpls8

lm*pjs8
l8nGmn,m + o

mns8 jl

Rlj
esv − El8 + Emdpls8

lm*pjs8
nm Gnl8,m. s17d
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Above,

Rlj
x szd = o

ka

vka,l
* vka,j

z− eka

fka
x , wherefka

e = fka, fka
h = 1 − fka,

s18d

play a role of the components of the self-energy functions in
the present approximation. The functions defined by Eq.s18d
become divergent atz→«F whenT→0 K. This divergence
is the same as the one that appears in the theory of the Kondo
effect. It means that calculations based on Eqs.s17d are
meaningful for temperatures aboveTK only. It can be shown
that in the case of the single atom Eqs.s17d reproduce the
results of the theory of Meiret al.7 ssee the Appendix Ad.

The advantage of the above set of the inhomogeneous
linear equations is that the averages of the Hubbard operators
appear in Eq.s17d only as the inhomogeneity factors and as
such they modify the residua rather than the poles of the
Green’s function. The self-energy functionsRlj

e,hszd do not
depend on the averages of the Hubbard operators and they
characterize the spectral properties of the leads only. In re-
sult, the self-consistent equations for the averages are the
linear equations that can be, in principle, solved easily for
relatively large system, provided the self-energy functions
Rlj

e,hszd are known. The solution of Eqs.s17d can be written
formally as

Gll8,m
r,a = o

mm8

fsv1̂ − V̂ − Q̂r,ad−1gll8,mm8khXmm8
F ,dms

† jl,

s19d

where 1̂denotes the unit matrix,

V̂ll8,mm8 = dll8,mm8sEl − El8d, s20d

and Q̂r,a is a resonance-broadening matrix, defined by Eqs.

s17d. In general, the matrixQ̂ is a frequency-dependent func-
tion, divergent at temperatures of order ofTK. In the present
paper we neglect this divergence, which is justified as long
asT@TK and putfka,1/2 in the functionsRx from Eq.s18d.
As a result we obtain an explicit formula for the resonance
broadening matrix in the following form:

Q̂r = − io
a

Gaqa, sqadnn8,zz8 = dnn8,zz8 +
1

2 o
s,a=L,R

spas
nz pas

n8z8

+ pas
zn pas

z8n8d, s21d

and Q̂r =−Q̂a. The great advantage of this approximation is

that the matrixQ̂ is independent of the frequency which
considerably reduces the complexity of evaluation of the in-
tegrals from Eqs.s5d and s14d. The same result can be ob-
tained if we approximate the higher order Green functions on
the r.h.s. of Eq.s17d:13

kkckas8Xudms
† llr,a <

1

2
vkaga

r,akkhdas8,Xjudms
† llr,a. s22d

Above, ga
r,a denote the retarded and the advanced Green’s

function for the noninteracting leads.

In order to unambiguously determine the needed Green’s
functions one has to compute the values of the averages of
the anticommutators that appear in Eq.s19d. In the nonequi-
librium phase this requires knowledge of the lesser Green’s
functions from Eq.s14d. For the computation of the lesser
Green function we repeat the procedure of the equation of
the motion method. For the corresponding decoupling of the
Green’s function we assume that, by an analogy with Eq.
s22d,

kkckas8Xudms
† ll, <

1

2
vkaga

r kkhdas8,Xjudms
† ll,

+
1

2
vkaga

,kkhdas8,Xjudms
† lla, s23d

wherega
, denotes the lesser Green’s function of the nonin-

teracting leads. The approximations defined by Eqs.s22d and
s23d reduce to the exact result in the limiting cases of the
Coulomb blockade as well as the noninteracting limit, and in
between they serve as the interpolating ansatz. Using Eq.
s23d the lesser Green’s function can be readily obtained as

Gll8,ms
, = o

mm8

fsv1̂ − V̂ − Q̂rd−1Q̂,sv1̂ − V̂

− Q̂ad−1gll8,mm8khdms
† ,Xmm8

F jl, s24d

where

Q̂, = 2io
a

Gaqafa. s25d

In a similar way the expression for the greater Green’s func-
tion can be derived. Using the results for the Green’s func-
tions in Eq.s5d we derive the explicit equation for the cur-
rent,

I =
2eGLGR

h
o

ll8mm8

pLs
ll8khdLs

† ,Xmm8
F jl 3E dvsfL − fRdfsv1̂

− V̂ − Q̂rd−1qRsv1̂ − V̂ − Q̂ad−1gll8,mm8. s26d

The advantage of the last result is that it is independent of
the form and size of the molecular junction. The approxima-
tions made above in obtaining Eq.s26d do not guarantee the
current to fulfill the properties required from the stationary
charge flow for all possible values of the physical param-
eters. To impose this condition we performed the transforma-
tion of the time arguments in the double-time representation
of all the Green’s functions,

kkastdubst8dll → kkast0 + t/2dubst0 − t/2dll, s27d

requiring that the result be dependent ont but not ont0.
13

The final formula for current that fulfills this condition can
be obtained from the previous one by the simple symmetri-
zation of the prefactors in Eq.s26d with respect to the in-
dexes:l, l8, m, m8,
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pLs
ll8khdLs

† ,Xmm8
F jl → 1

2
spLs

ll8khdLs
† ,Xmm8

F jl

+ pLs
*mm8khdLs

† ,Xll8
F jl*d. s28d

In order to use Eq.s26d we have to compute self-
consistently the averages of the Hubbard operators that de-
termine the averages of the anticommutators in Eq.s26d.
From Eq.s14d we obtain the self-consistentlinear equations
for the averages of the boson-like Hubbard operators,

kXaa8l = o
bb8

Waa8,bb8kXbb8l,

Waa8,bb8 =
1

Na8
o

lm,ms

spms
la8pms

*b9mJla9,b8m + pms
la8pms

*mb8Jla9,mb9d,

s29d

and

Jll8,mm8 =E dv

2pi
fsv1̂ − V̂ − Q̂rd−1Q̂,sv1̂ − V̂

− Q̂ad−1gll8,mm8. s30d

The set of Eqs.s29d, supplemented with the completeness
relation, determines the values of the relevant averages of the
Hubbard operators. However, one should be aware that the
above procedure is not unique at the level of the applied
decoupling. If we studied instead the equations of motion for
the Green’s functions defined in terms of exclusively Hub-
bard operators, asGll8,mm8=kkXll8

F uXm8m
F ll rather than the

”mixed” Green’s function,Gll8,ms, we would obtain quite
another and highly redundant set of equations to determine
the averages. In the general case there is no guarantee, that
the two approaches give the same results, except some
limiting cases szero interaction limit or zero coupling
limit d, where the applied decoupling becomes exact. The re-
dundancy problem is well known in the theory of
magnetism.23,24 Although using the ”mixed” Green’s func-
tions reduces the problem of the redundancy, it does not
eliminate it completely. Indeed, one might compute the av-
erages using the greatersKeldyshd Green’s function, rather
than the lesser ones. An application of the Hubbard proce-
dure gives the result

kXlm
B l =

1

Nf − Nm
o

l8sm

pms
ml8E dv

2pi
Gll8,ms

. , s31d

whereNf is the number of electrons in the stateufl with the
full occupation of the moleculesheremÞ fd. Now it is the
averagekXf fl rather thankX00l, that has to be computed from
the completeness relation. The application of Eq.s31d in the
linear response regime leads to another set of linear equa-

tions for the averages, with the matrixW̃ substitutingW and
defined as

W̃aa8,bb8 =
1

Nf − Na8
o

lm,ms

spms
a9lpms

*b9mJ̃a8l,b8m

+ pms
a9lpms

*mb8J̃a8l,mb9d, s32d

where

J̃ll8,mm8 = −E dv

2pi
fsv1̂ − V̂ − Q̂rd−1Q̂.sv1̂ − V̂

− Q̂ad−1gll8,mm8. s33d

One may note that the two sets of the equations,s29d and
s32d, considered separately, are highly asymmetric in the
treatment of different averages. This is not a problem in the
limiting cases of our model where our results become exact,
but in general it leads to different and at the same time un-
physically asymmetric results for the averages. To alleviate
this problem we form a symmetrized set of equations with
the matrixWs being the arithmetic average of the matricesW

andW̃. This approach guarantees that the obtained results are
consistent with the exact electron-hole symmetry of our
Hamiltonian.

V. APPLICATION TO THE TWO-ATOM MOLECULE

In this section we exemplify the application of the method
to the one-band model of the two-atom molecule described
by the extended Hubbard Hamiltonian:

HM = to
s

sdLs
† dRs + H.c.d + o

i=L,R;s
«inis

d + U0 o
i=L,R

nis
d ni−s

d

+ U1o
ss8

nLs
d nRs8

d . s34d

Above, t is the interatom hopping;U0sU1d denotes on-site
sintersited Coulomb repulsion. Hamiltonians34d was exten-
sively studied in the context of the Coulomb blockade in
lithographically defined dots in semiconducting materials.11

Such the model can also be relevant for the H2 molecule
trapped between the Pt electrodes, as studied by Smitet al.25

A computation of theI-V dependence of the junction re-
quires taking into account the dependence of the molecular
eigenstates and their energy levels on an external potential
profile in the molecule. To obtain a detailed dependence of
the potential one would need to include explicitly the Cou-
lomb repulsion between the electrons from the molecule and
the leads. In this paper we restrict ourselves to a simple
phenomenological modeling of the potential profile, assum-
ing that it drops linearly with the atom positionx sa potential
ramp27d:

eVmolsxd = hfeVLs1 − xd + eVRxg, s35d

andx is measured in units of the distance between the elec-
trodes. The parameterh defines the slope of the potential
drop and in our numerical computations we puth=1, which
leads to an upper estimate of the role of the external poten-
tial. The potential modifies the local energy«i in the mol-
ecule:«i =«i

s0d+eVs1−2i /3d /2, where«i
s0d denotes the atomic

level at the equilibriumV=0.
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In order to determine the transport characteristics of the
system, we first compute all the eigenstatesull and the en-
ergy eigenvaluesEl of the isolated two-atom system de-
scribed by the Hamiltonians34d and determine the matrix
elements of the fermion annihilation operators,pjs

ll8, defined
in Eq. s8d. The matrix elements are then used to obtain the
resonance broadening matricesQ̂r,a,,,. defined in Eqs.s21d
and s25d. The matricesQ̂r,a,,,., the matrix elementspjs

ll8,
and the eigenenergy valuesEl are next used to find the pa-
rameters of the self-consistent equationss29d and s32d,
Waa8,bb8 and W̃aa8,bb8, respectively. The linear system of
self-consistent equations possesses a unambiguous solution

which is used, together with matricesQ̂r,a and the eigenval-
uesEl, in Eq. s26d to compute the current.

The self-consistent averages of the diagonal Hubbard op-
erators,kXlll have the meaning of the probability of occu-
pation of the molecular states in the presence of coupling to
the leads. They are presented in Fig. 1, as the functions of the
local energy«1=«2;« for zero applied voltage. With de-
creasing« si.e., for increasing the gate voltaged the average

of the total electron occupation at the molecule,kN̂l
=olÞ0kXlll, increases in a stepwise manner. For the moder-
ate values of the Coulomb repulsionU0 and smallG ssee Fig.
1sadd, the ground state of isolated molecule is by far the most

preferably occupied one for each value ofkN̂l. In effect the
molecule goes through the sequence of states:u0l→ u1Bsl
→ u2S0l→ u3Bsl→ u4l. Here u0l denotes the empty state,
u1Bsl—single occupied bonding state,u2S0l—double occu-
pied lowest energy singlet,u3Bsl—triple occupied bonding
state, andu4l—fully occupied state. Each jump of the aver-

age electron occupancykN̂l is accompanied by a sharp peak
of the linear conductance.

In Fig. 1sbd we show that transitions between excited
states also can be important. For this case the energy splitting
between the double occupied ground-state singletu2S0l and
the triplet states,u2Tsl and u2T0l, is small enough and the
both states can overlap. As a result, the occupancy of the
triplet statekX2T,2Tl is enhanced and the occupancy of the
singlet statekX2S0,2S0l is reduced. Knowing these averages,
one can determine the correlation functions,

kn1sn2s8l = o
l,l8

kl8un1sn2s8ullkXll8
B l, s36d

and the spin-spin correlation function,

kS1 ·S2l = −
3

4o
ss8

s− 1ddss8kn1sn2s8l. s37d

The analysis ofkS1·S2l shows strong antiferromagnetic cor-
relations for e located between the singlet and the triplet
state. Ife lies in the middle of the electronic band and the
occupancykX2T,2Tl is enhanced, the antiferromagnetic corre-
lations are suppressed and the total magnetic moment at the
moleculeksS1+S2d2l increasesssee also Ref. 13d. It is inter-
esting to note that the linear conductance in Fig. 1sbd also
shows small peaks at the points of the rapid changes of the
triplet state occupancy, despite the fact that the total electron

occupancykN̂l is hardly changed there.
The zero-voltage conductance as the function of local en-

ergy« is presented in Figs. 2–4. ForG!kBT!U0 the system
is in the Coulomb blockade limitsFig. 2d, and the conduc-
tance shows a sequence of four peaks, with a widths
sheightsd quickly increasingsdecreasingd with increase of
temperature. The ratio of heights of the peaks depend on the
nearest neighbors repulsionU1, and for U0=U1 all four
peaks have the same height. Our results are in this limit in a
good quantitative agreement with the ones obtained earlier
by Klimeck et al.8 by means of the master equation ap-
proach.

In Fig. 3 we show the evolution of the conductance with
the on-site repulsionU0 for the large couplingG. At U0=0
the conductance exhibits two peaks, centered at the positions

FIG. 1. Thermodynamic averages of the diagonal Hubbard op-
erators as the functions of the local energy« for G=0.01utu,
kBT=2G, U1=0, and sad U0=2utu, sbd U0=4utu. Here kX0 0l—thin
solid line, kX1Bs 1Bsl—solid line, kX2S02S0

l—thick solid line,
kX3Bs 3Bsl—broken line, kX4 4l—thin broken line,
kX2T 2Tl—crosses. The conductancesmultiplied by a factor of 10d is
shown with a dotted line, and the average of the total electron

occupationkN̂l sdivided by 4d at the molecule is shown with the
dash–dotted line.

FIG. 2. Zero-voltage conductance as a function of the local en-
ergy « for G=10−3utu, kBT=0.05utu sCoulomb blockade limitd. Solid
line: U0=5utu, U1=0, shaded peaks:U0=5utu, U1=5utu. These results
compare very well with the ones of the Coulomb blockade theory of
Ref. 8 for the same parameter values.
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of the bonding and the antibonding states, with the maximum
value of the conductance equal to 2e2/h. In this limiting case
our calculations reproduce the exact result for the conduc-
tance. With growing repulsion the peaks become shifted, in-
crease in width, and decrease in height. For intermediateU0
both peaks merge in a single, very wide feature. With a fur-
ther increase ofU0, the two peak structure is formed again,
resembling the formation of the upper Hubbard and the
lower Hubbard band at the metal-insulator transition in the
bulk systems.8 The conductance for an intermediate value of
G is presented in Fig. 4. Again, the widths of the conductance
peaks increases considerably withU0. Unlike the strongG
case, however, we now note the formation of the system of
four to six conductance peaks, depending on the value ofU0.
The central pair of the peaks is related to the enhanced oc-
cupancy of the triplet states and is more pronounced as com-
pared to the weak-G case of Fig. 1sbd. This is due to
coupling-enhanced contribution from the virtual transitions
to the excited states of triplet,u2T0l andu2Tsl. The six-peak
structure is best observed for the intermediateG andU0 val-
ues. In the limit of very weakG we return to the four-peak
structure known from the Coulomb blockade limitscompare
Figs. 1sbd and 2d.

The current-voltage dependence is shown in Figs. 5 and 6
for several values of the repulsionU0. Here again our com-
putation becomes exact for the vanishing Coulomb repul-
sion. In theU0=0 limit the stepwise increase of the current
with the voltage corresponds to entering the single–electron
molecular levels into the source-drain voltage window. For
U0.0 and V.0 the number of excited molecular levels
participating in transport considerably increases as compared
to the V=0 limit, since some of these states may enter di-
rectly in the source-drain voltage window. Because the Cou-
lomb repulsion removes the degeneracy of many excited mo-
lecular states, theI-V dependence is much more involved
than in theU0=0 case. In the case of the intermediate value
of G ssee Fig. 5d the I-V steps acquire substantial width,

coming from the resonance broadening matricesQ̂r,a which
depend on the repulsion as well. In this case the contribu-
tions from the individual molecular excited states cannot be
resolved and theI-V curve is fairly smooth. Note also that
for the finite repulsion the current becomes a monotonously
increasing function for much of the voltage range, unlike the
reference limiting case ofU0=0, where the effect of the
potential ramp leads to the negative differential conductance.
This can be interpreted as an effect of screening of the

FIG. 3. Zero-voltage conductance as a function of the local en-
ergy« for G= utu for kBT=0, U1=0, kBT=0 and several values ofU0

sin units of utud.

FIG. 4. Zero-voltage conductance as a function of the local en-
ergy« for G=0.1utu for kBT=0, U1=0, kBT=0 and several values of
U0.

FIG. 5. The current-voltage dependence for several values of the
Coulomb repulsionU0, for the symmetric case:U0/2+«=0 and
G=0.1utu.

FIG. 6. The current-voltage dependence for several values of the
Coulomb repulsionU0, for the symmetric case:U0/2+«=0 and
G=0.01utu.
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external potential by the electron correlations within the
molecule.

For the weakG ssee Fig. 6d, the steps reappear in the
I-V dependence. In this case theI-V curve takes a form typi-
cal for the Coulomb blockade limit.20,26 The details of the
I-V dependence can be better understood from the corre-
sponding plot of the occupancy of the molecular states with
respect to the voltage forU0=4utu for the symmetric case,
which we present in Fig. 7. In the low voltage regimesfor
2 eV/utu,1.6d, the occupancy of the triplet states,
kX2Ts 2Tsl=kX2T0 2T0l, is reduced by the voltage at the ex-
pense of the growing occupancy of the ground state singlet
state,kX2S02S0

l. This is due to the fact that the energy of the
bonding stateu2S0l decreases with the voltage, whereas the
triplet states do not depend on the voltage. The current is
still small in this region, and the occupancy of all the other
states with the electron occupancy different from 2 is
negligible. Near a threshold voltage, 2 eV/utu,1.6, the oc-
cupancy of the ground singlet state decreases rapidly, and at
the same time the occupancy of the spin doublets,
kX1Bs 1Bsl=kX3Bs 3Bsl and kX1As 1Asl=kX3As 3Asl as well as
the occupancy of the triplet state begins to rise sharply. At
the same threshold voltage the current rises rapidly, which is
compatible with the fact that the charge at the molecule be-
gins to fluctuate. A next, smaller current step can be noted
near 2 eV/utu,2.3, where the excited state:u2S2l enters the
play. Another small current step is visible at 2 eV/utu,2.8,
where the occupancy of theu2S1l state begins to grow. Fi-
nally, the second big step in theI-V curve at 2 eV/utu,3.6 is
accompanied by the rapid increase of the occupancy of the
empty and the fully occupied state,kX0 0l andkX4 4l, respec-
tively.

The overall voltage dependence of the molecular state oc-
cupancy is complicated here by the effect of the potential

ramp what is best seen for the very large voltage. Without the
potential ramp, all the states are uniformly occupied and for
each ull, kXlll→1/16=0.0625 forV→`. The inhomoge-
neous potential promotes the occupancy of the excited states,
u2Snl, u1Asl, and u3Asl, which for the growing voltage in-
creasingly better couple to the electrodes than the corre-
sponding ground states for the same number of electrons. On
the other hand the triplet states, the empty, and the fully
occupied state are hardly influenced by the ramp and their
occupancy in the large voltage region does not depend much
on the ramp.

VI. CONCLUSIONS

In this paper we presented a Green’s function approach
for the computation of transport properties of molecular
junctions, which uses the exact solutions for the isolated
molecule. The approximations made in the equation of mo-
tion for the Green’s functions, become accurate in the limit-
ing cases of the Coulomb blockade on one hand and in the
noninteracting case on the other one. In between the limits
one can use the method as a kind of interpolative treatment.

Since we used the Hubbard operators to define the mo-
lecular Hamiltonian, our approach is formally independent of
the size and geometry of the molecule. Using the Hubbard
operators we are also able to easily compute the arbitrary
correlation functions at the molecule and define the prob-
abilities of occupation of many-particle molecular states,
which is very helpful in the interpretation of theI-V depen-
dence. In particular, we are able to determine the role of each
excited state in the transport in the high voltage region.

An important technical advantage of the applied approxi-
mations is that the self-consistent equations for the necessary
correlators are linear ones; hence we always obtain a unique
solution. Another useful simplification is the absence of the
energy dependence of the resonance broadening terms, ma-

tricesQ̂r,a, which allows us to obtain an explicit and general
formula for the current, Eq.s26d, which is the central result
of this work. The last simplification allows us to reduce all
the necessary integrations to the summations using the di-
gamma function or its derivative and may be of practical
importance in an application of the method for the larger
molecules with a more complicated spectrum.

In our approach the interactions between the molecule and
the leads are included in the mean-field-like way. In the de-
coupling of the Green’s functions we omit the averages like
kckas

† Xll8
F l, which are important in the Kondo limit.7,9 In ef-

fect, our results can be reliable only forT@TK. Also, the

neglect of the energy dependence in the matricesQ̂r,a does
not allow to take into account the temperature changes of the
resonance broadening terms, important in the low tempera-
ture, where the Kondo type divergence develops.

In this paper we exemplified the use of the method to the
two-atom system with the relatively simple spectrum. An
extension to more realistic models with several orbitals per
atom is, in principle, straightforward and our general formu-
las for the current as well as the self-consistent equations can
be then almost directly applied. For big molecules, a limita-

FIG. 7. The voltage dependence of the molecular state occu-
pancy for U0=4utu«=−2utu ssymmetric cased, and G=0.01utu. The
symbols in the legend refer to the molecular states of the isolated
molecule:u0l—the empty state,u1Bslsu1Asld—the bondingsanti-
bondingd state of the singly occupied molecule with spins,
u2Tslsu2T0ld—the triplet spin-1sspin-0d state of the double occu-
pied molecule,u2Snl, where n=0, 1, 2—the singlet states of the
doubly occupied molecule,u3Bslsu3Asld—the bondingsantibond-
ingd state with spins of the triply occupied molecule, andu4l—the
fully occupied state. Note that the solid line corresponding to the
occupancy of the singlet ground stateu2S0l is close to 1 for
1,2 eV/utu,1.5.
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tion may be the size of the molecular eigenspace and a re-
sulting difficulty to determine the exact eigenstates of the
isolated molecule. In such a case one can try to combine the
method with a perturbative treatment to obtain an effective
Hamiltonian valid in the restricted subspace of states for the
limited range of voltage or the parameter values. The use of
the Hubbard operators can be an advantage in such an
application.28

ACKNOWLEDGMENTS

The authors would like to thank M. H. Hettler, R. Micnas,
A. Ramšak, and A. Tagliacozzo for helpful discussions. This
work is supported by the Ministry of Science and Informa-
tion Society Technologies Project No. PBZ KBN 044 P03
2001, No. 1 P03B 038 28, the project RTNNANO Contract
No. MRTN-CT-2003-504574, and in partsB. R. B.d by the
Centre of Excellence MMMFE within Contract No.
G5MACT- 2002-04049.

APPENDIX A: SINGLE-DOT CASE

In this section we show that in the case of the single atom
our approximation for the Green’s function reduces to the
results of Meir et al.7 The one-particle Green’s function
kkds uds

†ll of the 1QD can be written as a linear combination
of two Green’s functionsGll8,

kkdsuds
†ll = G0s + s Gs̄2. sA1d

The structure of the approximate EOM, Eq.s17d, can be
represented for the 1QD as

sv − « − S11dG0s + sS12Gs̄2 = 1 −ns̄, sA2d

sS21G0s + sv − « − U − S22dGs̄2 = s̄ns̄.

The self-energy components,Si j , can be obtained in terms of
the functionsRe,hszd from Eq. s17d ssee belowd. By the rea-
sons of the electron-hole symmetry, one can expect that the
following relations between the components of the self-
energy is fulfilled:

S11 + S12 = S21 + S22 ; S̃, sA3d

and we can defineS0=S11−S21. The solution of Eqs.sA2d
with the use of Eqs.sA1d and sA3d gives

kkdsuds
†ll =

1 − ns̄

v − « − S0 + US21/sv − « − U − S̃d

+
ns̄

v − « − U − S0 − US12/sv − « − S̃d
.

sA4d

The above result resembles closely the one obtained by the
cited authors. Indeed, a careful examination of Eq.s17d using
the fact thatps8

0s=dss8 andps8
s̄2=sdss8 for the 1QD, gives

S = F2Resvd + Rhsvd − Res− v + U + 2«d − Rhs− v + U + 2«d + Rhsvd
− Res− v + U + 2«d + Resvd 2Rhsvd + Resvd − Rhs− v + U + 2«d G . sA5d

Insertion of the self-energy components into Eq.sA4d reproduces the results of the earlier works.7,9,12
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