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Hubbard operators approach to the transport in molecular junctions
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We present a procedure for calculation of transport characteristics of molecular junctions. It is based on the
nonequilibrium Green'’s functions and exploits the Hubbard operators, which allows us to treat formally exactly
all electron correlations within the molecule. The procedure reproduces exact results in the limiting cases: for
a weak molecule-lead coupling and for high temperatdres Coulomb blockade limit and for the limit of
vanishing electron interactions. Between these limits the method can be applied as an interpolating scheme. As
an example of an application we present the results obtained for a two-atom molecule.
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I. INTRODUCTION tics of molecular systems. The elegant description of simple

A great effort is focused on electronic transport through aSYStems was performed by Kikoin and Avistfaind Kuz-
single molecule attached to metallic electrodes, which is th&1enkoet al** Using the symmetry of the Hubbard operators
crucial issue for further progress in the molecular(the symmetry of the many-electron spateey were able to
electronicst? The future of this new field depends, however, study the Kondo resonance for various electron occupancies
on solving some basic problems. From the experimental sid@nd geometries of the system. Since charge excitations were
the main issue is to achieve an unambiguous contacts b&eglected in these studies, they are limited to electronic
tween the molecule and the electrodés important aspect transport at low temperatures and low source-drain voltages
of theory is to take into account a geometry of chemical(in the limit of the linear respongeFransson and Erikssbh
bonds, a contribution of various molecular orbitals as well asused the Hubbard operator technique in the limit of the infi-
Coulomb interactions between electrons at the molecule. Theitely strong on-site electron repulsion. They studied the
electronic spectra of a single molecule can be determineghany-electron effects in the current-voltage characteristics,
with a high precision by quantum chemical procedures. Fofn particular asymmetries in the current-voltage curve and in
the molecule connected to electrodes the problem is muchegative differential conductance. The technique was applied
more complex, because one has to apply methods known ifiso for magnetic devices to show a role of electronic corre-
solid state calculations of the electronic structures, for €Xyations in electronic transpot®. It is worth mentioning that
ample, the density functional theory combined with an emype yphard operators were also implemented into the slave

pirical or anab initio tight-binding approach which can be 1, . approach and satisfactorily described the Fano reso-
extended for a nonequilibrium situation with the electric CUr- - ance for the correlated electron system

rent flowing through the molecule. The commonly used ) Our purpose in this work is to show how the Hubbard

codes, which are based on a one-electron approximation an

use a mean-field-type approach, neglect many-body effectsOPerator method can be used to take into account the charge

Electron interactions can lead to new phenomena, for eXf_luctuatlons in an arbitrary molecular junction. The problem

a_mple, to the C.oulolmb blockad€B). The effect_ was exten- of the charge_fluctuatl_ons is |mpgrg?;£gr2qezlectromc trans_port
sively studied in single quantum dots and in systems oftnd was studied for simple models: or strong Cou
coupled quantum dot@rtificial atoms and moleculg&*t|n  lomb interactions and a weak molecule-lead coupling one
order to study the CB effect in the coherent transport thedets the Coulomb blockade effé¢t and the negative differ-
nonequilibrium Green’s function technicifewithin an ap-  ential conductanc®, when radiative relaxation processes are
proximation, which includes many-electron stdt€s3is be-  included. Our method is complementary to those used in the
ing used. For simple cases, e.g., for a two-atomic moleculegas®?*?and can be applied in the Coulomb blockade
one can determine the current treating exactly all manylimit (i.e., for the Coulomb interactiot) larger than the
electron states and the molecule-electrode coupling to theolecule-electrode coupling’) as well as for the strong
lowest order. These approximations correspond to high tenmmolecule-electrode coupling™>U) in the nonlinear trans-
peratures, when electrons at the molecule are weakly corrggort regime. The method is simpler and more general one
lated with electrons in the electrodes. At a low temperaturghan the previous approaches using the decoupling procedure
one has to include in calculations higher-order tunneling profor the equation of motidh’-%'3and therefore we hope that it
cesses between the molecule and the electrodes, which caan be easier implemented in the codes used in calculations
lead to the Kondo resonan¢&!® These calculations of elec- for real molecules.
tronic transport were performed for simplified models, which A general model of a molecular junction and a method of
are far from real molecules. The methods are complex and itomputation of the electric current is presented in Sect. Il. In
will be difficult to incorporate them into ab initio codes. Sect. lll we present the equation of motion for the Green’s
In this work we apply the technique of the Hubbard functions, which are approximately solved in Sect. IV. In
operators?® for a determination of the transport characteris-Sect. V we exemplify the application of the method to the
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two-atom molecule. We show that various charge and spiecule contacting with the lefffor a«=L) or the right(for «
correlation functions at the molecule can be determined=R) electrode, and,, is the tunnelinghopping parameter.
which allows a study of the influence of many-electron ef-In the present paper we restrict ourselves to the single orbital
fects on electronic transport. The general conclusions arper atom, keeping in mind that the generalization to the mul-
presented in Sect. VI. tiorbital description is straightforward.

The computation of the current is based on the use of the
l. THE MODEL AND COMPUTATION OF THE CURRENT formula valid generally for the interacting molecular junction

The general considerations presented in this section hol¢ith noninteracting lead%;

for the system which can be described using a Hamiltonian

defined as =3 f do T\ [fL(GlL,~GlL) +Gi,).  (5)

H =2 Ho+ Hy+ Hr. (1)
a In Eq. (5), G"*< denotes the retarded, advanced, and lesser
Green'’s function in the site and frequency representation and

The first part of the Hamiltonian describes noninteractingr stands for the coupling function
L )

leads (where a=L for the left lead anda=R for the right

lead, I,=2m% 8o- v @=LR, (6)
Ha = E ekaclaackao" (2) “
ke andf, is the Fermi function for the left lead.
It is assumed that the one-particle energy in the both leads is Il. EQUATION OF MOTION FOR THE
uniformly shifted by the bias voltage/=V, -Vg, €, GREEN'S EUNCTION
— €,(0)+eV,. The molecular Hamiltoniar,, is written
quite generally using the diagonal Hubbard operatbis,,, In order to obtain the Green’s function, we study the more
general Green's function defined in terms of the Hubbard
Hu =2 E\ X (3)  operators,
A
e = (O A, (7)

The Hubbard operators are defined in terms of the exact

eigenstatesh) of the isolated moleculeX,,=[\)u|. Both  \here superscripk at the Hubbard operator means the op-
the eigenenergy valuel, and the eigenstates are voltage erator reducing number of particles in the system by @ne
dependent, i.e., they take into account the effect of the extefermioniclike operator The Green’s function in the site rep-
nal electric field created at the molecule by the k@sgate  resentation can be obtained from the above defined Green’s

voltage. . _ . function as
The last term in Eq(1) describes the tunneling of elec- / ,
trons between the molecule and the leads, (di Jdi oy = 2 O IR, P =\ di ).
Hi= D (0kaClogdag+ H . C ). 4) "
kao (8)

Above, we assumed single-atom contacts with the botThe retarded Green's functioftX,,|df,)) fulfills the fol-
leads,d,,, is the electron operator for the atom of the mol- lowing equation of motio{EOM):

(@= By + B R0 = (X0 8T = 2 00y 2 (G2 el (AT P = 2 vkt 2 (X2 1l ) P
w 7

kalo’ kala’

+ E U*ka,lz <<XE/_LCKQ(T/|dITn{r>> pff,)\f’* + 2 ULa,IE <<Xir)\rckmr’|d;(r>> pl)\;j’* . (9)

kalo' e kalo' u

To obtain the above equation, we differentiated the two-time In order to compute the single particle Green’s functions
Green’s function with respect to the left time argumentone needs the thermodynamic averages of the anticommuta-
and performed the Fourier frequency transform oftors ({X;,,d;(f}) These averages play a role of the residua
the result. Here, the bosoniclike Hubbard operatorsf the Green's functions of the molecule in the lirfiit 0.

X5 (X5y) do not change the number of electrons in theThey may be represented in terms of the linear combination
state|\’) (reduce the number of electrons in the staté by  of the “bosonic” Hubbard operators, which do not change the
two). number of particles in the system,
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XE db 1= M By A yBY (10 reproduces both the limit of the Coulomb blockade as well as

X+ O E P Xy} EV: P (X5)- (10) the results for the noninteracting case. In the simplest MFA-
like approximation schemfethe higher-order Green’s func-

Using the Keldysh lesser Green’s function ,;, me  tions from the rhs of Eq(9) are decoupled in a mean-field-

:<<XF |d$w>><y we can calculate the needed averages bothke manner and the system of equations for the Green'’s

)\)\/ . . . . _
in the equilibrium and nonequilibrium case. We first note thatfunctlons is closed. Here we write EOM for all the higher

o ) ; order Green’s functions which appear on the rhs of 4.
standard application of the lesser Green’s function, rather than just decoupling them,

v

d _ B2 t TN\ B2 T +
@)= | 05 Ay 0Bt Bt a0, ldh) = (e, b

B2 T T T
. . . + vos.i[X25C 1y C o udigr]]d
does not allow us directly to single out the needed bosonic 2 09 {IXeg G Copr ol

averages. To proceed we follow the Hubbard original Work P X - ;
and use the fact that the molecular Hamiltoniy, com- + 2 V(X g Al Copor Il (15
mutes with the electron number operator for the molecule. pBa”j
From the multiplication rules of the Hubbard operators we 5 5
have (0—Ep+E;~ Eka)«xgglckaa"dTmo» = <{ng/ckaaud;w}>
F _ B _ ! F B T
2 P X = 2 Prin XX, = 20 P Gn X X + 2 0 DX O Chgor o ]| dfe )
Ay pBo’j
— T B - *
= i O X (12 + 2 0 IX O Al Coporllil, ). (16)
o]
hence P
~ To proceed, we first compute the commutators in the higher-
2;, Prodh X = 2 NXC = NXE, (13)  order Green’s functions on the rhs of E¢5) and(16) and
mM\o (o8

next we decouple the resulting operators in a MFA-like way,
: . neglecting the correlations of fluctuations between the elec-
whereN, is the number of electrons in the molecular state 9 9

). The average of any bosonic Hubbard operatorcept trons from the leads and the molectilén this decoupling,

. the correlations of fluctuations within the molecule itself are
Xoo), Where|0) denotes the empty statean be obtained as . . .
(oo 0) Pty sta still treated exactly. As a result of this procedure, the higher-

B 1 \ do - order Green’s functions are approximated by the products of
(X = N_E Prur 5 I mo (14 the lowest-order Green's functiong,, ,, and the Fermi oc-
YyAom l . ,
cupation factors of the electrons from the leads. Note that
The remaining average{X,y, can be computed using this is just the point where the correlations leading to the
the other ones with the completeness relatio,y Kondo effect are neglected, since certain averages omitted

=1-2) 40(Xn)- here(e.qg., the averages of the anticommutators on the rhs of
7 Egs. (15 and(16)) develop the logarithmic singularities as
IV. APPROXIMATE SOLUTION OF THE EOM FOR THE T—=Tk . . . . .
GREEN'S EUNCTION After inserting the result of this approximation for the

higher-order Green’s functions into the EOM, EE), we
Below we discuss a decoupling scheme which, althougtobtain the set ofinear equations for the lowest-order Green
still valid only above the Kondo temperatufig, correctly — functionsGyy: m,

(©=Ey +EVGu m= X dhh) = 2 Ri-0+E,~EDPL D Gupm— 2 Ri(- 0 +E,~EDPL D% Gy

uva’ | wva’ ||
h uN v e uN , v\*
- E le(_w+E)\’ _E#)pwrpjg/ Gvm™ 2 Rj|(_w+E>u _E#)pwrpjgr Guvm
nva'jl nvo'jl
h uN* uw e uN* VN
+ E le(w -E,+EJp,. pjl,/ng,m + E R”(w -E,+EJp, pj(r/gv,u,m
uvo'jl nvo'jl
h At N v e Au* v
+ 2 le(w -Euv+ E,u)pkrr pjgr wrm™T E le(w_ E\ + E/,L)p|a" pjar N m* (17)
pvo' jl v jl
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Above, In order to unambiguously determine the needed Green’s
« functions one has to compute the values of the averages of
Uk 1Vkaj i i i
ij(z) =3 La_&i X wheref®, =fy, fEa: 1—fry t_hel anticommutators thgt appear in Ef9). In the nonequi- ,
ke Z~ €ka librium phase this requires knowledge of the lesser Green’s

(19) functions from Eq.(14). For the computation of the lesser
Green function we repeat the procedure of the equation of
play a role of the components of the self-energy functions irthe motion method. For the corresponding decoupling of the
the present approximation. The functions defined by(E§.  Green’s function we assume that, by an analogy with Eq.
become divergent at— s whenT— 0 K. This divergence (22),
is the same as the one that appears in the theory of the Kondo
effect. It means that calculations based on EJS) are

< r <
meaningful for temperatures abo¥g only. It can be shown (Cra Xl )= = Evkaga<<{dag’ix}|d:ng—>>
that in the case of the single atom E@$7) reproduce the
results of the theory of Meiet al’ (see the Appendix A + }v 0o ({d,yr XHdE D2, (23)
The advantage of the above set of the inhomogeneous 2 kada W adh A Emal/

linear equations is that the averages of the Hubbard operators

appear in Eq(17) only as the inhomogeneity factors and asWhereg;, denotes the lesser Green’s function of the nonin-
such they modify the residua rather than the poles of théeracting leads. The approximations defined by E2@). and
Green's function. The self-energy functioﬁ(ﬁvh(z) do not (23 reduce to the exact result in the limiting cases of the
depend on the averages of the Hubbard operators and thggpulomb blockade as well as_the nonlr)teractmg limit, _and in
characterize the spectral properties of the leads only. In réd€tween they serve as the interpolating ansatz. Using Eq.
sult, the self-consistent equations for the averages are tH&3 the lesser Green's function can be readily obtained as

linear equations that can be, in principle, solved easily for

relatively large system, provided the self-energy functions wa’mgz > [(wi -Q0- Qr)‘lff(wi -Q
Rﬁ-'h(z) are known. The solution of Eq$17) can be written !
formally as - F = Q) s (XD, (24)
G m= 2 [(01= Q= Q3 (X, di D,
M ! e e where
(19) SIS

. Q= =22 I'\8af,. (25

where ldenotes the unit matrix, a

fLM,M, = O (Ex —Ev), (200  Ina similar way the expression for the greater Green’s func-
R tion can be derived. Using the results for the Green’s func-
and Q"2 is a resonance-broadening matrix, defined by Egstions in Eq.(5) we derive the explicit equation for the cur-

(17). In general, the matriQ is a frequency-dependent func- rent,
tion, divergent at temperatures of orderTgf. In the present
paper we neglect this divergence, which is justified as long | _ 2el' I'r D pt3/<{dzmxzﬂ/}> y f doo(f, - F(wl

asT> Ty and putf,,~ 1/2 in the function®R* from Eq.(18). h RO
As a result we obtain an explicit formula for the resonance .
broadening matrix in the following form: -0 -0 Tgr(wl-Q-0Q¥)1,, " (26)
~ R 1 ! el . . . .
Q' =-i>T,q, (A v 07 = B g0 + > > (péphf The advantage of the last result is that it is independent of
@ o.a=LR the form and size of the molecular junction. The approxima-

tions made above in obtaining E@®6) do not guarantee the
current to fulfill the properties required from the stationary

and Qr:_éa_ The great advantage of this approximation ischarge flow for all possible values of the physical param-

that the matrixé is independent of the frequency which eters. To impose this condition we performed the transforma-

. . - ._tion of the time arguments in the double-time representation
considerably reduces the complexity of evaluation of the in- g P

tegrals from Eqgs(5) and (14). The same result can be ob- of all the Green's functions,
tained if we approximate the higher order Green functions on Y _
the rh.s. of Ea(LnH3 (@Wlb(t)) — (alte+ 72)lblto = 712, (27)

+pipbr, (21)

acl-ao

1 requiring that the result be dependent obut not ont,.*3

({Chao XN =~ Evkagza«{daa':X}|d;a>>r’a- (22 The final formula for current that fulfills this condition can
be obtained from the previous one by the simple symmetri-
Above, ¢\# denote the retarded and the advanced Green'sation of the prefactors in Eq26) with respect to the in-
function for the noninteracting leads. dexes:\, \', u, u',
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’ 1 ’ ~ 1 " *x pll, ~
iy {dl X5 ) — S(pbh dl . X b Woar g = 2 (Pioe Py “Jarr i
well 72 e Nt = N s oo
P (dl, X0 D). (29 FPENDEE T ) (32)

In order to use Eq.(26) we have to compute self- where
consistently the averages of the Hubbard operators that de-
termine the averages of the anticommutators in ). ~ _ d_w A AN-1IAS A A
From Eq.(14) we obtain the self-consistetihear equations I = 27-ri[(wl 2-Q)Q(wl-0

for the averages of the boson-like Hubbard operators, .
- Qa)_l])\)\’,p,p,’ . (33)

Kaar) = > Wea g5 {Xgp') One may note that the two sets of the equatid@9) and
BB’ (32), considered separately, are highly asymmetric in the
treatment of different averages. This is not a problem in the
1 o . limiting cases of our model where our results become exact,
W, gpr = " > (P m‘fﬂ,“JMnﬁ,M+ Phe Pri? Jyarup),  but in general it leads to different and at the same time un-
a' \umo physically asymmetric results for the averages. To alleviate
(29)  this problem we form a symmetrized set of equations with
the matrixW; being the arithmetic average of the matrités

and andW. This approach guarantees that the obtained results are
consistent with the exact electron-hole symmetry of our
do  ~ ~ ~ .= A A Hamiltonian.
J)\)\’,,LL,LL’ :f ;[(wl—Q—Qr) 1Q<((1)1_Q
7'r V. APPLICATION TO THE TWO-ATOM MOLECULE

- Qa)_l]xx’,w’- (30 In this section we exemplify the application of the method
to the one-band model of the two-atom molecule described

The set of Eqs(29), supplemented with the completenessby the extended Hubbard Hamiltonian:
relation, determines the values of the relevant averages of the
Hubbard operators. However, one should be aware that the Hy =t>, (df dg, +H.c)+ > &nd +Ug > ndnd
above procedure is not unique at the level of the applied o i=LReo i=L.R
decoupling. If we studied instead the equations of motion for U S nd nd (34)
the Green’s functions defined in terms of exclusively Hub- 1< Lo Ro"
bard operators, agy . =(X,[X}, ) rather than the 77
"mixed” Green’s function,G,, m,, we would obtain quite Above, tis the interatom hoppingto(U,) denotes on-site
another and highly redundant set of equations to determindntersit¢ Coulomb repulsion. Hamiltonia(84) was exten-
the averages. In the general case there is no guarantee, tiétely studied in the context of the Coulomb blockade in
the two approaches give the same results, except soniéhographically defined dots in semiconducting matertals.
limiting cases (zero interaction limit or zero coupling Such the model can also be relevant for the rHolecule
limit), where the applied decoupling becomes exact. The rerapped between the Pt electrodes, as studied by &l
dundancy prob|em is well known in the theory of Acomputation of thd-V dependence of the junction re-
magnetisn?324 Although using the "mixed” Green’s func- quires taking into account the dependence of the molecular
tions reduces the problem of the redundancy, it does natigenstates and their energy levels on an external potential
eliminate it completely. Indeed, one might compute the av{rofile in the molecule. To obtain a detailed dependence of
erages using the greatéeldysh Green’s function, rather the potential one would need to include explicitly the Cou-
than the lesser ones. An application of the Hubbard proceomb repulsion between the electrons from the molecule and

dure gives the result the leads. In this paper we restrict ourselves to a simple
phenomenological modeling of the potential profile, assum-
1  ( dow ing that it drops linearly with the atom position(a potential
=N, 2 P | 5me (3D ram@):
N om
eVinol(X) = 7€V (1 -X) + eVex], (35

whereN; is the number of electrons in the statgwith the  andx is measured in units of the distance between the elec-
full occupation of the molecul¢here . #f). Now it is the  trodes. The parametey defines the slope of the potential
average(Xsy) rather thanXog), that has to be computed from grop and in our numerical computations we pgt1, which

the completeness relation. The application of 81) in the  |eads to an upper estimate of the role of the external poten-
linear response regime leads to another set of linear equgal. The potential modifies the local energyin the mol-
tions for the averages, with the matiiX substitutingW and ecule:si:sf°)+eV(1—Z'/3)/2, Wheresi(o) denotes the atomic
defined as level at the equilibriumv=0.
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v i .
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0 FAN e mesmrts ) . FIG. 2. Zero-voltage conductance as a function of the local en-
-6 5 -4 -3 -2 - 0 1 2 ergy ¢ for '=1073]t|, ksT=0.05t| (Coulomb blockade limjt Solid

/Y| line: Ug=5lt|, U;=0, shaded peak&ly=5|t|, U;=5]t|. These results
compare very well with the ones of the Coulomb blockade theory of
FIG. 1. Thermodynamic averages of the diagonal Hubbard opRef. 8 for the same parameter values.
erators as the functions of the local energyfor T'=0.01]t],
ksT=2I', U;=0, and(a) Uy=2lt|, (b) Uy=4Jt|. Here (X, o)—thin
solid line, (Xig,18,)—solid line, (X5,5)—thick solid line,
(X3ge 3800—broken line, (X44—thin broken line,
(X,1 o1)—Crosses. The conductangaultiplied by a factor of 1Dis
shown with a dotted line, and the average of the total electro

occupation(N) (divided by 4 at the molecule is shown with the
dash—dotted line.

In Fig. 1(b) we show that transitions between excited
states also can be important. For this case the energy splitting
between the double occupied ground-state sin@&f and
Jfhe triplet states|2To) and|2T0), is small enough and the
both states can overlap. As a result, the occupancy of the
triplet state(X,r,7) is enhanced and the occupancy of the
singlet state(X,g) 25 IS reduced. Knowing these averages,

In order to determine the transport characteristics of thene can determine the correlation functions,
system, we first compute all the eigenstatesand the en-
ergy eigenvalue€, of the isolated two-atom system de- (NyNoyr) = > ()\’|nlon2(,,|7\><xfk,), (36)
scribed by the Hamiltoniari34) and determine the matrix AN
elements of the fermion annihilation operatqn%’, defined
in Eq. (8). The matrix elements are then used to obtain th

resonance broadening matricééa~<v> defined in Eqs(21)
and (25). The matricesQ"®<~, the matrix elementﬁ;',
and the eigenenergy valug&s are next used to find the pa-
rameters of the self-consistent equatiof®9) and (32),  The analysis ofS;-S,) shows strong antiferromagnetic cor-

W, gpr @nd Waa,’ﬁﬁ,, respectively. The linear system of relations fore located between the singlet and the triplet
self-consistent equations possesses a unambiguous solutigi@te. If € lies in the middle of the electronic band and the
which is used, together with matric€? and the eigenval- ©CCUPaNCXXoror) is enhanced, the antiferromagnetic corre-
uesE,, in Eq. (26) to compute the current. lations are supprezss_ed and the total magnetic moment at the

The self-consistent averages of the diagonal Hubbard opN0lecule((S;+S;)%) increasedsee also Ref. 131t is inter-
erators,(X,,) have the meaning of the probability of occu- €sting to note that the linear conductance in Fifh) Jlso
pation of the molecular states in the presence of coupling t§NOWs small peaks at the points of the rapid changes of the
the leads. They are presented in Fig. 1, as the functions of tHgplet state occupancy, despite the fact that the total electron
local energys,;=e,=¢ for zero applied voltage. With de- occupanc¥N) is hardly changed there.

creasinge (i.e., for increasing the gate voltagthe average The zero-voltage conductance as the function of local en-
of the total electron occupation at the moleculdy)  €rgye is presented in Figs. 2-4. FBr<kgT<Uj, the system
=3, ,o(¥), increases in a stepwise manner. For the moderS in the Coulomb blockade limitFig. 2, and the conduc-
ate values of the Coulomb repulsibiy and small (see Fig. tance shows a sequence of four peaks, with a widths

1(a)), the ground state of isolated molecule is by far the mos{heights quickly incr_easing(plecreasing with increase of
. ~ temperature. The ratio of heights of the peaks depend on the
preferably occupied one for each value(dh. In effect the nearest neighbors repulsidd,, and for Uy=U, all four

molecule goes through the sequence of sta@s:|1Bo)  peaks have the same height. Our results are in this limit in a
—[2S)—[3Bo)—[4). Here |0) denotes the empty state, good quantitative agreement with the ones obtained earlier
|1Bo)—single occupied bonding statiS;)—double occu- by Klimeck et al® by means of the master equation ap-
pied lowest energy singlef3Bo)—triple occupied bonding proach.

state, and4)—fully occupied state. Each jump of the aver- = | Fig. 3 we show the evolution of the conductance with
age electron occupangil) is accompanied by a sharp peak the on-site repulsiotJ, for the large couplind™. At Uy=0

of the linear conductance. the conductance exhibits two peaks, centered at the positions

eand the spin-spin correlation function,

3
(S;-Sp=- ZE (= 1% (Ny N0 (37

oo
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FIG. 5. The current-voltage dependence for several values of the

FIG. 3. Zero-voltage conductance as a function of the local encgoulomb repulsionU,, for the symmetric casely/2+e=0 and

ergye for I'=|t| for ksT=0,U;=0,kgT=0 and several values &f,  1'=0.1t|.
(in units of [t]).

of the bonding and the antibonding states, with the maximum The current-voltage dependence is shown in Figs. 5 and 6
value of the conductance equal t&’2h. In this limiting case ~ for several values of the repulsidsy. Here again our com-
our calculations reproduce the exact result for the conducputation becomes exact for the vanishing Coulomb repul-
tance. With growing repulsion the peaks become shifted, insion. In theU,=0 limit the stepwise increase of the current
crease in width, and decrease in height. For intermedigte Wwith the voltage corresponds to entering the single—electron
both peaks merge in a single, very wide feature. With a furmolecular levels into the source-drain voltage window. For
ther increase ob),, the two peak structure is formed again, Uy>0 and V>0 the number of excited molecular levels
resembling the formation of the upper Hubbard and theparticipating in transport considerably increases as compared
lower Hubbard band at the metal-insulator transition in theto the V=0 limit, since some of these states may enter di-
bulk system$.The conductance for an intermediate value ofrectly in the source-drain voltage window. Because the Cou-
I' is presented in Fig. 4. Again, the widths of the conductancgomb repulsion removes the degeneracy of many excited mo-
peaks increases considerably with. Unlike the strongl’  lecular states, thé-V dependence is much more involved
case, however, we now note the formation of the system ofhan in theU,=0 case. In the case of the intermediate value
four to six conductance peaks, depending on the valugyof of I' (see Fig. 5 the |-V steps acquire substantial width,
The central pair of the peaks is related to the enhanced OGoming from the resonance broadening matriéég which
cupancy of the triplet states and is more pronounced as cOMyanend on the repulsion as well. In this case the contribu-
pared to the weak- case of Fig. (b). This is due to  {iong from the individual molecular excited states cannot be
coupllng—gnhanced contrllbutlon from the virtual t_rans't'onsresolved and thé-V curve is fairly smooth. Note also that
to the excited states of triplggT0) and|2To). The six-peak  for the finite repulsion the current becomes a monotonously
structure is best observed for the intermedia@ndUo val-  jncreasing function for much of the voltage range, unlike the
ues. In the limit of very weall® we return to th_e four-peak reference limiting case obl,=0, where the effect of the
structure known from the Coulomb blockade lif@bmpare  otential ramp leads to the negative differential conductance.

Figs. Ib) and 2. This can be interpreted as an effect of screening of the
1 T T T I T ‘
4 . . . . ;
-—-- U0
— Ue=lt]
- Uo=2]t| H
— Ug=4ltl

| [ 2eT7h]

FIG. 4. Zero-voltage conductance as a function of the local en- FIG. 6. The current-voltage dependence for several values of the
ergye for I'=0.10t| for kgT=0, U;=0, kgT=0 and several values of Coulomb repulsionU,, for the symmetric casely/2+s=0 and
Uo. r=0.01t|.
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0.5 . . - . - ramp what is best seen for the very large voltage. Without the
/ — ?B potential ramp, all the states are uniformly occupied and for
04 L il each|\), (X,,)— 1/16=0.0625 forV— . The inhomoge-
+2T neous potential promotes the occupancy of the excited states,
A o3l 28, |1 |2S,), |1A0), and|3Ad), which for the growing voltage in-
< * 28, .
P x 28, creasingly better couple to the electrodes than the corre-
>6 02 | ——-3B || sponding ground states for the same number of electrons. On
) m"""\ ----3A the other hand the triplet states, the empty, and the fully
% +W B occupied state are hardly influenced by the ramp and their
0.1 ¢ % == ‘ occupancy in the large voltage region does not depend much
+ iR on the ramp.
0 —Mg&w :

0 1 2 3 4 5 6

VI. CONCLUSIONS

FIG. 7. The voltage dependence of the molecular state occu- . , .
pancy for Up=4ltje=-21t| (symmetric case and I'=0.01t|. The In this paper we presented a Green’s function approach

symbols in the legend refer to the molecular states of the isolatefPr the computation of transport properties of molecular
molecule:|0)—the empty statel1Bo)(|1A0))—the bonding(anti-  Junctions, which uses the exact solutions for the isolated
bonding state of the singly occupied molecule with spin ~ Molecule. The approximations made in the equation of mo-
|2To)(|2T0))—the triplet spin-1(spin-0 state of the double occu- tion for the Green’s functions, become accurate in the limit-
pied molecule|2S,), where »=0, 1, 2—the singlet states of the ing cases of the Coulomb blockade on one hand and in the
doubly occupied moleculd3Ba)(|3Ac))—the bonding(antibond- ~ noninteracting case on the other one. In between the limits
ing) state with spino- of the triply occupied molecule, arjd)—the ~ one can use the method as a kind of interpolative treatment.
fully occupied state. Note that the solid line corresponding to the Since we used the Hubbard operators to define the mo-
occupancy of the singlet ground staf2S,) is close to 1 for lecular Hamiltonian, our approach is formally independent of
1<2eV/|t|<1.5. the size and geometry of the molecule. Using the Hubbard
operators we are also able to easily compute the arbitrary
correlation functions at the molecule and define the prob-
abilities of occupation of many-particle molecular states,

[-V dependence. In this case th¥ curve takes a form typi- \('th'Ch ISI veryt_hellpful in the mgler;:re(;a';lon pf ﬂ:ﬁv delpe?- h
cal for the Coulomb blockade lim#:2 The details of the ¢€NCe: IN particuiar, we are ablé 1o aeterminé the role of eac

I-V dependence can be better understood from the corré&XCited state in the transport in the high voltage region.

sponding plot of the occupancy of the molecular states with AN important technical advantage of the applied approxi-
respect to the voltage fod,=4]t| for the symmetric case, Mations is that the self-consistent equations for the necessary

which we present in Fig. 7. In the low voltage regirffer ~ Correlators are linear ones; hence we always obtain a unique
2 eV/|t|<1.6), the occupancy of the triplet states, solution. Another useful simplification is the absence of the
(Xote 2100 =(Xa10 210, IS reduced by the voltage at the ex- energy dependence of the resonance broadening terms, ma-
pense of the growing occupancy of the ground state singleticesQ'?, which allows us to obtain an explicit and general
state (X,s 25 ). This is due to the fact that the energy of the formula for the current, Eq(26), which is the central result
bonding statg2S,) decreases with the voltage, whereas theof this work. The last simplification allows us to reduce all
triplet states do not depend on the voltage. The current ithe necessary integrations to the summations using the di-
still small in this region, and the occupancy of all the othergamma function or its derivative and may be of practical
states with the electron occupancy different from 2 isimportance in an application of the method for the larger
negligible. Near a threshold voltage, 2 i+ 1.6, the oc-  molecules with a more complicated spectrum.
cupancy of the ground singlet state decreases rapidly, and at | our approach the interactions between the molecule and
the same time the occupancy of the spin doubletsyye |eads are included in the mean-field-like way. In the de-
(X180 180) =(X3Bs 380) BND (X1ag 1800 =(Xans 3a0) 88 Well @S o hling of the Green's functions we omit the averages like
the occupancy of the triplet state begln_s to rise sharpl_y. Ag l F .y, which are important in the Kondo limft? In ef-
the same threshold voltage the current rises rapidly, which ig_<*7" .
compatible with the fact that the charge at the molecule be'eCt our results can he reliable only fdeTy. élso, ELs
gins to fluctuate. A next, smaller current step can be notedeglect of the energy dependence in the matrige$ does
near 2 eV/t|~2.3, where the excited statf2S,) enters the not allow to take into account the temperature changes of the
play. Another small current step is visible at 2 éty+2.8, resonance broadening terms, important in the low tempera-
where the occupancy of theS,) state begins to grow. Fi- ture, where the Kondo type divergence develops.
nally, the second big step in theV curve at 2 eV|t|~3.6 is In this paper we exemplified the use of the method to the
accompanied by the rapid increase of the occupancy of thievo-atom system with the relatively simple spectrum. An
empty and the fully occupied statgy o) and(X, 4), respec- extension to more realistic models with several orbitals per
tively. atom is, in principle, straightforward and our general formu-
The overall voltage dependence of the molecular state odas for the current as well as the self-consistent equations can
cupancy is complicated here by the effect of the potentiabe then almost directly applied. For big molecules, a limita-

external potential by the electron correlations within the
molecule.
For the weakI" (see Fig. 8, the steps reappear in the
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tion may be the size of the molecular eigenspace and a re- «d,|dDy) = Go, + 0 G (A1)
sulting difficulty to determine the exact eigenstates of the .

isolated molecule. In such a case one can try to combine thEhe structure of the approximate EOM, E@.7), can be
method with a perturbative treatment to obtain an effectivdepresented for the 1QD as

Hamiltonian valid in the restricted subspace of states for the (@=&-311)G0, + 031G =1-n, (A2)
limited range of voltage or the parameter values. The use of

the Hubbard operators can be an advantage in such an 0321000+ (0= & = U = 3,5) G = 0T
application?® o " 7

The self-energy components,, can be obtained in terms of
the functionsRe"(z) from Eq.(l?) (see below. By the rea-
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and we can defin&,=31,-3,,. The solution of Eqs(A2)
with the use of Eqs(Al) and(A3) gives

g;meT?fzo%é?ggzzge MMMFE within Contract No. <<d(,|dj,>> _ 1-n, _
' w-&g-25+U3/(w-e-U=-3)
Ny
APPENDIX A: SINGLE-DOT CASE + w—g-U-Sg-US (- 3) .
In this section we show that in the case of the single atom (A4)

our approximation for the Green’s function reduces to the
results of Meiret al” The one-particle Green’s function The above result resembles closely the one obtained by the
<<d(,|df,)> of the 1QD can be written as a linear combination cited authors. Indeed, a careful examination of @q) using

o2 _

of two Green’s function%j,,, the fact thatpg‘,’ =6, andp_;=0d,, for the 1QD, gives

B 2R%(w) + R(w) = R(— w + U + 2¢) ~R'(-w+U+2¢) +R'(w)

> -R(- w+U+2¢) + R(w) 2R (w) + R(w) - R'(-w+U+2¢) |’

(A5)

Insertion of the self-energy components into E44) reproduces the results of the earlier wofRs2

1J. M. Tour, Molecular Electronics: Commercial Insights, Chem- (1994; G. Chen, G. Klimeck, S. Datta, G. Chen, and William A.
istry, Devices, Architecture and Programmifig/orld Scientific, Goddard, Ill, Phys. Rev. B50, 8035(1994).
Singapore, 2003 °P. Pals and A. MacKinnon, J. Phys.: Condens. MaBg5401

2M. Mayor, H. B. Weber, and R. Waser, anoelectronics and (1996.
Information Technologyedited by R. WasefWiley-VCH, New 10C. A. Stafford, R. Kotlyar, and S. Das Sarma, Phys. Re\6®
York, 2003, p. 501. 7091(1998.

3X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. 1'W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T.
Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay, Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys.

Science294, 571 (2001). 75, 1 (2003.
4A. Pecchia and A. Di Carlo, Rep. Prog. Phy&Z, 1497 (2004, 124, Haug and A.-P. JauhdQuantum Kinetics in Transport and
and references therein. Optics of SemiconductofSpringer-Verlag, Berlin, 1998

5M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stok-12B. R. Butka and T. Kostyrko, Phys. Rev. B0, 205333(2004.
bro, Phys. Rev. B65, 165401(2002; J. Taylor, M. Brandbyge, K. Kikoin and Y. Avishai, Phys. Rev. Let86, 2090(2001); Phys.

and K. Stokbro, Phys. Rev. Let89, 138301(2002. Rev. B 65, 115329(2002.

6A. Groshev, T. Ivanov, and V. Valtchinov, Phys. Rev. L6, 15T, Kuzmenko, K. Kikoin, and Y. Avishai, Phys. Rev. LetB9,
1082(1991). 156602(2004); Phys. Rev. B69, 195109(2004).

7Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. L&8, 3048  16J. Hubbard, Proc. R. Soc. London, Ser.2X7, 237 (1964.
(1991). 173, Fransson and O. Eriksson, Phys. Rev7/® 085301(2004.

8G. Klimeck, G. Chen, and S. Datta, Phys. Rev. 3, 2316  'J. Fransson, O. Eriksson, and |. Sandalov, Phys. Rev. B8it.

235306-9



T. KOSTYRKO AND B. R. BULKA PHYSICAL REVIEW B 71, 235306(2005

226601(2002. 24R. Micnas, Ph.D. dissertation, A. Mickiewicz University 1977,
9R. Franco, M. S. Figueira, and M. E. Foglio, Phys. Rev6B unpublished.

045112(2002; R. Franco, M. S. Figueira, and E. V. Andhjd. 25R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van

67, 155301(2003. Hemert, and J. M. van Ruitenbeek, Natut®ndon 419 906

20M. H. Hettler, W. Wenzel, M. R. Wegewijs, and H. Schoeller, (2002.

21Tprg§-'e§eﬁ '-Fe;;r?gafeasr?g’(io? Jefferson. Phys. Revel R Kotlyar and S. Das Sarma, Phys. RevS,13 235(1997).
- Rejec, A ' T » PIYS. 21W. Tian, S. Datta S. Hong, R. Reifenberger, J. I. Henderson, and

075311(2003. biak h h
22y, Meir and N. S. Wingreen, Phys. Rev. Le@8, 2512(1992. 28 € P xubiak 5 Chem. Pliye 3 287811999,
225 B, Haley and P, Erdos, Phys. Rev.51106(1972. T. Kostyrko, Phys. Rev. B40, 4596(1989.

235306-10



