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We consider the electrostatic potential and the dispersion relation of interface phonons in the active region
of the quantum cascade laser. We propose a model which takes into account all the stages of the active region
as a whole and the interaction between the stages. Our model agrees with the model for the finite superlattice
fPhys. Rev. B32, 6544s1985dg, but can apply to a more general case in which each repeated stage is allowed
to contain an arbitrary number of layers. Numerical calculations show that the interface phonons in the active
region can be classified into bulk modes and surface modes. The dispersion curves of bulk modes form a series
of subbands, and the electrostatic potentials propagate in the interior of the active region in an oscillating way.
The dispersion curves of the surface modes are located in the gaps between the subbands of the bulk modes,
and the electrostatic potentials are seen to be localized at the interface between the active region and the
waveguide layer. Our calculations indicate that the distribution of phonon potential in different stages is
significantly different. We also demonstrate that the transition matrix model cannot be used directly to deal
with interface phonons in the active region, since it cannot keep the electrostatic potential continuous at the
interface between adjacent stages. Our results are helpful to the design of quantum cascade lasers and other
intersubband lasers.
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I. INTRODUCTION

The quantum cascade lasersQCLd is an important semi-
conductor laser source from the point of view of basic re-
search and potential applications. Extremely impressive de-
velopment has been made since the announcement in
1994.1–7 The QCL is an electrically pumped diode laser
based on intersubband transitions in the active region con-
sisting of many identical stages. Each stage is actually a
coupled multiple quantum well structure. As is well known,
the scattering between electrons and longitudinal optical
sLOd phonons is the most convenient and effective way to
modify the lifetime of the electrons in laser states and hence
to control the population inversion.8–10More importantly, the
scattering with interface opticalsIFd phonons has been
proved to be the most important process that dominates the
lifetime of the electrons.11–13Therefore, a precise description
of IF phonons is of primary importance.

In the case of multiple heterostructures, optical phonons
can be strongly influenced by the presence of heterointer-
faces and their interaction with two-dimensional confined
electrons will be significantly modified compared with the
three-dimensional case. The properties of IF phonons in het-
erostructures have been theoretically studied by both macro-
scopic and microscopic approaches.14–18 Recently, Yuet al.
developed a transfer matrix model to study the IF phonons in
multiple heterostructures.19 This method is deduced in the
framework of dielectric continuum theory and proved to be a
great success since, compared with the detailed microscopic
calculations, it provides a comparable accurate result and
considerably saves computation time.20–22 Therefore, at
present, the transfer matrix model is commonly used to cal-
culate the propagation of IF phonons in the active region of
QCLs.23–25However, since the active region usually consists
of dozens of stages and hence contains hundreds of hetero-

interfaces, it is difficult to study the IF phonons in the whole
structure by the transfer matrix model. For the sake of sim-
plicity, the model is usually used to calculate the propagation
of the IF phonons in an isolated stage and it is assumed that
in all stages the propagations of the IF phonons are com-
pletely the same.

Whether this assumption holds true is very important in
the design of QCLs. Therefore, we discuss two questions:

s1d Considering the IF phonon, can we treat each stage as
an isolated system and neglect the interaction between the
stages?

s2d Is the propagation of IF phonon identical in each
stage?

This paper studies these questions by developing a modi-
fied model and calculating in detail the properties of IF
phonons. Our model, based on dielectric continuum theory,
takes into account all the stages and the interaction between
them. Typically, the active region consists of dozens of or
even more than one hundred identical stages, each of which
usually contains several or more than ten layers. Each stage
is usually dozens of nanometers thick. On the one hand, the
amplitudes of phonon potentials in the layers of the same
stage can be related to each other by a series of matrices, as
the transfer matrix model already shows. On the other hand,
the stacking of so many stages indicates the periodicity in the
interior of the active region. This enables us to treat the
propagation of phonon potential along the stages by Bloch’s
theorem.26,27Based on the analysis mentioned above, we can
derive a general form of the phonon potential. Next, by im-
posing the boundary conditions we can determine numeri-
cally the phonon potentials and the dispersion relations. Un-
der the dielectric continuum theory, the polarization field, the
electric field, and the electrostatic potential caused by the
optical phonon can be deduced from each other by the clas-
sical electrostatic equations. In this work, we consider elec-
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trostatic potential instead, since it can be directly used to
calculate the electron-phonon scattering rate.

The paper is organized as follows. In Sec. II we propose
our model to establish a general form of the electrostatic
potential of IF phonons. An implicit dispersion relation is
derived for IF phonons in the active region sandwiched be-
tween the waveguide layers. We also prove the consistency
between our model and the model for finite superlattice.27 In
Sec. III, as an example, properties of the IF phonons in a
practical QCL structure are studied by using the transfer ma-
trix model and our model, respectively. Numerical results
demonstrate the defect of the transfer matrix model, and
show unique properties of IF phonons exposed by our model.
The conclusion is given in Sec. IV.

II. THEORY

In this section we present the general solution to the elec-
trostatic potential of IF phonons in an active region structure.
After that, an implicate dispersion relation for IF phonons is
derived. Figure 1 shows the structure under consideration.
The active region hasp stages in total and is sandwiched
between waveguide layers of materialC andD. Each stage,
which consists of alternating layers of materialA and B,
contains N layers. The thickness of each layer isdi
si =1,2, . . . ,Nd. The repetition period isL=oi=1

N di. The di-
electric constant of each material is a function of frequency,
«i =«isvd si =A,B,C,Dd. We establish the coordinates with
thez axis normal to eachA-B interface and thex axis parallel

to the same, and the origin of thez axis is set at the interface
between the waveguide layersmaterial Cd and the active
region. The electrostatic potentialfsr ,td must satisfy
Laplace’s equation everywhere,¹2fsr ,td=0. The transla-
tional invariance in thex and y directions enables the elec-
trostatic potential to be characterized by a wave vectork
parallel to the interface. Without loss of generality, we as-
sume that each material is isotropic, and definek parallel to
the x axis. Under this assumption the electrostatic potential
of the IF phonon has the formfsr ,td=eiskx−vtdFszd, andFszd
satisfies the equation

F d2

dz2 − k2GFszd = 0, s1d

wherek= uk u is the amplitude of the wave vector in the in-
plane direction. The most general solution to Eq.s1d is a
linear combination of exponentially decaying and exponen-
tially growing spatial functions:

Fszd = A+e+kz+ A−e−kz. s2d

First, in waveguide layersC szø0d and D szùpLd, we
have

Fszd = Cekz, zø 0 s3ad

Fszd = De−kz, zù pL. s3bd

Since the interior of the active region is periodic we can
invoke Bloch’s theorem. In theith layer of thenth stage,
nL+zi øzønL+zi+1 sheredi ;zi+1−zid, the electrostatic po-
tential is

Fn,iszd = e−gnLsAi,+e
ksz−nL−zid + Ai,−e

−ksz−nL−zidd

+ egnLsAi,+8 eksz−nL−zid + Ai,−8 e−ksz−nL−zidd. s3cd

Here, the constantg, arising due to the periodicity in thez
direction in the active region, can be regarded as a wave
vector that characterizes the electrostatic potential propagat-
ing along thez direction. Equations3cd showsFn,iszd can be
expressed as a sum of two terms. Each term is essentially
composed of a surface-wave electrostatic potential in each
layer multiplied by an envelope functionse−gnL or e−gsp−ndLd
that relates the amplitude of one stage to another. In Eq.s3cd
factors ofe−gpL are incorporated in the coefficientsAi,+8 and
Ai,−8 . We can find Eq.s3cd is consistent with Eq.s2d, the most
general form of the IF phonon potential. The termseksz−nL−zid

ande−ksz−nL−zid allow the solution to have the characteristics
of IF phonon. The IF phonon described by the solution is
located in the vicinity of interfaces and decays away from
them. All the coefficients and the constantg can be found
just by taking the boundary conditions and the attenuation
condition into account. The boundary conditions require that
the electrostatic potential and the tangential component of
the electric field should be continuous, i.e.,Fszd and «svd
f]Fszd /]zg must be continuous at each interface. In addition,
the attenuation condition requires limz→±` Fszd=0.

According to the property ofg, IF phonons can be clas-
sified into two types of modes. Ifg has a real part, the en-
velope functionse−gnL ande−gsp−ndL tend to localize near the

FIG. 1. Schematic figure of the active region structure. The ac-
tive region has a total ofp stages. Each stage is composed of alter-
nating layers of materialA and B, and containsN layers with the
thickness of each layer beingdi si =1,2, . . .Nd, di ;zi+1−zi. The
active region is sandwiched between the waveguide layersC andD.
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top and bottom interface of the whole structure, and the cor-
responding electrostatic potential shows the characteristics of
a surface wave. Therefore, we call these IF modes the “sur-
face modes.” However, ifg is purely imaginary, the electro-
static potential will propagate in an oscillating manner in the
active region and shows the characteristics of bulk wave. We
call these IF modes the “bulk modes.”

The boundary conditions are treated in three steps. We
deal with the boundary conditions at the interfaces between
the layers in one stage, at the interfaces between two adja-
cent stages, and at the interfaces between the active region
and waveguide layers. When the solutionFszd simulta-
neously satisfies the conditions mentioned above, it should
simultaneously satisfy the boundary conditions at all the in-
terfaces in the system we consider.

We first deal with the boundary conditions in one stage.
At the interface between theith layer and thesi +1dth layer
in the nth stage,z=nL+zi+1, continuity of Fszd gives us

Ai,+e
kdi + Ai,−e

−kdi = Ai+1,+ + Ai+1,−, s4d

Ai,+8 ekdi + Ai,−8 e−kdi = Ai+1,+8 + Ai+1,−8 , s5d

and continuity of«svd f]Fszd /]zg gives us

«isAi,+e
kdi − Ai,−e

−kdid = «i+1sAi+1,+ − Ai+1,−d, s6d

«isAi,+8 ekdi − Ai,−8 e−kdid = «i+1sAi+1,+8 − Ai+1,−8 d, s7d

where«i refers to the dielectric function of the material ofith
layer f«i =«Asvd or «Bsvdg. Equationss4d–s7d can be written
compactly in a matrix form as follows:

SAi+1,+

Ai+1,−
D = GiSAi,+

Ai,−
D , s8d

SAi+1,+8

Ai+1,−8
D = GiSAi,+8

Ai,−8
D . s9d

The transfer matrixGi is defined as

Gi =
1

2
S1 1

1 − 1
DS ekdi e−kdi

s«i/«i+1dekdi − s«i/«i+1de−kdi
D , s10d

where the transfer matrixGi relates the coefficients of elec-
trostatic potential inith andsi +1dth layers. By applying the
chain rule, coefficients of electrostatic potential in the layers
of the same stage can be related to each other by a series of
transfer matrices. For example, in the first layer and the last
snthd layer of one stage, the coefficients have the relations as
follows:

SAN,+

AN,−
D = GN−1¯ Gi ¯ G1SA1,+

A1,−
D , s11d

SAN,+8

AN,−8
D = GN−1¯ Gi ¯ G1SA1,+8

A1,−8
D . s12d

Next, we impose the boundary conditions at the interface
between thenth stage and thesn+1dth stage,z=nL+zN+1

=sn+1dL+z1=sn+1dL sin our coordinatesz1;0d, to obtain

e−gnLfAN,+e
kdN + AN,−e

−kdNg + egnLfAN,+8 ekdN + AN,−8 e−kdNg

= e−gsn+1dLfA1,+ + A1,−g + egsn+1dLfA1,+8 + A1,−8 g s13d

and

«Nhe−gnLfAN,+e
kdN − AN,−e

−kdNg + egnLfAN,+8 ekdN − AN,−8 e−kdNgj

= «1he−gsn+1dLfA1,+ − A1,−g + egsn+1dLfA1,+8 − A1,−8 gj. s14d

Similarly, Eqs.s13d and s14d can be expressed in matrix
form,

e−gLSA1,+

A1,−
D = GNSAN,+

AN,−
D , s15d

egLSA1,+8

A1,−8
D = GNSAN,+8

AN,−8
D . s16d

We combine the boundary conditions at the interfaces be-
tween layers in one stage and those at the interfaces between
two adjacent stages by substituting Eqs.s11d and s12d into
Eqs.s15d and s16d, and find

e−gLSA1,+

A1,−
D = MSA1,+

A1,−
D , s17d

egLSA1,+8

A1,−8
D = MSA1,+8

A1,−8
D , s18d

where

M = GNGN−1¯ G1. s19d

Equationss17d and s18d admit a solution only if the de-
terminant of the coefficient matrix vanishes. Both equations
yield the same condition ong as follows:

detfM − e−gLEg = 0, s20d

whereE is a unit matrix. When each stage contains only two
layers sN=2d, the active region will be simplified to be a
finite superlattice. In this case, Eq.s20d has a more explicit
expression as follows:

coshsgLd = coshskd2dcoshskd1d

+
1

2
S«A

«B
+

«B

«A
Dsinhskd2dsinhskd1d. s21d

The above equation completely agrees with Eq.s33d in
Ref. 27, which is the condition ong in the interior of a finite
superlattice.

Finally, we treat the boundary conditions at the interfaces
between the active region and waveguide layers. Atz=0, we
obtain

C = A1,+ + A1,− + A1,+8 + A1,−8 , s22d

«CC = «AsA1,+ − A1,− + A1,+8 − A1,−8 d. s23d

Similarly, at the interface between active region and ma-
terial D, z=pL, we find
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De−kpL = e−gsp−1dLfAN,+e
kdN + AN,−e

−kdNg

+ egsp−1dLfAN,+8 ekdN + AN,−8 e−kdNg, s24d

and

− «DDe−kpL = «Nhe−gsp−1dLfAN,+e
kdN − AN,−e

−kdNg

+ egsp−1dLfAN,+8 ekdN − AN,−8 e−kdNgj. s25d

By substituting Eqs.s13d and s14d into s24d and s25d, we
find

De−kpL = e−gpLfA1,+ + A1,−g + egpLfA1,+8 + A1,−8 g, s26d

− «DDe−kpL = «1he−gpLfA1,+ − A1,−g + egpLfA1,+8 − A1,−8 gj.

s27d

We now solve forAi,− in terms ofAi,+, andAi,−8 in terms of
Ai,+8 , respectively. From Eqs.s17d and s18d we find

A1,− = KAi,+, s28d

A1,−8 = K8A1,+8 , s29d

where

K = −
M11 − e−gL

M12
,

K8 = −
M11 − egL

M12
, s30d

whereMi,j is the si , jd component of matrixM. Finally, by
substituting Eqs.s28d ands29d into Eqs.s22d, s23d, s26d, and
s27d, and after some algebra, we obtain

1
s1 + Kd s1 + K8d − 1 0

«As1 − Kd «As1 − K8d − «C 0

e−gpLs1 + Kd egpLs1 + K8d 0 − e−kpL

«Ae−gpLs1 − Kd «AegpLs1 − K8d 0 «De−kpL
21

A1,+

A1,+8

C

D
2

= 0. s31d

The above system of equation admits a solution only if
the determinant of the coefficient matrix vanishes. This fi-
nally leads us, after some algebra, to the following result:

f«A
2s1 − Kds1 − K8d − «C«Ds1 + Kds1 + K8d − «As«C − «Dd

3s1 − KK8dgtanhsgpLd − «As«C + «DdsK − K8d = 0.

s32d

Equationss20d and s32d construct the implicit dispersion
relation of IF phonons in the active region. All the solutions
should satisfy simultaneously Eqs.s20d ands32d. Once more,
we can find, when one stage contains only two layers
sN=2d, Eq. s32d completely agrees with Eq.s45d in Ref. 27.
The agreement demonstrates that the dispersion relation in a
finite superlattice, derived by Camleyet al.,27 is a natural
result of our model. In fact, we expand their model to a more
general case in which one stagesperiodd is allowed to con-
tain an arbitrary number of layers.

III. NUMERICAL CALCULATION AND DISCUSSION

In this section, by using our model and transfer matrix
model, respectively, we will present the dispersion relation
and electrostatic potential of IF phonons in the active region
of a quantum cascade laser. The following detailed discus-
sion answers the two questions given in the Introduction. We
take the QCL structure proposed by Huet al. as an
example.28 The active region in this laser structure is com-
posed by GaAs as quantum well and Al0.15Ga0.85As as
quantum barrier. Each stage consists of eight layers, and
the layer sequence given in nanometers is
5.4/7.8/2.4/6.4/3.8/14.8/2.4/9.4. Al0.15Ga0.85As barriers
are in boldface. Without loss of generality, we assume the
active region contains ten stages and the up and down wave-
guide layers are composed by Al0.15Ga0.85As. Following the
generalized Lyddane-Sachs-Teller relation, the dielectric
function for binary and ternary compound semiconductors
can be expressed as follows: for the binary semiconductor

«svd = «s`d
v2 − vLO

2

v2 − vTO
2

and for the ternary semiconductor

«svd = «s`d
sv2 − vLO1

2 dsv2 − vLO2
2 d

sv2 − vTO1
2 dsv2 − vTO2

2 d
,

where LOsTOd stands for the longitudinalstransversed opti-
cal mode, and 1 and 2 denote material types. The dielectric
constants and phonon frequencies used in this work are listed
in Table I.

First we present the results of the transfer matrix model.
Figure 2 shows the dispersion relation of IF phonons in the
active region. There are 24 IF modes in total, including 16
GaAs-like and eight AlAs-like modes. The potential distribu-
tions of the eight AlAs-like modes in one stage, in the case
kL=5, are given in Fig. 3. For an arbitrary IF mode, using
the transfer matrix model to calculate the potential distribu-
tion in two adjacent stages, respectively, it is easy to find that
the electrostatic potentialFszd is discontinuous at the inter-
face of two stages. For example, Fig. 4 shows the potential
distribution of the fifth AlAs-like mode in two adjacent
stages. Obviously, the discontinuity cannot be neglected. We
note, in other QCL structures, the discontinuity always exists
in the distribution of phonon potential calculated by the
transfer matrix model.23–25 This obviously contradicts
Laplace’s equation and the boundary conditions. These re-

TABLE I. Dielectric constants and phonon frequencies used in
the dispersion relation calculationsRef. 19d.

GaAs AlxGa1−xAs

«` 10.89 10.89–2.733x

"vLO sGaAs-liked smeVd 36.25 36.25–6.553x+1.793x2

"vTO sGaAs-liked smeVd 33.29 33.29–0.643x−1.163x2

"vLO sAlAs-liked smeVd 44.63+8.783x−3.323x2

"vTO sAlAs-liked smeVd 44.63+0.553x−0.303x2
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sults not only demonstrate that transfer matrix model cannot
be directly used to deal with the IF modes in the active
region, but strongly indicate that each stage cannot be con-
sidered as an isolated system.

We now present the phonon potential and the dispersion
relation calculated by our model. Our results show that there
are 3Nsp+1d IF phonons in the active region, including
2Nsp+1d GaAs-like modes andNsp+1d AlAs-like modes.
The dispersion relations of the latter are given in Fig. 5.
Among the Nsp+1d AlAs-like modes, there areNp bulk
modes for whichg is purely imaginarysRefgg=0d. The dis-
persion curves of the bulk modes are plotted by solid lines in
Fig. 5. As is shown in Fig. 5, the dispersion curves of bulk
modes constructN quasicontinuous subbands, each of which
consists ofp curves. Compared to Fig. 2, we can find theN
discrete dispersion curves for AlAs-like modes in Fig. 2 turn

into N quasicontinuous subbands in Fig. 5. The reason is that
in the transfer matrix model each stage is considered soli-
tarily whereas in our model all the stages are considered and
therefore the interaction between the stages is taken into ac-
count. Moreover, Fig. 5 also shows that there areN surface
modessRefgg.0d, corresponding to the dispersion curves
plotted by scatters. From the inset of Fig. 5 we can find the
energy of surface modes always locates in the gaps between
the subbands of bulk modes.

Now we investigate the phonon potential of the bulk
modes and surface modes. For thep bulk modes in the fourth

FIG. 2. Dispersion relation of IF phonons by transfer matrix
model, wherek is the in-plane wave vector andL is the length of
one stage.

FIG. 3. IF phonon potential for eight AlAs-like modes in the
case ofkL=5, calculated by the transfer matrix model. Each mode
is labeled with its energy in meV, and the vertical lines represent the
interfaces between the layers in one stage.

FIG. 4. Potential distribution of the fifth AlAs-like mode in two
adjacent stages forkL=5, calculated by the transfer matrix model.
The vertical dashed line represents the edge of one stage.

FIG. 5. Dispersion curves for AlAs-like IF phonons in the active
region, calculated by our model. The bulk modes and surface modes
are shown with solid lines and scatters, respectively. The inset
shows that the dispersion curves of surface modes always locate in
the gaps of the quasicontinuous subbands of bulk modes.

INTERFACE PHONONS IN THE ACTIVE REGION OF A… PHYSICAL REVIEW B 71, 235304s2005d

235304-5



subbandsthe energy of these bulk modes is about 45.0 meV
in the short wavelength limitationd, we calculate the distribu-
tion of their phonon potentials for the casekL=5. The results
are given in Fig. 6. Obviously, the discontinuity of the pho-
non potential, which cannot be avoided in the transfer matrix
model, is overcome in our model. Another important charac-
teristic of bulk modes shown in Fig. 6 is that in the active

region, the phonon potentials propagate in the form of Bloch
waves with different wave vectorsg. Although the electro-
static potential of bulk modes propagates in an oscillation
manner, the amplitude of the potential increases up to its
maximum at each interface and decays away from each in-
terface. This feature is consistent with the definition of the IF
phonon. On the other hand, Fig. 7 gives the potential distri-

FIG. 6. Electrostatic potential
generated byP bulk modes in the
fourth subband forkL=5. Each
mode is labeled with its energy.
The vertical dashed lines represent
the interfaces between the stages,
as well as the interfaces between
the active region and the wave-
guide layers.
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bution of N surface modes. Figure 7 makes clear that the
amplitudes of the surface modes localize in the vicinity of
the interface between the active region and one of the wave-
guide layers, and decay quickly away from the interface. It is
worth noticing that these two kinds of modes were found
theoretically in a finite superlattice,27,29–31and then detected
in a GaAs/AlAs finite superlattice by Raman scattering and

high-resolution electron-energy-loss spectroscopy.32,33 Our
work indicates that these modes commonly exist in finite
periodic systems.

A common character shown in Figs. 6 and 7 is that the
distribution of phonon potentials in various stages is signifi-
cantly different. As seen in Fig. 6, comparing the distribution
of phonon potentials in the outmost stage with the center

FIG. 7. Electrostatic potential
generated byN surface modes for
kL=5. Each mode is labeled with
its energy. The vertical dashed
lines represent the interfaces be-
tween the stages, as well as the
interfaces between the active re-
gion and the waveguide layers.
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stage, we observe significant differences in the amplitude
and the profile of the potential. Furthermore, the existence of
surface modes makes the character clearer. This character
answers the questions proposed in the Introduction of this
paper. To summarize, interaction between the stages cannot
be neglected and the distribution of the phonon potential is
significantly different in various stages.

IV. CONCLUSIONS

We have proposed a model to describe the electrostatic
potential and the corresponding dispersion relation of the IF
phonons in the active region of quantum cascade lasers. Our
model takes into account all the stages and the interaction
between them. Our model agrees with the model for finite
superlattice, but can be applied in more general cases where
one stagesperiodd is allowed to contain an arbitrary number
of layers. In addition, we prove that the transfer matrix
model cannot be used directly, because it fails to keep the
phonon potential continuous at the interface of adjacent
stages.

Numerical calculations of our model show that the IF
phonons in the active region can be classified into bulk
modes and surface modes. The dispersion curves of the bulk
modes construct a series of quasicontinuous subbands, and

the phonon potentials propagate in an oscillating manner in-
side the active region. The dispersion curves of surface
modes locate in the gaps between the subbands of the bulk
modes. The phonon potentials of surface modes localize in
the vicinity of the interface between the active region and
one of the waveguide layers, and decay fast away from the
interface. Our results point out that the distribution of the
phonon potential in various stages is significantly different,
and the interaction between the stages cannot be neglected.

To sum up, we provide a complete picture of the IF pho-
non spectra in a practical quantum cascade laser. The elec-
trostatic potential and the dispersion relation obtained by our
model can be directly used to calculate the electron-IF pho-
non scattering rates in QCL structure. This study is essential
for accurately evaluating the electron transport properties in
QCLs, and is therefore needed to achieve best performance
QCLs and other intersubband lasers or detectors.
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