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The photoluminescence decay in amorphous semiconductors is described by power-law t−� at long times.
The power-law decay of photoluminescence at long times is commonly observed but recent experiments have
revealed that the exponent ��1.2–1.3, is smaller than the value 1.5 predicted from a geminate recombination
model assuming normal diffusion. Transient currents observed in the time-of-flight experiments are highly
dispersive characterized by the disorder parameter � smaller than 1. The geminate recombination rate should
be influenced by the dispersive transport of charge carriers. In this paper we derive the simple relation �=1
+� /2. Not only the exponent but also the amplitude of the decay calculated in this study is consistent with
measured photoluminescence in a-Si:H.
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I. INTRODUCTION

The photoluminescence in amorphous semiconductors
consists of a major band and weaker bands of longer wave-
length attributed to dangling bonds.1 The main photolumi-
nescence band arises from the radiative recombination of
electrons and holes both trapped in band tail states.1 Our
interest is in this main band excited with relatively weak
light pulses at the absorption edge. Photoluminescence decay
is described by power law t−� at long times above a certain
temperature.1–8 For sufficiently law excitation intensity a
geminate recombination model for photoluminescence decay
has been developed, which predicts a t−3/2 decay of lumines-
cence at long times.2,9 In the model the t−3/2 behavior at long
times is attributed to normal diffusion of a geminate pair.
Predicted t−3/2 decay of luminescence at long times is con-
firmed by early experiments, where high temperature data is
different from the low temperature decay for which diffusion
is negligible.1,2 At high temperatures electrons have enough
thermal energy to conduct hopping transport in the band
tails.1,2,9 It is widely recognized that a hole is trapped at a
deep localized state at very short times after the pulse
excitation.1 The power-law decay of photoluminescence at
long times is commonly observed but recent experiments
have revealed that the exponent is smaller than the predicted
value ��1.2−1.3�1.5.3–7 The exponent increases with in-
creasing temperature. In other words, the deviation of the
exponent from 1.5 decreases by raising temperature. Such
deviation is interpreted in terms of deviation of motion of
charges from the normal diffusion.3–7

Indeed, at temperatures at which power law of the photo-
luminescence decay is observed with � smaller than 1.5 tran-
sient currents observed in the time-of-flight experiments are
highly dispersive and completely different from those ob-
tained from normal diffusion.10–13 The shape of the transit
current, I, is featureless in the conventional units I versus
t.10–13 The transit time ttr is obtained only from the log I
versus log t traces, because many time scales coexist for
electron hopping between localized sites in the band tail
states.11 The shape of the transit current is derived by a con-

tinuous time random walk model where the hopping time
distribution function has an algebraic asymptotic
form10,11,14,15 ��t���r

−�t−�1+��, where �r is a carrier jump fre-
quency and � is a constant in a range of 0���1. From the
current traces the disorder parameter � is typically obtained
as ��0.6.10–13,16 It implies that the displacement r of a
charge carrier obeys �r2�t��� t�. Therefore, electron transport
cannot be described by normal diffusion for which �r2�t��
� t.

The geminate recombination rate should be influenced by
dispersive transport of charge carriers.3–7 The fact is widely
recognized but a simple relation between � and � is not
established. In this paper we derive a simple relation between
the long time exponent of photoluminescence decay � and
the disorder parameter �. The relation is confirmed by ex-
perimental data of a-Si:H taken at various temperatures. In
the experiments, the samples of a-Si:H were prepared by a
glow discharge method. The sample held in helium gas was
excited with 10 ns light pulses of energy around 2.0 eV at the
absorption edge in a-Si:H. The photoluminescence main
band is observed at the peak energy 1.22−1.35 eV. We also
obtain a theoretical relation between amplitude of the power
law decay of photoluminescence and the disorder parameter
�. The amplitude decreases due to escape of an electron-hole
pair from recombination. The result is also confirmed by
measured photoluminescence data.

II. PHOTOLUMINESCENCE

Amorphous semiconductors have localized states in band
tails.1 The localized states are randomly distributed and their
electrostatic energies are also distributed. In a-Si:H electron-
hole pairs are created by light irradiation. Holes are quickly
trapped and electrons execute hopping-random walks among
localized band tail states.1 Radiative recombination of gemi-
nate electron-hole pairs is observed as photoluminescence
whose decay curve is independent of the excitation intensity
in a range from 5 nJ/cm2 to 500 �J /cm2.5 Intensity of pho-
toluminescence is proportional to the recombination rate
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which is given by the decay rate of survival probability of
electrons. Long time decay of photoluminescence is con-
trolled by diffusion of electrons to the sites where holes are
located. Motion of electrons due to hopping-random walks
has been measured by transient current in the time-of-flight
experiment.10–13 The electron transport is subdiffusive where
the mean square displacement of electrons obeys

�r�t�2� � t�. �2.1�

The initial distance of electron-hole pairs may have spatial
distribution even immediately after photoexcitation. How-
ever, the long time asymptotic kinetics of photoluminescence
decay is insensitive to the initial distance r0. The distribution
of initial distance immediately after photoexcitation is im-
portant to analyze short time kinetics of photoluminescence.
In this paper we focus on the long time asymptotic kinetics.
As written before, intensity of photoluminescence is propor-
tional to the recombination rate. In the limit of an infinitely
fast intrinsic recombination rate �recombination rate at an
encounter distance� compared to the thermal jump frequency
of electrons, the recombination reaction rate R	�r�0 , t� is noth-
ing but the probability distribution of first arrival at the en-
counter distance R; namely, the first-passage time density.
The transition probability or the conditional probability
g�r�0 , t� of finding an electron at the encounter distance at
time t when it starts initially at site r�0 in the system with no
reaction satisfies the integral equation17,18

g�r�0,t� = �
0

t

dt1g�R,t − t1�R	�r�0,t1� �2.2�

because random walker at the encounter distance at time t
must have been there for the first time at time t1
 t. After

Laplace transformation of Eq. �2.2� R̂	�r�0 ,s� is obtained as

R̂	�r�0,s� =
ĝ�r�0,s�
ĝ�R,s�

. �2.3�

In experiments the intrinsic recombination rate is not infi-
nitely large but it competes with jump frequency of elec-
trons. By increasing temperature the luminescence quantum
efficiency decreases, which indicates that more electrons es-
cape recombination due to an increase of hopping frequency.
The effect is strong when the hopping frequency competes
with the intrinsic recombination rate. When the recombina-
tion rate competes with jump frequency of electrons, the re-
combination rate R�r�0 , t� is obtained from R	�r�0 , t� by the
method of Pedersen.19,20

First we note that the probability that a particle which
starts at r0 will visit the spherical shell of radius R during the
time interval between t and t+dt is equal to the recombina-
tion rate for the perfectly absorbing boundary condition. Two
types of waiting time distribution is defined inside the reac-
tion zone; one is the waiting time distribution function of
making a jump without reaction �out�t�, and the other is the
waiting time distribution function of reaction �rc�t�. The
waiting time distribution of making a jump at the encounter
distance is given in terms of that in the absence of reaction
��t� as

�out�t� = ��t�exp�− �rct� . �2.4�

The waiting time distribution of reaction is defined as the
probability that the particle which is initially at a site in the
encounter distance will undergo reaction without making a
jump at time t. It is given by the reaction rate constant �rc,
multiplied by the remaining probability of particles at the site
in the reaction zone, which decays either by jump motion or
reaction

�rc�t� = �rcexp�− �rct��
t

	

dt1��t1� . �2.5�

Some particles may recombine at the first visit to the encoun-
ter distance R. Other fractions of particles escape recombi-
nation at the first encounter and make a jump to the spherical
sphere of radius R+b with b being the jump length. Some
particles may recombine at the second encounter after jump-
ing from the sphere of radius R+b. The recombination rate
R�r�0 , t� should be the sum of the contributions from the first
encounter, second encounter, and so on

R�r�0,t� = �
0

t

d t1�rc�t − t1�R	�r�0,t1�

+ �
0

t

d t1�
0

t1

d t2�
0

t2

d t3�rc�t − t1�R	�R + b,t1

− t2��out�t2 − t3�R	�r�0,t3� + ¯ �2.6�

By Laplace transformation Eq. �2.6� becomes21

R̂�r�0,s� = R̂	�r�0,s�
�̂rc�s�

1 − �̂out�s�R̂	�R + b,s�
. �2.7�

Therefore, R̂�r�0 ,s� is obtained from R̂	�r�0 ,s�, which is ex-
pressed in terms of the transition probability ĝ�r�0 ,s� as Eq.
�2.3�. When migration of charges is due to thermal transition
between trap states and is described by fractional Brownian
motion, the transition probability is given by22

ĝ�r�0,s� =

exp�−
r0 − R
�D�s−�	

4�D�r0s1−�
1 +
R

�D�s−��
, �2.8�

where the perfectly reflecting boundary condition is imposed
at r=R. When the fractional Brownian motion is derived
from the continuous time random walk with jump length b
and jump frequency �r, a generalized diffusion coefficient is
derived23,24

D� �
sin ��

2��
�r

�b2, �2.9�

from the precise form of the waiting time distribution func-
tion of the release from the trap in the absence of recombi-
nation reaction,14,15 which is written after Laplace transfor-
mation
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�̂�s� � 1 −
��

sin ��

 s

�r
��

. �2.10�

By substituting Eq. �2.8� into Eq. �2.3� we get R̂	�r�0 ,s�,
which is related with R̂�r�0 ,s� through Eq. �2.7�. The recom-
bination rate in Laplace domain is derived as

R̂�r�0,s� =
R

r0
exp�−

r0 − R
�D�s−�	 1

1 + 4�R
D�

k� �1 + R
�D�s−��

,

�2.11�

where a generalized intrinsic reaction rate is defined as24,25

k� � �̂rc�0�
sin ��

��
�r

�2�R2b � �rc
� 2�R2b . �2.12�

After inverse Laplace transformation the asymptotic photo-
luminescence decay is obtained as

R�r�0,t� �
�

2��1 − �/2�
R

r0

 r0/R − 1

1 + 4�RD�/k�

+
4�RD�/k�

�1 + 4�RD�/k��2� R
�D�

1

t1+�/2 . �2.13�

According to Eq. �2.13� the power of asymptotic photolumi-
nescence decay 1/ t� is related to the disorder parameter � by

� =
�

2
+ 1, �2.14�

for any strength of the intrinsic recombination rate k� and the
initial distance between the electron and the hole of a gemi-
nate pair. In Fig. 1 the exponent � of the long time power-
law decay of photoluminescence is shown together with the
exponent 1+� /2 calculated from the disorder parameter � of
the dispersive transient current, which is measured by elec-

tron time-of-flight experiments at low electric fields.16 The
two exponents are consistent, which indicates that the long
time photoluminescence is controlled by the dispersive trans-
port of electrons.

The intensity of photoluminescence depends on the
strength of intrinsic recombination rate and the jump fre-
quency of electrons. The intensity of photoluminescence de-
creases by increasing temperature because the number of
electrons which escape recombination increases. We neglect
other nonradiative processes which are important in samples
with a substantial defect density.1 Obviously, the intensity is
also influenced by the initial distance between the electron
and the hole of a geminate pair and the intrinsic recombina-
tion rate. We investigate two extremes, separately. The first
one corresponds to the band-edge excitation, where an elec-
tron is created in the vicinity of a hole and the intrinsic
recombination rate competes with the dispersive transport of
electrons. The second one corresponds to excitation of elec-
trons to the conduction band through which an electron is
separated from a hole by large distance and the recombina-
tion occurs whenever the electron encounters the hole.

In the first case the initial distance between an electron
and a hole is small and the intrinsic recombination rate k� is
small. An electron may visit the encounter distance many
times before recombination. In experiments the wavelength
of incident light is chosen to excite electrons in the tail of
band edge and electrons are excited close to the immobile
holes. For simplicity the initial distance of an electron-hole
pair is assumed to be in the vicinity of the encounter dis-
tance, R �R+ ,→0�. The recombination rate is obtained
from the inverse Laplace transform of Eq. �2.11� as

R�r0 = R,t� =
k�

�D�t�

4�Rr0D�t
E�/2,�/2
−

1 + 4�RD�/k�

4�RD�/k�

�D�t�

R
� ,

�2.15�

where the generalized Mittag-Leffler function is defined as26

Ea,b�x� = 
k=0

	
xk

��ak + b�
. �2.16�

In the long time limit the above equation reduces to

R�r0 = R,t� �
�

2

 2��

sin ��
�3/2 1

��1 − �/2�
 �rc

�r
3/2�� 1

t1+�/2

�
C1

��r
3/2/�rc��t1+�/2 , �2.17�

where C1 is a constant. The intensity of photoluminescence
decay depends on the relative magnitudes of �r and �rc. The
photoluminescence is weak when the jump frequency of
electron migration is large because electrons escape recom-
bination by diffusion. Strong photoluminescence is expected
when the intrinsic recombination rate is large.

In the second case the initial distance between the elec-
tron and the hole of a geminate pair is assumed to be large
and the intrinsic recombination rate is assumed to be infi-
nitely large. Then we obtain from Eq. �2.13�

FIG. 1. The exponent � of the long time photoluminescence
decay and the disorder parameter �, in a-Si:H against temperature.
Closed triangles are � obtained from the total light decay of photo-
luminescence in a-Si:H excited with the pulsed laser of photon
energy of 2.32 eV. Closed circles are � obtained from electron
time-of-flight experiments in a-Si:H �Ref. 16�. Open circles are cal-
culated by �=1+� /2 from values of � shown by closed circles.
The solid line is a linear fit, �=0.15+T /313.4.
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R�r�0,t� �
C2

��r
�t1+�/2

, �2.18�

where C2 is a constant.27 Intensity becomes smaller as the
jump frequency increases.

In both cases the photoluminescence intensity has a scal-
ing form

R�r�0,t� �
1

C�t1+�/2 , �2.19�

where C is a constant. The photoluminescence decay mea-
sured by Murayama et al. obeys the scaling given by Eq.
�2.19�, if temperature dependence arises only from the disor-
der parameter � and values of � measured by the time-of-
flight experiments at each temperature are introduced. The
temperature dependence of � is phenomenologically de-
scribed by a linear function

� = �0 +
T

T0
, �2.20�

as shown in Fig. 1, where �0=0.15 and T0=313.4 K. If we
assume an exponential distribution of band tail states char-
acterized by an attenuation parameter kBT0 ,� is given by �
=T /T0. The presence of the constant term �0 in Eq. �2.20�
implies that activated release of an electron from an expo-
nentially distributed band tail states is a too simplified
model. Nevertheless, the linear function is a good approxi-
mation for observed values of the disorder parameter �. By
introducing the linear temperature dependence of � �Eq.
�2.20��, into the scaling relation �Eq. �2.19��, photolumines-
cence intensity at a certain time t= t0, after photoexcitation is
rewritten in the following way as a function of temperature:

R�r�0,t0� � exp
−
T

Tc
� , �2.21�

where Tc=T0 / ln�C�t0�. In Fig. 2, photoluminescence ob-
served at a delay time of t0=10 �s is plotted against tem-

perature. The line represents Eq. �2.21� with Tc=30 K. The
similar temperature dependence is observed for quantum
yield of photoluminescence.1,29 Since the kinetics of photo-
luminescence decay is highly nonexponential, quantum yield
does not necessarily obey the same temperature dependence
as photoluminescence intensity at a certain delay time. Equa-
tion �2.21� is proposed for quantum yield by assuming acti-
vated behavior for the competition between radiative and
nonradiative processes.29 On the other hand, in our deriva-
tion of photoluminescence intensity at a certain delay time,
escape of an electron from recombination is a nonradiative
process which competes with radiative recombination. By
substituting experimental values of T0 ,Tc, and t0 into the
relation, C�t0=exp�T0 /Tc�, we find C2=6.8�1013 1 /s–1.
Now, we consider two extreme situations leading to the same
scaling form Eq. �2.19�. Although the temperature depen-
dence is the same, different values of parameters may be
assigned in these two cases. In the first case we find �r
�1014 1 /s–1 for �r��rc 1 / s–1. The values are consistent
with �r�1014−1015 1 /s–1 estimated from the relation
�L /b�2���rttr��, where ��0.6, the zero-field value of the
transit time ttr�10−4 s, in time-of-flight experiments with the
sample thickness L�5 �m, and the jump length b�20
−50 Å, assumed for hopping-random walk of an electron are
introduced. In the second case we obtain �r�6.8
�1013 1 /s–1 which is also consistent with the value esti-
mated above. The measured photoluminescence obeys the
scaling form �Eq. �2.19�� with reasonable values of param-
eters for each case. Unfortunately, it is impossible to differ-
entiate the results of these two extreme situations only from
the scaling relation of long time asymptotic.

In order to see the time range over which the long time
asymptotic �Eq. �2.19�� is valid, lines given by Eq. �2.19� are
compared in Fig. 3 with measured photoluminescence decay.
It is difficult to keep all experimental conditions unaltered
when temperature is changed. Therefore, intensity difference
as a function of temperature is not reliable and we focus our
attention on its time dependence; we used Eq. �2.19� with
temperature dependence of � given by Eq. �2.20� and C as a
fitting parameter. As we can see from Fig. 3, the lines given
by Eq. �2.19� are consistent with experimental results at long
times at relatively high temperature T�105 K. However,
short time kinetics deviates from long time algebraic decay.
The transition occurs at larger values of time for lower tem-
perature. Below 100 K, the photoluminescence decay at t0
=10 �s is not in the regime of long time asymptotic. This is
the reason for the deviation from the scaling relation at tem-
peratures below 100 K in Fig. 2. At low temperatures
electron-hole recombination tends to occur before electron
executes random walk by thermal hopping. Such short time
kinetics is out of the range of applicability of the present
model and requires extending our theory to include the pre-
cise distance dependence of the intrinsic rate. Nevertheless,
the observed slow decay kinetics up to 10 �s at 105 K in
Fig. 3 suggests that the intrinsic reaction rate has a finite
value and competes with hopping transition. Thus, we can
draw the following picture. Initially an electron is photoex-
cited close to a hole by band-edge excitation. The hole is
immediately trapped. The electron executes random walk by
thermal hopping. It is most likely that the electron does not

FIG. 2. Temperature dependence of photoluminescence intensity
from a-Si:H excited with the pulsed laser of photon energy of 2.32
eV. The photoluminescence has been observed at the delay time
10 �s and the peak energy of 1.24 eV. The solid line is
exp�−T /Tc� with Tc=30 K.
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necessarily recombine with the hole even when it reaches a
recombination distance.28

The recombination rate in a lattice model is also derived,
where an electron is excited initially at a neighboring site of
a hole and recombination takes place with a certain rate
when an electron and a hole occupy the same site. The re-
combination rate is obtained from the decay rate of survival

probability N�b� j , t� calculated previously as

N�b� j,t� �
1

��r
3/2/�rc��t�/2 , �2.22�

which is Eq. �6.13� of Ref. 21. By taking the time derivative
of the above equation the scaling relation Eq. �2.17� is repro-
duced.

III. DISCUSSION

The photoluminescence observed at temperatures higher
than 50 K has a long time asymptotic decay described by t−�.
The exponent � is smaller than 1.5 predicted from a geminate
recombination model with normal diffusion of an electron.9

If one takes into account that electron hopping between lo-
calized sites in the band tail states cannot be described by
normal diffusion but by dispersive transport due to many
time scales for detrapping, the exponent � is expressed in
terms of disorder parameter � by �=1+� /2. The predicted
value of � is consistent with experimentally measured value
when � obtained by time-of-flight experiments is used. In the
time-of-flight experiments the transit current I is described
by two different power law decay functions I� t−�1−�i� �t
� ttr� and I� t−�1+�f� �t� ttr�, where ttr is called the transit

time. The continuous time random walk model and fractional
Fokker-Planck equation predict �i=� f.

10,27 However, mea-
sured values of �i and � f are slightly different.12,30 When
they are different we choose �=�i because photolumines-
cence mainly decays within the transit time and the origin of
discrepancy between �i and � f has not been fully under-
stood. A possible origin is the structured distribution of lo-
calized states.31,32 The other possibility is that it is due to the
correlation between waiting times which is neglected in the
continuous time random walk model. In fact different values
of �i and � f are obtained in the hopping simulation in which
the correlation between hopping frequencies exists.33

Theory and experiment can also be compared by evaluat-
ing the temperature dependent decrease of the luminescence
intensity due to the escape of an electron-hole pair from re-
combination. The measured intensity of photoluminescence
obeys a scaling relation Eq. �2.19�. The scaling relation is
obtained from a geminate recombination model with disper-
sive diffusion. The reasonable parameter values are obtained
by assuming that initially an electron is photoexcited close to
a hole and the intrinsic recombination rate of an electron
with a hole is not infinitely large.

The competition between radiative recombination and
nonradiative escape processes of diffusion is taken into ac-
count in the geminate recombination model by introducing a
sink term for radiative recombination and dispersive diffu-
sion for transport. Recently, we have derived a fractional
reaction-diffusion equation from a continuous time random
walk model.24,25 Recombination rate �Eq. �2.13�� can be also
derived from the fractional reaction-diffusion equation

�

�t
��r,t� =

�

�t
�

0

t

d t1
1

����
1

�t − t1�1−��D��2��r,t1�

− k�

��r − R�
4�R2 ��r,t1�	 . �3.1�

Another remark on the temperature dependence of the pho-
toluminescence intensity is that measured values of � is not
proportional to temperature for some semiconductors.34 In
principle, the measured values of � for each temperature
should be employed when we compare theoretical results
with experimental data.

As in the previous geminate recombination model for nor-
mal diffusion, we have neglected the Coulombic interaction
of an electron with a hole, although Onsager radius in these
amorphous semiconductors are known to be large close to
100 Å.2,9 For normal diffusion, the power of the long time
algebraic decay of recombination rate is independent of Cou-
lombic interaction.2,9 In the presence of distributed site ener-
gies of localized states, we should further take into account
the relative magnitude of the Coulombic interaction against
the fluctuation of activation energy associated with hopping
transition. When an electron is distance r away from a hole
Coulombic potential is U�r�=−e2 / �r�, where �10 is the
dielectric constant of a-Si:H.9 Coulombic interaction creates
energy difference for a hopping transition with a distance b
�20−50 Å, which is estimated to be bdU�r� / �dr�
=e2b / �r2�, while the fluctuation of activation energy asso-

FIG. 3. Total light decay of photoluminescence in a-Si:H ex-
cited with the pulsed laser of photon energy of 2.32 eV. The pho-
toluminescence has been observed at different temperatures, 105,
145, and 170 K �top to bottom� �Ref. 8�. Solid lines are theoretical
lines given by Eq. �2.19�.
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ciated with a hopping transition is characterized by the mean
depth of distributed site energies of localized states, kBT0
with T0�313 K. By equating these two quantities, we
find a characteristic length Rs��e2b / �kBT0��40 Å, which
is much smaller than the Onsager length. When distance be-
tween a hole and an electron is larger than the characteristic
length Rs, Coulombic interaction can be neglected. Since Rs
is small and comparable to the hopping distance and we are
interested in the long time asymptotic of the photolumines-
cence, where electron migration at large distances from a
hole is important, the power of the long time asymptotic of
the recombination rate would not be influenced by Coulom-
bic interaction. The interaction may be important for the de-
cay of photoluminescence at short times, which we do not
investigate in this paper. Further theoretical study is required
to clarify the influence of Coulombic interaction on the re-
combination rate.

A probable mechanism of geminate recombination is ra-
diative tunneling which occurs at short distance comparable
to hopping distance.1,2 Such short range reaction can be mod-
eled by recombination reaction at encounter distance as long
as long time asymptotic is concerned. Distance dependence
of intrinsic reaction rate matters for short time kinetics. The
more precise model should be introduced to account for the
photoluminescence decay at short times. Ando et al.,7 Mu-
rayama and Ando,16 Murayama and Kuwabara,33 Murayama
et al.,35 and Murayama and Ikeuchi36 have developed a the-

oretical model for dispersive transport, where the energy
fluctuation of the localized band tail states is self-affine. By
the Monte Carlo simulation the photoluminescence decay
over the whole range of time are well reproduced as well as
the dispersive transit currents. More recently, the fractional
diffusion equation is numerically solved by Fukunaga to re-
produce the photoluminescence decay over the whole range
of time,37 although his way of including the recombination
reaction is different from ours because the reaction term is
not coupled to the memory kernel like Eq. �3.1�.24,25,38 The
long time asymptotic is different from ours when ��2/3.21

Although our theory is restricted only to the long time
asymptotic decay, it provides an analytical relation between
the exponent of algebraic photoluminescence decay and the
disorder parameter �, which can be obtained from the time-
of-flight experiments. The amplitude of the power law decay
of photoluminescence is also given in terms of the disorder
parameter �. Experimental evidence is also presented in this
paper, which supports our analytical results.
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