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We derive an effective polaronic interaction Hamiltonian, exact to second order in perturbation, for the
spinless one-dimensional Holstein model. The small parameter is given by the ratio of the hopping term �t� to
the polaronic energy �g2�0� in the whole region of validity for our perturbation; however, the exception is the
regime of extreme antiadiabaticity �t /�0�0.1� and small electron-phonon coupling �g�1� where the small
parameter is t /�0. We map our polaronic Hamiltonian onto a next-to-nearest-neighbor interaction anisotropic
Heisenberg spin model. By studying the mass gap and the power-law exponent of the spin-spin correlation
function for our Heisenberg spin model, we analyze the Luttinger liquid to charge-density wave transition at
half filling in the effective polaronic Hamiltonian. We calculate the structure factor at all fillings and find that
the spin-spin correlation length decreases as one deviates from half filling. We also extend our derivation of
polaronic Hamiltonian to d dimensions.
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I. INTRODUCTION

Understanding the many-body aspects of the Holstein
model1 has been a long-standing open problem. Significant
progress has been made in understanding the single-polaron
problem through analytic treatments in the small- and large-
polaron limits and numerical approaches in the intermediate-
size case.2 While studies of the many-polaron problem, in-
volving spin degrees of freedom, yielded interesting insights
for bipolarons and their phase transitions,2,3 the simpler case
of the spinless many-polaron problem has received only
scant attention.4 With the renewed interest in strongly corre-
lated manganite systems5 �which are of high electronic den-
sity when the electron-phonon interactions are supposed to
be important� it is imperative that the effective interaction
between polarons be understood so that a serious attempt at
explaining the rich phase diagram of these systems can be
made. Although studying manganites demands knowledge of
the effective Jahn-Teller polaronic interaction, in the low-
doped case the effective Hamiltonian at 0 K for the occupied
states can be taken as a Holstein model.6 Thus a good under-
standing, involving exact results, of the simpler effective
polaronic interaction for the Holstein model, which has been
elusive so far, is highly desirable. Furthermore, an effective
polaronic Hamiltonian even in the simplest spinless one-
dimensional �1D� case would also be quite useful
for modeling Luttinger liquid �LL� to charge-density wave
�CDW� transitions in half-filled systems. Quasi-1D
organic conjugated polymers �such as �CH�x�, charge transfer
salts �such as tetrathiafulvalene-tetracyanoquinodimethane
�TTF-TCNQ��, and inorganic blue bronzes7 �e.g., K0.3MoO3�
are good candidates for such broken symmetry in the ground
state, leading to unit cell doubling.

The present paper, using the Lang-Firsov transformation,8

provides a transparent perturbative approach to deriving the
effective Hamiltonian of interacting polarons in d dimen-
sions when the band narrowing is significant. The resulting
polaronic Hamiltonian, exact to second order in perturbation,
is studied in 1D at 0 K for density-density correlation ef-

fects. The correlation function exponent of the concomitant
quasi-long-range order is demonstrated to be useful in char-
acterizing the Luttinger liquid and the charge-density-wave
phases of the system.

II. EFFECTIVE POLARONIC HAMILTONIAN

We begin in 1D by taking the unperturbed Hamiltonian to
be the noninteracting polaronic term9

H0 = �0�
j

aj
†aj − �0g2�

j

cj
†cj − J1�

j

�cj
†cj+1 + H.c.� , �1�

with the perturbation being

H� = �
j

Hj = − J1�
j

�cj
†cj+1�S+

j†S−
j − 1� + H.c.� , �2�

where H0+H� make up the Lang-Firsov transformed Hol-
stein Hamiltonian and cj �aj� is the fermionic �phononic�
destruction operator, �0 the Debye frequency, S±

j

=exp�±g�aj −aj+1��, J1= texp�−g2�, with t being the hopping
term, and g2�0 the polaronic binding energy. The eigenstates
are given by �n ,m	
�n	el � �m	ph with �0, 0	 being the ground
state with zero phonons. The eigenenergies are En,m=En

el

+Em
ph. Since �0,n��H��n ,0	=0, the first-order perturbation

term is zero and the relevant excited states correspond to
states with nonzero phonons. Next, we represent �m	ph in real
space as phononic excitations at different sites with one pho-
non state being aj

†�0	ph, which is N-fold degenerate and can
correspond to any site j. On the other hand, the electronic
state �n	el is represented in the momentum space. We will
now calculate second-order perturbation terms exactly:

E�2� = �
l,j

�
n,m

�0,0�Hl�n,m	�m,n�Hj�0,0	
E0,0 − En,m

.

Now En
el−E0

el�J1 and �Em
Em
ph−E0

ph is a nonzero integral
multiple of �0. Assuming J1��0 �which certainly is true for
realistic values of 2� t /�0�4 and 6�g2�10 found in man-
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ganites� and using �n�n	�n�= I we get the corresponding
second-order term in the effective Hamiltonian for polarons
to be

H�2� = �
l,j

�
m

�0�phHl�m	ph�m�phHj�0	ph

− �Em
.

In the above equation, the term Hj produces phonons at sites
j and j+1. Hence, to match that, its counterpart Hl should
produce phonons in at least one of the two sites j and j+1.
Thus the index l= j−1, j, or j+1. Next on defining
P±�j ;m�
�0�phS±

j −1�m	ph and bj 
cj
†cj+1 we get

H�2� = − �
j,m

J1
2

�Em
��bj

†bjP+�j ;m� + bj−1bjP−�j − 1;m�

+ bj+1bjP−�j + 1;m��P+
†�j ;m� + �bjbj

†P−�j ;m�

+ bj−1
† bj

†P+�j − 1;m� + bj+1
† bj

†P+�j + 1;m��P−
†�j ;m�� .

�3�

Then using �a†�n�0	=n!�n�	 with �n�	 being a state with n
phonons we get the effective polaronic Hamiltonian to be

Hef f
pol = − g2�0�

j

nj − J1�
j

�cj
†cj+1 + H.c.�

+ Jz�
j

njnj+1 + 2J2�
j

�cj−1
† njcj+1 + H.c.�

− J2�
j

�cj−1
† cj+1 + H.c.� − Jz�

j

nj , �4�

where Jz
�J1
2 /�0��4f1�g�+2f2�g�� and J2
�J1

2 /�0�f1�g�
with f1�g�
�n=1

� g2n / �n!n� and f2�g�
�n=1
� �m=1

� g2�n+m� /
�n!m!�n+m��. It is of interest to note that the single polaronic
energy part of the above Hamiltonian matches with the self-
energy expression at k=0 obtained by Marsiglio10 and the
self-energy at a general k by Stephan11 and lends credibility
to our results. Furthermore, in the work of Hirsch and
Fradkin,12 the coefficient of nearest-neighbor interaction
agrees with our coefficient Jz for large values of g while the
coefficients of the next-to-nearest-neighbor �NNN� hopping
are in disagreement with ours and the results of Refs. 10 and
11. Next we make the connection that, on using the Wigner-
Jordan transformation 	i

+=� j�i�1−2nj�ci
†, we can map the

effective polaronic Hamiltonian exactly �up to a constant�
onto the following NNN anisotropic Heisenberg spin chain:

Hef f
spin = − g2�0�

j

	 j
z − J1�

j

�	 j
+	 j+1

− + H.c.�

+ Jz�
j

	 j
z	 j+1

z − J2�
j

�	 j−1
+ 	 j+1

− + H.c.� , �5�

where the coefficient of the first term represents coupling to
a longitudinal magnetic field. Although the NNN interactions
in the above Hamiltonian do not produce frustration, never-
theless the Hamiltonian cannot be solved by the coordinate
Bethe ansatz.13 Hence we have recourse to analyzing the
properties of the effective Hamiltonian numerically by using
a modified Lanczos technique �see Ref. 14 for details�.

III. LUTTINGER LIQUID TO CDW TRANSITION

The spin Hamiltonian Hef f
spin in Eq. �5� with J2=0, i.e.,

without NNN interaction, has been shown to undergo a LL to
CDW state transition at zero magnetization �� j	 j

z=0� when
Jz=2J1 and at nonzero magnetization is always a LL.15 On
including a nonzero J2, the disordering effect increases be-
cause the NNN interaction is only in the transverse direction
and the LL to CDW transition will occur at higher values of
Jz. We expect that including J2 does not change the univer-
sality class and that the central charge c=1.

We first study the static spin-spin correlation function on
rings with an even number of sites N and extract information
about the critical exponent. The static spin-spin correlation
function for a chain of length N is given by Wl�N�
= �4/N��i=1

N �Si
zSi+l

z 	 and has the asymptotic behavior
limN→�Wl�N��A�−1�l / l
 for the anisotropic Heisenberg
model when l�1.16 Furthermore, A is an unknown constant
and 1�
�2 when the system is in the disordered �or LL�
state, 
=1 is the transition point to the antiferromagnetic
�CDW� state, and 
=0 means the system is totally antiferro-
magnetic �or CDW�.

We will now derive an analytic expression for the critical
exponent 
 based on the work of Luther and Peschel.16 The
effective polaronic Hamiltonian given by Eq. �4� can be writ-
ten in momentum space as

Hef f
pol = − 2J1�

k

cos�k�ck
†ck +

Jz

N
�

q

cos�q���q���− q�

−
4J2

N
�

k,k�,q

cos�k + k��ck+q
† ck�

† ck�+qck

− 2J2�
k

cos�2k�ck
†ck, �6�

where ��q�=�pcq+p
† cp. Furthermore, constant terms have

been ignored. Next, we linearize the kinetic energy term
close to the Fermi points and follow it up with the bosoniza-
tion procedure. Then on taking exchange effects into ac-
count, as pointed out by Fowler,17 we obtain the following
bosonized Hamiltonian:

Hbos
pol = �4J1 + 4Jz + 8J2

N
� �

k�0;i=1,2
�i�k��i�− k�

+ �8Jz − 32J2

N
��

k�0
�1�k��2�− k� . �7�

It is important to note that only the forward scattering part
involving the coefficient Jz contributes to the self-energy cor-
rection.

Now, to calculate the critical exponent 
, we will follow
the usual procedure and diagonalize the bosonized Hamil-
tonian of Eq. �7� using the following transformations:

�1�k� = �̄1�k�cosh � + �̄2�k�sinh �

and

DATTA, DAS, AND YARLAGADDA PHYSICAL REVIEW B 71, 235118 �2005�

235118-2



�2�k� = �̄2�k�cosh � + �̄1�k�sinh � .

Then, on setting the coefficient of the off-diagonal term
equal to zero in the transformed Hamiltonian, we get

tanh 2� = −
2Jz − 8J2

2J1 + 2Jz + 4J2
. �8�

Using Eq. �8� we obtain


 = 2e2� = 2� 1 + 6J2/J1

1 + 2Jz/J1 − 2J2/J1
�1/2

. �9�

IV. RESULTS AND DISCUSSION

It is known that for an anisotropic Heisenberg spin chain,
when N /2 is even the correlation function goes to zero
smoothly as the longitudinal interaction goes to zero.18

Hence we have calculated WN/2�N� only for odd values of
N /2 with N=6, 10, 14, 18, and 22 at J1=1 and different
values of Jz and J2. Using a linear least squares fit for a plot
of ln WN/2�N� versus ln N we obtained the value of 
 from
the slope at each value of Jz and J2. The error in 
 for all
curves is within �0.05 and hence verifies that one has the
expected quasi-long-range order. For Jz=2 and J2=0 we get

=0.96±0.05 which includes the exact value of 
=1 ob-
tained from the Bethe ansatz. Thus we expect the 
 values
obtained by our procedure to be reasonably accurate. Since
for Jz�2 and J2=0 we obtain a CDW state, by increasing J2
at any Jz�2 we should increase the disordering effect and
hence we see in Fig. 1 that the 
 value increases. We find
that for Jz�6 the value of 
 becomes slightly negative but
with magnitude within the error of 0.05. At higher Jz values
��10 and higher� 
 tends to zero. At small values of Jz

��0.5� as J2 increases initially 
 increases even to values
above 2 and then decreases to values below 2. We think that
this interesting feature occurs because smaller values of J2
enhance disorder while larger values of J2 increase correla-
tions. However, the behavior at Jz=0 and J2�0 needs fur-
ther understanding. Our derived analytic expression, reliable
at small values of J2 /J1 and 
�2, shows that 
 does in-

crease with increasing values of J2 and gives values reason-
ably close to the numerical ones for Jz /J1�1.

We will now consider the mass gap, at the half-filled state
for the Hamiltonian H=Hef f

pol+g2�0� jnj �see Eq. �4��, defined
as twice the energy difference between the ground state with
1+N /2 electrons and the ground state of the N /2 electronic
system. The mass gap is calculated for rings with N=10, 12,
14, 16, 18, and 20 sites. Including N=6 and 8 only increases
the error. The mass gap plot in Fig. 2 is obtained using finite-
size scaling by plotting the mass gap versus 1/N and ex-
trapolating the linear least squares fit to the value corre-
sponding to 1/N=0. In the plot the size of the symbol is
larger than the error. From the inset of the plot of mass gap
versus Jz at various values of J2, we see that the mass gap
goes to zero at Jz�1.4 at J2=0 which is a significant under-
estimation of the transition value of Jz=2. Also on compar-
ing with Fig. 1, we again notice that the LL to CDW transi-
tion value of Jz at different J2 values is grossly
underestimated. Furthermore, as expected, the mass gap in-
creases �decreases� monotonically with Jz �J2� at a fixed J2

�Jz�.
We will now discuss the region of validity for our model,

given by Eq. �4� and as depicted in Fig. 3 �region above the
lower curve�, in the two-dimensional parameter space of g
and t /�0. First, since we use the assumption that �0�J1 in
our derivation, we choose the validity condition as �0
�10J1. Next, we would like the second-order energy term

FIG. 1. Plot of spin-spin correlation exponent for various values
of Jz and J2. The dashed lines are guides to the eye.

FIG. 2. Mass gap dependence on Jz and J2.

FIG. 3. Plot of region of validity boundary and LL-CDW phase
boundary for g versus t /�0. The errors are smaller than the sym-
bols. The crosses depict realistic regime.
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E�2� in the perturbation series to be much smaller than the
unperturbed term E0,0. We find that for t /�0�1, the condi-
tion �0=10J1 produces a boundary on which the ratio
E0,0 /E�2��5 with the ratio increasing rapidly as t /�0 de-
creases. As for t /�0�2, we find that the condition g2�0
�3Jz is more restrictive than the first one ��0�10J1� and
produces a ratio of E0,0 /E�2��3 at the boundary. Next we
will discuss the LL to CDW phase transition boundary ob-
tained from 
=1 condition and depicted by the upper curve
in Fig. 3. We find that the phase transition points lie within
the region of validity only for t /�0�0.6. In the region to the
right of the dashed vertical line and below the region-of-
validity curve the phase boundary cannot be determined us-
ing our model. It is important to note that the experimentally
realistic parameter regime 6�g2�10 and 2� t /�0�4 lies
mostly inside the region of validity. Upon comparing our
numerical phase transition results with those of Bursill
et al.,19 we find that for small values of t /�0�0.1 the critical
gc values agree well. However for larger values the results do
not agree. At t /�0=0.5 our gc=1.45±0.02 �with E0,0 /E�2�

�17 and � /J1�15� is noticeably smaller than the gc
=1.63�1� of Ref. 19 and at t /�0=1 we find that gc�1.52
whereas Bursill et al. get gc=1.61�1�. As for t /�0�2, our
region of validity lies above the phase transition boundary
given in Ref. 19. However, interestingly, the numerical esti-
mates of the critical gc by Hirsch and Fradkin12 are consis-
tent with our results, with their gc value agreeing with ours at
t /�0=0.5, while at higher values of t /�0 their gc values lie
outside our region of validity.

Now that the region of validity has been identified, we
will analyze within this region the small parameter for our
pertubation theory. For g�1, one approximates f1�g�
�eg2

/g2 and �2f1�g�+ f2�g���e2g2
/2g2 with the approxima-

tions becoming exact in the limit g→�. Then the effective
polaronic Hamiltonian of Eq. �4�, for the case g�1, simpli-
fies to

Hef f
pol � − g2�0��

j

nj + �e−g2�
j

�cj
†cj+1 + H.c.�

+ �2e−g2�
j

�cj−1
† �1 − 2nj�cj+1 + H.c.�

+ �2�
j

nj�1 − nj+1�� , �10�

where �
 t /g2�0 is the polaron size parameter. In the region
of validity for our model, when the adiabaticity parameter
t /�0�0.2, we have the constraints g�1 and g2�0�2t. Thus
we see that, for the region t /�0�0.2, the polaron size pa-
rameter � is the small parameter.

Now, for the extreme antiadiabatic regime of t /�0�0.1,
all values of g are allowed by our model. When g�1, again
Eq. �10� is valid with the same small parameter �. However,
when g�1, we make the approximations f1�g��g2 and
�2f1�g�+ f2�g���2f1�g� with the approximations becoming
exact in the limit g→0. Then, for g�1, the effective po-
laronic Hamiltonian given by Eq. �4� becomes

Hef f
pol � − g2�0��

j

nj + �e−g2�
j

�cj
†cj+1 + H.c.�

+ � t

�0
�2

e−2g2�
j

�cj−1
† �1 − 2nj�cj+1 + H.c.�

+ 4� t

�0
�2

e−2g2�
j

nj�1 − nj+1�� . �11�

Thus, for the regime t /�0�0.1 and g�1, the adiabaticity
parameter t /�0 is the small parameter in Eq. �11� with g
�1 corresponding to small polarons and g→0 �such that
g2�0� t� corresponding to large polarons.

Finally, we also study the static structure factor SN�k�

�l=1

N eiklWl�N�. The structure factor offers information
about the correlation lengths even in the LL phase at all
filling factors n. In fact, the correlation length decreases with
increasing width of the structure factor near its peak at 2n.
We first observe that �kSN�k�=N and that SN�0�=4N�n
−0.5�2, both of which are borne out by both the plots in Fig.
4 done at N=20. The plots are only for k=2m /N with m
=0,1 , . . . ,N /2 as SN�k� is symmetric about , and are only
for n�0.5 because of particle-hole symmetry. Figure 4�b�,
plotted for t /�0=0.5 and g=gc=1.45 �or Jz=2.53 and J2
=0.245�, corresponds to the LL-CDW transition point at n
=0.5, while Fig. 4�a�, done for the realistic values of t /�0
=3 and g=3 �or Jz�3000 and J2�0.38�, depicts the situa-
tion deep inside the CDW phase at n=0.5. Now, we know
that at n=0.5, the structure factor SN����dl / l
 and hence
diverges for 
�1 �CDW regime� as N→� with the diver-
gence being faster as we go deeper inside the CDW regime.
Also the structure factor remains finite at 2n for all other
filling factors even when N→� because here the system is
always a LL. From plot �a� we infer that deep inside the
CDW state SN���N and SN�k���0. As for the CDW
transition point depicted in plot �b� at n=0.5, the structure
factor peaks sharply but more gradually at k=. In both plots
the largest peak occurs for n=0.5 with peak size diminishing
and curve width increasing as values of n decrease. Thus, we
see that for n�0.5 also, short-range correlations exist with
the correlation length decreasing as the deviation from half
filling increases.

FIG. 4. Structure factor plots at various values of k and n.
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Lastly and importantly, using arguments similar to those
in the 1D case, we have also derived the effective polaronic
Hamiltonian in d dimensions to be20

Hef f
pol = − g2�0�

j

nj − J1�
j,�

cj
†cj+�

− J2 �
j,�,����

cj+��
† �1 − 2nj�cj+� − 0.5Jz�

j,�
nj�1 − nj+�� ,

�12�

where � corresponds to the nearest neighbor.21

In conclusion, we have derived an effective polaronic
Hamiltonian for the spinless 1D Holstein model which is
found to be valid in most of the experimentally realistic re-
gime. We mapped the effective Hamiltonian onto a next-to-
nearest-neighbor anisotropic Heisenberg Hamiltonian. Using
the modified Lanczos technique extensively, we computed

the static spin-spin correlation exponent 
 and the mass gap
at half filling for general values of the parameters in the
effective spin Hamiltonian. The mass gap values were found
to significantly underestimate the critical electron-phonon
coupling gc. In contrast, the 
 values were found to give
reliable estimates of gc and consequently were used to deter-
mine the LL-CDW quantum phase transition. The structure
factor calculations revealed that the correlation length dimin-
ishes with increasing deviation from half filling. Lastly, our
approach, exact to second order in perturbation, is extended
to obtain an effective polaronic Hamiltonian in d dimensions
also. Our work opens up a whole host of future challenges
such as �1� extension to finite temperatures and studying the
metal-insulator transition; �2� including the Hubbard interac-
tion U; �3� analyzing the d-dimensional model in Eq. �12�;20

and �4� deriving an analogous effective Hamiltonian for
Jahn-Teller systems.
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