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We investigate the influence of a dissipative environment which effectively comprises the effects of coun-
terions and hydration shells, on the transport properties of short DNA wires. Their electronic structure is
captured by a tight-binding model which is embedded in a bath consisting of a collection of harmonic oscil-
lators. Without coupling to the bath a temperature independent gap opens in the electronic spectrum. Upon
allowing for electron-bath interaction the gap becomes temperature dependent. It increases with temperature in
the weak-coupling limit to the bath degrees of freedom. In the strong-coupling regime a bath-induced
pseudogap is formed. As a result, a crossover from tunneling to activated behavior in the low-voltage region of
the I-V characteristics is observed with increasing temperature. The temperature dependence of the transmis-
sion near the Fermi energy, t�EF�, manifests an Arrhenius-type behavior in agreement with recent transport
experiments. Moreover, t�EF� shows a weak exponential dependence on the wire length, typical of strong
incoherent transport. Disorder effects smear the electronic bands, but do not appreciably affect the pseudogap
formation.

DOI: 10.1103/PhysRevB.71.235116 PACS number�s�: 71.38.�k, 05.60.Gg, 87.15.�v, 72.20.Ee

I. INTRODUCTION

The idea that conduction pathways in DNA molecules
may be built up as a result of the hybridization of the �
orbital stack along consecutive base pairs can be traced back
to the 1960s.1 It was not, however, until recently that a re-
vival of interest on DNA as a potential conductor occurred.
This was mainly triggered by the observation of long-range
electron transfer between intercalated donor and acceptor
centers in DNA molecules in solution.2 Subsequent experi-
mental results3–9 were controversial as they showed different
functional dependencies of electron transfer rates on the
donor-acceptor separation. Thus, strong exponential
fall-off4,5 typical for superexchange mediated transfer as well
as a weak, algebraic dependence3,8 characteristic of sequen-
tial hopping processes were reported. Meanwhile, theoretical
work has led to an emerging picture where different mecha-
nisms may coexist depending on base-pair sequence and
energetics.10,11

In parallel to these developments in the chemical physics
community, dc transport experiments on �-DNA as well as
on poly�dG�-poly�dC� and poly�dA�-poly�dT� molecules be-
tween metal electrodes have been performed.12–19 Several
fundamental difficulties have to be surmounted in this kind
of experiments: �i� how to create good contacts to the metal
electrodes, �ii� how to control charge injection into the mol-
ecule, �iii� single molecule vs bundles of molecules, and �iv�
dry vs aqueous environments, among others. Consequently,
sample preparation and the specific experimental conditions
turn out to be very critical for DNA transport measurements.
Thus, experiments have yielded contradictory results as to
the conduction properties of DNA and are rather difficult to
analyze. DNA has been characterized as a pure insulator,14,16

as a wide-band gap semiconductor,13 and as a metallic
system.12,20 Especially interesting are recent transport mea-
surements on single poly�dG�-poly�dC� oligomers in aque-
ous solution, which displayed metallic-like I-V characteris-
tics and an algebraic behavior in the length dependence of
the conductance.20

Notwithstanding this variety of results and the problems
related to the experimental setup, the possibility of using
DNA in molecular electronics is extremely attractive since it
would open a vast range of potential applications because of
its self-assembling and recognition properties.14 Alterna-
tively, DNA can also be used as a template in molecular
electronic devices.21–23

From a theoretical point of view, the knowledge of the
electronic structure of the base-pairs, the sugar/phosphate
mantle and their mutual interactions is required in order to
clarify the transport processes that may be effective in DNA.
First principle approaches are the most suitable tools for this
goal. However, the huge complexity of this molecule makes
ab initio calculations still very demanding, so that only few
investigations have been performed, mainly in well-stacked
periodic structures.24–34 To complicate this picture, environ-
mental effects such as the presence of water molecules and
counterions which stabilize the molecular structure make ab
initio calculations even more challenging.26,27 Hence, Hamil-
tonian models36–46 that isolate single factors affecting elec-
tron transport are still playing a significant role and can help
to shed more light onto the above issues as well as guide first
principle investigations.

Recently, Cuniberti et al.41 proposed a minimal model
Hamiltonian to explain the semiconducting behavior previ-
ously observed by Porath et al.13 in suspended short �up to
30 base-pairs� poly�dG�-poly�dC� molecules. Remarkably
enough, this experiment was performed on single molecules,
in contrast to most transport experiments involving bundles
of molecules. Molecular systems like poly�dG�-poly�dC� �or
poly�dA�-poly�dT�� are very attractive from a theoretical
standpoint since, being periodic, bandlike transport as a re-
sult of �-orbitals hybridization may be more efficient than in
its strongly disordered counterparts, e.g., in �-DNA. The
above model41 mimics the electronic structure of the com-
plex poly�dG�-poly�dC�-backbone system by a tight-binding
chain to which side chains are attached. Electrons can hop
along the central chain but not along the side chains. As a
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result a gap in the electronic spectrum opens. The gap is
obviously temperature independent and the transmission near
the Fermi level would show a strong exponential dependence
due to the absence of electronic states to support transport.

An immediate issue that arises is how stable this elec-
tronic structure, i.e., two electronic bands separated by a gap,
is against the influence of several factors which are known to
play an important role in controlling charge propagation in
DNA molecules, such as static and dynamic disorder47–53 and
environment.26,27,40 In particular, the environment can act as
a source of decoherence for a propagating electron �or
hole�,40 it can induce structural fluctuations that support or
restrict charge motion,26 or it can introduce additional elec-
tronic states within the fundamental gap.19,27 As it has been
demonstrated experimentally, a modification of the humidity
causes variations of orders of magnitude in the conductivity
of DNA.54,55 Moreover, the recent single-molecule experi-
ments of Xu et al.20 suggest that the environment may
strongly modified the low-bias transport properties of DNA
oligomers.

In this paper we elaborate on the role played by the envi-
ronment by addressing signatures of the bath in the elec-
tronic transmission spectrum of the DNA wire in different
coupling regimes: the mean-field approximation as well as
weak-coupling and strong-coupling limits. Anticipating some
of our results, we find that the semiconducting gap closes on
the mean-field level as a result of thermal fluctuations. In the
weak-coupling limit, however, the gap opens with increasing
temperature. In both cases the electronic gap is an “intrinsic”
property of the system. On the contrary, a bath-induced
pseudogap is formed in the strong coupling limit, i.e., an
energy region with a low �but finite� density of electronic
states. We have further found in this regime that the trans-
mission at the Fermi level exponentially decreases with the
wire length L, t�EF��e−�L. The decay rate � is however
rather small �0.2 Å−1. This together with a noticeable de-
pendence of � on the electron-bath coupling clearly indicates
that incoherent pathways do appreciably contribute to charge
transport in the strong coupling limit.

In the next section we introduce the model Hamiltonian
and derive the corresponding Green functions which are re-
quired to calculate the linear conductance. In Sec. III differ-
ent approximation schemes associated with different cou-
pling regimes to the bath are discussed. The influence of
structural disorder on our results is also presented. Finally,
our summary follows in Sec. IV.

II. HAMILTONIAN MODEL

Along the lines of Refs. 41, we represent the DNA mo-
lecular wire containing N base pairs by the following
nearest-neighbor tight-binding Hamiltonian �see Fig. 1�,

Hel = �b�
j

bj
†bj − t��

j

�bj
†bj+1 + h.c.�

+ ��
j

cj
†cj − t��

j

�bj
†cj + h.c.� = HC + Hb + HC−c.

�1�

Hereby HC and Hb are the Hamiltonians of the central and

side chains, respectively, and HC-b is the coupling between
them. t� and t� are hopping integrals along the central chain
and between the backbone sites and the central chain, respec-
tively. If not stated otherwise, the on-site energies will be
later set equal to zero. The HC Hamiltonian can be consid-
ered as effectively modeling one of the frontier orbitals of
the poly�dG�-poly�dC� system, e.g., the highest-occupied
molecular orbital, which is localized on the guanine
bases.27,28 The side chain induces then a perturbation of the
�-stack leading to the opening of a temperature independent
semiconducting gap in the electronic spectrum, the gap being
proportional to the transversal hopping integral t�.41 Since
this model shows electron-hole symmetry, two electronic
manifolds containing N states each, are symmetrically situ-
ated around the Fermi level, which is taken as the zero of
energy.

We focus here on the influence of the environment on the
electronic structure and consequently on the transport prop-
erties of the model described by Hel. As it has been demon-
strated in the past years, correlated fluctuations of hydrated
counterions strongly influence electron�hole� motion along
the double-helix.19,26 Recent Raman and neutron scattering
experiments on lysozyme have shown that the protein dy-
namics follows the solvent dynamics over a broad tempera-
ture range. Especially, conformational changes, low-energy
vibrational excitations and the corresponding temperature
dependences turned out to be very sensitive to the solvents
dynamics.57 We consider the vibrational degrees of freedom
of counterions and hydration shells in DNA as a dynamical
bath able to act as a dissipative environment. In this model
Hamiltonian approach, we do not consider specific features
of the environment but represent it by a phonon bath of M
harmonic oscillators. We further make the assumption that
the bath is only directly affecting the side chain whereas the
central chain is well screened by the latter. Then, the ex-
tended Hamiltonian becomes58

HW = Hel + �
�

��B�
†B� + �

�,j
��cj

†cj�B� + B�
†�

= Hel + HB + Hc−B, �2�

where HB and Hc-B are the phonon bath Hamiltonian and the
backbone-bath interaction, respectively. B� is a bath phonon

FIG. 1. �Color online� Schematic drawing of the DNA molecu-
lar wire in contact with a dissipative environment. The central chain
with N sites is connected to semiinfinite left �L� and right �R� elec-
tronic reservoirs. The bath only interacts with the side chain sites
�c�, which we call backbone sites.56 The Hamiltonian associated
with this model is given by Eqs. �1�, �2�, and �3�.
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operator and �� denotes the electron-phonon coupling. Note
that we assume a local coupling of the bath modes to the
electronic density at the side chain. Later on, the thermody-
namic limit �M→�� in the bath degrees of freedom will be
carried out and the corresponding bath spectral density intro-
duced, so that at this stage we do not need to further specify
the set of bath frequencies �� and coupling constants ��.

Finally, we include the coupling of the molecular wire to
semiinfinite left �L� and right �R� electrodes,

H = HW + �
k�L,R,	

�k	dk	
† dk	 + �

k�L,	
�Vk,1dk	

† b1 + h.c.�

+ �
k�R,	

�Vk,Ndk	
† bN + h.c.�

= HW + HL/R + HL−C + HR−C. �3�

The Hamiltonian of Eq. �3� is the starting point of our
investigation. Performing the Lang-Firsov59 unitary transfor-

mation H̄=eSHe−S with the generator S
=��,j��� /���cj

†cj�B�−B�
†� and S†=−S, the linear coupling to

the bath can be eliminated. In the resulting effective Hamil-
tonian only the backbone part is modified since the central
chain operators b� as well as the leads’ operators dk	 are
invariant with respect to the above transformation. The new
Hamiltonian reads

H̄ = HC + HL/R + HB + HL/R−C

+ �� − 
��
j

cj
†cj − t��

j

�bj
†cjX + h.c.�

X = exp��
�

��

��

�B� − B�
†�	, 
 = �

�

��
2

��

. �4�

Let us define two kinds of retarded thermal Green func-
tions related to the central chain Gj��t� and to the backbones
Pj��t�, respectively ��=1�:

Gj��t� = − i��t�
�bj�t�,b�
†�0��+� ,

Pj��t� = − i��t�
�cj�t�X�t�,c�
†�0�X†�0��+� , �5�

where � is the Heaviside function and the average is taken

w.r.t. H̄. With the above definitions and using the equation of
motion technique �see Appendix� we arrive to an expression
for the Fourier transform of the central chain Green function
which reads, to lowest-order in t�,

G−1�E� = G0
−1�E� − t�

2 P�E� ,

G0
−1�E� = E1 − HC − 
L�E� − 
R�E� . �6�

In this equation G0�E� is the Green function of a chain with-
out backbones and connected to the left and right electrodes.
The influence of the latter is comprised in the complex self-
energy functions 
L/R�E�.60 The polaronic Green function
P�E� is explicitly given by

P�j�E� = − i��j�
0

�

dtei�E+i0+�te−i��−
�t

���1 − fc�e−��t� + fce
−��−t�� �7�

with e−��t�= 
X�t�X†�0��B being a dynamical bath correlation
function. The average 
·�B is performed over the bath degrees
of freedom. Working to lowest order in t� allows to use a
zero-order Green function for the side chain in Eq. �7�, i.e.,
G0,�j

c �t����je
−i��−
�t. fc is the Fermi function at the backbone

sites. In what follows we consider the case of empty sites by
setting fc=0. Note that P is a diagonal matrix, i.e., it only
modifies the on-site energies in the Hamiltonian.

In order to get closed expressions for the bath thermal
averages it is appropriate to introduce a bath spectral
density58 defined by

J��� = �
�

��
2��� − ��� = J0
 �

�c
�s

e−�/�c���� , �8�

where �c is a cut-off frequency related to the bath memory
time �c��c

−1. It is easy to show that the limit �c→� corre-
sponds to a Markovian bath, i.e., J�t��J0��t�. Using this
ansatz, ��t� can be written in the usual way,58

��t� = �
0

�

d�
J���
�2 �1 − e−i�t + 2

1 − cos �t

e�� − 1
	 . �9�

Although the integral can be performed analytically,58 we
consider ��t� in some limiting cases where it is easier to
work directly with Eq. �9�.

In the transport calculations, we limit ourselves to treat
the low voltage regime, thus neglecting nonequilibrium ef-
fects as well as the inelastic part of the total current. As a
result, one can still define a linear conductance g as
follows:61

g�E� =
2e2

h
� dE
−

�f

�E
�t�E� ,

�10�
t�E� = Tr��LG�RG†� ,

where �L,R= i��L,R−�L,R
† � are spectral densities of the leads.

Although the foregoing expression is similar to Landauer’s
formula, we stress that the influence of the phonon bath does
implicitly appear via the Green function G. Hence, both co-
herent and incoherent pathways for charge transport medi-
ated by phonon processes are included in Eq. �10�. We con-
centrate our discussion on the temperature and length
dependence of t�E�. In what follows we always plot t�E�
rather than g to filter out temperature effects arising from the
derivative of the Fermi function in Eq. �10�. For complete-
ness the current as given by I�V�= �2e /h��dE�f�E−eV /2�
− f�E+eV /2��t�E� is also shown. We remark however, that
this expression neglects non-equilibrium effects, which are
beyond the scope of this investigation.

III. LIMITING CASES

We use now the results of the foregoing section to discuss
the electronic transport properties of our model in some lim-
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iting cases for which analytic expressions can be derived. In
all cases, we use the wide-band limit in the electrode self-
energies, e.g., 
L,�j�E�=−i�L�1��1j and 
R,�j�E�=
−i�R�N��Nj. We discuss the mean-field approximation and
the weak-coupling regime in the electron-bath interaction as
well as the strong-coupling limit. Farther, the cases of ohmic
�s=1� and superohmic �s=3� spectral densities are treated.

A. Mean-field approximation (MFA)

Within the mean-field approximation bath fluctuations
contained in P�E� are neglected. The MFA can be introduced
by writing the phonon operator X as 
X�B+�X in HC−c in
Eq. �4�, e.g., HC−c

MF =−t�� j�bj
†c j
X�B+h.c.�+O��X�. As a re-

sult a real, static and temperature dependent term in Eq. �6�
is found:

G−1�E� = G0
−1�E� − t�

2 �
X�B�2

E − � + 
 + i0+1 , �11�

where �
X�B�2=e−2��T� and ��T� is given by:

��T� = �
0

� d�

�2 J���coth
�

2kBT
. �12�

The effect of the MF term is thus to scale the bare transversal
hopping t� by the exponential temperature dependent factor
e−��T�.

In the case of an Ohmic bath, s=1, the integrand in ��T�
scales as 1 /�p, p=1,2 and has thus a logarithmic divergence
at the lower integration limit, see Eqs. �8� and �12�. Thus, the
MF contribution would vanish. In other words, no gap would
exist on this approximation level.

In the superohmic case �s=3� all integrals are regular.
One obtains 
=�d��−1J���=��s−1�J0=2J0, with ��s� be-
ing the Gamma function and ��T� reads

��T� =
2J0

�c
�2
 kBT

�c
�2

�H
2,
kBT

�c
� − 1	 . �13�

�H�s ,z�=�n=0
� �n+z�−s is the Hurwitz �-function, a generali-

zation of the Riemann �-function.62

It follows from Eq. �13� that ��T� behaves like a constant
for low temperatures �kBT /�c�1�, ��T��J0 /�c, while it
scales linear with T in the high-temperature limit �kBT /�c

�1�, ��T��J0 /�c�1+2kBT /�c�.
If J0 vanishes, 
 is zero and 
X�B=1. Thus we recover the

original model of Ref. 41 which has a gap proportional to t�.
For J0�0 and at zero temperature the hopping integral is
roughly reduced to t�e−�J0/�c�, which is similar to the renor-
malization of the hopping in Holstein’s polaron model,63

though here it is t� rather than t� the term that is rescaled. At
high temperatures t� is further reduced ���T��T� so that the
gap in the electronic spectrum finally collapses and the sys-
tem becomes metallic, see Fig. 2. An appreciable tempera-
ture dependence can only be observed in the limit J0 /�c
�1; otherwise the gap would collapse already at zero tem-
perature due to the exponential dependence on J0. We further
remark that the MFA may be only valid in the regime
J0 /�c�1, kBT /�c�1, otherwise multiphonon processes in

the bath, which are not considered at this stage, become in-
creasingly relevant.

B. Beyond MF: Weak-coupling limit

As a first step beyond the mean-field approach let us first
consider the weak-coupling limit in P�E�. For J0 /�c�1 and
not too high temperatures �kBT /�c�1� the main contribu-
tion to the integral in Eq. �7� comes from long times t
��c

−1. With the change of variables z=�t, ��t� can be writ-
ten as

��t� = J0�c
−st1−s�

0

�

dzzs−2e−�z/�ct�

�
1 − e−iz + 2
1 − cos z

ez���c/�ct� − 1
� . �14�

As far as �ct���c this can be simplified to

��t� � J0�c
−st1−s�

0

�

dxzs−2e−�z/�ct�

�
1 − e−iz + 2
��c

�ct

1 − cos z

z
� . �15�

Since in the long-time limit the low-frequency bath modes
are giving the most important contribution we may expect
some qualitative differences in the ohmic and superohmic
regimes. For s=1 we obtain ��t����J0 /�c��kBT /�c���ct�
which leads to �using 
�s=1�=J0�

G−1�E� = G0
−1�E� − t�

2 1

E + J0 + i�
J0

�c
kBT

1 , �16�

i.e., there is only a pure imaginary contribution from the
bath. For the simple case of a single site coupled to a back-
bone one can easily see that the gap approximately scales as
�kBT; thus it grows with increasing temperature. This is
shown in Fig. 3, where we also see that the intensity of the

FIG. 2. �Color online� Electronic transmission and correspond-
ing current in the mean-field approximation for two different tem-
peratures. Parameters: N=20, J0 /�c=0.12, t� / t� =0.5, �L/R / t� =0.5.
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transmission resonances strongly goes down with increasing
temperature. The gap enhancement is induced by the sup-
pression of the transmission peaks of the frontier orbitals,
i.e., those closest to the Fermi energy.

For s=3 and kBT /�c�1, ��t� takes a nearly temperature
independent value proportional to J0 /�c. As a result the gap
is slightly reduced �t�→ t�e−J0/�c� but, because of the weak-
coupling condition, the effect is rather small.

From this discussion we can conclude that in the weak-
coupling limit ohmic dissipation in the bath induces an en-
hancement of the electronic gap while super-Ohmic dissipa-
tion does not appreciably affect it. In the high-temperature
limit kBT /�c�1 a short-time expansion can be performed
which yields similar results to those of the strong-coupling
limit �see next section�,42 so that we do not need to discuss
them here. Note farther that the gap obtained in the weak-
coupling and mean-field limits is an “intrinsic” property of
the electronic system; it is only quantitatively modified by
the interaction with the bath degrees of freedom. We thus
trivially expect a strong exponential dependence of t�E
=EF� on the wire length, typical of virtual tunneling through
a gap. Indeed, we find t�E=EF��exp�−�L� with �
�2–3 Å−1.

C. Beyond MF: Strong coupling limit (SCL)

In this section we discuss the strong-coupling regime, as
defined by the condition J0 /�c�1. This may be the regime
to be found in presence of an aqueous environment, as recent
theoretical estimations using the classical Onsager model for
solvation processes have shown.64 In the SCL the main con-
tribution to the time integral in Eq. �7� arises from short
times. Hence a short-time expansion of ��t� may already
give reasonable results and it allows, additionally, to find an
analytical expression for P�E�. At t��c

−1 we find,

��t� � i
t + ��ct�2�0�T� ,

P�j�E� = − i��j�
0

�

dtei�E−�+i0+�te−��ct�2�0�T�

= − i��j

��

2

1

�c
��0�T�

exp
−
�E − � + i0+�2

4�c
2�0�T�

�
�
1 + erf� i�E − � + i0+�

2�c
��0�T�

	� ,

�0�T� =
1

2�c
2�

0

�

d�J���coth
�

2kBT
. �17�

Before presenting the results for the electronic transmis-
sion, it is useful to first consider the dependence of the real
and imaginary parts of P�E� on temperature and on the re-
duced coupling constant J0 /�c. Both functions are shown in
Fig. 4. We see that around the Fermi level at E=0 the real
part is approximately linear, Re P�E��E while the imagi-
nary part shows a Gaussian-type behavior. The imaginary
part loses intensity and becomes broadened with increasing
temperature or J0, while the slope in the real part decreases
when kBT or J0 are increased. If we neglect for the moment
the imaginary part �the dissipative influence of the bath�, we
can understand the consequences of the real part being non-
zero around the Fermi energy, i.e., in the gap region. The
solutions of the nonlinear equation det��E− t�

2 Re P�E��1
−HC�=0 give the new poles of the Green function of the
system in the presence of the phonon bath. For comparison,
the equation determining the eigenstates without the bath is
simply det��E− t�

2 /E�1−HC�=0. It is just the 1/E depen-
dence near E=0 that induces the appearance of two elec-
tronic bands of states separated by a gap.41 In our present
study, however, Re P�E→0� has no singular behavior and
additional poles of the Green function may be expected to
appear in the low-energy sector. This is indeed the case, as
shown in Fig. 5 �upper panel�. We find a third band of states

FIG. 3. �Color online� Electronic transmission and correspond-
ing current in the weak-coupling limit with Ohmic dissipation �s
=1� in the bath. Parameters: N=20, J0 /�c=0.2, t� / t� =0.6, �L/R / t�

=0.5.

FIG. 4. �Color online� Temperature dependence of the real and
imaginary parts of P�E� for N=20, J0 /�c=10, t� / t� =0.4, �L/R / t�

=0.5. With increasing temperature the slope of the real part near
E=0 decreases and the imaginary part broadens and loses intensity.
A similar qualitative dependence on J0 was found �not shown�.
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around the Fermi energy, which we call a polaronic band
because it results from the strong interaction between an
electron and the bath modes. The intensity of this band as
well as its band width strongly depend on temperature and
on J0. When kBT �or J0� become large enough, these states
spread out and eventually merge with the two other side
bands. This would result in a transmission spectrum similar
of a metallic system.

This picture is nevertheless not complete since the imagi-
nary component of P�E� has been neglected. Its inclusion
leads to a dramatic modification of the spectrum, as shown in
Fig. 5 �middle panel�. We now only see two bands separated
by a gap which basically resembles the semiconducting-type
behavior of the original model. The origin of this gap or
rather pseudogap �see below� is however quite different. It
turns out that the imaginary part of P�E�, being peaked
around E=0, strongly suppresses the transmission reso-
nances belonging to the central band. Additionally, the fron-
tier orbitals on the side bands, i.e., orbitals closest to the gap
region, are also strongly damped, this effect becoming stron-
ger with increasing temperature �Im P�E� broadens�. This
latter effect has some similarities with the previously dis-
cussed weak-coupling regime. Note, however, that the new
electronic manifold around the Fermi energy does not appear
in the weak-coupling regime. We further stress that the den-
sity of states around the Fermi level is not exactly zero
�hence the term pseudogap�; the states on the polaronic
manifold, although strongly damped, contribute nevertheless
with a finite, temperature dependent incoherent background
to the transmission. As a result, with increasing temperature,
a crossover from tunneling to activated behavior in the low-
voltage region of the I-V characteristics takes place, see Fig.
5 �lower panel�. The slope in the I-V plot becomes larger
when t� is reduced, since the side bands approach each other
and the effect of Im P�E� is reinforced.

In Fig. 6 an Arrhenius plot of the transmission at the

Fermi energy is shown for different strengths of the transver-
sal hopping integral and the electron-bath coupling. After a
nearly T-independent region, the transmission strongly grows
up following approximately an e−1/T law. Increasing the cou-
pling to the phonon bath makes the suppression of the po-
laronic band around E=0 less effective �Im P�E�0� de-
creases� so that the density of states around this energy
becomes larger. Hence the absolute value of the transmission
also increases. Similar T-dependencies have been experimen-
tally observed in poly�dG�-poly�dC� �Ref. 12� as well as in
�-DNA.17 On the other side, increasing t� leads to a reduc-
tion of the transmission at the Fermi level, since the ener-
getic separation of the side bands increases with t�.

We have further investigated the length dependence of the
transmission at the Fermi energy. This is a very important
aspect that helps to identify the influence of different trans-
port mechanisms.11,65 The results are displayed in Fig. 7 for
different values of the reduced coupling J0 /�c. For a homo-
geneous chain �on-site energies are set to zero� an exponen-
tial dependence on the chain length t�EF��e−�L was found.
In this expression L=Na0, where N is the number of sites on

FIG. 5. �Color online� Upper panel: t�E� with Im P�E�=0; the
intensity of the resonances on the central narrow band is strongly
dependent on J0 /�c and kBT �not shown�. Temperature dependence
of t�E� with full inclusion of P�E� �middle panel� and correspond-
ing current �lower panel� for N=20, J0 /�c=5, t� / t� =0.5, �L/R / t�

=0.2. The pseudogap increases with temperature.

FIG. 6. �Color online� Arrhenius plot of t�E=EF� for different
transversal couplings t� �upper panel� and electron-bath couplings
J0 /�c �lower panel�. Parameters: N=20, t� / t� =0.5, �L/R / t� =0.25.

FIG. 7. �Color online� Chain length dependence of the transmis-
sion function at the Fermi energy for different electron-bath
interaction strengths. Parameters: t� / t� =0.125, �L/R / t� =0.15,
T=200 K.
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the molecular wire and a0�3.4 Å is the average distance
between consecutive base pairs. Note that the inverse decay
lengths � are rather small �0.1–0.3 Å−1. An exponential
dependence usually indicates virtual tunneling through a gap.
Inverse decay lengths, as extracted e.g., from complex band
structure calculations,34,35 are however much larger that
those obtained in the present investigation. So have recent
DFT-based calculations found values of ��1.5 Å−1 for gap
tunneling in dry poly�dG�-poly�dC� oligomers.34 The intro-
duction of a tunnel barrier as realized e.g., through insertion
of �AT�n groups, by shifting the on-site energies along a
finite segment of the chain increases the inverse decay length
� by a factor of 2, approximately. Obviously, this model
cannot describe the crossover from superexchange mediated
electron transfer �strong exponential behavior� to sequential
hopping-mediated transport �algebraic dependence� as a
function of the wire length N, as discussed in other
works.11,65 We guess that vibrational excitations inside the
central chain, which renormalize the longitudinal hopping
integral t�, have to be included to get this nonmonotonic
transition.

From the previous discussion we may conclude that elec-
tron transport on the low-energy sector of the transmission
spectrum is supported by the formation of polaronic states.
Though strongly damped, these states manifest nonetheless
with a finite density of states inside the band gap.

It has been meanwhile demonstrated26,48–53,66 that electron
�or hole� motion in DNA is extremely sensitive to different
kinds of disorder: static disorder �random base-pair se-
quences�, structural fluctuations and inhomogeneities of the
counterions distribution along the backbones. These factors
may strongly distort the base pair stacking along the double
helix and eventually affect the electronic transport properties.
They deserve a separate study. However, as a test for the
stability of our results we have randomly varied the on-site
energies along the central chain by extracting them from a
Gaussian distribution with variance 	0. In this way we are
simulating some kind of structural disorder induced, e.g., by
thermal fluctuations inside the central chain. In Fig. 8 the
cases of weak �	0�0.12t�� and strong disorder �	0� t�� are
shown. Two main features can be seen: �i� the transmission
resonances on the side bands are strongly washed out and
lose in intensity, and �ii� the pseudogap is slightly reduced
with increasing disorder. However, the suppression of the
central band due to Im P�E� and hence, the pseudogap for-
mation is not affected by this kind of disorder. As soon as
electronic states shift from the side bands into the region
with nonzero Im P�E� they are strongly damped and thus the
pseudogap structure of the spectrum is conserved. A similar
effect of disorder is expected in the other coupling regimes to
the bath degrees of freedom discussed above.

IV. SUMMARY

Charge propagation in DNA molecules is extremely sen-
sitive to disorder and environmental effects. We have fo-
cused in this paper on the influence of a dissipative environ-
ment on the electronic transport properties of a model
Hamiltonian which mimics some basic features of the elec-

tronic structure of DNA oligomers. Although we have chosen
poly�dG�-poly�dC� molecules as a reference point, we be-
lieve that our model is quite generic and may be useful for a
large class of �-conjugated systems.

We have shown that a mean-field approximation cannot
fully catch the action of a dissipative environment on charge
transport, because it only gives a real, energy independent
contribution. Indeed, while the mean-field approach leads to
gap reduction with increasing temperature, bath fluctuations
eventually lead to gap opening in the weak-coupling limit.
We have further shown that a bath-induced pseudo-gap in the
electronic spectrum can appear for strong electron-bath cou-
pling giving a temperature-dependent background around the
Fermi energy. As a result the system may show with increas-
ing temperature a transition from a tunneling to an activated
behavior in the low-bias region when coupled to an external
dissipative bath. An Arrhenius-type temperature dependence
of the transmission at the Fermi level and a rather weak
exponential dependence on the wire length were additionally
found, indicating a strong contribution of incoherent path-
ways of the charge carriers.

A natural extension of this investigation would be the in-
clusion of nonequilibrium effects at large bias and conse-
quently of inelastic components of the current. This issue is
although interesting from a formal point of view, since the
Lang-Firsov transformation introduces polaronic rather than
pure electronic propagators, see Eq. �5�. For the former the
appropriate Keldysh Green functions should be derived in
order to deal with the nonequilibrium regime. This problem
deserves a separate investigation which is now in progress.
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APPENDIX: DERIVATION OF EQ. (6)

The equation of motion for the retarded Green function in
Eq. �5� in the frequency representation reads

EG�j�E� = 
�bj,b��+� + ���bj,H̄��b��� .

Using it we get for the Hamiltonian of Eq. �3�,

�
n

�G0
−1�E���nGnj�E� = ��j − t���c�X�bj

†�� ,

�G0
−1�E���n = �E − �b��n� + t���n,�+1 + �n,�−1�

− 
L��1�n1 − 
R��N�nN,


L�R� = �
k�L�R�

�Vk,1�N��2

E − �k + i0+ . �A1�

Now, equations of motion from the “right” may be written
for the Green function Z�j

X �E�= ��c�X �bj
†��, leading to

�
m

Z�m
X �E��G0

−1�E��mj = − t���c�X�cj
†X†�� = − t�P�j�E� .

�A2�

In the former equations we have neglected cross-terms of the
form ��c�X �cj

†��, since they will give contribution of O�t�
3 �.

Inserting Eq. �A2� into Eq. �A1� we arrive at the matrix
equation

G�E� = G0�E� + G0�E��B�E�G0�E� ,

which can be transformed into a Dyson-type equation when
introducing the irreducible part �B�E�=�B

irr�E�
+�B

irr�E�G0�E��B
irr�E�+¯:

G�E� = G0�E� + G0�E��B
irr�E�G�E� . �A3�

From Eq. �A3� it immediately follows Eq. �6� with �B
irr�E�

= t�
2 P�E�. We emphasize that these expressions are exact

only to lowest-order in the transversal hopping t�. This ap-
proximation may be justified in the low-voltage limit we are
dealing with.

*Electronic address: rafael.gutierrez@physik.uni-r.de
1 D. D. Eley and D. I. Spivey, Trans. Faraday Soc. 58, 411 �1962�.
2 C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H.

Bossmann, N. J. Turro, and J. K. Barton, Science 262, 1025
�1993�.

3 C. R. Treadway, M. G. Hill, and J. K. Barton, Chem. Phys. 281,
409 �2002�.

4 E. Meggers, M. E. Michel-Beyerle, and B. Giese, J. Am. Chem.
Soc. 120, 12950 �1998�.

5 E. Meggers, D. Kusch, M. Spichty, U. Wille, and B. Giese, An-
gew. Chem., Int. Ed. Engl. 37, 460 �1998�.

6 F. D. Lewis, X. Liu, Y. Wu, S. E. Miller, M. R. Wasielewski, R.
L. Letsinger, R. Sanishvili, A. Joachimiak, V. Tereshko, and M.
Egli, J. Am. Chem. Soc. 121, 9905 �1999�.

7 A. M. Brun and A. Harriman, J. Am. Chem. Soc. 116, 10383
�1994�.

8 S. O. Kelley and J. K. Barton, Science 283, 375 �1999�.
9 F. C. Grozema, Y. A. Berlin, and D. A. Siebbeles, J. Am. Chem.

Soc. 122, 10903 �2000�.
10 Topics in Current Chemistry, edited by G. B. Schuster �Springer,

Berlin, 2004�, Vol. 237, ISBN 3-540-20131-9.
11 J. Jortner, M. Bixon, T. Langenbacher, and M. E. Michel-Beyerle,

Proc. Natl. Acad. Sci. U.S.A. 95, 12759 �1998�.
12 K.-H. Yoo, D. H. Ha, J.-O. Lee, J. W. Park, J. Kim, J. J. Kim,

H.-Y. Lee, T. Kawai, and H. Y. Choi, Phys. Rev. Lett. 87,
198102 �2001�.

13 D. Porath, A. Bezryadin, S. D. Vries, and C. Dekker, Nature
�London� 403, 635 �2000�.

14 E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, Nature
�London� 391, 775 �1998�.

15 A. Y. Kasumov, M. Kociak, S. Gueron, B. Reulet, and V. T.
Volkov, Science 291, 280 �2001�.

16 A. J. Storm, J. V. Noort, S. D. Vries, and C. Dekker, Appl. Phys.

Lett. 79, 3881 �2001�.
17 P. Tran, B. Alavi, and G. Gruner, Phys. Rev. Lett. 85, 1564

�2000�.
18 D. Porath, G. Cuniberti, and R. D. Felice, Charge Transport in

DNA-Based Devices, p. 183, Vol. 237 in Ref. 10 �2004�.
19 R. G. Endres, D. L. Cox, and R. R. P. Singh, Rev. Mod. Phys. 76,

195 �2004�.
20 B. Xu, P. Zhang, X. Li, and N. Tao, Nano Lett. 4, 1105 �2004�.
21 K. Keren, R. S. Berman, E. Buchstab, U. Sivan, and E. Braun,

Science 302, 1380 �2003�.
22 M. Hazani, F. Hennrich, M. Kappes, R. Naaman, D. Peled, V.

Sidorov, and D. Shvarts, Chem. Phys. Lett. 391, 389 �2004�.
23 M. Mertig, R. Kirsch, W. Pompe, and H. Engelhardt, Eur. Phys. J.

D 9, 45 �1999�.
24 A. Calzolari, R. D. Felice, E. Molinari, and A. Garbesi, Appl.

Phys. Lett. 80, 3331 �2002�.
25 R. Di Felice, A. Calzolari, E. Molinari, and A. Garbesi, Phys.

Rev. B 65, 045104 �2002�.
26 R. N. Barnett, C. L. Cleveland, A. Joy, U. Landman, and G. B.

Schuster, Science 294, 567 �2001�.
27 F. L. Gervasio, P. Carloni, and M. Parrinello, Phys. Rev. Lett. 89,

108102 �2002�.
28 E. Artacho, M. Machado, D. Sanchez-Portal, P. Ordejon, and J.

M. Soler, Mol. Phys. 101, 1587 �2003�.
29 P. J. de Pablo, F. Moreno-Herrero, J. Colchero, J. Gomez Herrero,

P. Herrero, A. M. Baro, P. Ordejon, J. M. Soler, and E. Artacho,
Phys. Rev. Lett. 85, 4992 �2000�.

30 S. S. Alexandre, E. Artacho, J. M. Soler, and H. Chacham, Phys.
Rev. Lett. 91, 108105 �2003�.

31 J. P. Lewis, P. Ordejon, and O. F. Sankey, Phys. Rev. B 55, 6880
�1997�.

32 O. R. Davies and J. E. Inglesfield, Phys. Rev. B 69, 195110
�2004�.

GUTIÉRREZ, MANDAL, AND CUNIBERTI PHYSICAL REVIEW B 71, 235116 �2005�

235116-8



33 E. B. Starikov, Philos. Mag. Lett. 83, 699 �2003�.
34 H. Wang, J. P. Lewis, and O. F. Sankey, Phys. Rev. Lett. 93,

016401 �2004�.
35 G. Fagas, A. Kambili, and M. Elstner, Chem. Phys. Lett. 389,

268 �2004�.
36 F. Palmero, J. F. R. Archilla, D. Hennig, and F. R. Romero, New

J. Phys. 6, 13 �2004�.
37 S. Komineas, G. Kalosakas, and A. R. Bishop, Phys. Rev. E 65,

061905 �2002�.
38 Z. Hermon, S. Caspi, and E. Ben-Jacob, Europhys. Lett. 43, 482

�1998�.
39 J. Yi, Phys. Rev. B 68, 193103 �2003�.
40 X. Q. Li and Y. Yan, Appl. Phys. Lett. 81, 925 �2001�.
41 G. Cuniberti, L. Craco, D. Porath, and C. Dekker, Phys. Rev. B

65, 241314�R� �2002�.
42 P. Ao, S. Grundberg, and J. Rammer, Phys. Rev. B 53, 10042

�1996�.
43 W. Zhang and S. E. Ulloa, Microelectron. J. 35, 23 �2004�.
44 P. Hänggi, S. Kohler, J. Lehmann, and M. Strass, AC-Driven

Transport Through Molecular Wires, edited by G. Cuniberti, G.
Fagas, and K. Richter, Lecture Notes in Physics �Springer, Ber-
lin, 2005�.

45 R. Gutierrez, S. Mandal, and G. Cuniberti, cond-mat/0410660
�2004�.

46 S. Tornow, N. H. Tong, and R. Bulla, cond-mat/0405547 �2005�.
47 Y. A. Berlin, A. L. Burin, and M. A. Ratner, Superlattices

Microstruct. 28, 241 �2000�.
48 F. C. Grozema, L. D. A. Siebbeles, Y. A. Berlin, and M. A. Rat-

ner, ChemPhysChem 6, 536 �2002�.
49 S. Roche, Phys. Rev. Lett. 91, 108101 �2003�.
50 H. Yamada, cond-mat/0406040 �2004�.
51 W. Zhang and S. E. Ulloa, Phys. Rev. B 69, 153203 �2004�.

52 M. Unge and S. Stafstrom, Nano Lett. 3, 1417 �2003�.
53 Y. Zhu, C. C. Kaun, and H. Guo, Phys. Rev. B 69, 245112

�2004�.
54 Y.-S. Jo, Y. Lee, and Y. Roh, Mater. Sci. Eng., C 23, 841 �2003�.
55 T. Heim, D. Deresmes, and D. Vuillaume, cond-mat/0405547

�2004�.
56 We speak of backbones in a very generic way. In our model the

side chain �=backbones� is representative of the sugar/phosphate
mantle as well as of the complementary strand. Hence, elec-
tronic states on the backbones �in our use of the term� are not
necessarily localized on the sugar/phosphate molecular groups.

57 G. Caliscan, D. Mechtani, J. H. Roh, A. Kisliuk, A. P. Sokolov, S.
Azzam, M. T. Cicerone, S. Lin-Gibson, and I. Peral, J. Chem.
Phys. 121, 1978 �2004�.

58 G. D. Mahan, Many-Particle Physics, 3rd ed. �Plenum, New
York, 2000�, ISBN 0-306-46338-5.

59 U. Weiss, Quantum Dissipative Systems, Vol. 10, in Series in
Modern Condensed Matter Physics �World Scientific, Singapore,
1999�.

60 S. Datta, Electronic Transport in Mesoscopic Systems �Cambridge
University Press, Cambridge, 1995�.

61 Y. Imry, O. Entin-Wohlman, and A. Aharony, cond-mat/0409075
�2004�.

62 I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and
Products �Academic, New York, 2000�.

63 T. Holstein, Ann. Phys. �N.Y.� 8, 325 �1959�.
64 J. Gilmore and R. McKenzie, J. Phys.: Condens. Matter 17, 1735

�2005�.
65 D. Segal, A. Nitzan, W. B. Davies, M. R. Wasielewski, and M. A.

Ratner, J. Phys. Chem. B 104, 3817 �2000�.
66 Y. A. Berlin, A. L. Burin, and M. A. Ratner, J. Am. Chem. Soc.

123, 260 �2001�.

DISSIPATIVE EFFECTS IN THE ELECTRONIC… PHYSICAL REVIEW B 71, 235116 �2005�

235116-9


