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We study the effects of spatial dispersion on the conditions for having electromagnetic normal modes at a
single interface and in the presence of two interfaces. The first result has bearing on the dispersion of surface
modes, like surface plasmons, and the second result on the van der Waals and Casimir force between two
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I. INTRODUCTION

In the most elementary textbooks on electromagnetism
the dielectric function is treated as a constant. This works
well in many situations. The Fresnel coefficients describing
the reflection and refraction of light in a glass prism can be
calculated quite accurately. It works less well in other situa-
tions. With such a treatment the group and phase velocities
would be equal, there would be no so-called surface modes1

and the van der Waals attraction between objects would not
exist. To incorporate these effects the frequency dependence
of the dielectric function has to be taken into account. Ex-
pressed in another way, temporal dispersion has to be in-
cluded. Now, the dielectric function depends on the momen-
tum, also—there is spatial dispersion. When an
electromagnetic wave impinges on an interface, frequency is
conserved. This means that the Fresnel coefficients can be
used to determine the resulting waves even if the dielectric
functions on the two sides of the interface are frequency
dependent. The momentum on the other hand is not con-
served at the interface. This means that the Fresnel coeffi-
cients can no longer be used for systems where the spatial
dispersion is important. Fortunately, spatial dispersion is not
important in most situations.

The first mention of spatial dispersion was already in
1811 when Arago2 discovered the rotatory power of quartz.
Spatial dispersion has since become a whole research field of
its own. The interested reader is referred to a rather recent
book: Spatial Dispersion in Solids and Plasmas,3 edited by P.
Halevi, which is fully devoted to this topic. There are also
two chapters in the book: Surface Polaritons,4 edited by V.
M. Agronovich and D. L. Mills which are of interest here:
one by Lagois and Fischer5 and one by Agronovich.6 The
spatial dispersion problem for metal surfaces has been
widely studied in the past7,8 as have the nonlocal effects on
the surface-normal modes, the surface-plasmon
polaritons.9,10

In the present work we are concerned with metals and, in
particular, the matching of fields at metal-vacuum interfaces.
For this problem spatial dispersion may be important in some
frequency regions. These regions are regions where the di-
electric function starts to have an important momentum de-
pendence already at small momentum. The anomalous skin
effect in the microwave region is such a manifestation of

spatial dispersion. Here the single-particle continuum comes
close to the frequency axis in the �q plane. Another region
where spatial dispersion may be important is near the plasma
frequency. A third region is near the threshold for interband
transitions. This region will not be covered in the numerical
calculations performed in this work. We use model dielectric
functions that do not include contributions from interband
transitions.

Our main purpose in this work is to find out how spatial
dispersion affects the Casimir force between real metal
plates. There have been very resent publications11,12 on the
effects of spatial dispersion on the Casimir force. The second
publication studies the nonlocal effects in much detail, but
unfortunately the authors did not consider finite tempera-
tures.

There are two quite different predictions in the literature
regarding the room-temperature Casimir force for large sepa-
rations. In one version13 the result is equal to the perfect-
metal result; in the other version14–16 the result is one-half of
that result. The reason is that one type of mode does not
contribute in this particular limit. The result is very sensitive
to the behavior of the transverse dielectric function in the
zero-frequency limit;1 thus, the matching conditions of the
fields in the low-frequency limit are crucial, and this is one
of the regions where spatial dispersion can have important
effects.

The material is outlined in the following way. In Sec. II
we introduce the formalism and in Sec. III we study electro-
magnetic normal modes, surface modes, at a single interface
separating two materials. Section IV is devoted to modes in
the vacuum gap between two half-spaces and in Sec. V we
calculate the force between two gold plates. Finally, a sum-
mary and conclusions are found in Sec. VI.

II. THE FORMALISM

In general, the sources for electromagnetic fields are
charge and current densities. One method1 to find the elec-
tromagnetic normal modes of a system is the following. Start
with a reasonable guess for a set of external charge and cur-
rent densities that obey the equation of continuity; find the
resulting electromagnetic fields; find the proper combination
of � and q for which these fields can survive, even if the
amplitudes of the external densities go toward zero. If one
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succeeds one has found the dispersion curve of a normal
mode. Here we start from valid �obeying the equation of
continuity� charge and current densities at the interface, find
the resulting fields, use boundary conditions that force the
densities to be induced and not external. This leads to two
solutions: one is the trivial solution when the densities and
fields are all zero; the other solution is one where the densi-
ties and fields are in harmony with each other—we have
self-sustained fields or equivalently self-sustained, induced
charge and current densities.

Let us study the interface between two materials 1 and 2;
medium 1 to the left and 2 to the right. We use, consistently,
the idealization that the interface is perfectly sharp; the di-
electric function on each side is represented by the bulk func-
tion all the way up to the interface; all potentials on either
side of the interface are screened by the corresponding di-
electric function. This means that the charge and current den-
sities that produce the self-sustained fields, the key element
of an electromagnetic normal mode, are two-dimensional
charge and current densities at the plane of the interface.
Keeping strictly to this idealization, we do not need to intro-
duce any so-called ABCs �Additional Boundary
Conditions�.17 The ABC problem, i.e., that there are discrep-
ancies between the results obtained from using different
ABCs, has been eliminated before with the proper choice of
surface potential.18

The charge and current densities can then be divided into
two classes: the strict two-dimensional charge and current
densities located at the interface, � and J, respectively; the
induced charge and current densities in the bulk of the ma-
terials on either side of the interface. Each of these separately
obeys the equation of continuity. We let the xy plane coincide
with the interface and let the z direction point to the right. To
get the fields in material 1, i.e., to the left of the interface, we
assume that these are generated by charge and current den-
sities at the position of the interface, and as if the whole
space were filled with medium 1. To get the fields in material
2, i.e., to the right of the interface we again assume that these
are generated by charge and current densities at the position
of the interface, and as if the whole space were filled with
medium 2. These two sets of charge and current densities
need not be the same. This is in analogy with the mirror-
charge formalism, but we address the real surface-charge
densities instead of the artificial equivalent mirror charges.
The equation of continuity demands the presence of accom-
panying surface-current densities.

The modes at an interface are characterized by the 2D
�two-dimensional� wave vector, k, in the plane of the inter-
face. We let a general wave vector be denoted by q, and k is
then the in-plane component. We neglect any effects from
imperfections of the interface. This means that the in-plane
momentum is conserved. Thus k is a good quantum number
for the modes. For isotropic materials there is no preferred
direction in the xy plane. We arbitrarily choose the propaga-
tion of the mode to be in the x direction.

In the Coulomb gauge, the surface charge and current
densities give rise to the following potentials for nonmag-
netic materials:1

��i��q,�� =
4���i��q,��
�L

�i��q,��q2 ; �1�

A�i��q,�� =
4�J�

�i��q,��/c
q2 − ��/c�2��

�i��q,��
, �2�

where the index i=1,2 specifies the medium. In the Cou-
lomb gauge the vector potential, A, is transverse and depends
only on the transverse part of the current density. Note that
the transverse part of the current is orthogonal to q and not
necessarily to k.

These charge and current densities are strictly 2D. Let us
study a 2D Fourier component of the surface-charge density
propagating in the x direction:

��r,t� = ��k,0,− ;�� · ei�kx−�t���z�

= �
−	

	 dqz

2�
��k,0,− ;�� · ei�kx+0y+qzz−�t�. �3�

It has a spatial variation in the x direction, no variation in the
y direction, and is a delta function in the z direction. A Fou-
rier transform of a general 2D charge density at the interface
depends on the momentum components in the x and y direc-
tions but not on the momentum component in the z direction.

A time-varying charge density is associated with a current
density via the equation of continuity:

���q,�� − qJ�q,�� = 0. �4�

In our case we have

���k,0,− ;�� − �kx̂ + qzẑ��Jx�k,0,qz;��x̂ + Jy�k,0,qz;��ŷ�

= 0, �5�

which is reduced into

���k,0,− ;�� − kJx�k,0,qz,�� = 0. �6�

Thus the charge density couples to a current density in the
x direction only. So a surface-normal mode described by our
chosen surface-charge density has the following surface-
current density:

J�k,qy,qz;�� = x̂��k,0,− ;��
�

k
�qy,0. �7�

We will find, below that the electric fields associated with
this mode are in the plane of incidence �xz plane� and the
magnetic fields are perpendicular to this plane. The fields are
p polarized or TM fields �transverse magnetic�. One could be
led to believe that there are also modes associated with a Jy
component and with no accompanying induced charge den-
sity. However, there are no such solutions to the Maxwell
equations whose resulting fields obey the boundary condi-
tions. We will show later that in the geometry with two par-
allel interfaces there are modes generated by coupled Jy
components at the two interfaces. These modes are TE
modes with s-polarized fields.

Let us now return to our mode. The charge density gives
rise to a scalar potential and the current density to a vector
potential. Since we are working in the Coulomb gauge, only
the transverse part of the current contributes to the vector
potential. To get the transverse part we subtract the longitu-
dinal part from the current density,
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J� = J − �q

q
J�q

q
= J��q2 − k2�x̂ − kqzẑ�

1

q2 = J�qz
2x̂ − kqzẑ�

1

q2 .

�8�

Let us, in what follows, drop the superscript representing
the medium, on the potentials and fields. The result is valid
on each side of the interface, we just add the proper super-
script at the end. We have

��qx,qy,qz;�� =
4���k,0,− ;��

�L�q,��q2 �qy,0; �9�

A�qx,qy,qz;�� =
4�J�qz

2x̂ − kqzẑ�
cq2�q2 − ���q,����/c�2�

=
4���k,0,− ;����qz

2x̂ − kqzẑ�
cq2k�q2 − ���q,����/c�2�

�qy,0.

�10�

We are interested in the electric and magnetic fields asso-
ciated with the charge and current densities. The electric field
is

E = − � � −
1

c

�

�t
A , �11�

and its Fourier transform is

E�k,qy,qz;�� = − iq��k,qy,qz;�� −
− i�

c
A�k,qy,qz;��

= − i�qy,04���k,0,− ;���x̂k	 1

q2�L�q,��

−
��/c�2

k2�q2 − ���q,����/c�2�

+
��/c�2

q2�q2 − ���q,����/c�2�
 + ẑ	 qz

q2�L�q,��

+
qz��/c�2

q2�q2 − ���q,����/c�2�
� . �12�

Similarly, the magnetic induction is

B = � Ã A , �13�

and its Fourier transform is

B�qx,qy,qz;�� = iq Ã A�qx,qy,qz;�� = i�kx̂ + qzẑ�



4���k,0,− ;����qz

2x̂ − kqzẑ�
cq2k�q2 − ���q,����/c�2�

�qy,0

= ŷi�qy,0
4���k,0,− ;���

cq2k�q2 − ���q,����/c�2�
�k2qz

+ qzqz
2�

= ŷi�qy,0
4���k,0,− ;���

ck

qz

q2 − ���q,����/c�2 .

�14�

Thus, each of the two components of the E field has a
longitudinal and a transverse part. The B field has only a
transverse part.

Many functions will appear repeatedly when we apply the
boundary conditions and we give them names to make the
expressions simpler. We need the following functions:

ga
�i��k,�� = 2k�

−	

	 dqz

2�

1

q2�L
�i��q,��

; �15�

gb
�i��k,�� = 2��

−	

	 dqz

2�

1

�q2 − ��
�i��q,����/c�2�

; �16�

gc
�i��k,�� =

2��/c�2k�

k − �
�

−	

	 dqz

2�

1

q2�q2 − ��
�i��q,����/c�2�

;

�17�

gd
�i��k,�� = − 2i�

−	

	 dqz

2�

qze
iqz0

+

�q2 − ��
�i��q,����/c�2�

, �18�

where

� = ��k,�� = �k2 − ��/c�2. �19�

The prefactors have been chosen such that all g functions are
unity in vacuum:

ga
0�k,�� = 2k�

−	

	 dqz

2�

1

q2 = 1; �20�

gb
0�k,�� = 2��

−	

	 dqz

2�

1

�q2 − ��/c�2�
= 1; �21�

gc
0�k,�� =

2��/c�2k�

k − �
�

−	

	 dqz

2�

1

q2�q2 − ��/c�2�
= 1; �22�

gd
0�k,�� = − 2i�

−	

	 dqz

2�

qze
iqz0

+

�q2 − ��/c�2�
= 1. �23�

These results are easily found from the standard integrals:

�
−	

	 dr

2�
eirs 1

r2 + a2 =
1

2a
e−as; �24�

�
−	

	 dr

2�
eirs r

r2 + a2 =
i

2
sign�s�e−as. �25�

We also need the g functions with the neglect of spatial
dispersion. If we neglect spatial dispersion, indicated by an
extra subscript 1, we have

ga,1
�i� �k,�� = 2k�

−	

	 dqz

2�

1

q2�L
�i����

=
1

�L
�i����

; �26�

gb,1
�i� �k,�� = 2��

−	

	 dqz

2�

1

�q2 − ��
�i������/c�2�

=
�

��i� ; �27�
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gc,1
�i� �k,�� =

2��/c�2k�

k − �
�

−	

	 dqz

2�

1

q2�q2 − ��
�i������/c�2�

=
���/c�2

��i��k − ���k + ��i��
; �28�

gd,1
�i� �k,�� = − 2i�

−	

	 dqz

2�

qze
iqz0

+

�q2 − ��
�i������/c�2�

= 1, �29�

where

��i� = ��i��k,�� = �k2 + ��
�i���/c�2. �30�

The gd functions are calculated just to the right of the inter-
face and have all the value unity. The corresponding value to
the left of the interface is minus unity.

We will furthermore need the following combinations of g
functions:

G�i�,TM�k,�� =
k

�
ga

�i��k,�� −
��/c�2

�2 gb
�i��k,��

+
k�k − ��

�2 gc
�i��k,�� , �31�

and

G�i�,TE�k,�� = gb
�i��k,�� . �32�

The overall scaling of these functions has been chosen such
that the functions are unity in vacuum, i.e.,

G�0�,TM�k,�� = 1;G�0�,TE�k,�� = 1. �33�

If we neglect spatial dispersion, these functions become

G1
�i�,TM�k,�� =

k

�
ga,1

�i� �k,�� +
k�k − ��

�2 gc,1
�i� �k,��

−
��/c�2

�2 gb,1
�i� �k,��

=
k

�

1

�L
�i����

+
k��/c�2

���i��k + ��i��
−

��/c�2

���i�

=
��i�

�

1

��i����
, �34�

and

G1
�i�,TE�k,�� = gb,1

�i� �k,�� =
�

��i� , �35�

respectively. In the first function we have used the fact that
the longitudinal and transverse dielectric functions are equal
in the limit of vanishing momentum.

We will use three different model-dielectric functions.
Sometimes it is useful to express the functions in terms of
the following dimensionless variables: Q=q /2kF, K=k /2kF,
W=�� /4EF, Wpl=��pl /4EF, and y=mee

2 /�2kF.
The first and simplest of the dielectric functions is the

so-called hydrodynamic dielectric function,19

��q,�� = 1 − �pl
2 /��2 − a2q4� , �36�

or with a=� /2me,

��Q,W� = 1 − Wpl
2 /�W2 − Q4� . �37�

Here we have neglected any dissipation.
The second dielectric function is in the so-called plasmon-

pole approximation,20

��q,�� = 1 − �pl
2 /��2 − �4EF��2��q2kF�23 + �q2kF�4�� ,

�38�

and in terms of the dimensionless variables,

��Q,W� = 1 − Wpl
2 /�W2 − �Q23 + Q4�� . �39�

The RPA dielectric functions, on the real frequency axis,
expressed in the dimensionless variables are

�L,��Q,W� = 1 + L,��Q,W� , �40�

where the longitudinal and transverse polarizabilities are21

L�Q,W� = L
0�Q,W� =

y

2�

1

Q2�1 +
Q2 − �W − Q2�2

4Q3


ln	 Q − �W − Q2�
− Q − �W − Q2�
 −

Q2 − �W + Q2�2

4Q3


ln	− Q + �W + Q2�
Q + �W + Q2� 
� , �41�

and

��Q,W� = �
0 �Q,W� =

y

2�

1

Q2

1

4W2�− �Q4 + Q2 + 3W2�

+
�Q2 − �W − Q2�2�2

4Q3 ln	 Q − �W − Q2�
− Q − �W − Q2�


−
�Q2 − �W + Q2�2�2

4Q3 ln	− Q + �W + Q2�
Q + �W + Q2� 
� ,

�42�

respectively. The logarithm in these expressions is taken
from the branch for which arg�ln�z����.

These results are in neglect of dissipation. Including dis-
sipation, or damping, in a simple way leads to the following
modifications:22

L�Q,W,�� =
�W + i��L

0�Q,W + i��
W + i��L

0�Q,W + i��/L
0�Q,0��

, �43�

and23

��Q,W,�� =
W + i�

W
�

0 �Q,W + i�� , �44�

respectively.
For the force calculations we need the polarizabilities on

the imaginary frequency axis. There they are
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L�
0�Q,W� =

y

2�Q2�1 +
�W2 + Q2 − Q4�

4Q3


ln	 �Q + Q2�2 + W2

�Q − Q2�2 + W2
 −
W

Q
	tan−1�Q + Q2

W
�

+ tan−1�Q − Q2

W
�
� , �45�

and

��
0�Q,W� =

1

8

y

�Q2W2�− �3W2 − Q2 − Q4�

+
�2WQ2�2 − �W2 + Q2 − Q4�2

4Q3


ln	 �Q + Q2�2 + W2

�Q − Q2�2 + W2
 +
2W�W2 + Q2 − Q4�

Q


	tan−1�Q + Q2

W
� + tan−1�Q − Q2

W
�
� , �46�

respectively. The inverse tangent functions are taken from
the branch where their absolute values are less than � /2.

Including dissipation we now have

L��Q,W,�� =
�W + ��L�

0�Q,W + ��
W + ��L�

0�Q,W + ��/L�
0�Q,0��

, �47�

and

�� �Q,W,�� =
W + �

W
��

0�Q,W + �� , �48�

respectively.
We are now done with the introduction of the formalism

and will in what follows use this material to find the electro-
magnetic normal modes. We have two momentum scales in
the present problem; one is defined by the Fermi momentum,
kF; one by the surface mode frequency divided by the speed
of light, �s /c. These scales are quite different and �s /c
�kF. Different effects are visible on the two scales and one
has to view them separately. The first scale is important if we
are interested in the surface energy or the interaction be-
tween objects at small separations, the van der Waals force.
The second scale is important for the interaction at larger
separations, in the Casimir range. Retardation effects, effects
from the finite speed of light, enter for very small in-plane
momenta and should be viewed on the second scale.

III. MODES AT A SINGLE INTERFACE

We now derive the condition for having a surface-normal
mode from the standard boundary conditions for the fields at
the interface: the continuity of the in-plane components of
the E and H fields and the normal components of the D and
B fields; we only need the first two. These boundary condi-
tions are valid if there are no external charge or current den-
sities at the interface, only induced densities from the self-
sustained fields.

We need the Ex and Hy components on the two sides of
the interface. We have

Ex�r,t� = Ex�x,z,t� = − i4���k,0,− ;��kei�kx−�t�


�
−	

	 dqz

2�
eiqzz	 1

q2�L�q,��

−
��/c�2

k2�q2 − ���q,����/c�2�

+
��/c�2

q2�q2 − ���q,����/c�2�
 . �49�

Just to the left of the interface we have

Ex�x,0−,t� = − i2���1��k,0,− ;��ei�kx−�t�


	ga
�1��k,�� −

��/c�2

�k
gb

�1��k,��

+
�k − ��

�
gc

�1��k,��

= − 2���1��k,0,− ;��ei�kx−�t��

k
G�1�,TM�k,�� ,

�50�

and just to the right we have

Ex�x,0+,t� = − i2���2��k,0,− ;��ei�kx−�t��

k
G�2�,TM�k,�� .

�51�

Furthermore, we need the Hy component on the two sides
of the interface. The general expression is

Hy�r,t� = By�r,t� = By�x,z,t� = i
4���k,0,− ;���

ck
ei�kx−�t�


�
−	

	 dqz

2�
eiqzz

qz

q2 − ���q,����/c�2 . �52�

Just to the left of the interface it is

Hy�x,0−,t� =
2���1��k,0,− ;���

ck
ei�kx−�t�gd

�1��k,�� , �53�

and to the right it is

Hy�x,0+,t� = −
2���2��k,0,− ;���

ck
ei�kx−�t�gd

�2��k,�� .

�54�

To make the expressions for the fields more compact we
introduce the common factors A and B, not to be confused
with the vector potential and magnetic induction,

A =
2���1��k,0,− ;���

ck
ei�kx−�t�;

�55�

B =
2���2��k,0,− ;���

ck
ei�kx−�t�.

Then the continuity of the Hy component gives
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gd
�1��k,��A = − gd

�2��k,��B → A + B = 0, �56�

since the gd functions are unity. The continuity of the Ex
component gives

−
ic�

�
G�1�,TM�k,��A +

ic�

�
G�2�,TM�k,��B = 0, �57�

or

G�1�,TM�k,��A − G�2�,TM�k,��B = 0. �58�

Thus, we have obtained the following system of equa-
tions:

� 1 1

G�1�,TM�k,�� − G�2�,TM�k,��
��A

B
� = 0. �59�

This system has the trivial solution that A=B=0. It has
also nontrivial solutions which are the modes we are looking
for. The condition for normal modes is found as

� 1 1

G�1�,TM�k,�� − G�2�,TM�k,��
� = 0, �60�

or

G�1�,TM�k,�� + G�2�,TM�k,�� = 0. �61�

Neglecting spatial dispersion, we arrive at

��1���2���� + ��2���1���� = 0, �62�

which is the standard condition for having a normal mode in
the neglect of spatial dispersion.1

We have now derived the general conditions for having
surface-normal-modes at an interface between two media
with and without spatial dispersion taken into account. Here
we will study the effect from spatial dispersion on the
surface-plasmon dispersion, i.e., the overall effect on the kF
scale, and the effect on the surface-plasmon-polariton disper-
sion, i.e., on the �s /c scale.

A. Overall effect of spatial dispersion

In finding the overall effect, which we do first, we may
neglect the retardation effects. We let medium 1 be a metal
and medium 2 vacuum. In neglect of retardation effects the
condition for modes is

ga
�1��k,�� + ga

0�k,�� = 0, �63�

or

ga
�1��k,�� + 1 = 0, �64�

or

g̃a
�1��k,�� + 2 = 0. �65�

Similar relations have been obtained earlier.24

The tilde over a g function means the g function calcu-
lated inside the medium minus the corresponding function
calculated in vacuum. The tilde versions of the g functions
were introduced since they represent faster converging inte-
grals. To benefit from this the two integrals in each tilde

version of a g function should be combined into one.
We find the surface-plasmon modes for simple metals for

the three different dielectric functions. For the two first ap-
proximations, the ga function can be obtained analytically. In
the hydrodynamic approximation the ga function has the
form

ga�k,�� =
1

�2 − �pl
2 	�2 −

1

2
�pl

2 �ak2� 1

�ak2 + ��2 − �pl
2

+
1

�ak2 − ��2 − �pl
2 �
 , �66�

and in the plasmon-pole approximation it is

ga�K,W� = 	1 −
Wpl

2

W2 
	1 + K
Wpl

2

2W2� 1

6rt
−

1

t
−

1

6rs
−

1

s
�
 ,

�67�

where

r = �W2 − Wpl
2 + 1/36; s = �K2 + 1/6 − r;

�68�
t = �K2 + 1/6 + r .

The RPA ga function has to be found numerically.
The result for the simple metals K, Na, Mg, Al, and Be

are shown in Fig. 1. In all three approximations we find the
surface-plasmon dispersion curves start out at the same fre-
quency, the frequency also obtained at the neglect of spatial
dispersion, and then varies linearly with momentum. The

FIG. 1. The surface-plasmon dispersion curves for the metals K,
Na, Mg, Al, and Be as a result from taking spatial dispersion into
account. The dotted curves are for the hydrodynamic approxima-
tion, the dashed curves are for the plasmon-pole approximation and
the solid curves for RPA. Neglecting spatial dispersion would pro-
duce dispersionless horizontal curves at the values where the
present curves start out from the frequency axis. The thick solid
curve is the boundary of the single-particle continuum in the in-
plane direction of the surface plasmon.

BO E. SERNELIUS PHYSICAL REVIEW B 71, 235114 �2005�

235114-6



slope is different in the three approximations. Experimentally
it turns out that band-structure effects like those from inter-
band transitions, neglected here, are very important, and may
actually lead to a negative slope of the dispersion.25–28 Thus
the treatment here is not good enough for obtaining quanti-
tative dispersion curves. However, we find that spatial dis-
persion is one very important component, although not the
only one, influencing the dispersion of the surface modes.

B. Retardation effects at long wavelengths

Retardation effects will modify the surface plasmon dis-
persion at the long wavelength range. The modes are given
as solutions to the equation

G�1�,TM�k,�� + 1 = 0, �69�

or expressed in modified g functions, the “tilde functions,” as

k

�
g̃a

�1��k,�� −
��/c�2

�2 g̃b
�1��k,�� +

k�k − ��
�2 g̃c

�1��k,�� + 2 = 0.

�70�

Remember that the tilde over a g function means the g func-
tion calculated inside the medium minus the corresponding
function calculated in vacuum.

Here, we need both the longitudinal and transverse ver-
sions of the dielectric function so we restrict the actual cal-
culation to the RPA approximation. In Fig. 2 we show the
results in the range where the retardation effects are impor-
tant. We find that spatial dispersion has a very small effect on
the results here. The figure gives the result for the two of our
metals with lowest and highest electron densities, respec-
tively, in comparison with the result without spatial disper-
sion, dashed curve.

IV. MODES ASSOCIATED WITH A GAP BETWEEN TWO
HALF-SPACES

We start by studying the modes generated by the same
type of charge and accompanying current densities on the
two interfaces. Then we treat the case where we instead have
coupled current densities on the two interfaces. In the more
complicated geometry, treated here, we need to define two
new factors:

C =
2���0,left��k,0,− ;���

ck
ei�kx−�t�;

�71�

D =
2���0,right��k,0,− ;���

ck
ei�kx−�t�.

The first superscript represents medium 0, which is a
vacuum. The second represents which of the two interfaces
the charge distribution is located at; the one to the left or the
one to the right. The fields inside the left �right� metal half-
space are generated by the charge and current densities at the
left �right� interface. The fields in the middle region, in
vacuum, are generated by both sets of densities. We start by
studying the boundary conditions for the magnetic fields.

The continuity of the Hy component gives, for the left
interface,

Hy�x,0−,t� = Hy�x,0+,t� , �72�

which means that

i2A�
−	

	 dqz

2�
eiqz0

− qz

q2 − ��
�1��q,����/c�2

= i2C�
−	

	 dqz

2�
eiqz0

+ qz

q2 − ��/c�2

+ i2D�
−	

	 dqz

2�
e−iqzd

qz

q2 − ��/c�2 , �73�

which reduces into

A = − C + e−�dD . �74�

Similarly, the continuity at the second interface gives

i2C�
−	

	 dqz

2�
eiqzd

qz

q2 − ��/c�2 + i2D�
−	

	 dqz

2�
e−iqz0

− qz

q2 − ��/c�2

= i2B�
−	

	 dqz

2�
e−iqz0

+ qz

q2 − ��
�2��q,����/c�2 , �75�

or

− e−�dC + D = − B . �76�

These two equations may be written as

�A

B
� = � − 1 e−�d

e−�d − 1
��C

D
� . �77�

The continuity of the x component of the E field at the left
interface gives

FIG. 2. The surface-plasmon dispersion curves for Be �upper
solid curve� and Na �lower solid curve� in the range where retarda-
tion effects are visible. The dashed curve is the universal result
when spatial dispersion is neglected. The retardation effects push
the surface-plasmon dispersion curves down below the dispersion
curve for light in vacuum �dotted straight line�.

EFFECTS OF SPATIAL DISPERSION ON… PHYSICAL REVIEW B 71, 235114 �2005�

235114-7



− Ack	ga
�1��k,�� +

�k − ��
�

gc
�1��k,�� −

��/c�2

k�
gb

�1��k,��

= − Cck	ga

�0��k,�� +
�k − ��

�
gc

�0��k,�� −
��/c�2

k�
gb

�0��k,��

− Dck	ga

�0��k,�� +
�k − ��

�
gc

�0��k,��

−
��/c�2

k�
gb

�0��k,��
e−�d, �78�

or

−
ic�

�
G�1�,TM�k,��A = −

ic�

�
C −

ic�

�
e−�dD , �79�

and after common factors have been removed,

G�1�,TM�k,��A = C + e−�dD . �80�

The corresponding equation from the right interface gives

G�2�,TM�k,��B = e−�dC + D . �81�

Here we will limit ourselves to having the same material
on both sides of the gap. Then we may combine the results to

G�1�,TM�k,���A

B
� = � 1 e−�d

e−�d 1
��C

D
� . �82�

All the boundary conditions have resulted in the following
system of equations:

�A

B
� = � − 1 e−�d

e−�d − 1
��C

D
�;

�83�

GTM�k,���A

B
� = � 1 e−�d

e−�d 1
��C

D
� ,

where we have dropped superscripts indicating the medium.
We have a system of equations consisting of four equations
and four unknowns. We could write this in the form of one
matrix equation with a 4
4 matrix and end up with the
condition for the mode being that the determinant of this
matrix is zero. However, it is easier to first eliminate the two
unknowns A and B in favor of C and D and end up with a
2
2 matrix. The elimination leads to

� GTM�k,�� + 1 e−�d�1 − GTM�k,���
e−�d�1 − GTM�k,��� GTM�k,�� + 1

��C

D
� = 0.

�84�

The condition for self-sustained fields is that the determi-
nant of the matrix vanishes, i.e.,

� GTM�k,�� + 1 e−�d�1 − GTM�k,���
e−�d�1 − GTM�k,��� GTM�k,�� + 1

� = 0. �85�

On the dispersion curves, defined by this equation, fields
may appear spontaneously without any external charge and
current densities at the interfaces. The equation results in the
following condition for normal modes:

�GTM�k,�� + 1�2 − e−2�d�GTM�k,�� − 1�2 = 0. �86�

This may be generalized to the case of two different materi-
als and results in

�G�1�,TM�k,�� + 1��G�2�,TM�k,�� + 1� − e−2�d�G�1�,TM�k,�� − 1�


�G�2�,TM�k,�� − 1� = 0. �87�

Let us now find out the corresponding result when spatial
dispersion is neglected. Then, since

G1
�i�,TM�k,�� =

��i�

�

1

��i����
, �88�

our condition is reduced into

	��1����
1

+
��1��k,��
��k,�� 
	��2����

1
+

��2��k,��
��k,�� 


− e−2��k,��d	��1����
1

−
��1��k,��
��k,�� 
	��2����

1
−

��2��k,��
��k,�� 


= 0. �89�

This is the well-established condition for TM modes when
spatial dispersion is neglected.1

We are now done with the TM modes. In the present
configuration the current component in the y direction at one
interface may couple to the corresponding component at the
other interface. The modes we have treated so far are all TM
modes. When we solved the equation of continuity only the
component of the current in the x direction coupled to the
charge density. We also found a component of the current
pointing in the y direction, but this did not couple to the
charge density and did not help in the formation of self-
sustained fields. Now, if we have two interfaces these current
components at the two interfaces may couple and give rise to
a mode; this is the TE mode. The scalar potential does not
contribute to the fields in this case. The fields are genuinely
transverse in character and only the transverse dielectric
function enters the relations. The TM modes on the other
hand have both longitudinal and transverse character and
both types of dielectric function enter the formalism. Let us
study the fields from a current component in the y direction.

The transverse current is

J� = J − �q

q
J�q

q
= Jŷ − �q

q
Jŷ�q

q
= Jŷ , �90�

and the vector potential is

A�i� =
4�J�i�ŷ

c�q2 − ��
�i��q,����/c�2�

. �91�

This vector potential gives rise to the electric field,

Ey
�i� = E�i� =

i�

c
A�i� =

i�4�J�i�ŷ

c2�q2 − ��
�i��q,����/c�2�

, �92�

and to the magnetic field,
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H�i� = B�i� = iq 
 A�i�

= i
4�J�i�

c�q2 − ��
�i��q,����/c�2�

�kx̂ + qzẑ� 
 ŷ . �93�

This last relation means that

Bx
�i� = − iqz

4�J�i�

c�q2 − ��
�i��q,����/c�2�

x̂; �94�

Bz
�i� = ik

4�J�i�

c�q2 − ��
�i��q,����/c�2�

ẑ . �95�

We treat the current at one of the interfaces in the same
way as we did with the charge density before,

J�r,t� = J�k,0,− ;�� · ei�kx−�t���z�

= �
−	

	 dqz

2�
J�k,0,− ;�� · ei�kx+0y+qzz−�t�. �96�

We let

AJ =
2�J�1��k,0,− ;���

ck
ei�kx−�t�;

BJ =
2�J�2��k,0,− ;���

ck
ei�kx−�t�;

�97�

CJ =
2�J�0,left��k,0,− ;���

ck
ei�kx−�t�;

DJ =
2�J�0,right��k,0,− ;���

ck
ei�kx−�t�.

The continuity of the Bx component at the left interface
gives

−
k

�
AJgd

�1��k,�� =
k

�
CJgd

�0��k,�� −
k

�
DJgd

�0��k,��e−�d,

�98�

or

AJ = − CJ + e−�dDJ. �99�

The continuity at the right interface gives

k

�
CJgd

�0��k,��e−�d −
k

�
DJgd

�0��k,�� =
k

�
BJgd

�2��k,�� ,

�100�

or

BJ = e−�dCJ − DJ. �101�

Thus, we have so far found that

�AJ

BJ
� = � − 1 e−�d

e−�d − 1
��CJ

DJ
� . �102�

The continuity of the Ey component or Bz component at
the left interface gives

AJ
ik

c�
gb

�1��k,�� = CJ
ik

c�
gb

�0��k,�� + DJ
ik

c�
e−�d, �103�

or

G�1�,TE�k,���k,��AJ = CJ + e−�dDJ, �104�

and at the right interface we get

e−�d ik

c�
CJ +

ik

c�
DJ = gb

�2��k,��
ik

c�
BJ, �105�

or

e−�dCJ + DJ = G�2�,TE�k,��BJ. �106�

We have for two equal materials,

G�1�,TE�k,���AJ

BJ
� = � 1 e−�d

e−�d 1
��CJ

DJ
� . �107�

Eliminating the unknowns AJ and BJ from the two sys-
tems of equation leads to the condition for modes as

� G�1�,TE�k,�� + 1 e−�d�1 − G�1�,TE�k,���
e−�d�1 − G�1�,TE�k,��� G�1�,TE�k,�� + 1

� = 0,

�108�

or

�G�1�,TE�k,�� + 1�2 − e−2��k,��d�G�1�,TE�k,�� − 1�2 = 0.

�109�

In the more general case of two different materials, we
have

�G�1�,TE�k,�� + 1��G�2�,TE�k,�� + 1� − e−2��k,��d�G�1�,TE�k,��

− 1��G�2�,TE�k,�� − 1� = 0. �110�

Neglecting spatial dispersion leads to

���k,�� + ��1��k,������k,�� + ��2��k,��� − e−2��k,��d���k,��

− ��1��k,������k,�� − ��2��k,��� = 0, �111�

which is the correct expression.1 So in summary we have the
two mode types from the relations

�G�1�,TM,TE�k,�� + 1��G�2�,TM,TE�k,�� + 1�

− e−2��k,��d�G�1�,TM,TE�k,�� − 1��G�2�,TM,TE�k,�� − 1� = 0.

�112�

We here just note in passing that the relation between our
G functions and the so-called surface impedance can be
found from the relations above. The surface impedance for
p-polarized and s-polarized waves are

Zp = Ex/Hy = 	−
ic�

�
G�i�,TM�k,��A
��gd

�i��k,��A�

= −
ic�

�
G�i�,TM�k,�� , �113�

and
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Zs = Ey/Hx = 	AJ
ik

c�
gb

�i��k,��
�	−
k

�
AJgd

�i��k,��

= −

i�

c�
G�i�,TE�k,�� , �114�

respectively. One should be a little careful with the sign. It is
understood that the z direction is into the interface. So to find
the relation here we have used the fields at the left interface.
If we had used the fields at the interface to the right we
would have had to change sign.

In Fig. 3 we show the two TM modes for two gold half-
spaces separated by a gap of 1 �m. In the region where
retardation is important, the spatial dispersion is once again
negligible. This is also the region that is important for the
force in the Casimir range. From these findings one would
guess that spatial dispersion has a negligible effect on the
Casimir force. We will show later that this is actually what
we find for the contribution from TM modes, but not from
the TE modes at room temperature. At the high momentum
side of the figure we note that the frequency of the mode has
increased a little beyond the value unity. This very modest
effect is caused by the spatial dispersion. Now, one of the
two TM modes seems to end at the light-dispersion curve in
the figure. It actually continues on the other side, but is not a
true surface mode there. There the fields do not decay expo-
nentially away from the metal. Instead they form standing
waves between the two plates. This mode has one node be-
tween the plates. There are also modes with 2,3,…, nodes.
All the TE modes come in the region to the left of and above
the light dispersion curve. They have 0,1,…, number of
nodes. There is a larger number of modes present the larger
the separation between the plates.

In Fig. 4 we show the results for a little larger separation
and now in neglect of spatial dispersion. In this case there are
six TM modes and four TE modes. One of the TM modes is
a true surface mode; one is, for a part of the dispersion curve,
a true surface mode and, for the rest of the dispersion curve,
a standing-wave type or wave-guide type of mode. The four
remaining TM modes and the four TE modes are wave-guide
modes. The upper solid curve is the boundary of the con-
tinuum of bulk-polariton modes. Above this curve the metals
can no longer keep the modes in the gap; they can propagate
freely through the geometry and do not contribute to the
dispersion forces. The larger the separation between the
plates the larger the number of modes between the light dis-
persion curve and the bulk-polariton continuum.

V. DISPERSION FORCES BETWEEN TWO GOLD PLATES
IN VACUUM

In the previous section we found that the conditions for
the two mode types between two nonmagnetic metal half-
spaces separated by a vacuum gap of thickness d are

�GTM,TE�k,�� + 1�2 − e−2�d�GTM,TE�k,�� − 1�2 = 0,

�115�

where

GTM�k,�� =
k

�
g̃a�k,�� +

k�k − ��
�2 g̃c�k,�� −

��c�2

�2 g̃b�k,�� + 1;

GTE�k,�� = g̃b�k,�� + 1. �116�

From this the interaction energy is found to be1,14

FIG. 3. The two TM-surface-mode branches for two half-spaces
of gold separated by a gap of 1 �m. The upper solid curve is just
that part of a branch where the mode is a true surface mode, in that
the fields decay exponentially away from the two interfaces on both
sides. The dotted straight line is the light dispersion curve in
vacuum. See the text for more details.

FIG. 4. The complete set of normal modes between gold plates
�obtained in neglect of spatial dispersion� for roughly twice the
separation of the setup in Fig. 3. The upper thick solid curve is the
boundary for bulk-polariton-modes and the lower thick solid
straight line is the light-dispersion curve. The thin solid curves are
the true-surface-mode-type-modes, the dotted curves are the
standing-wave-type TM modes and the dashed curves the standing-
wave-type TE modes. Note that one of TM-mode branches changes
character when crossing the light-dispersion curve.
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�E�d� =
1

2��
�
�n

��
0

	

dk k


ln�1 − e−2���k,�n�d �G�TM�k,�n� − 1�2

�G�TM�k,�n� + 1�2�
+

1

2��
�
�n

��
0

	

dk k


ln�1 − e−2���k,�n�d �G�TE�k,�n� − 1�2

�G�TE�k,�n� + 1�2� ,

�117�

where

�n =
2�n

��
; n = 0,1,2, . . . . �118�

The prime on the summation sign indicates that the n=0
term is multiplied by the factor 1 /2. The prime on a function
indicates that the frequency argument is on the imaginary
frequency axis. For zero temperature the summation is re-
placed by an integration:

1

�
�
�n

� → ��
0

	 d�

2�
. �119�

The results are presented in Fig. 5. All results in the figure
are the interaction energy divided by the zero-temperature
�Casimir� result for a perfect metal ��c�2 /720d3�. The filled
circles with error bars is the experimental result by
Lamoreaux.29 The solid curve is our previous result,14 where
we used the experimental dielectric properties. This means
that dissipation was included, but no spatial dispersion. Very
similar results are obtained from using the Drude expression,
including dissipation, for the dielectric function.1,14 The mo-
mentum dependence of the dielectric function cannot be ob-
tained experimentally, so one is forced to use theoretical ex-
pressions for the dielectric functions. The triangles show our
present result taking spatial dispersion into account. We have
also performed calculations using the versions of the dielec-
tric functions including dissipation, but this led to a very
small additional correction. It is very interesting to note that
the present result is almost identical to our previous result
where the dramatic effect came from dissipation. We are not
completely surprised by the result, though. We found in an
earlier work30,31 on the Casimir force between two quantum
wells, a problem where the inclusion of spatial dispersion is
a necessity, that the contribution from the TE modes dropped
out for finite temperature and large separation. Furthermore,
the failure of the TE modes to contribute at finite temperature
and large separations is not that surprising. For them to con-
tribute the transverse dielectric function has to diverge as �−2

when the frequency goes toward zero. When dissipation is
included and spatial dispersion neglected it goes as �−1. It is
not equally obvious when spatial dispersion is included in-
stead of dissipation. Here the formalism becomes more in-
volved. The TE contribution does no longer asymptotically
completely vanish but becomes very small as compared to
the TM-contribution. It completely vanishes if dissipation is

included in the dielectric function the way prescribed by
Kliewer and Fuchs.23 In a more complete expression for the
transverse dielectric function the damping parameter should
not be a constant, but be frequency and momentum depen-
dent, but there is no reason to believe that this would have
any important implications on the present results.

In Fig. 6 we show the integrands in the frequency inte-
grals for the TM and TE contributions. We find that the in-
tegrand for TE modes becomes very small for small energies
or frequencies while the TM integrand saturates at a high
value. The zero-frequency value for the TE mode is of the
order of 10−12. This drop in value has a negligible effect on
the zero-temperature result, since the drop is for very small
frequencies; however, for the room-temperature result, it is
of the utmost importance. The crosses in the figure show the
discrete frequency values entering the frequency summation.
There is also one contribution at zero frequency which we
cannot indicate in a log-log figure. The zero-frequency value
should be multiplied by a factor 1 /2. We see that for 1 �m
separation, apart from the zero-frequency contribution, only
three points have values big enough to be inside the plot.
Thus the zero-frequency contribution is very important for
the result. For 5 �m separation no point apart from that at
zero frequency gives an important contribution to the result.
Here the zero-frequency contributions completely dominates
in the net result. Since the integrand for TE modes has a

FIG. 5. Energy correction factor as a function of the separation
between two gold plates. The long-dashed curve is the Casimir
perfect-metal result at zero temperature; it is by definition constant
with value unity. The dash-dotted curve is the corresponding result
at room temperature. The solid �dotted� curve is the room-
temperature �zero-temperature� result from using the experimental
dielectric function; these results include the effect of dissipation but
neglect the spatial dispersion. The short-dashed curve �open circle�
is the simple Drude result at zero temperature �room temperature�;
these results neglect both dissipation and spatial dispersion. The
triangles is the present result including spatial dispersion; dissipa-
tion is neglected but the inclusion of dissipation leads to an over-
lapping result. The solid circles with error bars is the experimental
result by Lamoreaux.
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negligible zero-frequency value only the TM modes contrib-
ute to the force at 5 �m separation, at room temperature. At
zero temperature both mode types contribute approximately
the same to the force at 5 �m separation. The dramatic ef-
fects from spatial dispersion are absent at zero temperature.
This is in accordance with other recent publications.11,12

Those authors did not consider the finite temperature effects.
There are three important energy scales in the problem: E1
�4 eV is the overall upper limit on the energy contribution

on the imaginary frequency axis, determined by the dielectric
properties of the materials; E2�3�c /d is the energy limit at
separation d due to retardation; and E3�2� /� is the first
nonzero energy in the discrete frequency summation at finite
temperature. The effects we have derived here are in full
effect if E3 is bigger than the smallest of E1 and E2. For d
smaller than approximately 0.15 �m, E1 sets the limit. In
this case the temperature has to be above 7000 K, so this
limit is of minor interest. For larger separations E2 sets the
limit and the full effect is obtained for d of the order of
1
2��c.

VI. SUMMARY AND CONCLUSIONS

In this work we derived the general conditions for
electromagnetic-normal modes at individual planar interfaces
and for two half-spaces separated by a vacuum gap; the deri-
vations were performed both with and without spatial disper-
sion taken into account. We applied the formalism to metallic
systems and calculated the van der Waals-Casimir forces be-
tween two gold plates. Spatial dispersion was found to have
dramatic effects on the finite-temperature Casimir force at
large separations, separations larger than 1

2��c. Half the
force was wiped out in this limit. We can conclude that
spatial-dispersion and/or dissipation has this very dramatic
effect on the force. We conclude by noting that from the
present result follows that the Nernst heat theorem32 is
obeyed, even for a system without dissipation. We have ear-
lier shown15 that our calculations obey this theorem in the
presence of dissipation.

ACKNOWLEDGMENTS

Financial support was obtained from the Swedish Re-
search Council.

*Electronic address: bos@ifm.liu.se; www.ifm.liu.se/̃ boser
1 B. E. Sernelius, Surface Modes in Physics �Wiley-VCH, Berlin,

2001�.
2 D. F. Arago, Mem. Cl. Sci. Math. Phys. Inst. France 1, 115

�1811�.
3 Spatial Dispersion in Solids and Plasmas in the series Electro-

magnetic Waves: Recent Developments in Research, edited by P.
Halevi �North-Holland, Amsterdam, 1992�, Vol. 1.

4 Surface Polaritons: Electromagnetic Waves at Surfaces and Inter-
faces, in the series Modern Problems in Condensed Matter Sci-
ences, edited by V. M. Agronovich and D. L. Mills �North-
Holland, Amsterdam, 1982�, Vol. 1 �series editors V. M.
Agranovich and A. A. Maradudin�.

5 See Ref. 4, Surface Exciton Polariton from an Experimental
Viewpoint, pp. 69–92.

6 See Ref. 4, Effects of the Transition Layer and Spatial Dispersion
in the Spectra of Surface Polaritons, pp. 187–238.

7 W. L. Schaich and W. Chen, Phys. Rev. B 39, 10714 �1984�.
8 K. L. Kliewer, Surf. Sci. 101, 57 �1980�.
9 R. Fuchs and K. L. Kliewer, Phys. Rev. B 3, 2270 �1971�.

10 A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze,
Principles of Plasma Electrodynamics in the series Springer Se-
ries in Electrophysics �Springer-Verlag, Berlin, 1984�.

11 R. Esquivel, C. Villarreal, and W. L. Mochan, Phys. Rev. A 68,
052103 �2003�.

12 R. Esquivel and V. B. Svetovoy, Phys. Rev. A 69, 062102 �2004�.
13 B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys.

Rev. A 67, 062102 �2003�, and references therein.
14 M. Boström and B. E. Sernelius, Phys. Rev. Lett. 84, 4757

�2000�.
15 B. E. Sernelius and M. Boström, in Quantum Field Theory Under

the Influence of External Conditions, edited by K. A. Milton
�Rinton Press, Princeton 2004�.

16 J. S. Høye, I. Brevik, J. B. Aarseth, and K. A. Milton, Phys. Rev.
E 67, 056116 �2003�; J. S. Høye, I. Brevik, and J. B. Aarseth,
ibid. 63, 051101 �2001�; I. Brevik, J. B. Aarseth, and J. S. Høye,
ibid. 66, 026119 �2002�; I. Brevik, J. B. Aarseth, J. S. Høye, and
K. A. Milton, in Quantum Field Theory Under the Influence of
External Conditions, edited by K. A. Milton �Rinton Press,
Princeton, 2004�.

FIG. 6. The frequency integrands after the momentum integra-
tion has been performed. The integrands for the TM �TE� contribu-
tion at 1 �m separation are represented by a dashed �solid� curve.
The curves with data points are the corresponding integrands at
5 �m separation. The crosses indicate the points that contribute to
the summation at room temperature.

BO E. SERNELIUS PHYSICAL REVIEW B 71, 235114 �2005�

235114-12



17 S. I. Pekar, J. Phys. Chem. Solids 5, 11 �1958�.
18 R. Ruppin and R. Englman, Phys. Rev. Lett. 53, 1688 �1984�.
19 M. G. Cottam and D. R. Tilley, Introduction to Surface and Su-

perlattice Excitations �Cambridge University Press, Cambridge,
1989�.

20 L. Hedin and S. Lundqvist, Solid State Phys. 23, 1 �1969�.
21 J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28, 1

�1954�.
22 N. D. Mermin, Phys. Rev. B 1, 2362 �1970�.
23 K. L. Kliewer and R. Fuchs, Phys. Rev. 181, 552 �1969�.
24 See the discussion on p. 93 in Electromagnetic Surface Modes,

edited by A. D. Boardman �Wiley, New York, 1982�.
25 K.-D. Tsuei, E. W. Plummer, and P. J. Feibelman, Phys. Rev. Lett.

63, 2256 �1989�.
26 K.-D. Tsuei, E. W. Plummer, A. Liebsch, K. Kempa, and P. Bak-

shi, Phys. Rev. Lett. 64, 44 �1990�.
27 H. Ishida and A. Liebsch, Phys. Rev. B 54, 14127 �1996�.
28 V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Phys. Rev.

Lett. 93, 176801 �2004�.
29 S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 �1997�.
30 B. E. Sernelius and P. Björk, Phys. Rev. B 57, 6592 �1998�.
31 M. Boström and B. E. Sernelius, Microelectron. Eng. 51–52, 287

�2000�.
32 W. Nernst, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. 1, 1

�1906�.

EFFECTS OF SPATIAL DISPERSION ON… PHYSICAL REVIEW B 71, 235114 �2005�

235114-13


