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A mutual Chern-Simons Lagrangian is derived as a minimal field theory description of the phase-string
model for doped antiferromagnets. Such an effective Lagrangian is shown to retain the full symmetries of
parity, time reversal, and global SUs2d spin rotation, in contrast to conventional Chern-Simons theories where
first two symmetries are usually broken. Two ordered phases—i.e., antiferromagnetic and superconducting
states—are found at low temperatures as characterized by “dual” Meissner effects and dual-flux-quantization
conditions due to the mutual Chern-Simons gauge structure. A “dual” confinement in charge and spin degrees
of freedom occurs such that no true spin-charge separation is present in these ordered phases, but the spin-
charge separation/deconfinement serves as a driving force in the unconventional phase transitions of these
ordered states to disordered states.
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I. INTRODUCTION

The gauge theory description has become essential in
studying doped Mott insulators. The physical necessity may
be traced to the Hilbert-space restriction in a doped Mott
insulator. For instance, the high-Tc cuprate superconductors
at half-filling are believed to be an antiferromagneticsAFd
Mott insulator,1 in which the charge sector at low energy is
totally frozen up by the Coulomb interaction. After doping,
the low-energy charge degrees of freedom do emerge, but
remain highly restricted in the Hilbert space.1 To characterize
such a Hilbert-space restriction, a spin-charge separation
description—namely, by introducing2–4 spinless “holon” of
charge +e and neutral spin-1/2 “spinon” as the essential
building blocksof the restricted Hilbert space—has become
an effective and useful way. Here “holons” and “spinons” do
not necessarily turn out to be true low-lying elementary ex-
citations in the end, because generally local gauge fieldssd
will emerge5,6 to mediate interactions between these “ho-
lons” and “spinons,” and may even lead to theconfinement
of them if either a true spin-charge separation does not exist
or the decomposition is not done in a correct way. In general,
one always ends up with a gauge-theory description for
doped Mott insulators where the gauge interaction can
greatly influence the low-energy dynamics of the charge and
spin degrees of freedom.

Several kinds ofs2+1d-dimensional gauge theories have
been proposed for doped two-dimensionals2Dd spin-1/2 an-
tiferromagnets related to the high-Tc cuprates. A Us1d gauge
theory6,7 based on the slave-boson approach to thet-J model
is one of the most intensively studied. Its gauge structure
may be directly visualized by noting the gauge invariance of
the electron operator in the slave-boson decomposition2

cis = bi
†f is s1d

under a Us1d transformation:bi →eiuibi and f is→eiui f is,
where bi denotes the bosonic “holon” operator andf is the
fermionic “spinon” operator. Along the same line, the SUs2d

non-Abelian gauge theories8 and Z2 gauge theories9 have
also been proposed and studied.

The slave-boson approach is considered to be convenient
in dealing with the superconductingsSCd regime but has less
advantage in describing the AF state near half-filling. On the
other hand, gauge theories10–15 based on the slave-fermion,
Schwinger-boson decomposition are believed to be useful in
studying a lightly doped AF state. Here the electron operator
is written as16

cis = f i
†bis, s2d

where f i denotes the fermionic “holon” operator andbis the
bosonic “spinon” operator. Besides the slave-boson and
slave-fermion decompositions, slave-anyon decompositions
have also been investigated.17–20 Different gauge structures
mentioned above originate from different decompositions
and/or different mean-field decouplings. But a common fea-
ture for these gauge theories is that both “holon” and
“spinon” share the same gauge field.

Recently, a different gauge-theory description has been
constructed21 based on a distinctive decomposition of the
electron operator22,23

cis = hi
†biseiQ̂is, s3d

which is known as thebosonization22 or phase string
decomposition23 because the holon and spinon operatorshi

†

and bis are both bosonic, with the fermionic commutations
relations of the electron operator being restored by the phase

string operator,eiQ̂is=s−sdieifFi
b−sFi

hg/2. Here internal gauge
invariance appears as Us1d3Us1d : hi →eifihi and Fi

b→Fi
b

+2fi; bis→eisxibis and Fi
h→Fi

h+xi. Consequently there
exists a pair of Us1d3Us1d gauge fields coupling to the
holon and spinon fields, respectively, in the resulting gauge
theory, called the phase string model, derived21 based on the
decompositions3d and the bosonic resonating-valence-bond
sRVBd mean-field saddle point, where the normal Us1d gauge
freedom24 slike the one in the slave-boson cased is broken by
the mean-field decoupling.25
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In the slave-bosonsor slave-fermiond Us1d gauge theory,
the external Us1d gauge fieldsi.e., the electromagnetic fieldd
couples toboth holons and spinons,6,7 thanks to the same
internal Us1d gauge field they share. So both holon and
spinon carry some fractions of the electron charge.7,26 In con-
trast, in the phase string model, the external electromagnetic
field only couples to the holon degrees of freedom, without
being directly transferred to the spinon part as the latter sees
a different gauge field. In this sense, the holon carries the full
charge of +e in the phase string model.

Without a bare kinetic energy, the single Us1d gauge field
in the slave-bosonsor slave-fermiond theory fluctuates
strongly,7,13 which makes the theory a strong-coupling one.
On the other hand, the Us1d3Us1d gauge fields are topologi-
cal ones with their strengths constrained to the densities of
two matter fieldsssee Sec. IId such that their fluctuations are
much more mildly suitable for a perturbative treatment. In
particular, the no-double-occupancy constraint of the doped
Mott insulator, which is enforced by the violent gauge fluc-
tuations in the slave-bosonsor slave-fermiond theory, is real-
ized in the phase string model in a quite different way.
Namely, the Us1d3Us1d topological gauge fields will intro-
duce mutual repulsions between holons and spinons, where
holons perceive spinons as vortices and vice versa. As is well
known, a particle cannot go to the core of a vortex of its own
field where the density of such a matter field vanishes. In the
phase string model such a vortex core of one species is al-
ways occupied by a different species such that the no-
double-occupancy is naturally enforced.

Furthermore, the weakslogarithmicd confinement of
spinons and holons at low energies and low temperatures has
been also found27–29in the phase string model, as opposed to
the strong confinement in usual 2D compact Us1d gauge
models in slave-boson or slave-fermion theory.30,31 In the
latter, an effective gauge theory may have a serious infrared
divergence6,7 which makes the gauge theory very difficult to
deal with mathematically. The former is usually much more
manageable than the latter in this regard.

However, the Hamiltonian formalism21 of the phase string
model, in which a gauge field seen by one species is con-
strained to the densitysnumberd of different species, is not
very convenient for studies beyond the mean-field level. In
this paper, we shall develop a Lagrangianspath-integrald for-
malism of the phase string model. We show that the effective
low-energy Lagrangian describes two matter fields, holon
and spinon, minimally coupled to twodifferent Us1d gauge
fields. These gauge fields do not have their own kinetic terms
either, but there is amutual Chern-Simonsterm which en-
tangles two gauge fields together. We call this as a mutual
Chern-Simons description, which constitutes a minimal
field-theory description for the phase string theory.

The gauge structure of such as2+1d-dimensional mutual
Chern-Simons theory is very unique in many aspects as com-
pared to the gauge theories proposed before. We demonstrate
that the physical symmetries, which include parity, time-
reversal, and spin rotational symmetries, are precisely pre-
served in such an effective theory. By contrast, in the usual
Chern-Simonssanyond theories,32–34 the parity and time-
reversal symmetries are explicitly broken, including the
mutual-Chern-Simons theory previously proposed35 for de-

scribing the double-layer quantum Hall effect system.
We further show that there exist two low-temperature

phases in such a theory at low doping. One is an AF state
which recovers the AF long-range ordersAFLROd of the
Heisenberg model at half-filling and may survive at small
doping concentration. The other is an SC state. Two phases
are characterized by dual Meissner effects and dual-flux-
quantization conditions, accompanied by a dual confinement,
which are the direct consequences of the mutual-Chern-
Simons gauge fields interacting with two matter fields when
one of them experiences Bose condensation. Such a mutual
duality connecting the AF and SC states or spin and charge
degrees of freedom is quite different from the usual duality
descriptions proposed36–39 for the cuprate superconductors,
where the conventional boson-vortex duality is used to de-
scribe an ordered-disordered transition.

In the SC phase, for example, the Meissner effect and
hc/2e flux quantization are similar to the predictions by a
conventional superconductivity theory, and the spinons are
found to be confined such that to drop out of the physical
spectrum. Onlyintegerspin excitations, as composed of con-
fined spinon pairs, are allowed in the bulk state. But as a
unique prediction, a single spinonsan S=1/2 momentd does
appear in the center of a magnetic vortex core. It forecasts
that the spin fractionalization will occur in the pseudogap
phase, as the latter may be viewed as the proliferation of the
vortex core state above the superconducting transitionTc.

27,40

In the AF phase, on the other hand, the spinon condensa-
tion may be viewed as a two-component “superfluidity.” The
dual Meissner effect means that a holon is an “alien” object
in the spinon condensate, and the dual-flux quantization con-
dition corresponds to the fact that a meronsvortexd is pro-
duced in the spinon condensate to which a holon must be
confined to, just like a spinon is confined to a magnetic vor-
tex core in the above-mentioned SC state. As a result, only
the “neutral” object of a holon-meron composite, not the
holon itself, appears in the low-energy physical spectrum,
which has a dipolar spin configuration at long distance, co-
existing with the AFLRO in a dilute hole concentration re-
gime.

The remainder of the paper is organized as follows. In
Sec. II, we briefly introduce the effective Hamiltonian of the
phase string model. In Sec. III, we first derive the Lagrangian
spath-integrald formalism in the lattice version. Then we ob-
tain the low-energy mutual Chern-Simons gauge-theory de-
scription in the continuum limit. In Sec. IV, we examine the
symmetries, including parity, time-reversal, and spin rota-
tional symmetries, of the mutual Chern-Simons theory. In
Sec. V, we study two low-temperature-ordered phases based
on the mutual Chern-Simons theory and discuss how holons
and spinons behave in the AF and SC phases, respectively,
where dual confinement of holons and spinons is revealed.
Finally, the conclusions are given in Sec. VI.

II. PHASE STRING THEORY: A MINIMAL MODEL
OF DOPED ANTIFERROMAGNETS

The phase string theory has been proposed21,23 as a low-
energy effective description of the doped antiferromagnets at
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low doping. The “minimal” Hamiltonian of the phase string
theory is composed of two terms,Hstring=Hh+Hs, in which
the charge degrees of freedom are characterized by the “ho-
lon” term

Hh = − tho
ki j l

seiAij
s
dhi

†hj + H.c., s4d

whereth, t and the “holon” operatorhi
† is bosonic; The spin

degrees of freedom as described by the “spinon” term

Hs = − Jso
ki j ls

seisAij
h
dbis

† bj−s
† + H.c., s5d

whereJs,J and the “spinon” operatorbis
† is also bosonic.

Here the gauge fieldsAij
s andAij

h are decided by the topologi-
cal constraints

o
C

Aij
s = p o

lPSC

snl↑
b − nl↓

b d,

o
C

Aij
h = p o

lPSC

nl
h, s6d

where nls
b and nl

h denote the “spinon”swith index sd and
“holon” number operators at sitel, respectively, and the path
C is an arbitrary loop made of the nearest-neighborsNNd
links with SC denoting the area enclosed byC.

The basic features of this model are as follows. At half
filling, the gauge fieldAij

h can be set to zero in Eq.s5d andHs
reduces to the Schwinger-boson mean-field Hamiltonian,16

which describes both the long-range and short-range AF cor-
relations fairly well. Upon doping,Aij

h is no longer trivial due
to constraints6d, which describes that each “holon” behaves
like a p fluxoid as felt by the “spinons.” Thus,Aij

h will play
the role of dynamic frustrations, introduced by doped holes,
that acts on the spin degrees of freedom. Similarly, the “ho-
lons” are also subjected to dynamic frustrations, from the
spin background, via the gauge fieldAij

s in Eq. s4d. The spin
and charge degrees of freedom are thus mutually frustrated
in the phase string model in terms of two topological gauge
fields Aij

h andAij
s .

The phase string model outlined above incorporates, as a
minimal model, three most essential characteristics of the
doped antiferromagnets described by thet-J model. They are
sid the restricted Hilbert space of doped Mott insulators,
which is characterized by the spin-charge separation formal-
ism with holons and spinons as basic building blocks;sii d
strong short-range AF correlations as provided by the
bosonic RVB description in Eq.s5d, which can naturally
grow into an AFLRO state as the doping concentration is
reduced to zero;siii d the mutual singular influence between
the charge and spin degrees of freedom as represented by
two topological gauge fieldsAij

h and Aij
s , which mathemati-

cally capture the phase string effect identified23 in the t-J
model. Such a mutual interaction has been shown21,27–29to
be responsible for some nontrivial physical properties of the
model in close connection with the high-Tc materials.

In the phase string formalism, the spin operators are ex-
pressed in terms of the spinon operators in the nontrivial
form23

Si
z =

1

2
sbi↑

† bi↑ − bi↓
† bi↓d,

Si
+ = sSi

−d† = s− 1dibi↑
† bi↓eiFi

h
, s7d

where the phaseFi
h appearing inSi

± can be decided by the
relation Fi

h−F j
h=2Aij

h for two NN sites,i and j , which are
not occupied by the holes. Under this definition, the spin
operators as well as the effective Hamiltonian are invariant
under the gauge transformationbis→biseisfi , Fi

h→Fi
h

+2fi , Aij
h →Aij

h +fi −f j. The holon-dependent phase factor
Fi

h in Eqs. s7d further illustrates the intrinsic mutual en-
tanglement between spin and charge degrees of freedom in
the phase string theory.

III. MUTUAL CHERN-SIMONS
GAUGE-THEORY DESCRIPTION

A. Lagrangian formulation

The treatment of the Hamiltonian formalism of the phase
string model may not be convenient beyond the mean-field
approximation because the gauge fieldsAij

s and Aij
h, defined

in Eq. s6d, are themselves operators depending on the dy-
namics of the matter fields. In order to deal with the phase
string model Eqs.s4d ands5d more conveniently, a Lagrang-
ian spath-integrald formalism will be introduced in this sec-
tion.

First of all, let us reexpress the topological constraints6d
locally. As pointed out before, the original no-double-
occupancy constraint in thet-J model can be realized in the
phase string model by the mutual repulsion between spinons
and holons viaAij

h andAij
s . As a consequence, the closed path

C of a holon or spinon in Eq.s6d will not cross spinons or
holons and thus effectively avoid a singularity occurring
when a spinon and a holon simultaneously stay at the same
site sas each spinon or holon carries ap fluxoid seen by a
holon or spinond. Following this, then, it is physically rea-
sonable to implement a regularization in the topological con-
straint s6d by introducing two sets of dual square lattices,
respectively, for spinons and holons to stay, as illustrated in
Fig. 1. In this way, a closed pathC for the spinon and aC*

for the holon on different lattices can be arbitrary without
worrying about crossing the opposite species, either holons
or spinons. Presumably no important low-energy physics will
get lost by such alocal regularization.

Here and below, the minusculesmajusculed Latin letters
i , j sI ,Jd will be used to label the dual lattice sites for
spinonssholonsd. The Greek lettersa , b , g will be used for
2D spatial indices 1 and 2, whilem , n , l for the three-
dimensional space-time indices 0, 1, 2. Then the topological
constraints6d can be reexpressed in a compact form as fol-
lows:

eabDaAb
hsid = pnI

h,

eabDaAb
ssId = po

s

snis
b , s8d

in which the link fieldsAa
hsid;Ai+â,i

h andAa
ssId;AI,I−â

s , with
a=x, y, and the difference operatorsDa on the two sets of
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the dual lattices are defined byDafsid= fsi +âd− fsid and
DafsId= fsId− fsI −âd, respectively. Note the slightly different
definitions of link variables and lattice difference operators
on two dual lattices, so as to keep the symmetric forms in
s8d.

In the path-integral formulation, the topological constraint
s8d can be enforced by introducing two Lagrangian multipli-
ersA0

hsid andA0
ssId as follows:

Lconstr= − io
I

A0
ssIdFnI

h −
1

p
eabDaAb

hsidG − io
i

A0
hsid

3Fo
s

snis
b −

1

p
eabDaAb

ssIdG . s9d

Once the topological constraint is implemented by the La-
grangian multipliers, the gauge fieldsAIa

s and Aia
h can be

treated asindependentgauge variables in the Lagrangian for-
malism. In order to get the correct form of the Lagrangian for
this system, we need to first identify the canonical momenta
of the gauge fieldsAij

h andAIJ
s .

It is helpful to consider the continuity equation for the
holon density:

]tnI
h + DaJI+â,I

h = 0. s10d

Using the topological constraint in Eqs.s8d and the definition
of the conserved holon current,JI+â,I

h =−dHstring/dAI+â,I
s , one

gets

]tF 1

p
eabDaAb

hsidG + DaF−
dHstring

dAI+â,I
s G = 0, s11d

such thatfunder a proper gauge choice ofAb
hsidg

]tAb
hsid =

dHstring

d„− p−1ebgAg
ssId…

. s12d

Equations12d is just the canonical equation of motion for
Ab

hsid, and one can thus identify the canonical momentum
Pb

hsid=−s1/pdebgAg
ssId. In other words, the spatial compo-

nents of the gauge fieldsAh andAs are canonically conjugate

to each other.sThe temporal componentsA0
s andA0

h have no
canonical momenta since they do not have independent dy-
namics in the above formulation.d

Following the standard canonical quantization procedure,
theEuclideanLagrangianswith the Wick rotationt→−itd of
this system can be derived straightforwardly as follows:

Lstring= o
i

Pa
hsids− id]0Aa

hsid + o
i

bis
† ]0bis + o

I

hI
†]0hI

+ Hstring+ Lconstr; Lh + Ls + LCS,

where

Lh = o
I

hI
†f]0 − iA0

ssIdghI − tho
kIJl

shI
†eiAIJ

s
hJ + H.c.d

+ mSo
I

hI
†hI − NdD ,

Ls = o
is

bis
† f]0 − isA0

hsidgbis − Jso
ki j ls

sbis
† eisAij

h
bj−s

† + H.c.d

+ lSo
is

bis
† bis − Ns1 − ddD ,

LCS=
i

p
o

I

emnlAm
s sId]nAl

hsid, s13d

with ]0;]t . Note that one can also use a procedure similar
to Eqs. s10d–s12d to define a conjugate fieldPa

ssId
=−s1/pdeabAb

hsid for Aa
ssId and the resulting Lagrangian re-

mains the same as above.
Therefore, the Lagrangian formalism of the phase string

model describes that the two matter fields, bosonic spinons
and holons, are minimally coupled to Us1d3Us1d gauge
fields Am

s and Am
h , whose gauge structure is decided by the

mutual-Chern-Simons termLCS in Eqs. s13d. In the follow-
ing, we shall further derive the long-wavelength, low-energy
effective Lagrangian based on such a lattice model.

B. Low-energy effective theory

The Lagrangians13d is written in a lattice form. It can be
further simplified and reduced to a continuum version in the
long-wavelength, low-energy limit. The procedure given be-
low is quite standard and straightforward.

Let us first consider the spinon LagrangianLs, in which
some careful treatment is needed in taking the continuum
limit. We shall derive its low-energy action in theCPs1d
formalism41 by integrating out the short-rangeferromagnetic
fluctuations.

First of all, we divide the square lattice into two sublat-
ticesA andB and redefine the spinon operatorbis at B sub-

lattice asb̄is. ThenLs in Eqs.s13d can be rewritten as

FIG. 1. A regularization of the contraints in Eq.s6d by introduc-
ing dual lattices is shown. A spinonsdenoted by an arrowd and a
holon sdenoted by an open circled stay in dual latticesssolid and
dashed ones, respectivelyd, with the gauge fieldsAij

h andAIJ
s defined

on the links of two dual lattices, respectively. The closed loop
CsC*d of a spinonsholond can be arbitary without crossing holons
sspinonsd. See text for the detail.

KOU, QI, AND WENG PHYSICAL REVIEW B71, 235102s2005d

235102-4



Ls = o
iPA,s

bis
† s]0 − isA0

hdbis + o
iPB,s

b̄is
† s]0 − isA0

hdb̄is − Js

3 o
iPA,j=nnsid,s

sbis
† eisAij

h
b̄j−s

† + H.c.d

+ lS o
iPA,s

bis
† bis + o

iPB,s
b̄is

† b̄is − Ns1 − ddD . s14d

As usual, we introduce the continuum fields

bis = zssr id + pssr id,

b̄i+ĥ,−s
† = zssr i + ĥad − pssr i + ĥad, s15d

in which i PA, ĥ= x̂, ŷ, anda is the lattice constant. Then, by
expressing the Lagrangians14d in terms ofzs and ps and
taking the continuum limita→0 with Aa

hsid→aAa
hsr d, we

obtainLs=ed2rLs, in which

Ls = o
s

fJsus]a − isAa
hdzsu2 + a−2sl − 4Jsduzsu2g − la−2s1 − dd

+ o
s

f− Jsus]a − isAa
hdpsu2 + a−2sl + 4Jsdupsu2g

+ a−2o
s

fps
* s]0 − isA0

hdzs − pss]0 + isA0
hdzs

* g. s16d

By further integrating out the high-energy fieldps, we arrive
at

Ls = o
s
S a−2

l + 4Js
us]0 − isA0

hdzsu2 + Jsus]a − isAa
hdzsu2

+ a−2sl − 4Jsduzsu2D − la−2s1 − dd. s17d

Defining the spin-wave velocitycs=ÎJssl+4Jsda and re-
defining the temporal componentst→csx0, A0

h→csA0
h, the

low-energy effective action for the spinons can be finally
written as

Ss =E d2rE
0

csb

dx0
1

2g
fus]m − isAm

hdzsu2 + ms
2uzsu2g. s18d

Here the summations overm=0, 1, 2 ands= ↑ ,↓ are omitted
for simplicity and the constant termla−2s1−dd is also
dropped. The coupling constantg=cs/2Jss1−dd, and the
massms=cs

−1Îl2−16Js
2, in which l is decided by the spinon

number constrainted2xosuzsu2=Na2. Note that here the
zs field has been rescaled in the last step such thatosuzsu2
remains 1 per site on average even at finite doping. There-
fore, in its final form, the long-wavelength theory for spinons
consists of a massive, spin-1/2, and relativistic bosoniczs

sspinond coupled to aUs1d gauge fieldAm
h .

The continuum versions ofLh and LCS can be more
straightforwardly obtained by directly taking the continuum
limit a→0, with Aa

ssId→aAa
ssr d , A0

ssId→csA0
ssr d, and hI

→ahsr d. The final form of the partition function can be writ-
ten in the compact form

Z =E DhDz↑Dz↓DAsDAhexpS−E
0

csb

dx0E d2rLeffD ,

in which

Leff = Lh + Ls + LCS, s19d

with

Lh = h†f]0 − isA0
s + eA0

edgh + h†s− i]a − Aa
s − eAa

ed2

2mh
h,

Ls =
1

2g
fus]m − isAm

hdzsu2 + ms
2uzsu2g,

LCS=
i

p
emnlAm

s ]nAl
h, s20d

where in the holon Lagrangian densityLh, mh
.s2tha

2d−1, Am
e is the vector potential of the external elec-

tromagnetic field, and −e is the electron electric charge. Note
that the chemical potentialm in Lh has been absorbed into
iA0

s for simplicity.
The Lagrangians in Eqs.s20d constitute our final low-

energy effective theory. They describe two matter fields, ho-
lons and spinons, minimally coupled to a pair of Us1d
3Us1d gauge fieldsAm

s andAm
h . The latter do not have their

own kinetic energies, but are mutually “entangled” by the
mutual Chern-Simons termLCS. Such a mutual Chern-
Simons term has been previously proposed35 for describing
the double-layer quantum Hall effect system. But here due to
the fact thatAm

h couples to up and down spins with opposite
“charges” inLs, the parity and time-reversal symmetries are
explicitly retainedssee belowd. The external electromagnetic
field Am

e only directly couples to the holon field, indicating
that the latter is the primary charge carriersconsistent with
the definition of the holond. This is in contrast to the usual
Us1d gauge theory based on the slave-boson approach, in
which both the holon and spinon share the external electro-
magnetic field as if each of them carriers a fractional part of
the chargee fas the result that both of them see the same
internal Us1d gauge fieldg.

In the following section, we shall carefully examine the
symmetries of this effective Lagrangian with a particular at-
tention to the parity, time-reversal, and spin SUs2d rotational
symmetries.

IV. SYMMETRIES

The symmetries of the present mutual Chern-Simons La-
grangian will be studied in this section. The following dis-
cussions will be based on the low-energy effective Lagrang-
ian s20d, although all of them can be easily generalized to the
lattice formalism in Eqs.s13d.

First of all, we note that the Us1dcharge3Us1dSz
gauge in-

variance ofSeff is obvious according to Eqs.s20d. Conse-
quently, the global Us1dchange invariance of the holons en-
sures the conservation of the electromagnetic charge in this
system. Also straightforward is the translational invariance in
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2+1 dimensions. In the following, we shall mainly focus on
the parity, time-reversal, and spin rotational symmetries, and
show that they are explicitly retained in the present mutual
Chern-Simons gauge theory, in contrast to ordinary Chern-
Simons theories in which the parity and time-reversal sym-
metries are usually broken.

A. Parity

In 2+1 dimensions, the parity transformation is defined as
a reflection with regard to a spatial axis, e.g.,

x → − x, y → y, t → t. s21d

It is straightforward to verify that the effective
LagrangiansLh, Ls, andLCS remain invariant, respectively,
under the parity transformations21d, if the matter fields and
gauge fields transform unders21d as follows:

zs → z−s, h → h,

A0
h → − A0

h, Ax
h → Ax

h, Ay
h → − Ay

h,

A0
s → A0

s, Ax
s → − Ax

s, Ay
s → Ay

s. s22d

The parity transformations of the fields ins22d can be
determined as follows. For example, according to the prop-
erty of angular momenta, a spin should transform as an axial
vector—namely,Sx→Sx, Sy→−Sy, Sz→−Sz under the par-
ity transformations21d. Thus the transformation of theCPs1d
field zs should bezs→z−s. On the other hand, the gauge
field Ah transforms as an axial vector andAs as a polar vector
in s22d. Indeed, in order to keep the invariance ofLh andLs,
the parity of Am

s and Am
h should be identical to the charge

current jm
h =−dLh/dAm

s and spin currentjm
s =−dLs/dAm

h , re-
spectively. Furthermore, the parity transformations ofAm

s and
Am

h are also consistent with the classical equations of motion
for the Chern-Simons fields obtained based on Eqs.s20d:

jm
s =

i

p
emnl]nAl

s, jm
h =

i

p
emnl]nAl

h. s23d

The parity invariance of the mutual Chern-Simons term is
also related to the fact that the gauge fieldAh transforms as
an axial vector andAs as a polar vector, in contrast to an
ordinary Us1d Chern-Simons theory.

B. Time reversal

Under the time-reversal transformation

t → − t, ra → ra, s24d

the zs and h fields will transform as the usual spinor and
scalar fields, respectively. Using the same procedure as given
above in the parity transformation, we can determine

zs → sz−s
* , h → h* ,

A0
h → − A0

h, Aa
h → Aa

h ,

A0
s → A0

s, Aa
s → − Aa

s , s25d

under the time-reversal transformations24d. It can be then
easily checked that the LagrangianLeff=Lh+Ls+LCS is also

invariant under the time-reversal transformation.
The parity and time-reversal invariances of the mutual

Chern-Simons Lagrangians20d are in sharp contrast to the
violations of both, separately, in an ordinary Us1d Chern-
Simons theory. As noted above,Ah as an axial vector andAs

as a polar vector in the mutual Us1d3Us1d Chern-Simons
theory are the key for the restoration of the symmetries. Note
that the charge conjugate symmetry is meaningless here
since the holon LagrangianLh is nonrelativistic and antiho-
lons are not well defined.

C. Spin SU(2) rotation

The demonstration of the global spin SUs2d symmetry in
the present formulation is less straightforward than the other
symmetries discussed above. The underlying reason is that
the spin operators are expressed in an unconventional way in
terms of thebi ;sbi↑ ,bi↓dT doublet according to Eqs.s7d.

Let us consider a global SUs2d spin rotation defined by
U=expsiu ·Sd. In terms of Eqs. s7d, one finds U−1biU

=ss3die−s3Fi
h/2eius/2eis3Fi

h/2ss3dibi. Correspondingly, accord-
ing to the definition of theCPs1d fields in Eqs.s15d, the
doubletz=sz↑ ,z↓dT under the SUs2d rotationU is given by

U−1zsr ,tdU = eis3Fhsr ,td/2eisu/2e−is3Fhsr ,td/2zsr ,td, s26d

in which

]mFhsr ,td = 2Am
hsr ,td. s27d

Note that in the Hamiltonian formalism, the single valueness
of Fi

h in the spin operatorss7d is ensured by the topological
constraint onAij

h according to Eqs.s6d. In the path-integral
formalism,Fh is determined by Eq.s27d, and we show in the
Appendix that to have a finite contribution to the partition
function,Fh must still satisfy the single-valueness constraint
DFhuC;rC]mFhdxm=rC2Am

hdxm=2np, with nPZ for an ar-
bitrary loopC.

The spinon LagrangianLs can be rewritten as

Ls =
1

2g
hsDmzd†Dmz+ ms

2z†zj, s28d

in which Dmz;s]m= is3Am
hdz=]mse−is3Fh/2zd. Under the

transformations26d, Dmz transforms as

U−1sDmzdU = eisu/2Dmz.

Namely, Dmz transforms as the basic representation of the
SUs2d group, and the SUs2d invariance of the Lagrangian
s28d is proved. Independent ofzsr ,td, the LagrangiansLh

and LCS are obviously invariant. Therefore, the global spin
SUs2d symmetry is indeed preserved in the present mutual
Chern-Simons theory.

V. TWO ORDERED PHASES AT LOW TEMPERATURES

A. AF phase at low doping

1. Half-filling

Let us first consider Lagrangians19d at half filling. With-
out the presence of holons, one can findAm

h =0 andLeff re-
duces to aCPs1d model
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Leff → Ls =
1

2g
hu]mzu2 + ms

2uzu2j. s29d

The saddle-point solution of Eq.s29d can be obtained by a
standard procedure after integrating out theCPs1d z field and
then minimizing the resulting action with regard toms

2 shere
the constant term −ms

2/2g previously dropped inLs has to be
includedd as follows:42–44

gTo
vn

E d2k

4p2

1

k2 + vn
2 + ms

2 = 1, s30d

wherevn=2pnT, n=integers. With a proper regularization43

in Eq. s30d, the mass gapms can be determined at smallT as

ms < T expS−
2p

T

1

g̃
D s31d

in the so-called renormalized classical region, where 1/g̃
;1/g−1/gc.0 shere gc=4p /L with L denoting a cutoff
parameter in the regularizationd.

At T=0, the mass gapms=0, and a Bose condensation
takes place in the ground state withkzlÞ0, corresponding to
an AFLRO lying in thex-y plane:kSi

+l=s−1dikz↑lkz↓l, which
can be easily destroyed by thermal fluctuations at any finite
temperatures as indicated byms.0 according to Eq.s31d.

The energy scale of the mass gapms is always much
smaller than the temperature—i.e.,ms!T, at T!1/g̃. Thus,
vn=2pnT snù1d is usually much larger than the mass gap,
which means that the quantum fluctuations will become neg-
ligible in a sufficiently long-wavelength and low-energy re-
gime, where one may only consider the purely staticssemi-
classicald fluctuations. In the region ofms,k,csb, the
effective Lagrangian of theCPs1d field will lose Lorentz
invariance and becomes

Ls <
1

2g̃
u ¹ zu2. s32d

Such an effective Lagrangian can be also obtained in the
renormalized classical region by using the Os3d nonlinears
model.42

2. Low doping

In a sufficiently small concentration of holes, if the
AFLRO or the Bose condensation of theCPs1d spinor fields
persists, then the renormalized classical Lagrangians32d re-
mains applicable, which should be simply modified to couple
to the gauge fieldAh according to Eqs.s20d as follows:

Ls =
1

2g̃
us¹− is3A

hdzu2. s33d

On the other hand, holons are coupled toAm
s in Lh, and two

gauge fields are then entangled by the mutual Chern-Simons
term LCS fsee Eqs.s20dg, which can be rewritten, up to a
boundary term, as

LCS= −
i

p
Ah · sEs 3 ẑd +

i

p
A0

hBs, s34d

where we introduceEs;]0A
s− ¹A0

s as the “electric field”
strength forAm

s and Bs= ¹ 3As·ẑ as its “magnetic field”
strength. By integrating outAm

h , then, the spin dynamics will
become entangled with the holon dynamics as shown below.

First of all, the integration overA0
h will simply lead to

Bs=0. In the following, one may then choose a proper gauge
As=0 andEs=−¹A0

s. Next, by using

us¹− is3A
hdzu2 = u ¹ z̃u2 + 2Ah ·vs + sAhd2uz̃u2,

with z̃;sz↑ ,z↓
*dT andvs;si /2dsz̃†¹ z̃− ¹ z̃†z̃d, one has

Ls + LCS=
1

2g̃
u ¹ z̃u2 + Ah ·S1

g̃
vs −

i

p
Es 3 ẑD +

1

2g̃
sAhd2,

under the constraintuz̃u2=1, which, after integrating outAh,
arrives at

1

2g̃
u ¹ z̃u2 −

g̃

2
S1

g̃
vs −

i

p
Es 3 ẑD2

=
1

2g̃
su ¹ z̃u2 − uvsu2d

+
g̃

2p2sEsd2 +
i

p
sEs 3 ẑd ·vs. s35d

Finally, by introducing a unit vectorñ defined by

ñ = z̃†sz̃

and by using

1

4
u ¹ ñu2 = u ¹ z̃u2 − uvsu2,

the low-energy effective Lagrangian reduces to

Leff =
1

8g̃
s¹ñd2 +

g̃

2p2sEsd2 + iA0
sK0

s + Lh, s36d

where

K0
s ;

1

p
e0nl]nvl =

1

4p
e0nlñ · ]n ñ 3 ]lñ.

This low-energy Lagrangian describes how the bosonic
holons, viaLh, and spin twists, with topological charge den-
sity K0

s, are coupled to a Maxwell gauge fieldAs with the
“photon velocity” c=`—that is, in the absence ofuBsu2. The
only effect of such a nonrelativistic gauge field is then to
induce a 2D Coulomb interaction between two types of
charged particles, including holons and spin twists character-
ized byK0

s. Noting Es=−¹A0
s and integrating outA0

s in Eq.
s36d, a potential term will emerge in the effective action as

V = qh
2E d2rd2r 8lnur − r 8usrh + K0

sdsr dsrh + K0
sdsr 8d,

s37d

in which rh=h†h andqh
2=p3/ g̃2, accompanied by acharge-

neutral constraint enforced in the thermodynamic limit on
the low-energy states of such a 2D Coulomb gas system—
namely,
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E d2r frhsr d + K0
ssr dg = 0. s38d

Thus, a holon has to be “confined” to a spin twist, satisfying
1+ed2r 1

2p ñ ·]xñ3]yñ=0, which leads to the quantization
condition of the winding number of the unit vectorhñsr dj in
spin space as follows:

Qs ;E d2r
1

4p
ñ · ]xñ 3 ]yñ = −

1

2
. s39d

Namely, each holon will be bound to a “meron,” which is a
spin twist of the unit vectorñ whose winding number is half
of that for a Skyrmion.

According to the conditions38d, one expects to find an
equal number of holons andsantidmerons at low tempera-
tures, which are paired by the logarithmic-attractive interac-
tion in Eq. s37d. An unpaired holon orsantidmeron will cost
a logarithmically divergent energy and thus is forbidden to
appear. In other words, in the AF phase, a bare holon cannot
exist alone, but has to be always confined to a spin topologi-
cal configurationsmerond. Such an effect in the spin-ordered
phase is called the“holon confinement.”Note that a holon
itself will also carry a spin vortex according to Eqs.s7d; the
composite object formed by the holon-meron pair actually
corresponds to a spin dipolar configuration in thereal spin
space, as previous identified in the phase string model.28,29

Since thesantidmeron is a semiclassical object without a co-
herent quantum dynamics, the dipole as a bound pair of a
holon and asantidmeron normally cannot move coherently
either. That is, the holon will beself-trappednear the core of
the meron in space and the translation symmetry is sponta-
neously broken.

With the increase of doping—i.e., the number of holon-
antimeron dipoles—one expects to see a screening effect on
the confining potentialV. It has been previously found that
eventually a confinement-deconfinement transition can take
place beyond some critical doping concentration, where the
screened 2D Coulomb interaction becomes short ranged.28,29

Once the bosonic holons are free, they will experience a
Bose condensation and the resulting phase is an SC state as
to be discussed in the following section. In the SC phase,
there exists a duality correspondence of the quantization con-
dition s39d, which will ensures the flux quantization condi-
tion there. Correspondingly Eq.s39d may be called adual-
flux-quantization condition.

Finally we remark that the hole self-trapping at low dop-
ing, discussed in the present work, is in contrast to a conven-
tional picture for single hole moving in the AF background
based on the numerical studies of thet-J model.45 In the
latter case, the doped hole is found to have finite spectral
weight and a coherent dispersion with the bandwidth compa-
rable toJ. The discrepancy may arise from the small sample
sizes in exact diagonalization calculations: The phase string
effect, which leads to the mutual Chern-Simons gauge fields,
starts to play the role of self-localization only when the
sample sizes become larger than the localization length
scales.46 Further investigations using both analytic and nu-
merical approaches to clarify this issue are needed. Possible

experimental implications of self-trapping for lightly doped
cuprate have been previously discussed in the phase string
model.29

B. Meissner effect and spinon confinement in the SC phase

Now let us consider the other ordered phase with the Bose
condensation of holons,khlÞ0, whose ground state is a su-
perconducting one27 with the Meissner effect and charge 2e
minimal flux quantization as shown below.

With khlÞ0, Lh in Eq. s20d reduces to

Lh = irhs]0fh − A0
sd +

rh

2mh
s¹fh − As − Aed2 s40d

by writing hsr d=Îrhe
ifhsr d. The Chern-Simons terms20d can

be rewritten as

LCS= −
i

p
As · sEh 3 ẑd +

i

p
A0

sBh · ẑ s41d

by introducing the “electric” fieldEh=]0A
h− ¹A0

h and “mag-
netic” field Bh= ¹ 3Ah for the vector potentialAh.

First, the “magnetic” fieldBh=Bh·ẑ can be determined
after integrating outA0

s in the partition function and one ob-
tains the condition

Bh = Bh · ẑ = prh, s42d

which is uniform and fixes the spatial componentAh, such
that Eh=−¹A0

h. Second, after integrating outAs, the result-
ing effective Lagrangian takes the form

Leff = Ls + S mh

2p2rh
DuEhu2 − iA0

hQh, s43d

in which

Qh ;
1

p
e0nl]ns]lfh − Al

ed.

Finally, we integrate outA0
h in Eq. s43d. For our purpose,

instead of using the continuous versions20d of Ls, we shall
use a simpler but more precise form of the term involvingA0

h

based on the originalLs defined in Eq.s13d, which reads

Ls = − iA0
hrssr d + LssA0

h = 0d,

in which rssr d=r↑sr d−r↓sr d with r↑sr dfr↓sr dg denotes the
density of upsdownd spinons. Then, after integrating outA0

h,
one obtains the following effective action in
s2+1d-dimensional Euclidean space:

Seff =E d3xmfLssA0
h = 0dg +E dx0VSC,

where

VSC= qs
2E d2rd2r 8lnur − r 8usrs + Qhdsr dsrs + Qhdsr 8d,

s44d

with qs
2=prh/4mh. Similar to the case in the AF phase, in the

thermodynamic limit, there is a charge-neutral condition en-
forced as follows:
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0 =E d2r frssr d + Qhsr dg = N↑ − N↓ + S2Nvor −
Fe

p
D ,

s45d

in which N↑ sN↓d is the total number of spin-upsspin-downd
spins,Nvor=s1/2pded2reab]a]bfh denotes the total number
of 2p vortices in the holon field, andFe is the total external
magnetic flux,Fe=ed2re0nl]n Al

e.
SinceN↑ , N↓, andNvor are all quantized to be integers, we

find the minimalflux quantization condition

uFmin
e u =

F0

2
, s46d

whereF0=2p s=hc/e in full unitsd is the flux quantum for a
chargee system.

Therefore, the external magnetic flux is not allowed to be
present in the bulksi.e., the Meissner effectd unless it is
quantized in multiples of half flux quanta given in Eq.s46d.
In particular, for a magnetic flux quantized at the minimal
half flux quantumFmin

e , there must be a spinon trapped near
the vortex core according to Eq.s45d by noting that the
“charge” 2Nvor of the vortices produced by holon field is
always in units of 2p si.e., F0d.

However, free spinons are not allowed in the bulk in the
absence of the external magnetic flux. Indeed, forFe=0, the
“charge-neutral” conditions45d reduces toN↑−N↓+2Nvor
=0. As a result, a single spinon excitation, withSz

=sN↑−N↓d /2= ±1/2,will violate the “charge-neutral” condi-
tion, which in fact will cost a logarithmically divergent en-
ergy as each spinon behaves like a half vortex. Hence, in the
superconducting state, the spinon-vortices must be always
paired upsconfinedd in the bulk by the logarithmic force
given in Eq.s44d. To be noted, not only can the spinons with
different spin indicessup-downd pair up, those with the same
spin indicessup-up and down-downd can also pair up to sat-
isfy the charge-neutral condition by involving a holon phase
vortex with NvorÞ0—e.g., Nvor=1, N↑=2, N↓=0 or Nvor=
−1, N↑=0, N↓=2. SinceNvor does not appear in the rest of
the action, these two excitations ofSz= ±1 are energy degen-
erate with the stateSz=0, Nvor=0, to form S=1 triplet spin
excitations, consistent with the spin rotation symmetry gen-
erally demonstrated before. For the same reason, the single
spinon bound to a magnetic vortex quantized atF0/2 should

have a free moment withSz= ±1/2, because of the freedom
introduced byNvor.

Thus, the superconducting phase in the present mutual
Chern-Simons theory is characterized by the holon conden-
sation and spinonslogarithmicd confinement. We have seen
that the fractionalization of spinssa single spinond does not
directly appear in the bulk low-lying excitation spectrum, but
does show up in a magnetic vortex core.27 The deconfine-
ment of spinon-vortex pairs will eventually occur at the su-
perconducting transition temperatureTc.

27,40 Finally, we
point out that the symmetry of the superconducting order
parameter, which is expressed in terms of the electron opera-
tor s3d, is d-wave like as discussed previously in Ref. 47.

C. Mutual duality of two phases

The doping effect and the interplay between charge and
spin degrees of freedom are characterized by a mutual
Chern-Simons gauge structure in this model, as discussed in
previous sections. The mutually dual characteristics of these
two phases are summarized in Table I.

We have shown that, at low doping, the spinon condensa-
tion leads to a spin AF order and forces a “confinement” on
the holon part, making holons self-localized to ensure the
AFLRO. On the other hand, at a higher doping, the conden-
sation of bosonic holons forces a “confinement” on the
spinon part, resulting an SC phase coherence.

There are several distinctions between the two ordered
phases. In the AF phase, the spinon condensate is a kind of
two-component “superfluid.” Consequently the global sym-
metry is broken from SUs2d to Us1d. In contrast, the ground
state in the SC phase is a condensation of a scalar field—
holons. As a result the global Us1d symmetry of the charge
part is broken.

Besides such a fundamental distinction, two phases share
some common features originated from the duality in the
mutual Chern-Simons gauge structure. In both the AF and
SC phases, there exist induced Maxwell terms that have only
“electric field strengths” without the Lorentz invariance.
There are “charges” coupling to these Coulomb gauge fields,
including quantum particlessholons and spinonsd and exter-
nal sources without quantum dynamics. The “charge-neutral”
condition and 2D Coulomb interaction among the “charged”
objects lead to dual Meissner effects: In the SC case, an

TABLE I. Mutual duality of AF and SC phases.

AF SC

Bose condensation kzlÞ0 khlÞ0

Coulomb gauge field A0
s A0

h

“Charged” particle of Coulomb gauge field holon spinon

External source of Coulomb gauge field meron magnetic flux

“Charge-neutral” object holon-meron pair sad spinon pair
sbd magnetic flux+a spinon

Dual flux quantization uQsu= 1/2 uFmin
e u= F0/2 =hc/2e

Dual Meissner effect holon confinement sad spinon confinement
sbd spinon bound to magnetic flux
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external magnetic flux as an external source must be quan-
tized, and in order to realize a minimal quantumhc/2e, a
single spinon must be bound to such a magnetic flux to form
a “charge-neutral” object. In the AFLRO state, as an external
source, asantidmeron is allowed as a topological excitation
from the spinon condensate with a quantized winding num-
ber uQsu= 1

2 and a holon cannot reside alone and must be
bound to such an external source to form a “charge-neutral”
object with a spin dipolar configuration.

Finally we emphasize that the mutual Chern-Simons
theory in this work involves a mutual duality between the
charge and spin degrees of freedom rather than a usual du-
ality. A usual dual description has been also widely used36–39

in studying the doped Mott insulators, which deals with an
ordered phase and the transition to a disordered phase in
terms of the corresponding topological defects on the dual
lattice. In a conventional dual-theory description, normally
the AF and SC phases are not directly related. By contrast, in
the mutual duality discussed in the present theory, the vorti-
ces of one speciessholon or spinond under condensation are
themselves quantum objects of another speciessspinon or
holond, andtwo ordered phases—i.e., AF and SC states—can
be naturally unified together.28 A similar duality at low dop-
ing has been also investigated48 by starting from the slave-
fermion approach.15 Based on the same phase string decom-
position s3d but with a slightly different mean-field
decouplingssee Ref. 25d, a mutual duality between the AF
and SC states has been also discussed recently in Ref. 24.

VI. CONCLUSION

In this paper, we studied a new class of nontrivial
s2+1d-dimensional gauge field structure—the mutual Chern-
Simons theory. The Lagrangian of such a mutual Chern-
Simons theory is derived as an effective low-energy descrip-
tion of the phase string model for doped Mott insulators.
This effective Lagrangian retains the full symmetries of par-
ity, time-reversal, and global SUs2d spin rotation, in contrast
to the conventional Chern-Simons theories where first two
symmetries are usually broken.

The mutual Chern-Simons theory as a minimal model for
doped Mott insulators has a unique mutual duality structure.
Two ordered phases found in this theory, the AF and SC
states, are connected by dual Meissner effects and dual con-
finement and deconfinement. Namely, holons become vorti-
ces in the spinon-condensed AF phase and spinons become
vortices in the holon-condensed SC state. The former leads
to the holon confinementsa holon bound to a spin meron
twist to form a “neutral” dipolar structured and the latter
leads to the spinon confinement and flux quantizationsa
spinon bound to a magnetic flux quantized athc/2e to form
a “neutral” object in the holon condensated.

Such a mutual duality structure between the charge and
spin degrees of freedom determines the essential competition
between two degrees of freedom and provides driving forces
for phase transitions to each other or to other disordered
phases. Dual confinement means that there is no true spin-
charge separation is present in these ordered phases since
one speciessspinon or holond is always confined at low tem-

peratures while the othersholon or spinond is condensed. But
the dual deconfinement will play an essential role in the tran-
sitions to disordered phases or at the boundary between two
ordered phases where a quantum critical point may exist.28,49

The systematic evolution of the phase diagram at low doping
is currently under investigation based on the mutual Chern-
Simons Lagrangian.

In the future we will also consider some additional rel-
evant terms which have not been taken into consideration in
the presentminimal model. As previously shown,47 there
generally exists a residual attractive interaction between ho-
lons and spinons within thet-J model, which should be in-
cluded when one considers the nodalsd-waved fermionic
quasiparticle excitations as “collective” modes in the SC
phase. In principle, besides spinon confinement, there also
exists a holon-spinon confinement in the SC phase of the
phase string model, since single spinon or holon excitation is
not allowed.47 How the fermionic nodal quasiparticles can be
naturally described in the mutual Chern-Simons framework
will be a central issue to address in a next study, where the
attractive interaction between holons and spinons beyond the
phase string model should be properly incorporated in order
to get a correct excitation spectrum.47 We do not expect a
qualitative modification on the present results of the minimal
model by including such a term, since the quasiparticles as
bound states of holons and spinons are independent, to a
leading-order approximation, of those spinon excitations
which are confined to form integer-neutral spin excitations
discussed in the present work.
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APPENDIX: SINGLE VALUENESS OF Fh
„r , t…

In the transformations26d, Fhsr ,td is required to be
single valued with mod 2p in order to ensure the single
valueness of the spin operators. Then according to Eq.s27d,
it imposes a constraint onAm

h—i.e.,

DFhuC = 2R
C

Am
hdxm = 2np, n P Z, sA1d

in which dxm is the tangential differential vector of an arbi-
trary loopC in 2+1 dimensions.

Since the gauge fieldAm
h is an independent dynamic vari-

able, the constraintsA1d would be generallyviolated. How-
ever, we shall prove below that all theAm

h configurations that
violate Eq.sA1d have a vanishing contribution to the parti-
tion function, which is consistent with the topological con-
straint s6d in the Hamiltonian formalism.

First of all, for an arbitrary loopC in Eq. sA1d, we may
introduce a vortex ring phase configurationeiusxmd with an
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arbitrary winding numberMsM PZd, which satisfiesrDdu
=2pM for any circuitD that winds aroundC once, as shown
in Fig. 2. This singularity ineiusx,td can be clearly expressed
by

emnl]n]lusxd = 2pMR
C

dymsCdds3d
„xm − ymsCd…, M P Z,

sA2d

in which ymsCd represents the coordinates on the loopC.
Then, we can make a singular gauge transformation in

terms of such a phaseusxmd as

h̃ = eiuh, Ãm
s = Am

s + ]mu. sA3d

LagrangianLs and Ls remain invariant, but the mutual
Chern-Simons term in Eqs.s20d changes as

L̃CS= LCS+
i

p
]muemnl]nAl

h, sA4d

such that the total action is transformed as

S̃eff = Seff +E d3xm

i

p
]muemnl]n Al

h

= Seff +E d3xm

i

p
Am

hemnl]n]lu = Seff + i2MR
C

Am
hdxm.

sA5d

Therefore, the partition function can be written as

Z =E Df¯gexpS− Seff − 2iMR
C

Am
hdxmD

= const3 o
MPZ

E Df¯gexpS− Seff − iMR
C

2Am
hdxmD ,

sA6d

whereDf¯g stands for the functional integrations over all
the fieldsh, h* , zs , zs

* , Am
h , andAm

s . The summation overM
directly lead to the constraintsA1d for an arbitrary loopC.
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