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Mutual Chern-Simons effective theory of doped antiferromagnets
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A mutual Chern-Simons Lagrangian is derived as a minimal field theory description of the phase-string
model for doped antiferromagnets. Such an effective Lagrangian is shown to retain the full symmetries of
parity, time reversal, and global $2) spin rotation, in contrast to conventional Chern-Simons theories where
first two symmetries are usually broken. Two ordered phases—i.e., antiferromagnetic and superconducting
states—are found at low temperatures as characterized by “dual” Meissner effects and dual-flux-quantization
conditions due to the mutual Chern-Simons gauge structure. A “dual” confinement in charge and spin degrees
of freedom occurs such that no true spin-charge separation is present in these ordered phases, but the spin-
charge separation/deconfinement serves as a driving force in the unconventional phase transitions of these
ordered states to disordered states.
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I. INTRODUCTION non-Abelian gauge theorigsand Z gauge theoriéshave
o . also been proposed and studied.
The gauge theory description has become essential in The sjave-boson approach is considered to be convenient
studying doped Mott insulators. The physical necessity may, gealing with the superconductii§C) regime but has less
be traced to the Hilbert-space restriction in a doped Moth gy antage in describing the AF state near half-filling. On the
msulato_r._For instance, the hlgh-cuprat_e superconductors giner hand, gauge theor#€stS based on the slave-fermion,
at half-filing are believed to be an antiferromagne®)  gchwinger-boson decomposition are believed to be useful in

Mottt insulator; in which the charge sector at low energy is studying a lightly doped AF state. Here the electron operator
totally frozen up by the Coulomb interaction. After doping, is written a6

the low-energy charge degrees of freedom do emerge, but
remain highly restricted in the Hilbert spat&o characterize Ciy= f?bio, (2

such a Hilbert-space restriction, a spin-charge separation S ,
description—namely, by introducifd spinless “holon” of wheref; denotes the fermionic “holon” operator abg, the

charge £ and neutral spin-1/2 “spinon” as the essentialbosonic “s_pinon” operator. Besides the slave-boson_ _and
building blocksof the restricted Hilbert space—has becomeslave-fermmn decompositions, slave-anyon decompositions

. ) 20
an effective and useful way. Here “holons” and “spinons” OIOhave also been investigatéd?° Different gauge structures

not necessarily turn out to be true low-lying elementary ex.mentioned above originate from different decompositions

citations in the end, because generally local gauge (8eld and/or different mean-field decouplings. But a common fea-

will emerge® to mediate interactions between these “ho—‘t‘ur? fof, these gauge theories IS that both “holon™ and
lons” and “spinons,” and may even lead to tbenfinement spinon” share th_e same gauge field. -

of them if either a true spin-charge separation does not exist Recently, a different gaggg-th_eory descrlpthlj has been
or the decomposition is not done in a correct way. In generalconStrUCteal baseg on a distinctive decomposition of the

one always ends up with a gauge-theory description fofélectron operaté?

doped Mott insulators where the gauge interaction can e =h'b ei(:)iu 3)
. . ic— i Vo ’

greatly influence the low-energy dynamics of the charge and

spin degrees of freedom. which is known as thebosonizatio® or phase string

Several kinds of 2+ 1)-dimensional gauge theories have decompositiof? because the holon and spinon operatufrs
been proposed for doped two-dimensio(2D) spin-1/2 an- andb;, are both bosonic, with the fermionic commutations
tiferromagnets related to the high-cuprates. A U1) gauge  relations of the electron operator being restored by the phase
theory?” based on the slave-boson approach tot{henodel string operatorei@)w:(_U)ié[¢?—0‘l’ih]/2. Here internal gauge
is one of the most intensively studied. Its gauge structurgyyariance appears as(U < U(1): h,—€&%h and PP @P
may be directly V|sual!zed by noting the gauge invariance of, 240 by, — b, and Cbih*)q)ih"')(i- Consequently there
the electron operator in the slave-boson decomposition exists a pair of W1)x U(1) gauge fields coupling to the

holon and spinon fields, respectively, in the resulting gauge
Gy = bl fi, (1) theory, called the phase string model, derfldzased on the
N ‘ decomposition3) and the bosonic resonating-valence-bond
under a Y1) transformation:b,— €%, and f;,— €%f;, (RVB) mean-field saddle point, where the normal)jgauge
where b; denotes the bosonic “holon” operator afig the  freedon?* (like the one in the slave-boson casebroken by
fermionic “spinon” operator. Along the same line, the(@U the mean-field decouplind.
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In the slave-bosoitor slave-fermioh U(1) gauge theory, scribing the double-layer quantum Hall effect system.
the external 1) gauge field(i.e., the electromagnetic field We further show that there exist two low-temperature
couples toboth holons and spinorfs! thanks to the same phases in such a theory at low doping. One is an AF state
internal U(1) gauge field they share. So both holon andwhich recovers the AF long-range ordékFLRO) of the
spinon carry some fractions of the electron charén con-  Heisenberg model at half-filing and may survive at small
trast, in the phase string model, the external electromagnetigoping concentration. The other is an SC state. Two phases
field only couples to the holon degrees of freedom, withoulgre characterized by dual Meissner effects and dual-flux-
being directly transferred to the spinon part as the latter S€&fuantization conditions, accompanied by a dual confinement,
a different gauge field. Inthis sense, the holon carries the full ich are the direct consequences of the mutual-Chern-
charge of €in the phase string model_. i Simons gauge fields interacting with two matter fields when

Without a bare kinetic energy, the singlél))gauge field one of them experiences Bose condensation. Such a mutual

in the slave-boson(or slave-fermion theory fluctuates . - )
. . duality connecting the AF and SC states or spin and charge
7,13 m -
strongly, - ® which makes the theory a strong-coupling One'degrees of freedom is quite different from the usual duality

On the other hand, the(W) X U(1) gauge fields are topologi- Y 2
cal ones with their strengths constrained to the densities Oqescrlptlons proposée=* for the cuprate superconductors,

two matter fieldgsee Sec. )l such that their fluctuations are whgre the conventu_)nal boson-vort_e_x duality is used to de-
much more mildly suitable for a perturbative treatment. InSCribe an ordered-disordered transition.
particular, the no-double-occupancy constraint of the doped " the SC phase, for example, the Meissner effect and
Mott insulator, which is enforced by the violent gauge fluc-N¢/2e flux quantization are similar to the predictions by a
tuations in the slave-bosdor slave-fermiontheory, is real- ~ conventional superconductivity theory, and the spinons are
ized in the phase string model in a quite different way.found to be confined such that to drop out of the physical
Namely, the U1) X U(1) topological gauge fields will intro- ~ Spectrum. Onlyntegerspin excitations, as composed of con-
duce mutual repulsions between holons and spinons, whef#€d spinon pairs, are allowed in the bulk state. But as a
holons perceive spinons as vortices and vice versa. As is weinique prediction, a single spingan S=1/2 momeny does
known, a particle cannot go to the core of a vortex of its own@Ppear in the center of a magnetic vortex core. It forecasts
field where the density of such a matter field vanishes. In théhat the spin fractionalization will occur in the pseudogap
phase string model such a vortex core of one species is aRhase, as the latter may be viewed as the proliferation of the
ways occupied by a different species such that the novortex core state above the superconducting transfijcii*®
double-occupancy is naturally enforced. n the AF phase, on the other hand, the spinon c.ondensa—
Furthermore, the weak(logarithmig confinement of tion may be viewed as a two-component “superfluidity.” The
spinons and holons at low energies and low temperatures h&ial Meissner effect means that a holon is an “alien” object
been also fourdd2%in the phase string model, as opposed toin the spinon condensate, and the dual-flux quantization con-
the strong confinement in usual 2D compadtllUgauge dition corresponds to the fact that a mer@ortex) is pro-
models in slave-boson or slave-fermion the®§! In the  duced in the spinon condensate to which a holon must be
latter, an effective gauge theory may have a serious infraregonfined to, just like a spinon is confined to a magnetic vor-
divergencé” which makes the gauge theory very difficult to t€x core in the above-mentioned SC state. As a result, only
deal with mathematically. The former is usually much morethe “neutral” object of a holon-meron composite, not the
manageable than the latter in this regard. holon itself, appears in the low-energy physical spectrum,
However, the Hamiltonian formalisthof the phase string Which has a dipolar spin configuration at long distance, co-
model, in which a gauge field seen by one species is corfXisting with the AFLRO in a dilute hole concentration re-
strained to the densitgnumbeyj of different species, is not 9!Me. . _ _
very convenient for studies beyond the mean-field level. In_ The remainder of the paper is organized as follows. In
this paper, we shall develop a Lagrangiaath-integral for- Sec. Il, we briefly introduce the eﬁgctlve I—_|am|Iton|an of the
malism of the phase string model. We show that the effectiv’hase string model. In Sec. lll, we first derive the Lagrangian
low-energy Lagrangian describes two matter fields, holorPath-integral formalism in the lattice version. Then we ob-
and spinon, minimally coupled to twdifferent U(1) gauge tain the low-energy mutual Chern-Simons gauge-theory de-
fields. These gauge fields do not have their own kinetic termgcription in the continuum limit. In Sec. IV, we examine the
either, but there is anutual Chern-Simonterm which en-  Symmetries, including parity, time-reversal, and spin rota-
tangles two gauge fields together. We call this as a mutudional symmetries, of the mutual Chern-Simons theory. In
Chern-Simons description, which constitutes a minimalSec. V, we study two low-temperature-ordered phases based
field-theory description for the phase string theory. on the _mutual Chern-$|mons theory and discuss how ho.Ions
The gauge structure of such(2+ 1)-dimensional mutual and spinons behave in the AF and SC ph_ases, _respectlvely,
Chern-Simons theory is very unique in many aspects as comythere dual confinement of holons and spinons is revealed.
pared to the gauge theories proposed before. We demonstrdtally, the conclusions are given in Sec. V.
that the physical symmetries, which include parity, time-
reversal, and spin rotational symmetries, are precisely pre-
served in such an effective theory. By contrast, in the usual
Chern-Simons(anyon theories’?-34 the parity and time-
reversal symmetries are explicitly broken, including the The phase string theory has been propéséths a low-
mutual-Chern-Simons theory previously propcSeidr de-  energy effective description of the doped antiferromagnets at

Il. PHASE STRING THEORY: A MINIMAL MODEL
OF DOPED ANTIFERROMAGNETS
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low doping. The “minimal” Hamiltonian of the phase string 1 . .
theory is composed of two termblgying=Hn+Hs, in which S= E(bmbn —bjbi),
the charge degrees of freedom are characterized by the “ho-
lon” term . ‘h
N S =(S)"'=(- Db b; €, (7)
Hp= -, (€4i)h'h; + H.c., (4)

i where the phasdDih appearing in§" can be decided by the
J relation CDP—CDEZA{} for two NN sites,i and j, which are
wheret,~t and the “holon” operatoh is bosonic; The spin  not occupied by the holes. Under this definition, the spin

degrees of freedom as described by the “spinon” term operators as well as the effective Hamiltonian are invariant
o under the gauge transformatiob;,— b, €7%, ®'— @
He==J3,> (€7)bl,bl, +H.c., (5)  +2¢, Al—Aj+¢-¢;. The holon-dependent phase factor
(i @ in Egs. (7) further illustrates the intrinsic mutual en-

where J,~J and the “spinon” operatolniTo is also bosonic. tanglement between spin and charge degrees of freedom in
Here the gauge field& andA are decided by the topologi- the phase string theory.

cal constraints . MUTUAL CHERN-SIMONS

2 Aisj = E (nle _ nﬁ), GAUGE-THEORY DESCRIPTION
c leXc A. Lagrangian formulation
N . The treatment of the Hamiltonian formalism of the phase
A =T, (6)  string model may not be convenient beyond the mean-field
¢ leXc approximation because the gauge fieak?jsand A,*} defined

wheren?. and nf' denote the “spinon’(with index o) and in Eq. (6), are themselves operators depending on the dy-

“holon” number operators at siterespectively, and the path na_mics of the matter fields. In order to (_jeal with the phase
C is an arbitrary loop made of the nearest-neightiéN)  String model Eqs(4) and(5) more conveniently, a Lagrang-

links with 3¢ denoting the area enclosed By ian (path-integral formalism will be introduced in this sec-
The basic features of this model are as follows. At halftion- _
filling, the gauge ﬁemir} can be set to zero in E¢5) andH, First of all, let us reexpress the topological constrat

reduces to the Schwinger-boson mean-field Hamiltotfian, locally. As pointed out before, the original no-double-
which describes both the long-range and short-range AF cofccupancy constraint in thieJ model can be realized in the
relations fairly well. Upon dopingAl is no longer trivial due ~ Phase string model by the mutual repulsion between spinons
to constraint(6), which describes that each “holon” behavesand holons viaA[ andAy;. As a consequence, the closed path
like a 7 fluxoid as felt by the “spinons.” Thugy; will play C of a holon or spinon in Eq(6) will not cross spinons or
the role of dynamic frustrations, introduced by doped holesholons and thus effectively avoid a singularity occurring
that acts on the spin degrees of freedom. Similarly, the “hoWhen a spinon and a holon simultaneously stay at the same
lons” are also subjected to dynamic frustrations, from theSite (as each spinon or holon carriesmafluxoid seen by a
spin background, via the gauge fiedd in Eq. (4). The spin holon or spinon Following this, then, it is physically rea-
and charge degrees of freedom are thus mutually frustrategP@ble to implement a regularization in the topological con-

in the phase string model in terms of two topological gaugéstraint (6) by introducing two sets of dual square lattices,
fields A? and AS respectively, for spinons and holons to stay, as illustrated in
| )"

The phase string model outlined above incorporates, as &9- 1. In this way, a closed paf for the spinon and €

minimal model, three most essential characteristics of thd0r the holon on different lattices can be arbitrary without
doped antiferromagnets described by tilemodel. They are  WOrTying about crossing thg opposite species, elther_ hololns
(i) the restricted Hilbert space of doped Mott insulators,C’ SPinOns. Presumably no important low-energy physics will
which is characterized by the spin-charge separation forma@®t [0St by such #ocal regularization. _

ism with holons and spinons as basic building bloos; . Here and below, the minusculenajusculg Latin letters
strong short-range AF correlations as provided by thd:1 (I.J) will be used to label the dual lattice sites for
bosonic RVB description in Eq(5), which can naturally ~SPinons(holons. The Greek letters:, B, y will be used for
grow into an AFLRO state as the doping concentration is?D Spatial indices 1 and 2, whilg, v, A for the three-
reduced to zeroiii) the mutual singular influence between dimensional space-time indices 0, 1, 2. Then the topological
the charge and spin degrees of freedom as represented 59nstra|nt(6) can be reexpressed in a compact form as fol-

two topological gauge fields{] and A3, which mathemati- lows:
cally capture the phase string effect identiffech the t-J e*BA AN(i) = !
model. Such a mutual interaction has been sHé&h?to o b
be responsible for some nontrivial physical properties of the
model in close connection with the high-materials.

In the phase string formalism, the spin operators are ex-
pressed in terms of the spinon operators in the nontriviain which the link ﬁeldsAZ(i)EA{L&‘i andA3(1)=A|_;, with

form?3 a=X, Yy, and the difference operatons, on the two sets of

1o’

e"‘ﬁAaAZ(I) =7, on’ (8)
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to each other(The temporal componenss and A} have no

IS N O S 0 P S I canonical momenta since they do not have independent dy-
i | : i namics in the above formulation.

, ',L< .-? ,,,,,, ,\ Following the standard canonical quantization procedure,
Ly vl the EuclideanLagrangianwith the Wick rotationt— —i7) of

I 6 ;_‘_“__j___ ) this system can be derived straightforwardly as follows:
i ] T

A A Loring= 2 T5(0)(= DapAL(0) + 2 bl,dobi, + 2 hioh
i i i |

. ) i . i + Hstring+ I—constrE I-h + Ls+ LCSv
FIG. 1. Aregularization of the contraints in E@) by introduc-
ing dual lattices is shown. A spinofdenoted by an arrowand a
holon (denoted by an open cirdlestay in dual latticegsolid and ~ Where
dashed ones, respectivglwith the gauge fielda{} andA}; defined
on the links of two dual lattices, respectively. The closed loo . aS
C(C") of a spinon(holon) can be arbitarr))/ witho)ljt crossing holonsp Lh= E hr[&o —iAg(D]h - thE (thelAl‘]hJ +H.c)
(spinong. See text for the detail. ! 9
+ M(E hih, - N5).
the dual lattices are defined by, f(i)=f(i+a)-f(i) and I
A f()=f(1)-f(1-a), respectively. Note the slightly different
definitions of link variables and lattice difference operators o
on two dual lattices, so as to keep the symmetric forms in Lg= >, b, [, —igA)(i)]o, = Js 2 (b],€7Aib]_, +H.c)
(8). io (ijo
In the path-integral formulation, the topological constraint (S b b ~N(1 -5
(8) can be enforced by introducing two Lagrangian multipli- ( < Do )
ersAlJ(i) andAS(l) as follows:

1
Lconsr:_. Sl h__aﬁAaAh.:|_. o |
" |§|‘, AY( )[nI e (i) |§i‘, Aoli) Leos 7'_72 A (1 ,AN(), (13)
|

X {E O'nib(,— 1os“BAaAz(l)] . (9
v 7 with dp=4d,. Note that one can also use a procedure similar

Once the topological constraint is implemented by the Laio Egs. (1012 to define a conjugate fieldlT3(I)

grangian multipliers, the gauge fields, and A, can be =—(1/m)e*Aj(i) for A}(1) and the resulting Lagrangian re-

treated asndependengauge variables in the Lagrangian for- mains the same as above.

malism. In order to get the correct form of the Lagrangian for ~ Therefore, the Lagrangian formalism of the phase string

this system, we need to first identify the canonical momentanodel describes that the two matter fields, bosonic spinons

of the gauge field$\{} andAj). and holons, are minimally coupled to(UJ X U(1) gauge

It is helpful to consider the continuity equation for the fields A'; and AZ, whose gauge structure is decided by the
holon density: mutual-Chern-Simons terrocg in Egs.(13). In the follow-

h o oxadh ing, we shall further derive the long-wavelength, low-energy
oy + A%, =0. (10 effective Lagrangian based on such a lattice model.

Using the topological constraint in Eq8) and the definition
of the conserved holon Cu”enﬂa,lz_&"sﬂing/ A4z, ONE B. Low-energy effective theory
gets

The Lagrangiar{13) is written in a lattice form. It can be

3{3 “ﬁAaAg(i)] + Aal_ M] =0, (11)  further simplified and reduced to a continuum version in the

™ OAlval long-wavelength, low-energy limit. The procedure given be-
low is quite standard and straightforward.

such thafunder a proper gauge choice f(i)] Let us first consider the spinon Lagrangiag in which
SHo. some careful treatment is needed in taking the continuum
GANI) = (12)  limit. We shall derive its low-energy action in th@P(1)

S(=m T A1) formalisnf! by integrating out the short-randgerromagnetic
Equation(12) is just the canonical equation of motion for fluctuations.
A(i), and one can thus identify the canonical momentum First of all, we divide the square lattice into two sublat-
Hﬁ(i):_(l/ﬂ)eﬁmi(n_ In other words, the spatial compo- ticesA andB and redefine the spinon operatgy, at B sub-
nents of the gauge fields" andAS are canonically conjugate lattice asb;,,. ThenLg in Egs.(13) can be rewritten as
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. 3 . — Csf3
Le= 2 bl,(d-i0AYbi,+ X bly(do=icAgbi,—Js z= f DthTDleASDAhexp<— J dx, f d2r£eﬁ)
ieAo ieB,o !
! ! 0
. h—=
x > (ble"ibl,+H.c) in which
ieAj=nn(i),o
— Low=Ln+ L+ Leg, 19
+x( > bt > bit,bia—Nu—&)). (14 TR o
ieAo ieB,o with
As usual, we introduce the continuum fields —ig. - AS —epe)?
Eh:hT[ao—i(A§+eAS)]h+hT( o~ Ra=CA) h,
bia': Zo’(ri) + 7To’(ri)! th
T ~ ~ — 1 i _Ah 2 2
b,5,-0 = Zo(ri + 78) = (1 + ), (15) Lo= pll@u=ioA)z "+ Mgz, 2],
in whichi € A, 7=X%,Y, anda is the lattice constant. Then, by )
expressing the Lagrangiaid4) in terms ofz, and =, and _ 1 _umps o ab
taking the continuum limita— 0 with A"(i)—aA(r), we Les= 2 MDA (20

= ) .
obtainLs=[d’ L, in which where in the holon Lagrangian densityZ,, my,

_ i APYS 124 a2y 27y a-2(1 =(2tna®)™1, A® is the vector potential of the external elec-
55—204 [3(0u =Rz + &0 = 49|z, T] - Aa(1 =) tromagnetic fi%ld, ande-is the electron electric charge. Note
that the chemical potentiak in £,, has been absorbed into

+ 2 [ 3 (3, = 1oAY 7,2 + @ 2(\ + 439)| 7, iAS for simplicity.

o The Lagrangians in Eq920) constitute our final low-
energy effective theory. They describe two matter fields, ho-
lons and spinons, minimally coupled to a pair of 1Y
X U(1) gauge fields&i andAz. The latter do not have their
By further integrating out the high-energy fiefef, we arrive  own kinetic energies, but are mutually “entangled” by the

+a 2 [, (3= i0A)Z, — To(dp+i0AYZ,].  (16)

at mutual Chern-Simons ternC.s Such a mutual Chern-
Simons term has been previously propd8ddr describing
r :E ( a2 (G- icrAB)Z 2+34(a, - icAM)z 12 the double-layer quantum Hall effect system. But here due to
S SN+ 4 0 7 s o the fact thatA" couples to up and down spins with opposite

“charges” inL, the parity and time-reversal symmetries are
+ a2\ -4z |2> —\a41-9). (17) explicitly retained(see below. The external electromagnetic
7 field A® only directly couples to the holon field, indicating
that the latter is the primary charge carrieonsistent with
the definition of the holon This is in contrast to the usual
U(1) gauge theory based on the slave-boson approach, in
which both the holon and spinon share the external electro-
magnetic field as if each of them carriers a fractional part of
cB 1 the chargee [as the result that both of them see the same
%:szrf d><02—[|(a#— iaAZ)z(,|2+ méz,)?]. (18)  internal U1) gauge field _
0 g In the following section, we shall carefully examine the
symmetries of this effective Lagrangian with a particular at-

Here the summations ovgr=0, 1, 2andr=1, | are omitted  tention to the parity, time-reversal, and spin(@lrotational
for simplicity and the constant terma?(1-¢) is also symmetries.

dropped. The coupling constamf=c,/2J{(1-4), and the
massms=c;'V\2-16JZ, in which \ is decided by the spinon
number constraintfd’x=|z,|>=Na’. Note that here the
z, field has been rescaled in the last step such ¥, |? The symmetries of the present mutual Chern-Simons La-
remains 1 per site on average even at finite doping. Therggrangian will be studied in this section. The following dis-
fore, in its final form, the long-wavelength theory for spinons cussions will be based on the low-energy effective Lagrang-
consists of a massive, spin-1/2, and relativistic bosapic ian (20), although all of them can be easily generalized to the
(spinon coupled to aJ(1) gauge fieIdAZ. lattice formalism in Eqs(13).

The continuum versions ok, and Lcg can be more First of all, we note that the (1)cpargeX U(l)sZ gauge in-
straightforwardly obtained by directly taking the continuumvariance ofS, is obvious according to Eq€20). Conse-
limit a—0, with A3(1)—aA}(r), Ay(l)—cdAq(r), and by quently, the global (1)cpangeinvariance of the holons en-
—ah(r). The final form of the partition function can be writ- sures the conservation of the electromagnetic charge in this
ten in the compact form system. Also straightforward is the translational invariance in

Defining the spin-wave velocitgs=+Js(A +4Jg)a and re-
defining the temporal components—cgy, Al — c,A), the
low-energy effective action for the spinons can be finally
written as

IV. SYMMETRIES
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2+1 dimensions. In the following, we shall mainly focus on invariant under the time-reversal transformation.

the parity, time-reversal, and spin rotational symmetries, and The parity and time-reversal invariances of the mutual
show that they are explicitly retained in the present mutualChern-Simons Lagrangiaf20) are in sharp contrast to the
Chern-Simons gauge theory, in contrast to ordinary Chernviolations of both, separately, in an ordinary1y Chern-
Simons theories in which the parity and time-reversal sym-Simons theory. As noted abov&? as an axial vector and®

metries are usually broken.

A. Parity

as a polar vector in the mutual(l) X U(1) Chern-Simons
theory are the key for the restoration of the symmetries. Note
that the charge conjugate symmetry is meaningless here

In 2+1 dimensions, the parity transformation is defined asince the holon Lagrangiaf, is nonrelativistic and antiho-

a reflection with regard to a spatial axis, e.g.,
y—=y, (21)

It is straightforward to verify that the effective
LagrangiansCy,, £, and L remain invariant, respectively,
under the parity transformatiof21), if the matter fields and
gauge fields transform undé21) as follows:

h— h,

X— =X, T— T.

Z(T_>L

A3—>—A3, AQ—)AQ, Ayh—>—Ayh,
A=A K—-K, A—AL (22

The parity transformations of the fields {22) can be

determined as follows. For example, according to the prop-
erty of angular momenta, a spin should transform as an axial

vector—namelyS,—S,, §—-S,, S,—-S, under the par-
ity transformation21). Thus the transformation of tH@P(1)

field z, should bez,—z,. On the other hand, the gauge

field A" transforms as an axial vector aA8las a polar vector
in (22). Indeed, in order to keep the invariancefand Lg,

lons are not well defined.

C. Spin SU(2) rotation

The demonstration of the global spin &Ysymmetry in
the present formulation is less straightforward than the other
symmetries discussed above. The underlying reason is that
the spin operators are expressed in an unconventional way in
terms of theb;= (b;;,b;)" doublet according to Eqs$7).

Let us consider a global SP) spin rotation defined by
U=expif-S). In terms of Egs.(7), one finds U bU
:(03)ie“’3‘bih’2ej”"’Zé"?:q’r’z(og)ibi. Correspondingly, accord-
ing to the definition of theCP(1) fields in Egs.(15), the
doubletz:(zT,zl)T under the S(R) rotationU is given by

U™l(r, U = eia'3CI>h(r,T)/ZeitrH/Ze—ia'3lI>h(r,T)/ZZ(r 7, (26)
in which
3,P(r,7) = 2A0(r, 7). (27)

Note that in the Hamiltonian formalism, the single valueness
of <I>i“ in the spin operatoré7) is ensured by the topological

the parity of A% and A" should be identical to the charge constraint onAl according to Eqgs(6). In the path-integral

current j,=~8Ly/ 5AS, and spin currenj® =-5L4/ 5A), re-
spectively. Furthermore, the parity transformationé\pfand

Az are also consistent with the classical equations of motio

for the Chern-Simons fields obtained based on E2@):

i i
L= @MOA T @A (23)

w

The parity invariance of the mutual Chern-Simons term is

also related to the fact that the gauge figltitransforms as

formalism,®" is determined by E¢27), and we show in the
Appendix that to have a finite contribution to the partition

rf,unction,(l)h must still satisfy the single-valueness constraint

A'tl)h|cz9SC<9MCI>hdx#:§ﬁCZAde#:2n7-r, with ne Z for an ar-
bitrary loop C.
The spinon Lagrangiafs can be rewritten as

L= ig{(DMz)*DMz +méz'z}, (29)

2

an axial vector and\® as a polar vector, in contrast to an in which D,uZE(&M:iU3AZ)Z:&M(e_i”3®h/2Z). Under the

ordinary U1) Chern-Simons theory.

B. Time reversal
Under the time-reversal transformation
(24)

T—>—T, [,—T04

transformation(26), D,z transforms as
-1 — A2
U™(D,2U=¢€""D,,z.

Namely, D,z transforms as the basic representation of the
SU(2) group, and the S(2) invariance of the Lagrangian
(28) is proved. Independent dfr,7), the Lagrangian,

the z, and h fields will transform as the usual spinor and ang £ are obviously invariant. Therefore, the global spin
scalar fields, respectively. Using the same procedure as givef\y2) symmetry is indeed preserved in the present mutual

above in the parity transformation, we can determine
z,— O'Z*_O., h—h",

A=A, AL— A,

A=A A=A (25)

under the time-reversal transformati¢?4). It can be then
easily checked that the Lagrangifgg=L,+ L+ Lcgis also

Chern-Simons theory.
V. TWO ORDERED PHASES AT LOW TEMPERATURES
A. AF phase at low doping

1. Half-filling

Let us first consider Lagrangigi9) at half filling. With-
out the presence of holons, one can mdpzo and Lg re-
duces to aCP(1) model
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1 i R i
Lot — L= z—g{l(uzl2 +me|z%. (29) Les=- ;Ah ((ESX 2)+ ;A.?BS. (34)

The saddle-point solution of E€R9) can be obtained by a where we introduceEs= d,AS- VA] as the “electric field”
standard procedure after integrating out@m(1) zfield and  strength forAfL and BS=V X AS.Z as its “magnetic field”
then minimizing the resulting action with regardrng (here  strength. By integrating owa", then, the spin dynamics will
the constant term mﬁ/Zg previously dropped irs has to be  become entangled with the holon dynamics as shown below.

included as follows*?-44 First of all, the integration oveA] will simply lead to
B°=0. In the following, one may then choose a proper gauge
d%k 1 AS=0 andES=-VAJ. Next, by usin
T2f4ﬂ2k2 =1, (30) _ ~ YT
tap g |(V-iaaANZ? = VZ2+ 2A0 - vo+ (A"Z?,

wherew,=27nT, n=integers. With a proper regularizatfén ~ With 2= (z;,2)" andv®=(i/2)(Z'VZ-VZ'2), one has
in Eqg. (30), the mass gam, can be determined at smdllas 1 1 i 1
Ls"’ [:CS= ?g' VE|2 + Ah . (6\/5_ ;ES X 2) + Fg(Ah)z,
ms Tex;{ T @) (3D under the constrairft/?=1, which, after integrating ouA",
arrives at

in the so-called renormalized classical region, wherg 1/ - i 5
=1/9g-1/9g.>0 (hereg.=4m/A with A denoting a cutoff i| V2 - Q(EVS_ '_Es % 2) — i(| V2 - |vi?)
parameter in the regularizatipn 20 2\g T 20

At T=0, the mass gam;=0, and a Bose condensation ~ .
takes place in the ground state wii) # 0, corresponding to + i(ES)2 + I—(Es X Z) - VS (35)
an AFLRO lying in thex-y pIane:(S*):(—l)i(zTXzL), which 2m ™
can be easily destroyed by thermal fluctuations at any finiteinally, by introducing a unit vectdi defined by
temperatures as indicated by >0 according to Eq(31). =t =

The energy scale of the mass gap is always much n=zoz
smaller than the temperature—i.e,<T, at T<1/g. Thus, g9 by using
w,=2mnT (n=1) is usually much larger than the mass gap,
which means that the quantum fluctuations will become neg- }| Vii2=| V32 - v
ligible in a sufficiently long-wavelength and low-energy re- '
gime, where one may only consider the purely stéiemi-

classical fluctuations. In the region om,<k<cg, the (he low-energy effective Lagrangian reduces to

effective Lagrangian of the&CP(1) field will lose Lorentz 1 ., 3 s
invariance and becomes ‘Ceﬁzgg(vn) +52(ES) +iAgKo + L, (36)
1 where
Lo~ —|V 2 32
=7 |V (32

s 1 1 I ~
ICO = _60],)\(9,,1))\ = 4_60,,)\“ -0"n X (9>\n.
Such an effective Lagrangian can be also obtained in the ™ ™

renormalized classical region by using thé3Ppnonlinearo This low-energy Lagrangian describes how the bosonic
model#? holons, viaZ,, and spin twists, with topological charge den-
sity K3, are coupled to a Maxwell gauge fielf with the
2. Low doping “photon velocity” c=cc—that is, in the absence (8572 The

if the only effect of such a nonrelativistic gauge field is then to

induce a 2D Coulomb interaction between two types of
charged particles, including holons and spin twists character-
|zed by k5. Noting ES=-V A§ and integrating ousj in Eq.

(36), a potential term will emerge in the effective action as

In a sufficiently small concentration of holes,
AFLRO or the Bose condensation of thd?(1) spinor fields
persists, then the renormalized classical Lagran3@h re-
mains applicable, which should be simply modified to couple
to the gauge fieldh" according to Eqs(20) as follows:

V=qﬁfd2rd2r In|r =1"|(pn + KD (1) (pn + K1),

(37)

On the other hand, holons are coupledifpin £y, and two  in which pp,=h'h and g;= /g% accompanied by aharge-
gauge fields are then entangled by the mutual Chern-Simongeutral constraint enforced in the thermodynamic limit on
term Lcs [see Eqs(20)], which can be rewritten, up to a the low-energy states of such a 2D Coulomb gas system—
boundary term, as namely,

1 .
Ls= ng_ iosAMZ2. (33)
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experimental implications of self-trapping for lightly doped
fdzr[l)h(r) +Kp(r)]=0. (38  cuprate have been previously discussed in the phase string
model?®
Thus, a holon has to be “confined” to a spin twist, satisfying
1+fd2riﬁ-(9xﬁ><ﬁyﬁ:0, which leads to the quantization _ _
condition of the winding number of the unit vectf(r)} in Now let us consider the other ordered phase with the Bose
spin space as follows: condensation of holongh) # 0, whose ground state is a su-

perconducting orfé with the Meissner effect and charge 2

B. Meissner effect and spinon confinement in the SC phase

. P ~_ 1 minimal flux quantization as shown below.
Q= [ dr —h-ahxgn=-7. (39 With (hy#0, £}, in Eq. (20) reduces to
Namely, each holon will be bound to a “meron,” which is a L= ipn(dodn—A) + ﬂ(V(ﬁh ~AS-A®2  (40)
spin twist of the unit vecton whose winding number is half 2my

of that for a Skyrmion.

According to the conditior(38), one expects to find an
equal number of holons an@ntimerons at low tempera-
tures, which are paired by the logarithmic-attractive interac-
tion in Eq. (37). An unpaired holon ofantimeron will cost
a logarithmically divergent energy and thus is forbidden to ) o o
appear. In other words, in the AF phase, a bare holon cann& introducing the “electric” field="=3,A"- V Ag and “mag-
exist alone, but has to be always confined to a spin topologitetic” field B"=V x A" for the vector potentiah".
cal configuratior{meron. Such an effect in the spin-ordered ~ First, the “magnetic” fieldB"=B"-Z can be determined
phase is called théholon confinement.”Note that a holon ~ after integrating ouf\j in the partition function and one ob-
itself will also carry a spin vortex according to Eq3); the  tains the condition
composite object formed by the holon-meron pair actually B"=B".5=mp, (42)
corresponds to a spin dipolar configuration in tkeal spin '
space, as previous identified in the phase string m&d8l. which is uniform and fixes the spatial componéxft, such
Since the(antimeron is a semiclassical object without a co- that Eh:—VAg. Second, after integrating out5, the result-
herent quantum dynamics, the dipole as a bound pair of &g effective Lagrangian takes the form
holon and a(antimeron normally cannot move coherently
either. That is, the holon will beelf-trappecdhear the core of Le=Ls+ ( Th
the meron in space and the translation symmetry is sponta- 2mpy
neously broken. in which

With the increase of doping—i.e., the number of holon-
antimeron dipoles—one expects to see a screening effect on oh= leovxa (o — A°)
the confining potentiaV/. It has been previously found that T VOMTR TR
eventually a confinement-deconfinement transition can take _. . b
place beyond some critical doping concentration, where the Finally, we Integrate Ol.mo in Eq. (4.3)' For our purpose,
screened 2D Coulomb interaction becomes short raffgd. mstead_of using the continuous versi(0) of L, we shall
Once the bosonic holons are free, they will experience ﬁ%e a simpler but more precise form of the term involvitg
Bose condensation and the resulting phase is an SC state sed on the origindl; defined in Eq(13), which reads
to be discussed in the following section. In the SC phase, Ls=-1ADp(r) + LA} =0),
there exists a duality correspondence of the quantization con-
dition (39), which will ensures the flux quantization condi- in Which pg(r)=p;(r)=p (r) with p;(r)[p (r)] denotes the
tion there. Correspondingly E439) may be called ajual-  density of up(down) spinons. Then, after integrating of,
flux-quantization condition one obtains the following effective action in

Finally we remark that the hole self-trapping at low dop- (2+1)-dimensional Euclidean space:
ing, discussed in the present work, is in contrast to a conven-
tional picture for sing!e hole n_10ving in the AF background seﬁ:f dsxﬂ[ﬁs(ABZO)] + f dxoVsc
based on the numerical studies of thd model® In the
latter case, the doped hole is found to have finite spectrg|,nere
weight and a coherent dispersion with the bandwidth compa-
rable toJ. The discrepancy may arise from the small sample _ 2 o o, , h o
sizes in exact diagonalization calculations: The phase string Vsc—qsfd rdrinr = r’l(ps + Q7)) (ps + Q).
effect, which leads to the mutual Chern-Simons gauge fields, (44)
starts to play the role of self-localization only when the
sample sizes become larger than the localization lengthvith g2=p,/4m. Similar to the case in the AF phase, in the
scales'® Further investigations using both analytic and nu-thermodynamic limit, there is a charge-neutral condition en-
merical approaches to clarify this issue are needed. Possibferced as follows:

by writing h(r)=1p,€#""). The Chern-Simons terif20) can
be rewritten as

i i
Log=——AS-(E"x2)+—AB" 2 (41)
o v

)|Eh|2 -iAbon, (43)
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TABLE |. Mutual duality of AF and SC phases.

AF SC
Bose condensation (2)#0 (hy#0
Coulomb gauge field AS AD
“Charged” particle of Coulomb gauge field holon spinon
External source of Coulomb gauge field meron magnetic flux
“Charge-neutral” object holon-meron pair (&) spinon pair
(b) magnetic flux+a spinon
Dual flux quantization |Q%=1/2 |DE,|= Do/ 2=hc/2e
Dual Meissner effect holon confinement (a) spinon confinement

(b) spinon bound to magnetic flux

e have a free moment witB’=+1/2, because of the freedom
0= f d’r[pg(r) + QM(r)]=N; =N, + <2Nvor— —) : introduced byN,,.
T Thus, the superconducting phase in the present mutual
(45) Chern-Simons theory is characterized by the holon conden-
sation and spinorflogarithmig confinement. We have seen
that the fractionalization of spin@ single spinopdoes not
directly appear in the bulk low-lying excitation spectrum, but
does show up in a magnetic vortex céfeThe deconfine-
ment of spinon-vortex pairs will eventually occur at the su-
perconducting transition temperaturg.?’*° Finally, we
point out that the symmetry of the superconducting order
. d, parameter, which is expressed in terms of the electron opera-
| Drinl = o (46) tor (3), is d-wave like as discussed previously in Ref. 47.

in which N; (N)) is the total number of spin-ufspin-down
spins,Nyor=(1/27) [ dr €*£39,0 3¢y, denotes the total number
of 27 vortices in the holon field, an®*€ is the total external
magnetic flux,®e=[d?r 213, AS.

SinceN;, N, andN,,, are all quantized to be integers, we
find the minimalflux quantization condition

where®,=27 (=hc/e in full units) is the flux quantum for a
chargee system.

Therefore, the external magnetic flux is not allowed to be The doping effect and the interplay between charge and
present in the bulki.e., the Meissner effeptunless it is spin degrees of freedom are characterized by a mutual
quantized in multiples of half flux quanta given in E46).  Chern-Simons gauge structure in this model, as discussed in
In particular, for a magnetic flux quantized at the minimal previous sections. The mutually dual characteristics of these

half flux quantum®;,;,, there must be a spinon trapped neartwo phases are summarized in Table I.

C. Mutual duality of two phases

the vortex core according to E@45) by noting that the We have shown that, at low doping, the spinon condensa-
“charge” 2N, of the vortices produced by holon field is tion leads to a spin AF order and forces a “confinement” on
always in units of 2r (i.e., ®g). the holon part, making holons self-localized to ensure the

However, free spinons are not allowed in the bulk in theAFLRO. On the other hand, at a higher doping, the conden-
absence of the external magnetic flux. Indeedd®+0, the  sation of bosonic holons forces a “confinement” on the
“charge-neutral” condition(45) reduces toN;—N;+2N,,,  spinon part, resulting an SC phase coherence.
=0. As a result, a single spinon excitation, wit® There are several distinctions between the two ordered
=(N;—-N))/2=+1/2,will violate the “charge-neutral” condi- phases. In the AF phase, the spinon condensate is a kind of
tion, which in fact will cost a logarithmically divergent en- two-component “superfluid.” Consequently the global sym-
ergy as each spinon behaves like a half vortex. Hence, in theetry is broken from S(2) to U(1). In contrast, the ground
superconducting state, the spinon-vortices must be alwaystate in the SC phase is a condensation of a scalar field—
paired up(confined in the bulk by the logarithmic force holons. As a result the global(ll) symmetry of the charge
given in Eq.(44). To be noted, not only can the spinons with part is broken.
different spin indicegup-down pair up, those with the same Besides such a fundamental distinction, two phases share
spin indices(up-up and down-downcan also pair up to sat- some common features originated from the duality in the
isfy the charge-neutral condition by involving a holon phasemutual Chern-Simons gauge structure. In both the AF and
vortex with Ny #0—e.g., Ny, =1, Ny=2, N;=0 or Ny,= SC phases, there exist induced Maxwell terms that have only
-1,N,;=0, N;=2. SinceN,,, does not appear in the rest of “electric field strengths” without the Lorentz invariance.
the action, these two excitations 8= +1 are energy degen- There are “charges” coupling to these Coulomb gauge fields,
erate with the stat&=0, N,,,=0, to form S=1 triplet spin  including quantum particlegholons and spinonsand exter-
excitations, consistent with the spin rotation symmetry gennal sources without quantum dynamics. The “charge-neutral”
erally demonstrated before. For the same reason, the singt®ndition and 2D Coulomb interaction among the “charged”
spinon bound to a magnetic vortex quantizedgt2 should objects lead to dual Meissner effects: In the SC case, an
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external magnetic flux as an external source must be quareratures while the othéholon or spinoiis condensed. But
tized, and in order to realize a minimal quantino/2e, a  the dual deconfinement will play an essential role in the tran-
single spinon must be bound to such a magnetic flux to fornsitions to disordered phases or at the boundary between two
a “charge-neutral” object. In the AFLRO state, as an externabrdered phases where a quantum critical point may é&f$t.
source, aantimeron is allowed as a topological excitation The systematic evolution of the phase diagram at low doping
from the spinon condensate with a quantized winding numis currently under investigation based on the mutual Chern-
ber |QS|:% and a holon cannot reside alone and must beSimons Lagrangian.
bound to such an external source to form a “charge-neutral” In the future we will also consider some additional rel-
object with a spin dipolar configuration. evant terms which have not been taken into consideration in
Finally we emphasize that the mutual Chern-Simonsghe presentminimal model. As previously showfY, there
theory in this work involves a mutual duality between thegenerally exists a residual attractive interaction between ho-
charge and spin degrees of freedom rather than a usual dlens and spinons within theJ model, which should be in-
ality. A usual dual description has been also widely 388 cluded when one considers the nodetwave) fermionic
in studying the doped Mott insulators, which deals with anquasiparticle excitations as “collective” modes in the SC
ordered phase and the transition to a disordered phase jrhase. In principle, besides spinon confinement, there also
terms of the corresponding topological defects on the duakxists a holon-spinon confinement in the SC phase of the
lattice. In a conventional dual-theory description, normallyphase string model, since single spinon or holon excitation is
the AF and SC phases are not directly related. By contrast, inot allowed!” How the fermionic nodal quasiparticles can be
the mutual duality discussed in the present theory, the vortinaturally described in the mutual Chern-Simons framework
ces of one speciedolon or spinoi under condensation are Wwill be a central issue to address in a next study, where the
themselves quantum objects of another spetginon or  attractive interaction between holons and spinons beyond the
holon), andtwo ordered phases—i.e., AF and SC states—carphase string model should be properly incorporated in order
be naturally unified togeth&?.A similar duality at low dop- to get a correct excitation spectrffhWe do not expect a
ing has been also investigatédy starting from the slave- qualitative modification on the present results of the minimal
fermion approach® Based on the same phase string decom:model by including such a term, since the quasiparticles as
position (3) but with a slightly different mean-field bound states of holons and spinons are independent, to a
decoupling(see Ref. 25 a mutual duality between the AF leading-order approximation, of those spinon excitations
and SC states has been also discussed recently in Ref. 24which are confined to form integer-neutral spin excitations
discussed in the present work.

VI. CONCLUSION
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to the conventional Chern-Simons theories where first two
symmetries are usually broken.

The mutual Chern-Simons theory as a minimal model for
doped Mott insulators has a unique mutual duality structure. |n the transformation(26), ®"(r,7) is required to be

Two ordered phases found in this theory, the AF and SGjngle valued with mod 2 in order to ensure the single

states, are connected by dual Meissner effects and dual coajueness of the spin operators. Then according to(Eg,
finement and deconfinement. Namely, holons become vortit jmposes a constraint oA"—i.e
,—1-e.,

ces in the spinon-condensed AF phase and spinons become
vortices in the holon-condensed SC state. The former leads
to the holon confinementa holon bound to a spin meron
twist to form a “neutral” dipolar structujeand the latter
leads to the spinon confinement and flux quantizatian in which dx, is the tangential differential vector of an arbi-
spinon bound to a magnetic flux quantizechat2e to form  trary loopC in 2+1 dimensions.
a “neutral” object in the holon condenspate Since the gauge field" is an independent dynamic vari-
Such a mutual duality structure between the charge andble, the constraintAl) would be generallywiolated How-
spin degrees of freedom determines the essential competiti@ver, we shall prove below that all tlﬁé configurations that
between two degrees of freedom and provides driving forcesiolate Eq.(Al) have a vanishing contribution to the parti-
for phase transitions to each other or to other disorderetion function, which is consistent with the topological con-
phases. Dual confinement means that there is no true spistraint(6) in the Hamiltonian formalism.
charge separation is present in these ordered phases sinceFirst of all, for an arbitrary loofC in Eq. (A1), we may
one speciegspinon or holohis always confined at low tem- introduce a vortex ring phase configuratieff®- with an

APPENDIX: SINGLE VALUENESS OF ®"(r, 7)

ADN .= zﬂgc AdeM =2nm, nelZ, (A1)
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D ~ [
Lcs= Los+ —d,06“ AL, (A4)
an

such that the total action is transformed as

i
Seff Seff f d3XM—c7M06”V}‘(7,, AQ
FIG. 2. A vortex ring phase is defined such thafp,dd=27M m
for any circuitD winding around the loo|C once. i
] ) ) ) o — + 3y AN _uwn — +i h )
arbitrary winding numbeiM(M e Z), which satisfiesfpdé Sef fd X A€ 000 = Ser IZMiAﬂdX"
=27M for any circuitD that winds around once, as shown

in Fig. 2. This singularity ind?*Y can be clearly expressed (AS)
by Therefore, the partition function can be written as
€“™9,0, 6(X) = 2WM§; dy,(C)8%(x, -y, (C), MeZ,
: c ” reo Z:JD[---]ex —seff—zilvlﬂg Adx,
(A2) ©
in whichy,(C) represents the coordinates on the I&p =constx >, D[---]exp(— Sef — iMjg ZAdeM),
Then, we can make a singular gauge transformation in MeZ

terms of such a phas#{x,) as (AB)

T =aif AS — AS

h=€h, A=A, +3,0. (A3) whereD[---] stands for the functional integrations over all

Lagrangian £s and £g remain invariant, but the mutual the fieldsh, h*, z, z Ah andA®. The summation ovel

Chern-Simons term in Eq$20) changes as directly lead to the constrmrﬁAlﬁLfor an arbitrary loopC.
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