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Based on the energy of a relaxed carbon nanotube relative to the graphite sheet �graphene�, we construct an
analytical correction to the carbon-carbon force constants. Then, the radial breathing modes �RBM� of a
number of single-walled carbon nanotubes �SWNTs� are calculated. It is found that for small diameter SWNTs,
the curvature effect becomes significant and chirality dependent. Our calculated RBMs are in very good
agreement with experimental measurements, especially for ultrasmall diameter SWNTs.
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Recently, research on the identifications of the nanotube
chirality shows that the radial breathing mode �RBM� is im-
portant for the optical and thermal properties of single-
walled carbon nanotubes �SWNTs�.1–5 Of them, the fitting
formula �RBM =C /dt, has been commonly used to describe
the diameter dependence of the RBM frequency.6–15 Al-
though this formula is obtained based on various detailed
theoretical calculations, the severe curvature effect invali-
dates the above simple relationship. This conclusion is ex-
perimentally true for 0.4 nm diameter SWNTs produced in-
side channels of AlPO4-5 �AFI� zeolite crystals.16 From a
fundamental point of view, it is not yet fully clear if the
curvature effect would play an important role in RBM. For
instance, many different values of the proportionality coeffi-
cients C are presented both experimentally and theoretically.
Can we propose a universal theoretical explanation to de-
scribe the curvature effect on RBM of SWNTs? Conse-
quently, the understanding of the chirality-dependent curva-
ture effect on RBM would be of particular importance for
studying the intrinsic properties of each tube chirality. In this
paper, we construct the bond-stretching force constant from
the scratch, and present an analytical expression of the
chirality-dependent curvature effect on RBM. Our calculated
results agree well with the experimental measurements of
RBMs of 4 Å diameter SWNTs.

The internal strain is built up by rolling up the graphite
sheet �graphene� into a tubular structure. The associated
strain energy, which is specified as the curvature energy Ec,
is defined as the difference of total energy per carbon atom
between the tube Etube and the graphene Eg,

Ec = Etube − Eg. �1�

As is known, the curvature energy Ec has been calculated
by using variety of methods, such as density functional
theory, classical theory of elasticity, and molecular
dynamics.17–20 All these calculations consistently show that
the curvature energy is give by Ec=D /dt

2, where the constant
D�8.4 eV Å2. Adams et al.20 have provided an alternative
way to describe the curvature energy Ec=E0�1−cos �� with
E0=4.17 eV. The planarity � is a structural parameter, which
is the angle between the � orbitals of neighboring atoms. For

the graphene, we have Eg=−10.6 eV with respect to a
nonspin-polarized carbon atoms using density functional cal-
culations implemented with CASTEP.21 Now, we define Etube
to be

Etube = �1 +
E0

Eg
�1 − cos ���Eg = AEg, �2�

where A=6.43/10.6+ �4.17/10.6�cos �. Then, the bond-
stretching force constant Ktube that corresponds to the equi-
librium configuration of SWNTs is in the form of

Ktube = � �2Etube

�r2 �
rg+u

= A� �2Eg

�r2 �
rg+u

= A�� �2Eg

�r2 �
rg

+ u� �3Eg

�r3 �
rg

� , �3�

where rg and rtube=rg+u are the equilibrium distances of the
carbon-carbon bonds in graphene and SWNTs, respectively.
Note that the first term in the bracket is simply the bond-
stretching force constant of graphene Kg, we have

Ktube = AKg + A�rtube − rg�� �3Eg

�r3 �
rg

. �4�

Since the explicit functional dependence of the energy Eg on
the atomic displacements is unknown, we make a particular
choice: the Morse potential, so that

Eg = U	e−2�r−r0�/b − 2e−�r−r0�/b
 , �5�

where U is the cohesion energy per bond, and r0 is the equi-
librium bond length. To make it comparable to that of graph-
ite and diamond,22 we take U=3.7 eV. The constant b is
chosen to obtain the correct bond-stretching force constant.
In a force constant model, the first and second nearest neigh-
boring bond-stretching force constants are Kg

1=22.78 eV Å2

and Kg
2=5.49 eV Å2, respectively.2 The corresponding values

of b are 0.57 and 1.16, as deduced from the Morse potential.
Substituting the Morse potential to the second term of Eq.
�4�, we obtain
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Ktube = AKg + 6AU�rg − rtube�/b3. �6�

One finds that the radial force constant is determined by two
competing contributions: a softened force constant of
graphene and the structural difference between SWNTs and
graphene. It is seen that Kg is softened by the factor A when
rolling up the graphene into a nanotube. From the second
term, one can see that the force constant, hereby the RBM
frequency, is directly related to the elongation or shortening
of carbon-carbon bonds along the circumferential direction.
The change of bond length, induced by rolling up the
graphene plane, is thus dependent on the chirality. So Eq. �6�
predicts that �RBM is not only diameter dependent, but also
chirality dependent. In addition, the electronic effects on the
force constant Ktube are included in the factor A, which re-
flects the interaction of � orbitals between neighboring at-
oms. Such an interaction induces obvious softening in the
total energy and force constant as seen in Eq. �6�. Moreover,
the �*-�* hybridizations have been introduced in very small
diameter tubes.16 However, the ab initio calculations18,19 re-
produce the relation Ec=D /dt

2 with D�8.4 eV Å2 and thus
Eq. �6� is still valid for these small diameter tubes.

In order to take the curvature effect into account, we cal-
culate the RBM within a force constant model2,23,24 using Eq.
�6�. We consider the first and second nearest neighboring
carbon atoms for the graphene and SWNTs in our calcula-
tions. For graphene, we have rg

1=1.42 Å and rg
2=2.46 Å,

while rtube
1 and rtube

2 can be obtained from the geometrical
structure optimizations in first-principles calculations.25–27

As shown in Fig. 1, there are three and six carbon bonds
corresponding to the first and second nearest neighboring
carbon atoms. For a general �n ,0�-zigzag or �n ,n�-armchair
SWNTs, its symmetry group contains the horizontal and ver-
tical mirror reflections. This means that two nearest bonds
�f1, f2� and two second nearest bonds �s1,s2� are represen-
tative. Considered its symmetry group includes a twofold
horizontal rotation for a general chiral tube, it is necessary to
choose all three nearest bonds �f1, f2, f3� and three second
nearest bonds �s1,s2,s3� in our calculations.

In Fig. 2, we apply the above scheme to calculate the
softening coefficient A as a function of tube diameter. The
value of A increases with the increasing diameter and ap-
proaches 1.0 for the SWNTs with diameter larger than 3 nm.
So, Ktube would be governed by the Kg from Eq. �6� for large

diameter tubes and RBM can be calculated by borrowing the
force constants from graphene, as reported previously.2,23,24

However, the effect of coefficient A and the distortion of
carbon bonds become significant for the small diameter
tubes. Taking �5, 0� and �4, 2� SWNTs for example, their
calculated RBMs by adopting ideal graphene force constants
are systematically higher than the experimental values by
�20 cm−1.28 By looking at the fully relaxed nanotube coor-
dinates, one can find that the length of carbon-carbon bonds
“along” the tube axis 	f1 for �5, 0� tube and f3 for �4, 2�
tube
 is shorter than those bonds that are “around” the tube
circumference �see Table I�. Such a phenomenon can be at-
tributed to the pronounced curvature effect for these ultras-
mall diameter SWNTs. In particular, the bond alternation is
more significant for the �5, 0� tube, since �5, 0� tube has the
smallest chiral angle between these two SWNTs.

By virtue of bond lengths and Eq. �6�, we calculated the
RBM frequencies of �5, 0�, �4, 2�, and �3, 3� SWNTs, and
compared our results with experimentally observed modes
and other theoretical calculations in Table II. The 4 Å diam-
eter SWNTs in AFI were confirmed by high-resolution trans-
mission electron microscopy and there were only nanotubes
with three different chirality: �5, 0�, �4, 2�, and �3, 3�. Fur-
thermore, the tube chirality of samples can be distinguished
by very different absorption and photoluminescence
spectra.16 The �3, 3� tube has its lowest absorption band
around 3.0 eV, which is far away from the resonance region

FIG. 1. The first and second nearest neighboring bonds �a� for
zigzag, �b� for armchair, and �c� for chiral SWNTs.

FIG. 2. The value of A as a function of tube diameter. The open
circles represent the value of A for �5, 0�, �4, 2�, and �3, 3� tubes.

TABLE I. The bond length �in angstroms� of RBM of �5, 0� and
�4, 2� SWNTs from density functional calculations. See text for
meanings of the bond parameters.

�5, 0� �4, 2�

f1 1.40a 1.41b 1.44a 1.44b

f2 1.45a 1.45b 1.44a 1.44b

f3 1.42a 1.42b

s1 2.47a 2.48b 2.46a 2.46b

s2 2.40a 2.40b 2.42a 2.42b

s3 2.46a 2.46b

aReference 26.
bReference 27.
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for the excitation laser energy, thus its RBM is negligibly
weak.28,29 So, only �5, 0� and �4, 2� tubes are related to these
two strong peaks in the Raman spectra, which are around at
510 and 550 cm−1 as seen in Table II.28–30 Comparing the
observed modes with our calculated RBM for �5, 0� and �4,
2� tubes, we can clearly assign the peak at 510 cm−1 with �4,
2� tube, while the peak at 550 cm−1 with �5, 0� tube. From
Table II, it is seen that our calculated RBM frequencies are in
better agreement with the observed modes than other calcu-
lations. The good agreement indicates that curvature effect
on RBM has been properly incorporated in Eq. �6�. In addi-
tion, the underestimated frequency �about 20 cm−1� can be
attributed to the AKg term and structural term from Eq. �6�.
The AKg and structural contributions to the RBM are −10
and −7 cm−1 for the �4, 2� tube, while −13 and −2 cm−1 for
the �5, 0� tube. The difference of the structural contribution
between �5, 0� and �4, 2� tubes arises from the curvature
effect on the bonds along the circumferential direction.

To give further insight into the curvature effect, we show
the RBM frequencies of even smaller diameter SWNTs in
Table III. The RBM frequencies calculated with Eq. �6� are
systematically lower than that without Eq. �6� except the �2,
2� tube. From the geometry optimization with CASTEP,31 one
can see that the relaxed structure of the �2, 2� tube shows
significant deviations from the ideal rolled graphene sheet
configuration. The large structural difference results in the
dominating contribution of the second term in Eq. �6� and
thus a higher frequency than the ideal value. In addition, it is
noted that the calculated RBM frequency of �3, 1� tube is
755 cm−1, which is very consistent with the position of a
Raman peak �760 cm−1� observed recently for SWNTs in

even smaller zeolite crystals ��6 Å� than AFI ��7 Å�.32

Due to even smaller diameter of this zeolite crystal, the ex-
istence of SWNTs with less than 4 Å diameter is predicted
and this peak at 760 cm−1 may be attributed to the SWNTs in
these zeolite crystals. The details of the fabrication process
and Raman spectra measurement of SWNTs in this zeolite
crystal would be presented elsewhere. Based on our calcula-
tions, we conclude that the peak may be associated with the
�3, 1� tube.

We calculate in Fig. 3 the RBM frequencies of a number
of zigzag �n=4–20� and armchair �n=3–11� SWNTs based
on optimized tube structures.25 Not surprisingly, the calcu-
lated RBM frequencies are almost inversely proportional to
the diameter for large diameter SWNTs.33–35 A fit to �RBM

=C /dt yields C=232/dt cm−1 nm for zigzag and C
=234/dtcm−1 nm for armchair SWNTs, which are larger than
that calculated from Kg.2,23,24 The values of C for armchair
and zigzag SWNTs are in agreement with that from density
functional calculations.11 The difference of C between two
types of tubes is due to the fact that the magnitudes of in-
crease or decrease in bond lengths are very different. More
importantly, such a difference reveals that RBM is also de-
pendent on chirality, especially for SWNTs of diameter less
than 1 nm.

In summary, we investigate the curvature effect on RBM
of SWNTs by constructing an analytical correction to the
carbon-carbon radial force constants. By introducing the cur-
vature energy, we present the nanotubes’ force constants,
which are related to the graphene’s force constants and struc-
tural changes. Our calculated results show that the curvature
effect is small for large diameter SWNTs, while it becomes
significant for small diameter SWNTs, especially for ultras-
mall diameter tubes. We predict that the RBM frequency is
both diameter and chirality dependent due to the curvature
effects. Moreover, our calculated RBMs are in very good
agreement with experimental measurements, compared with
other calculations.

We would like to thank Professor Ado Jorio for making
their results available prior to publication. We also thank

TABLE II. The RBM frequency �in cm−1� used to fit the ob-
served Raman modes of 4 Å diameter SWNTs in zeolite crystals in
comparison to our calculated results �underlined values�.

Observed modes 510a 550a

514b 545b

515c 548c

Calculated for �5, 0� 547 525d 562a 536c

Calculated for �4, 2� 513 529d 530a 538c

Calculated for �3, 3� 528 538d 541a

aReference 28.
bReference 29.
cReference 30.
dReference 26.

TABLE III. The RBM frequency �in cm−1� for 3–4 Å diameter
SWNTs calculated with Eq. �6� and without Eq. �6�.

�n ,m� �4, 2� �3, 3� �5, 0� �4, 1� �3, 2� �4, 0� �3, 1� �2, 2�

�cal
a 513 528 547 589 635 671 755 828

�cal
b 530 541 562 611 640 695 764 790

aCalculation with Eq. �6�.
bCalculation without Eq. �6�.

FIG. 3. Frequencies of the RBM of a number of SWNTs for �a�
zigzag and �b� armchair tubes. The solid lines are a linear fit to the
data for the large diameter SWNTs.

BRIEF REPORTS PHYSICAL REVIEW B 71, 233405 �2005�

233405-3



Dr. Viktor Zolyomi for sending us their structural data of
nanotubes. This work was supported by the Program for New
Century Excellent Talents in University �Grant No. NCET-
04-0779� and Science & Technology Foundation for Ministry

of Education �No. 204099�, and by the Scientific Research
Fund of Hunan Provincial Education Department �Nos.
03A046, 03JZY3019, and 04C647�, and partly by the Under-
graduate Innovation Fund of Xiangtan University.

*Author to whom correspondence should be addressed; electronic
address: xhyan@nuaa.edu.cn

1 S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Ba-
sic Concepts and Physical Properties �Wiley-VCH, Cambridge,
2004�.

2 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Prop-
erties of Carbon Nanotubes �Imperial College Press, London,
1998�.

3 G. D. Mahan and G. S. Jeon, Phys. Rev. B 70, 075405 �2004�.
4 Yu. N. Gartstein, Phys. Lett. A 327, 83 �2004�.
5 G. D. Mahan, Phys. Rev. B 65, 235402 �2002�.
6 S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E.

Smalley, and R. B. Weisman, Science 298, 2361 �2002�.
7 A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T.

McClure, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev.
Lett. 86, 1118 �2001�.

8 R. Pfeiffer, H. Kuzmany, Ch. Kramberger, Ch. Schaman, T.
Pichler, H. Kataura, Y. Achiba, J. Kurti, and V. Zolyomi, Phys.
Rev. Lett. 90, 225501 �2003�.

9 Ch. Kramberger, R. Pfeiffer, H. Kuzmany, V. Zolyomi, and J.
Kurti, Phys. Rev. B 68, 235404 �2003�.

10 S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Rich-
ter, and P. C. Eklund, Phys. Rev. Lett. 80, 3779 �1998�.

11 J. Kurti, G. Kresse, and H. Kuzmany, Phys. Rev. B 58, R8869
�1998�.

12 H. Telg, J. Maultzsch, S. Reich, F. Hennrich, and C. Thomsen,
Phys. Rev. Lett. 93, 177401 �2004�.

13 Ge. G. Samsonidze, R. Saito, N. Kobayashi, A. Gruneis, J. Jiang,
A. Jorio, S. G. Chou, G. Dresselhaus, and M. S. Dresselhaus,
Appl. Phys. Lett. 85, 5703 �2004�.

14 A. Jorio, C. Fantini, M. A. Pimenta, R. B. Capaz, G. G. Sam-
sonidze, G. Dresselhaus, M. S. Dresselhaus, J. Jiang, N. Koba-
yashi, A. Gruneis, and R. Saito, Phys. Rev. B 71, 075401
�2005�.

15 M. Damnjanovic, E. Dobardzic, and I. Milosevic, J. Phys.: Con-
dens. Matter 16, L505 �2004�.

16 Z. M. Li, Z. K. Tang, H. J. Liu, N. Wang, C. T. Chan, R. Saito, S.
Okada, G. D. Li, J. S. Chen, N. Nagasawa, and S. Tsuda, Phys.
Rev. Lett. 87, 127401 �2001�.

17 D. Sanchez-Portal, E. Artacho, J. M. Soler, Angel Rubio, and P.
Ordejon, Phys. Rev. B 59, 12678 �1999�.

18 O. Gulseren, T. Yildirim, and S. Ciraci, Phys. Rev. B 65, 153405
�2002�.

19 I. Cabria, J. W. Mintmire, and C. T. White, Phys. Rev. B 67,
121406�R� �2003�.

20 G. B. Adams, O. F. Sankey, J. B. Page, M. O. Keeffe, and D. A.
Drabold, Science 256, 1792 �1992�.

21 Y. L. Mao, X. H. Yan, Y. Xiao, J. Xiang, Y. R. Yang, and H. L.
Yu, Phys. Rev. B 71, 033404 �2005�.

22 W. A. Harrison, Electronic Structure and the Properties of Solids
�Freeman, San Francisco, 1980�.

23 Z. M. Li, V. N. Popov, and Z. K. Tang, Solid State Commun.
130, 657 �2004�.

24 J. X. Cao, X. H. Yan, Y. Xiao, Y. Tang, and J. W. Ding, Phys.
Rev. B 67, 045413 �2003�.

25 J. Kurti, V. Zolyomi, M. Kertesz, and G. Y. Sun, New J. Phys. 5,
125 �2003�.

26 H. J. Liu and C. T. Chan, Phys. Rev. B 66, 115416 �2002�.
27 M. Machon, S. Reich, C. Thomsen, D. Sanchez-Portal, and P.

Ordejon, Phys. Rev. B 66, 155410 �2002�.
28 Z. M. Li, Z. K. Tang, G. G. Siu, and I. Bozovic, Appl. Phys. Lett.

84, 4101 �2004�.
29 M. Hulman, H. Kuzmany, O. Dubay, and G. Kresse, J. Chem.

Phys. 119, 3384 �2003�.
30 I. L. Li, G. D. Li, H. J. Liu, C. T. Chan, and Z. K. Tang, Appl.

Phys. Lett. 82, 1467 �2003�.
31 Y. L. Mao, X. H. Yan, Y. Xiao, J. Xiang, Y. R. Yang, and H. L.

Yu, Nanotechnology 15, 1000 �2004�.
32 J. P. Zhai �unpublished�.
33 C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus,

and M. A. Pimenta, Phys. Rev. Lett. 93, 147406 �2004�.
34 H. Son, Y. Hori, S. G. Chou, D. Nezich, Ge. G. Samsonidze, G.

Dresselhaus, M. S. Dresselhaus, and E. B. Barros, Appl. Phys.
Lett. 85, 4744 �2004�.

35 A. G. Souza Filho, S. G. Chou, G. G. Samsonidze, G. Dressel-
haus, M. S. Dresselhaus, L. An, J. Liu, A. K. Swan, M. S. Unlu,
B. B. Goldberg, A. Jorio, A. Gruneis, and R. Saito, Phys. Rev. B
69, 115428 �2004�.

BRIEF REPORTS PHYSICAL REVIEW B 71, 233405 �2005�

233405-4


