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We show that in quantum dots the physical quantities probed by local tunneling spectroscopies—namely, the
quasiparticle wave functions of interacting electrons—can considerably deviate from their single-particle coun-
terparts as an effect of Coulomb correlation. From the exact solution of the few-particle Hamiltonian for
prototype dots, we find that such deviations are crucial to predict wave function images at low electron
densities or high magnetic fields.
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Current single-electron tunneling spectroscopies in semi-
conductor quantum dots1–3 �QD’s� may provide spectacular
images of the QD wave functions, in both real4–6 and recip-
rocal space.7–9 The measured intensities have been generally
attributed to the probability densities of ground or excited
single-electron states occupying the dot. As pointed out by
Wibbelhoff et al.,9 however, the role of other electrons filling
the dot may actually be relevant. Indeed, QD’s can be
strongly interacting objects with a completely discrete en-
ergy spectrum, which in turn depends on the number of
electrons,1,3 N. Therefore, orbitals can be ill defined, losing
their meaning due to interactions. Also, it is unclear how
many electrons one should take into account to calculate the
total density of states, as a particle tunnels into a QD filled
with N electrons. In this paper we thus address the following
basic questions: What are the physical quantities that are
actually probed by the scanning tunneling microscopy4–6

�STM� or magnetotunneling spectroscopy7–9 of QD’s? How
do they depend on interactions? Can they deviate from the
common single-particle picture in physically relevant re-
gimes? If only one many-body state is probed at a time, then
the signal is proportional to the probability density of the
quasiparticle �QP� being injected into the interacting QD.
We demonstrate that the QP density dramatically depends on
the strength of correlation inside the dot and predict the wave
function mapping to be a useful experimental tool to image
QP’s, in both direct and reciprocal space.

The imaging experiments, in their essence, measure quan-
tities directly proportional to the probability for transfer of an
electron through a barrier, from an emitter, where electrons
fill in a Fermi sea, to a dot, with completely discrete energy
spectrum. In multiterminal setups one can neglect the role of
electrodes other than the emitter, to a first approximation.
The measured quantity can be the current,4,7 the differential
conductance,5,6,8,10 or the QD capacitance,9,11 while the emit-
ter can be the STM tip4–6 or a n-doped GaAs contact,7–11 and
the barrier can be the vacuum4–6 as well as a AlGaAs
spacer.7–11

According to the seminal paper by Bardeen,12 the transi-
tion probability �at zero temperature� is given by the expres-
sion �2� /���M�2n�� f�, where M is the matrix element and
n�� f� is the energy density of the final QD states. Common
wisdom would predict the probability to be proportional to

the total density of QD states at the resonant tunneling en-
ergy � f, possibly space-resolved since M would depend on
the resonant QD orbital.13 To proceed, let us assume that
electrons from the emitter access through the barrier a single
QD at a sharp resonant energy, corresponding to a unique,
well-defined many-body QD state, and reconsider the transi-
tion matrix element Mk,N for transfer of an electron from
emitter to QD. Mk,N is given by �recasting Eqs. �6� and �7�
of Ref. 12 in second-quantized form�

Mk,N � ��k�,N − 1�M̂��k*�,N	 ,

M̂ =
�2

2m* 
 ��̂†��̂

�z
−

��̂†

�z
�̂���zbar − z�d� . �1�

Here ��k� ,N−1	 and ��k*� ,N	 are two many-particle states of
the entire system of similar energies, with N−1 and N inter-
acting electrons in the QD, respectively, and the remaining
Ntot−N+1 and Ntot−N electrons, respectively, in the emitter.
The fixed coordinate along the tunneling direction z appear-
ing in Eq. �1�, zbar, can be everywhere in the barrier, and d�
is the infinitesimal volume element. The fermionic field op-

erator �̂�r�, destroying an electron at position r�� ,z�, can
be expanded over the basis of emitter and QD single-particle

states �k and �	, respectively:14 �̂�r�=�i�i�r�ĉi, where
i=k ,	 and we take unitary volume normalization. We omit
spin indexes and summations for the sake of simplicity. We
assume that electrons in the emitter do not interact and are
associated with the two sets of quantum numbers �k� and
�k*�, respectively, which differ in the occurrence of the index
k labeling the electron which leaves the emitter and tunnels
to the QD as ��k� ,N−1	 evolves to ��k*� ,N	. Moreover, we
assume for convenience that the xy and z motions of elec-
trons are separable and that electrons in the QD all occupy
the same confined single-particle state along z, 
QD�z�:
namely, �	�r�=�	���
QD�z�. Under these conditions we
may factorize the matrix element as Mk,N�TkMk,N, with

Tk =
�2

2m*�
k
*�z�

�
QD�z�
�z

− 
QD�z�
�
k

*�z�
�z

�
z=zbar

, �2�

where 
k�z� is the emitter state along z evanescent in the
barrier, �k�r�=�k���
k�z�, and
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Mk,N = �
	

 �k

*����	���d���k�,N − 1�ĉk
†ĉ	��k*�,N	 .

Eventually assuming that the many-body states can be fac-
torized into an emitter and a QD part, we obtain

Mk,N =
 �k
*����QD���d� , �3�

where �QD��� is the QP wave function of the interacting QD
system:15

�QD��� = �N − 1��̂����N	 . �4�

The results �3� and �4� are the key for predicting wave
function images in both real and reciprocal space. In STM,
�k��� is the localized tip wave function; if we ideally as-
sume it pointlike and located at �0,13 i.e., �k�������−�0�,
then the signal intensity is proportional to ��QD��0��2, which
is the usual result of the one-electron theory,6,13 provided the
ill-defined QD orbital is replaced by the QP wave function
unambiguously defined by Eq. �4�. In magnetotunneling
spectroscopy, the emitter in-plane wave function is a plane
wave, �k���=eik·�, and the matrix element �3� is the Fourier
transform of �QD, Mk,N=�QD�k�. Again, we generalize the
standard one-electron result by substituting �QD�k� for the
QD orbital �then Eqs. �3� and �2� coincide with �A1� and
�A2� of Ref. 8�. Note that Mk,N is the relevant quantity also
for intensities in space-integrated spectroscopies probing the
QD addition energy spectrum.10,11 Consistently, in the non-
interacting case, �QD��� reduces to the highest-occupied
one-electron orbital �	��� �Ref. 13�: in this limit an electron
tunnels from the emitter to the orbital �	��� which resonates
at the Fermi energy, with �N	= ĉ	

† �N−1	. The latter regime
probably corresponds to most of the existing experimental
evidence.4–9 However, it is interesting to analyze realistic
scenarios that deviate from the one-electron picture.

Therefore, we study �QD��� in a paradigmatic interacting
case and consider a few electrons in a two-dimensional har-
monic trap, which was proven to be an excellent model for
different experimental setups.3 The QD effective-mass
Hamiltonian is

H = �
i

N

H0�i� +
1

2�
i�j

e2

���i − � j�
, �5�

with

H0�i� =
1

2m*�p −
e

c
A����2

+ m*0
2�2/2. �6�

Here � is the static relative dielectric constant of the host
semiconductor, and A��� is the vector potential
�A=B�� /2� associated with a static and uniform magnetic
field B along z, which reduces the cylindrical spatial symme-
try group of the system from D�h, at B=0, to C�h, when
B�0, making it chiral. The QD wave function has an azi-
muthal quantum number m, �QD���=�QD���eim� �� and �
are respectively the modulus and azimuthal angle of ��,
which is fixed by the total angular momenta M of �N	 and

�N−1	, m=MN−MN−1, and can be expanded over the basis of
Fock-Darwin �FD� orbitals �nm���,1 eigenstates of the
single-particle Hamiltonian �6�: �QD���=�n=0

� an�nm���,
where n’s are radial quantum numbers and an coefficients to
be determined. We solve numerically the few-body problem
of Eq. �5�, for the ground state at different N’s, by means of
the configuration interaction �CI� method,16 where �N	 is ex-
panded in a series of Slater determinants built by filling in
the FD orbitals with N electrons and consistently with sym-
metry constraints.16 Then, we evaluate the matrix element �4�
and find the values of an for a truncated FD basis set.

There are two ways of artificially tuning the strength of
the Coulomb correlation in QD’s: one is to dilute the electron
density, and the other is to turn on B. In both cases, at low
enough densities or strong enough fields, electrons pass from
a “liquid” phase, where low-energy motion is equally con-
trolled by kinetic and Coulomb energy, to a “crystallized”
phase, reminescent of the Wigner crystal in the bulk, where
electrons are localized in space and arrange themselves in a
geometrically ordered configuration such that electrostatic
repulsion is minimized.3

We first consider reducing the density at B=0. The typical
QD lateral extension is given by the characteristic dot radius
�QD= �� /m*0�1/2, �QD being the mean-square root of � on
the FD lowest-energy level �00. As we keep N fixed and
increase �QD, the Coulomb-to-kinetic energy ratio
�=�QD/aB

* �aB
* =�2� / �m*e2� is the effective Bohr radius of

the dot� �Ref. 18� increases as well, driving the system into
the “Wigner” regime.19 As a rough indication, consider that
for ��2 or lower the electronic ground state is liquid, while
above ��4 electrons form a crystallized phase.18

Figure 1 shows �QD vs �, as up to six electrons are suc-
cessively injected into a liquid QD with a realistic density of
�=2.10 The QD filling sequence is well known,10,11 in anal-
ogy with the Aufbau principle of atomic physics: in the
independent-electron picture ��=0, dashed lines�, �QD is the
highest-energy occupied orbital which is filled by the elec-
tron added to the dot. Howevever, Coulomb correlation sig-
nificantly spreads the wave function �solid lines� and moves
the QP peak towards the QD edge. The spreading is caused
by the increase of weights an of high-energy FD orbitals, as
the interaction is turned on; nevertheless, the behavior of
�QD around ��0 is dictated by its angular dependence,
�QD������m�, while it decays like exp�−�2 /2�QD

2 � as �
→�. The QP amplitude is strongly suppressed in the �N
−1�→N tunneling processes involving the N=4 open-shell
ground state, with respect to other additions �Fig. 1�. This is
a spin-blockade effect, since the total spin S is maximum at
N=4 �S=1 according to Hund’s rule10�, and we assume that
its z component is zero, Sz=0. Besides, the general trend is
that the QP wave function norm and, hence, the integrated
experimental signal diminish as N and � increase �see also
Fig. 2�.

Note that the interpretation of tunneling spectroscopy in

terms of the total density, n���= �N��̂†����̂����N	 /N, is in-
consistent with our point of view, as is seen by comparing
the QP wave functions of Fig. 1 with the total densities for
the corresponding N-electron states �insets�. While the total
densities and QP probabilites resemble each other up to the
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addition of the second electron, after the third electron tun-
nels into the dot they can be clearly discriminated in the
laboratory: QP probabilities have a strong angular depen-
dence �hybridizing degenerate states with ±m� and a node at
the QD center, while total densities are approximately circu-
lar �exactly, for N=4,6� and filled.

As one reduces the density, the appearance of QP wave
functions dramatically changes. In Fig. 2 we study the injec-
tion of the sixth electron, as � goes from 0.5 up to 10. Note
that �=0.5,2 ,4 �equivalent to GaAs lateral confinement en-
ergies �0=47,3.0,0.74 meV, respectively� typically corre-
spond to different experimental QD devices, such as
self-assembled,8,20 vertical mesa-etched,10 and 2DEG-
depletion QD’s.11 A six-electron Wigner molecule forms for
��4, with one electron localized at the QD center and the
remaining five arranged on an outer ring, at the vertices of a
regular pentagon.18,21,22 The crystallization is clearly seen in
the bottom panel of Fig. 2, where, as � increases, the total
density develops one peak at �=0, for the central electron,
and another one, close to �=3�QD, for the outer ring. Simi-
larly, the five-electron molecule is a hollow pentagon.18,21 In
the top panel of Fig. 2 we see that the QP wave function is
strongly affected by electron localization: while for ��4 it
somehow resembles the noninteracting FD orbital �n ,m�
= �0,−1�, being spread uniformly across the dot, for ��4 it
develops a well-formed peak close to the outer-ring position.
The QP weight in the region inside the ring is strongly de-
pleted, eventually appearing as a shoulder of the main peak.
We conclude that, in the crystallized phase, the sixth electron
can only enter the external ring, with negligible probability
of being located in the center. For smaller N, we find that
electrons just enter the outer ring, since the pertinent geo-
metrical phases are hollow regular polygons.23

We now come to the effect of a strong magnetic field
parallel to the tunneling direction z. As B increases, the ki-
netic energy is quenched, Landau bands of almost degenerate
FD levels being formed. M increases due to Coulomb repul-
sion, since the higher m, the outer the FD orbital.24 In corre-
spondence of “magic” values of M, the ground state turns out
to be particularly stable:24 this family of incompressible25

states has been variously regarded as reminescent of the frac-
tional quantum Hall effect �FQHE� states in two-dimensional
electron layers3 or as a collection of Wigner molecules.26

In analogy with the FQHE, it is convenient to introduce
the filling factor �, defined as �=N�N−1� /2M, and to con-
sider only FD levels in the lowest Landau band and full spin
polarization, which turns out to be a reasonable approxima-
tion at high B.3 In realistic situations, there are significant B
ranges where � is constant as N is changed.3,27 At �=1, the
interacting states are maximum density droplets,3,28 namely,
incompressible disks of almost uniform density, �N	
=�m=0

N−1ĉ0m
† �0	, and �QD is simply the highest occupied FD

state, �0N−1, located at the edge of the dot, which is being
filled by the tunneling electron, with an=�n0:

�QD��� = �n=0,m=N−1��� . �7�

Equation �7� is a remarkable result: while the total electron
density is a uniform disk, the measured squared modulus of
QP wave function will be an annulus of the same radius as
the charge distribution. If ��1, the wave function
will be still proportional to the FD orbital �n=0,m, with
m= �N−1� /� and a0�1: namely, �QD���=a0�n=0,m���. The
only effect of strong correlation in these regimes is to modu-
late the amplitude of the noninteracting wave function via
the coefficient a0. Table I shows the calculated values of a0

FIG. 1. Quasiparticle wave function �solid line� vs � for differ-
ent �N−1�→N transitions, with �=2. The dashed line represents
the noninteracting orbital ��=0�. The ground states are �M ,S�
= �0,1 /2�,�0,0�,�1,1 /2�,�0,1�,�1,1 /2�,�0,0�, for N going from 1 to
6, respectively. Sz=0 �Sz=1/2� if N is even �odd�. The norm of the
�=2 wave function is 1,0.84,0.84,0.40,0.37,0.73, respectively. In-
sets: total ground-state charge densities n��� �arb. units� for N go-
ing from 1 �top left� to 6 �right bottom�. The length unit is �QD.

FIG. 2. Top: quasiparticle wave function vs � for different val-
ues of �, as the sixth electron tunnels into the QD. The wave func-
tion norm, for � going from 0.5 to 10, is
0.97,0.73,0.48,0.32,0.22,0.15, respectively. Bottom: six-electron to-
tal density n��� vs �. The ground states for N=5,6 are �M ,S�
= �1,1 /2�, �0,0�, respectively, for all �.
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for various tunneling processes at particularly stable filling
factors. Except for some cases, �a0� monotonously decreases
as � diminishes or as N increases. E.g., at �=1/5, �a0� is
reduced by two order of magnitudes with respect to �=1,
when the sixth electron enters the dot. Table I shows that
interaction enforces very effectively the orthogonality of in-
compressible states,29 and therefore we expect that, as a
high-field component is applied parallel to z, tunneling is
strongly suppressed by the reduction of the matrix element
Mk,N �Eq. �3��: a purely many-body mechanism, the single-
particle matrix element Tk �Eq. �2�� being left unchanged by
the field.

The loss of QP weight as either � �Figs. 1 and 2� or B

�Table I� increases is a general signature of Coulomb corre-
lation. As the electron puddle becomes more correlated, its
total wave function acquires new different Slater determinant
components to reduce its Coulomb energy. Such new com-
ponents in general do not contribute to the coefficients an of
the QP wave function.

In conclusion, we have shown that quasiparticle wave
functions of QD’s are extremely sensitive to electron-
electron correlation and may differ from single-particle states
in physically relevant cases. This result is of interest to pre-
dict the real- and reciprocal-space wave function images ob-
tained by tunneling spectroscopies, as well as the intensities
of addition spectra of QD’s. Close comparison with experi-
ment is not yet possible in the case of Ref. 9, where many
dots are probed at once and the confinement is too strong.
Promising samples are also those of Refs. 10 and 11, allow-
ing for access to a single dot and full control of N. We hope
that our results will stimulate further experiments. We be-
lieve that our findings will be important also for other
strongly confined systems, like, e.g., nanostructures at
surfaces.30

We thank O. S. Wibbelhoff and A. Lorke for inspiring
discussions. This paper is supported by MIUR-FIRB
RBAU01ZEML, MIUR-COFIN 2003020984, I.T. INFM
Calc. Par. 2004-2005, MAE-DGPCC.

1 L. Jacak, P. Hawrylak, and A. Wójs, Quantum Dots �Springer,
Berlin, 1998�.

2 D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot
Heterostructures �Wiley, New York, 1999�.

3 S. M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283
�2002�.

4 B. Grandidier et al., Phys. Rev. Lett. 85, 1068 �2000�.
5 O. Millo et al., Phys. Rev. Lett. 86, 5751 �2001�.
6 T. Maltezopoulos et al., Phys. Rev. Lett. 91, 196804 �2003�.
7 E. E. Vdovin et al., Science 290, 122 �2000�.
8 A. Patanè et al., Phys. Rev. B 65, 165308 �2002�.
9 O. S. Wibbelhoff et al., Appl. Phys. Lett. 86, 092104 �2005�.

10 S. Tarucha et al., Phys. Rev. Lett. 77, 3613 �1996�.
11 R. C. Ashoori, Nature �London� 379, 413 �1996�.
12 J. Bardeen, Phys. Rev. Lett. 6, 57 �1961�.
13 J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 �1985�; J.

Tersoff, Phys. Rev. Lett. 57, 440 �1986�.
14 �k and �	 are not mutually orthogonal, since they are not eigen-

states of the whole system Hamiltonian �Ref. 12�.
15 The quantity is also known as the spectral density amplitude of

the one-electron propagator resolved in real space: for analogous
treatments in many-body tunneling theory see, e.g., J. A. Appel-
baum and W. F. Brinkman, Phys. Rev. 186, 464 �1969�; T. E.
Feuchtwang, Phys. Rev. B 10, 4121 �1974�, and refs. therein.

16 For details on our CI approach see Ref. 17. Here we implemented
a parallel version of our CI code, allowing for using a FD basis
set as large as 36 orbitals and for diagonalizing matrices of

linear dimensions up to �106. As a convergence test, we could
accurately reproduce QMC ground state energies up to �=8 and
N=6 �Ref. 18�.

17 M. Rontani et al., Phys. Rev. B 69, 085327 �2004�.
18 R. Egger et al., Phys. Rev. Lett. 82, 3320 �1999�.
19 The dimensionless ratio � is the QD analog to the density param-

eter rs in extended systems.
20 M. Fricke et al., Europhys. Lett. 36, 197 �1996�.
21 F. Bolton and U. Rössler, Superlattices Microstruct. 13, 139

�1993�; V. M. Bedanov and F. M. Peeters, Phys. Rev. B 49,
2667 �1994�.

22 M. Rontani et al., Europhys. Lett. 58, 555 �2002�.
23 There is a complication for the 3→4 process, since, for � be-

tween 4 and 6, the three-electron ground state becomes fully
spin polarized �Ref. 18� and the symmetry of the QP wave func-
tion changes from m=−1 to m=0. Correspondingly, the 2→3
channel is fully spin blocked.

24 P. A. Maksym et al., Phys. Rev. Lett. 65, 108 �1990�.
25 R. B. Laughlin, Phys. Rev. B 27, 3383 �1983�.
26 See, e.g., P A. Maksym et al., J. Phys.: Condens. Matter 12,

R299 �2000�, and references therein.
27 T. H. Oosterkamp et al., Phys. Rev. Lett. 82, 2931 �1999�.
28 A. H. MacDonald et al., Aust. J. Phys. 46, 345 �1993�.
29 C. Yannouleas et al., Phys. Rev. B 68, 035326 �2003�.
30 See, e.g., P. Jarillo-Herrero et al., Nature �London� 429, 389

�2004�.

TABLE I. Absolute value of the modulation coefficient �a0� of
the quasiparticle wave function �QD���=a0�0m���, where m= �N
−1� /�, for different �N−1�→N tunneling processes and filling fac-
tors �.
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4→5 1.00 0.158 0.239 0.0650 0.0507
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BRIEF REPORTS PHYSICAL REVIEW B 71, 233106 �2005�

233106-4


