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Total energy electronic structure calculations, based on density functional theory or on the more empirical
tight binding approach, are generally believed to scale as the cube of the number of electrons. By using the
localization property of the high temperature density matrix we present exact deterministic algorithms that
scale linearly in one dimension and quadratically in all others. We also introduce a stochastic algorithm that
scales linearly with system size. These results hold for metallic and nonmetallic systems and are substantiated
by numerical calculations on model systems.
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Total energy electronic structure calculations and molecu-
lar dynamics simulations based on density functional theory
sDFTd or on the tight binding approach have been very suc-
cessful in describing a large variety of phenomena and are
finding increasing application in many fields of science.
However even with present-day computer technology the
size of the systems that can be studied is very restricted. This
is due to the cubic dependence of the commonly used algo-
rithms on the number of particles. This makes a daunting
task of calculating the electronic properties of systems as
large as those that are for instance of interest to nanotechnol-
ogy and biochemistry.

Some 15 years ago it was realized that this need not be so
and that linearly scaling algorithms could be devised.1,2 Up
to now large number of linearly scaling algorithms have been
proposed,3 but they are not devoid of problems and for a
variety of reasons they are not yet routinely used. Most al-
gorithms rely on the fact that the wave functions can be
localized and have an exponential decay leading to a sparse
Hamiltonian. This property does not hold when the gap be-
tween occupied and unoccupied levels vanishes, as in the
case of metals for which it has proven difficult to obtain
linearly scaling algorithms.

Here we propose a new approach to this problem that
does not rely on an ability to localize the wave functions and
is therefore equally applicable to metallic and nonmetallic
systems. We introduce a series of algorithms which defy the
commonly accepted wisdom that DFT calculations are of
OsN3d. In fact they are ofOsN2d and even ofOsNd. Further-
more we propose a stochastic algorithm that is linear scaling
in all dimensions. A feature which sets our method apart
from others is that it scales with the volume of the system
and not with the number of electrons. A bonus, if one treats
atomic species that are rich in electrons.

We work at finite temperature 1/b in the grand canonical
ensemble, where the number of particles is controlled by the
chemical potentialm and the relevant thermodynamic poten-
tial for spinless fermions is4

V f = −
1

b
ln dets1 + ebsm−Hdd, s1d

whereH is a single particle HamiltonianH=−1
2 ¹ +Vsrd. In

the b→` limit

V f = o
i

«i − mN, s2d

where the sum runs over theN lowest occupied states andN
is the total number of particles. Limiting oneself to the con-
sideration of free electrons in an external field is not as re-
strictive as it might at first seem. In fact it is well known that
the full density functional can be obtained from the sum over
the occupied orbital energy in Eq.s2d, if the external poten-
tial of the HamiltonianH is the self-consistent DFT potential
and double counting terms are subtracted.5 Since the latter
can be calculated with linear effort, finding a method for
evaluatingV f in OsNd operations solves the algorithmically
hard part of the problem.

We make use of the identity:

s1 + ebsm−Hdd = p
l=1

P

s1 + eisp/Pds2l−1desb/Pdsm−Hdd s3d

which is valid for any evenP and the product goes over all
the complexPth roots of −1. Using this decomposition one
finds

V f = −
1

b
o
l=1

P

ln detsMsldd s4d

with Msld=1+eisp/Pds2l−1desb/Pdsm−Hd. This is rather more com-
plicated than Eq.s1d but has the advantage that it involves
the propagatoresb/Pdsm−Hd rather than the more difficult
ebsm−Hd. In fact if P is large enough one can use foresb/Pdsm−Hd

one of the many high-temperature representations of the ex-
ponential operator, such as the one based on the expansion in
terms of Chebychev polynomials6,7 or the Trotter
decomposition,8 as is commonly done in the numerical
evaluation of path integrals. In this first implementation we
shall employ the latter, which uses the identity

kr uesb/Pdsm−Hdur8l = eb/2Psm−Vsrdde−smP/2"2bdsr − r8d2esb/2Pdsm−Vsr8dd

s5d

valid to Ossb /Pd3d. For largeP e−smP/2"2bdsr − r8d2 decays very
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rapidly and most elements ofesb/Pdsm−Hd can be neglected,
leading to a sparse matrix which is a key factor for obtaining
a linear scaling algorithm. Since this property does not de-
pend on the possibility of localizing the wave functions this

makes our method suitable also for metals. Alavi and
Frenkel9 have shown that the high temperature density ma-
trix in a cubic lattice of spacingd can equally well be written
as:

ki uesb/Pdsm−Hdu jl = C5esb/Pdsm−Vsidd i = j

esb/2Pdsm−Vsidde−smPd2/2"2bdesb/2Pdsm−Vs jdd if i and j are first neighbors

0 otherwise
6 s6d

wherei and j are lattice site indices,P is related to the lattice
spacing byP=3.432"2b / smd2d and C is a normalization
constant. This expression is compatible with the approxima-
tions made so far, leads to an elegant lattice model with
nearest neighbor interactions and at the same time does not
make the problem any less complex, nor does it alter its
scaling behavior.

Using this representation of the density matrix it is easily
seen that in one dimension the matricesMsld that appear in
Eq. s4d are tridiagonal. Since the determinant of a tridiagonal
matrix can be computed inOsMd operations, we arrive at the
interesting result that linear scaling is exact in 1D. Moving to
higher dimensions theMsld matrices become block tridiago-
nal where the dimension of each block ism=Msd−1d/d. In
spite of the fact that the blocks are very sparse we were
unable to calculate the determinant ofMsld in less than
Mm2=M3−2/d operations. This is only marginally better than
the standardM3 scaling. Furthermore in 3d the resulting al-
gorithm has a very unfavorable prefactor, which makes this
approach unpractical unless substantially improved for in-
stance by better exploiting the sparsity ofMsld.

A more favorable scaling can be obtained if one focuses
on the response ofV f with respect to appropriate parameters,
which is a standard way of calculating physical quantities.
For instance the number of particles is given by
kNl=−s]V f /]md, the energy bykEl=s]sbV fd /]bd+mkNl
and so on. In general one can write for the value of a prop-
erty A, conjugated to the fieldlA,

kAl = −
1

b
o
l=1

P

TrSMsld−1]Msld
]lA

D , s7d

which requires the inversion of the sparse matricesMsld and
not the calculation of its determinant. The inverse ofMsld
can be found if one solves theM sets of linear equations
Msldf j

l =c j, wherehc jj is a complete orthonormal basis set
and is given byMsld−1=o j=1

M f j
lc j

†. Using a preconditioned
biconjugate gradient method10 and the sparsity ofMsld we
find that solving each linear equation takesOsMd operations
leading to an overall quadratic scaling also in 3D. An effi-
cient preconditioner has proved to be the inverse ofM fsld for
free particles. Although in this case the full inverse can be
evaluated exactly using Fourier transforms methods it is

computationally expedient to truncateM fsld−1 so as to give
to M fsld−1 the same sparse structure asMsld. As we shall see
below the theoreticalOsM2d scaling can be demonstrated in
practice, unfortunately at the cost of a large prefactor.

However linear scaling can be obtained if we use a sto-
chastic approach. Taking our cue from what is done in quan-
tum chromodynamics we introduce a random vectorc. If the
ci are stochastically distributed such that their average satis-
fies

kcic j
*l = di j and kcil = 0, s8d

the inverse ofM can be written as an expectation value

Msld−1 = kflc†l, s9d

where the average is taken over the stochastic process andfl

is the solution of the linear equationMsldfl =c. In principle
any distribution that fulfills Eq.s8d allows finding the inverse
of Msld as in Eq.s9d. However in practice it has been noted
that the statistical error does depend on the choice of the
distribution. The one that gave the smaller noise was theS1
distribution, in which theci are distributed asdsci

*c j −1d.11

This means that the variablesci can take random valueseia

on the unit circle with equal probability. Physical quantities
can then be calculated according to Eq.s7d as

kQll = −
1

b
o
l=1

P

TrSkflc†l
]Msld

]l
D s10d

and therefore one finds overall linear scaling behavior.
We now substantiate the claims made on the scaling of the

different algorithms introduced here with numerical calcula-
tions. Different model potentials have been investigated with
satisfactory results. Here we report only one calculation
done on a periodic potential constructed with a superposition
of GaussiansoI=1

N −we−sr −RId
2/d2

Qsrc
2−sr −RId2d where w

=4 a.u. and thecutoff radius isrc=6 a.u. TheGaussian cen-
ters RI are arranged to form a cubic lattice and mimic a
crystal ofN atoms. The spacing between the atomic sites is
taken to be 4d with d=0.75a.u. Periodic boundary condi-
tions are imposed throughout. The Trotter number is chosen
to be P=256 leading to an electronic temperature
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T=7529 K. This is rather small on the electronic energy
scale and we have explicitly verified that it is close to the
T→0 limit for the model.

The number of electrons, the kinetic and the potential
energy as a function of the chemical potential are shown in
Fig. 1. Upon increasingm the states are filled with electrons.
At m<−1.5 a.u.half of the states belonging to the first band
are occupied and the system is metallic. Form<−1.2 a.u.
the first band is completely filled and the model behaves as a
large band gap insulator. The number of electrons, the kinetic
and the potential energy are calculated with the stochastic
algorithm and an iterative routine which calculates the larg-
est relevant eigenvalues for comparison.12–15 The agreement
is excellent. In order to reach the required precision, aver-
ages needed to be taken over about 100 independent configu-
rations.

In a stochastic evaluation it is important to keep track of
the error which for each propertyA is given bysA/ÎNMC,
wheresA is its mean square fluctuation andNMC the number
of Monte Carlo steps. A number of physical observables to-
gether with their estimatedsA is given in Table I. It is seen
that the variances for the different observables do not differ
qualitatively for metals and insulators. Thus the number of
Monte Carlo steps does not have to be larger for metallic
systems than for insulators. We have to mention that ifl is
close toP/2 the condition number ofMsld can be big in the
metallic case. This could in principle increase the number of

iterations needed to solveMsldf j
l =c j. In practice however

this did not lead to significant problems and the performance
of the algorithm in the half-filled and filled case are very
similar. For fixed Trotter numberP the algorithm scales lin-
early with the number of grid points as the lattice constantd
is reduced.

We now compare the scaling of the different algorithms
introduced here with a standard diagonalization procedure in
which the largest relevant eigenvalues of are computed with
sparse matrix diagonalization techniques.12–15 In Fig. 2 we
see that the predictions made on the scaling of the different
algorithms as a function of system size are confirmed by
actual calculations.

Comparing the performance of the stochastic method with
numerically exact methods is not easy since the performance
of the method depends on the accuracy required. Here, in
comparing the performance for different system sizes we
have instead kept the number of Monte Carlo steps constant.
Had we kept the relative accuracy constant this would have
led to sublinear scaling due to the self-averaging properties
of the larger systems. With this caveat from Fig. 2 one can
see that our new algorithm based on stochastic matrix inver-
sion techniques scales linearly, while the algorithm based on
matrix diagonalization shows a cubic scaling. For the model
chosen the crossing point at which our method becomes
more efficient isM <38400, which corresponds to 600 at-
oms. It must be stressed that we have taken the worst case
scenario since we are here dealing with metals andP has to
be taken larger to reach theT=0 limit. At full filling conver-
gence is reached almost forP=128. For thisP value the
crossing point occurs atN=450 atoms. For different systems
this value can vary because it might be necessary to choose a
larger value for the Trotter number or the acceptable statisti-
cal error should be smaller. Still our method can be expected
to become more efficient than cubic scaling algorithms at
system sizes of a few hundred atoms. It should be also men-

FIG. 1. Particle number, kinetic and potential energy of the
Gaussian model as a function of the chemical potential. The circles
show the results calculated with the stochastic linear scaling algo-
rithm. The lines are obtained from the smallest eigenvalues calcu-
lated with an iterative diagonalization algorithm.

TABLE I. Average values and variances for the particle number
N, the kinetic energyT, the potential energyV, and the density at an
atom siter.

Insulator Metal

kAl sA kAl sA

N 64.0 2.7 32.0 4.5

T 77.2 5.4 36.7 4.1

V −174.7 5.0 −86.1 4.2

FIG. 2. Log–log plot of the CPU timetsNd versus the number of
atomsN. The measured slopes confirm that the scaling isOsNd,
OsN2d, OsN7/3d, andOsN3d for the stochastic algorithm, the iterative
inversion, the bandedLU decomposition, and the partial iterative
diagonalization, respectively. The unit of time ist`=tsNd /N mea-
sured at largeN. That is the asymptotic incremental cost of an extra
atom in theN→` limit. The computation was performed on a 1.7
GHz Pentium4 xenon processor.
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tioned that the algorithm is trivially parallelizable. Further-
more increasing the number of electrons while keeping the
volume constant does not increase the computational cost of
our stochastic approach. In contrast the deterministic meth-
ods at constant volume scale quadratically with the number
of electrons. Another advantage of the present method is
memory saving, which grows linearly with volume and not
as the product of the number of electrons times the volume.

In order to apply this method to fully self consistent DFT
calculation one must take into account the fact that the evalu-
ation of the electron density is affected by a statistical error.
This will be considered at a later stage. As it is now the
method can be profitably applied to tight binding calcula-
tions and to the Harris functional approximation16 to DFT. It
can also be extended to include the ionic positions in the
sampling so as to obtain an efficient Monte Carlo method.
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