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Stochastic linear scaling for metals and nonmetals
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Total energy electronic structure calculations, based on density functional theory or on the more empirical
tight binding approach, are generally believed to scale as the cube of the number of electrons. By using the
localization property of the high temperature density matrix we present exact deterministic algorithms that
scale linearly in one dimension and quadratically in all others. We also introduce a stochastic algorithm that
scales linearly with system size. These results hold for metallic and nonmetallic systems and are substantiated
by numerical calculations on model systems.
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Total energy electronic structure calculations and molecu- Q=D & - uN (2)
lar dynamics simulations based on density functional theory = ’

(DFT) or on the tight binding approach have been very suc-

cessful in describing a large variety of phenomena and ara/here the sum runs over tielowest occupied states amn
finding increasing application in many fields of science.is the total number of particles. Limiting oneself to the con-
However even with present-day computer technology theideration of free electrons in an external field is not as re-
size of the systems that can be studied is very restricted. Thigrictive as it might at first seem. In fact it is well known that
is due to the cubic dependence of the commonly used alggne full density functional can be obtained from the sum over
rithms on the number of particles. This makes a dauntingne occupied orbital energy in E€Q), if the external poten-
task of calculating the electronic properties of systems agg| of the HamiltoniarH is the self-consistent DFT potential
large as those that are for instance of interest to nanotechnal;,§ qouble counting terms are subtracte®ince the latter

ogy and biochemistry. can be calculated with linear effort, finding a method for

Some 15 years ago it was realized that this need not be s : : . L
and that linearly scaling algorithms could be devisdp é{/aluatlngﬂf in O(N) operations solves the algorithmically
Mard part of the problem.

to now large number of linearly scaling algorithms have bee . -
proposed, but they are not devoid of problems and for a We make use of the identity:
variety of reasons they are not yet routinely used. Most al- p
gorithms rely on the fact that the wave functions can be (1 + Bty = T (1 + (P @-DlBP)uH)) 3)
localized and have an exponential decay leading to a sparse
Hamiltonian. This property does not hold when the gap be-
tween occupied and unoccupied levels vanishes, as in thghich is valid for any everP and the product goes over all
case of metals for which it has proven difficult to obtain the Comp|explh roots of —1. Using this decomposition one
linearly scaling algorithms. finds
Here we propose a new approach to this problem that
does not rely on an ability to localize the wave functions and 1>
is therefore equally applicable to metallic and nonmetallic Q=== Inde(M(l)) (4)
systems. We introduce a series of algorithms which defy the Bi=1
commonly accepted wisdom that DFT calculations are of _ o
O(N3). In fact they are oD(N?) and even oO(N). Further-  With M(l)=1+¢(mP@-DefPNu"H) This is rather more com-
more we propose a stochastic algorithm that is linear scalinglicated than Eq(1) but has the advantage that it involves
in all dimensions. A feature which sets our method aparthe propagatore”P® ) rather than the more difficult
from others is that it scales with the volume of the systeme®*™H). In fact if P is large enough one can use &f/P ()
and not with the number of electrons. A bonus, if one treatone of the many high-temperature representations of the ex-
atomic species that are rich in electrons. ponential operator, such as the one based on the expansion in
We work at finite temperature B/in the grand canonical terms of Chebychev polynomidls or the Trotter
ensemble, where the number of particles is controlled by thédecompositiorf, as is commonly done in the numerical
chemical potentials and the relevant thermodynamic poten- evaluation of path integrals. In this first implementation we

=1

tial for spinless fermions fs shall employ the latter, which uses the identity
Q=- 1 det(1 +efuH) 1) (e Py = @h2PU-VD)r(MAAZA)(r ~ ' glBI2P) (V)
) (5)
whereH is a single particle Hamiltoniahl=-5V +V(r). In ) o
the B— oo limit valid to O((B8/P)3). For largeP e MP22°A=1)" decays very
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rapidly and most elements @#P®H can be neglected, makes our method suitable also for metals. Alavi and
leading to a sparse matrix which is a key factor for obtainingFrenke? have shown that the high temperature density ma-
a linear scaling algorithm. Since this property does not detrix in a cubic lattice of spacing can equally well be written
pend on the possibility of localizing the wave functions thisas:

gBIP)(u-V(i)) i=j
(i|eBPIu=H)|j) = C glB2P) e V() g-(mPF2i2B)g(BI2P) (V) if | and ] are first neighbors (6)
0 otherwise

wherei andj are lattice site indices? is related to the lattice computationally expedient to truncalé(1)™* so as to give

spacing byP=3.43%%8/(mé%) and C is a normalization to M(1)~! the same sparse structureM§). As we shall see

constant. This expression is compatible with the approximabelow the theoreticaD(M?) scaling can be demonstrated in

tions made so far, leads to an elegant lattice model witlpractice, unfortunately at the cost of a large prefactor.

nearest neighbor interactions and at the same time does not However linear scaling can be obtained if we use a sto-

make the problem any less complex, nor does it alter itghastic approach. Taking our cue from what is done in quan-

scaling behavior. tum chromodynamics we introduce a random vegkolf the
Using this representation of the density matrix it is easilyy; are stochastically distributed such that their average satis-

seen that in one dimension the matridd¢ ) that appear in fies

Eq. (4) are tridiagonal. Since the determinant of a tridiagonal

matrix can be computed i@(M) operations, we arrive at the <¢//i¢;> =¢g; and ()=0, (8)

interesting result that linear scaling is exact in 1D. Moving to

higher dimensions thel(I) matrices become block tridiago- the inverse oM can be written as an expectation value

nal where the dimension of each block ris=M@b/d |n

spite of the fact that the blocks are very sparse we were M) =('y"), (9)

unable to calculate the determinant BF(l) in less than . , |
Mm2=M3-24 gperations. This is only marginally better than yvhere the average is taken over the stochastic procesg'and

B . . I_ . -
the standardvi® scaling. Furthermore indthe resulting al- is the solution of the linear equation(l)¢'=4¢. In principle

iany distribution that fulfills Eq(8) allows finding the inverse
approach unpractical unless substantially improved for inof M(1) as in Eq.(9). However in practice it has been noted
stance by better exploiting the sparsityMfl). that the statistical error does depend on the choice of the

A more favorable scaling can be obtained if one focusesd!Str!bUt!on' The one that gave the _smaller noise was%he
on the response a2, with respect to appropriate parameters, distrioution, in which they; are distributed as(y; ¢—1).
which is a standard way of calculating physical quantities.TNiS means that the variablefs can take random values®
For instance the number of particles is given by©n the unit circle with equal pr_obablllty. Physical quantities
(NY==(3Q/ w), the energy by(E)=(a(BQ)/dB)+u(N) can then be calculated according to Ef). as
and so on. In general one can write for the value of a prop-

P
erty A, conjugated to the field,, Q) =- 12 Tr(<¢' lwaM(l)) (10)

- N
aM(l)) =

W (7

1 P
(AN=-=> Tr(M(I)‘l
Bi=1

and therefore one finds overall linear scaling behavior.

We now substantiate the claims made on the scaling of the
which requires the inversion of the sparse matriedb) and  different algorithms introduced here with numerical calcula-
not the calculation of its determinant. The inverseMfl)  tions. Different model potentials have been investigated with
can be found if one solves thid sets of linear equations satisfactory results. Here we report only one calculation
M(I)¢}:¢/fj, where{4;} is a complete orthonormal basis set done on a periodic potential constructed with a superposition
and is given byM())"*==}!, ¢4y, Using a preconditioned of Gaussians S\, ~we "R7PQ(r2-(r-R)?) where w
biconjugate gradient meth#fland the sparsity oM(l) we =4 a.u. and theutoff radius isr,=6 a.u. TheGaussian cen-
find that solving each linear equation take&V) operations  ters R, are arranged to form a cubic lattice and mimic a
leading to an overall quadratic scaling also in 3D. An effi-crystal of N atoms. The spacing between the atomic sites is
cient preconditioner has proved to be the inversklgf) for  taken to be 4 with §=0.75a.u. Periodic boundary condi-
free particles. Although in this case the full inverse can betions are imposed throughout. The Trotter number is chosen
evaluated exactly using Fourier transforms methods it iso be P=256 leading to an electronic temperature

233105-2



BRIEF REPORTS PHYSICAL REVIEW F1, 233105(2009

stoc. algorithm
iterative inversion
LU decomposition ]
iterative digonalization

% & 00

10 100 1000
N

FIG. 1. Particle number, kinetic and potential energy of the pgig. 2. Log—-log plot of the CPU time(N) versus the number of
Gaussian model as a function of the chemical potential. The circleg§iomsN. The measured slopes confirm that the scalin@(l),
show the results calculated with the stochastic linear scaling aIgoO(NZ), O(N"73), andO(NS3) for the stochastic algorithm, the iterative
rithm. The lines are obtained from the smallest eigenvalues Ca"?lﬁhversion, the bandetU decomposition, and the partial iterative
lated with an iterative diagonalization algorithm. diagonalization, respectively. The unit of timeds=7(N)/N mea-

sured at largdN. That is the asymptotic incremental cost of an extra
T=7529 K. This is rather small on the electronic energyatom in theN— o limit. The computation was performed on a 1.7
scale and we have explicitly verified that it is close to theGHz Pentium4 xenon processor.
T—0 limit for the model. ) _ | _

The number of electrons, the kinetic and the potentiafterations needed to solv(l)¢;=4;. In practice however
energy as a function of the chemical potential are shown irthis did not lead to significant problems and the performance
Fig. 1. Upon increasing the states are filled with electrons. Of the algorithm in the half-filled and filled case are very
At u=~-1.5 a.u.half of the states belonging to the first band similar. For fixed Trotter numbeP the algorithm scales lin-
are occupied and the system is metallic. For-1.2 a.u. €arly with the number of grid points as the lattice constant
the first band is completely filled and the model behaves as & reduced.
large band gap insulator. The number of electrons, the kinetic We now compare the scaling of the different algorithms
and the potential energy are calculated with the stochastiitroduced here with a standard diagonalization procedure in
algorithm and an iterative routine which calculates the largWhich the largest relevant eigenvalues of are computed with
est relevant eigenvalues for compariddris The agreement Sparse matrix diagonalization techniqdés? In Fig. 2 we
is excellent. In order to reach the required precision, aversee that the predictions made on the scaling of the different

ages needed to be taken over about 100 independent configdigorithms as a function of system size are confirmed by
rations. actual calculations.

In a stochastic evaluation it is important to keep track of ~Comparing the performance of the stochastic method with
the error which for each propert is given by oa/ Ny, ~ Numerically exact methods is not easy since the performance
whereao, is its mean square fluctuation ahg,c the number ~ Of the method depends on the accuracy required. Here, in
of Monte Carlo steps. A number of physical observables tocomparing the performance for different system sizes we
gether with their estimated, is given in Table I. It is seen have instead kept the number of Monte Carlo steps constant.
that the variances for the different observables do not diffefad we kept the relative accuracy constant this would have
qualitatively for metals and insulators. Thus the number ofl€d to sublinear scaling due to the self-averaging properties
Monte Carlo steps does not have to be larger for metalli®f the larger systems. With this caveat from Fig. 2 one can
systems than for insulators. We have to mention thatisf — S€e that our new algorithm based on stochastic matrix inver-
close toP/2 the condition number d1(I) can be big in the sion techniques scales linearly, while the algorithm based on

metallic case. This could in principle increase the number offatrix diagonalization shows a cubic scaling. For the model
chosen the crossing point at which our method becomes

TABLE I. Average values and variances for the particle numbermore efficient isM~38400, which corresponds to 600 at-
N, the kinetic energ¥T, the potential energy, and the density atan ©OMS. It must be stressed that we have taken the worst case

atom sitep. scenario since we are here dealing with metals Rras to
be taken larger to reach tie=0 limit. At full filling conver-
Insulator Metal gence is reached almost f&*=128. For thisP value the
A . A oA crpssing point occurs EN:4SQ atoms. For different systems
this value can vary because it might be necessary to choose a

N 64.0 2.7 32.0 4.5 larger value for the Trotter number or the acceptable statisti-

T 77.2 5.4 36.7 4.1 cal error should be smaller. Still our method can be expected

vV —174.7 50 -86.1 4.2 to become more efficient than cubic scaling algorithms at

system sizes of a few hundred atoms. It should be also men-
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tioned that the algorithm is trivially parallelizable. Further-  In order to apply this method to fully self consistent DFT
more increasing the number of electrons while keeping thealculation one must take into account the fact that the evalu-
volume constant does not increase the computational cost afion of the electron density is affected by a statistical error.
our stochastic approach. In contrast the deterministic methFhis will be considered at a later stage. As it is now the
ods at constant volume scale quadratically with the numbemethod can be profitably applied to tight binding calcula-
of electrons. Another advantage of the present method ions and to the Harris functional approximattéto DFT. It
memory saving, which grows linearly with volume and notcan also be extended to include the ionic positions in the
as the product of the number of electrons times the volumesampling so as to obtain an efficient Monte Carlo method.
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