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We rigorously prove that an extended Hubbard model with attraction in two dimensions has an unconven-
tional pairing ground state for any electron filling. The anisotropic spin-0 or anisotropic spin-1 pairing sym-
metry is realized, depending on a phase parameter characterizing the type of local attractive interactions. In
both cases the ground state is unique. It is also shown that in a special case, where there are no electron-
hopping terms, the ground state has Ising-type Néel order at half-filling, when on-site repulsion is furthermore
added. Physical applications are mentioned.
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Unconventional superconductivity with gap symmetries
other than the conventionals-wave has been found ubiqui-
tously in correlated electron systems. Examples include
heavy fermions,1 high Tc cuprates,2 ruthenate,3 organic
conductors,4 etc. The common feature of those compounds is
the proximity of antiferromagnetic or ferromagnetic order. A
vast number of studies have been devoted to revealing nature
of these phenomena. So far, within the mean-field approach,
it is recognized that effective electron-pair attraction depend-
ing on electron momentum can cause unconventional super-
conductivity; however, there still is no convincing evidence
which model captures the mechanism truly. As a many-body
problem, it is an extremely hard task to make a definite cri-
terion to distinguish the validity of the models beyond the
mean-field level. Indeed, electron systems exhibit various
physical phenomena, relying on a subtle interplay between
kinetic and interaction energies. It is thus desirable to rigor-
ously establish the occurrence of unconventional pairing in
concrete models of correlated electrons. The attempts in this
direction will shed light on the mechanism for unconven-
tional superconductivity and, in turn, give us useful informa-
tion about possible sources of effective pair attraction in real
materials.

In this paper, we rigorously construct a series of the elec-
tronic models having ground states with unconventional pair-
ing symmetries. We consider a two-dimensional tight-
binding model with attractive interactions that act on
electrons occupying certain localized single-electron states
fcorresponding tos2d ands3d belowg. For each even number
of electrons, the model is proved to have the unique ground
state5 in which all electrons form anisotropic pairs with spin
0 or spin 1, depending on a phase parameterfu in s3dg of the
localized states. Here, we treat the model in two dimensions,
since the case is most relevant to the experiments mentioned
above. Extensions of the present method and idea to higher-
dimensional systems or other lattice structures are straight-
forward.

Remarkably, unlike usual mean-field Hamiltonians, our
Hamiltonian conserves the electron number. The occurrence
of the electron-pair condensation is thus nontrivial in the
present model, in which a model Hamiltonian is proved to
exhibit condensation of unconventional electron pairs includ-
ing spin-1 pairs.6 A further advantage of our model is a re-
lation to the proximity of magnetic orders. In a case in which

there are no electron-hopping terms, the model exhibits an-
tiferromagnetism at half-filling, when on-site repulsion terms
of Hubbard-type are introduced. The model is expected to
exhibit a quantum phase transition between the supercon-
ducting and the antiferromagnetic states, which is an essen-
tial feature of the cuprate superconductors, when parameters
are varied away from an exactly solvable point in a param-
eter space.

Let us define the model. LetL be a rectangular lattice of
the form L=f1,L1g3 f1,L2gùZ2 with periodic boundary
conditions. It is assumed thatL1 is an odd positive integer
and L2=L1+2. sWe need these conditions to prove the
uniqueness of the ground state, as we will show later.d We
denote bycx,sscx,s

† d the annihilationscreationd operator for an
electron with spins= ↑ ,↓ at sitex. They satisfy the anticom-
mutation relationshcx,s

† ,cy,t
† j=hcx,s ,cy,tj=0 and hcx,s

† ,cy,tj
=dx,yds,t. We denote byF0 a state without electrons and by
Ne the electron number.

The hopping part of our Hamiltonian is given by
Hhop=ox,yPLos=↑,↓tx,ycx,s

† cy,s, where tx,y=s1+4l2dt if x=y,
tx,y=−2lt if ux−yu=1, tx,y=2l2t, if ux−yu=Î2, tx,y=l2t if
ux−yu=2, and zero otherwise.7 Here, it is assumed that
t.0 and −1/4,l,1/4. In the wave space, it is
represented asHhop=okPKos=↑,↓«skdc̄k,s

† c̄k,s, where «skd
= tg2skd with gskd=1−2l cosk1−2l cosk2 for k=sk1,k2d,
c̄k,s=1/ÎuLuoxPLeik·xcx,s, and

K = HS2pn1

L1
,
2pn2

L2
Dunl = 0, ± 1, . . . , ±

Ll − 1

2
J . s1d

The lattice structure and the single-electron dispersion rela-
tion are shown in Figs. 1sad and 1sbd.

Let us introduce new fermion operators corresponding to
the single-electron states localized in the vicinity of sitex
PL as follows:

ax,s = cx,s − l o
yPL;uy−xu=1

cy,s, s2d

bu,x,s = o
yPL;uy−xu=1

e−iu·sy−xdcy,s s3d

with uP ha ,b ,gj where a=s0,0d, b=s0,pd, and g
=sp /2 ,p /2d. The interaction discussed in this paper is at-
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traction between electrons in these localized states. The in-
teraction part of our Hamiltonian is given by

Hint,u = − Wo
xPL

o
s=↑,↓

bu,x,−s
† bu,x,−sax,s

† ax,s s4d

with W.0. One easily finds that the summand ins4d is
bounded below by −4s1+4l2dW, which is attained by the
states of the formax,s

† bu,x,−s
†

¯F0. This indicates thatHint,u
describes the attraction between two electrons with opposite
spins.

The whole Hamiltonian of our model is given by

Hu = Hhop+ Hint,u + vu o
s=↑,↓

c̄0,s
† c̄0,s, s5d

wherevu=0 if u=a and vu.0 otherwise. The last term is
added for a technical reason to show the uniqueness.

To state our main result, we need to introduce a further
notation. LetG be the Gram matrix for thea-operators2d
whose matrix elements are given bysGdx,y=hax,s

† ,ay,sj. By a
straightforward calculation, one finds thatG is regular
and that its inverse matrix is given bysG−1dx,y

=1/uLuokPKg−2skdeik·sx−yd. Thus, it is possible to define dual
operators of thea-operator asãx,s=oyPLsG−1dy,xay,s, which
satisfy

hax,s
† ,ãy,tj = hãx,s

† ,ay,tj = dx,yds,t. s6d

Since hãx,s
† F0jxPL spans the single-electron Hilbert space,

the bu-operatorss3d are expanded as

bu,x,s = o
yPL

sUudy,xãy,s. s7d

Here, the expansion coefficientssUudy,x are given by
sUudy,x=hay,s

† ,bu,x,sj. One finds thatsUudx,y=sUudy,x=sUudy,x
*

for u=a ,b while sUudx,y=−sUudy,x=sUudy,x
* for u=g.

Using sUudx,y, let us define

zu
† = o

x,yPL

sUudx,yãx,↑
† ãy,↓

† , s8d

which are the creation operators for electron-pairing states.
The main result in this paper is as follows:

Theorem. SupposelÞ0 and consider Hu with W= t /4
and fixed Ne less than2uLu. When Ne is even, the ground
state is unique, has zero energy, and is given by

Fu,Ne
= szu

†dNe/2F0. s9d

For odd Ne the ground state has positive energy.
Before proceeding to the proof, we discuss the properties

of Hint,u and pairing states.
By using the Fourier transforms of thec-operator, the fer-

mion operatorsax,s
† , bu,x,s

† are expanded as

ax,s
† =

1
ÎuLu

o
kPK

gskdeik·xc̄k,s
† , s10d

bu,x,s
† =

1
ÎuLu

o
kPK

guskdeik·xc̄k,s
† , s11d

where guskd=2fcossk1+u2d+cossk2+u2dg for k=sk1,k2d
and u=su1,u2d. One also finds from s10d that
ãx,s

† =1/ÎuLuokPKg−1skdeik·xc̄k,s
† . Substitution of this ands11d

into zu
†=oxPLãx,↑

† bu,x,↓
† , which follows from s7d and s8d,

yields

zu
† = o

kPK

gus− kd
gskd

c̄k,↑
† c̄−k,↓

† . s12d

The precise expressions ofguskd are given by
gaskd=2scosk1+cosk2d, gbskd=2scosk1−cosk2d, and
ggskd=−2ssink1+sink2d ssee Fig. 2d. These mean thatza

† and
zb

† correspond to anisotropic spin-0 pairs, whilezg
† corre-

sponds to an anisotropic spin-1 pair.
We find from s10d and s11d that Hint,u is expressed in the

wave space as
FIG. 2. Wave-vector dependence ofgus−kd /gskd. sad u=a

=s0,0d. sbd u=b=s0,pd. scd u=g=sp /2 ,p /2d.

FIG. 1. sad Lattice structure.sbd Dispersion relation.
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Hint,u = −
1

uLu o
k,k8,qPK

Wk,k8,q
u c̄k+q,↑

† c̄k8−q,↓
† c̄k8,↓c̄k,↑, s13d

Wk,k8,q
u = Wfgsk + qdgusk8 − qdgusk8dgskd

+ gusk + qdgsk8 − qdgsk8dguskdg. s14d

One notices that our interaction Hamiltonian expressed as
above contains scattering processes of electron pairs with
nonzero total momentum. It should be also noted that for
scattering processes with zero total momentum, which only
are considered in mean-field-type arguments, the amplitudes
Wk,−k,q

u =2Wgsk+qdgusk+qdguskdgskd become either positive
or negative, depending on values ofq and k. Nevertheless,
the ground states are the superpositions of products of the
electron pairs with zero total momentum.

In the case ofu=g, if we consider a Hamiltonian
Hg8 obtained by replacing Hint,g with Hint,g8
=−WoxPLos=↑,↓bg,x,s

† bg,x,sax,s
† ax,s, which is interpreted as

attraction between electrons with the same spin, the follow-
ing states become ground states forlÞ0 and W= t /4:
Fg,Ne,↑,Ne,↓=szg,↑

† dNe,↑/2szg,↓
† dNe,↓/2F0 with even positive inte-

gersNe,↑ andNe,↓ less thanuLu, where the pairing operators
are given by zg,s

† =ox,yPLsUgdx,yãx,s
† ãy,s

† .8 For Ne,↑ÞNe,↓,
Fg,Ne,↑,Ne,↓ has a finite value ofsNe,↑−Ne,↓d /2, an eigenvalue
of the third component of the total spin. This means that the
coexistence of ferromagnetism and spin-1 pair condensation
is realized in the ground states ofHg8. It is noted that the fully
polarized pairing statesFg,Ne,↑,0 and Fg,0,Ne,↓ are stable for
the on-site repulsion or the ferromagnetic interaction. These
results may have some relevance to recently discovered ma-
terials exhibiting superconductivity as well as
ferromagnetism.9,10

In the following, we shall prove the theorem foru=b ,g.
The case ofu=a can be proved in a similar but slightly
simpler way.

Proof of Theorem foru=b ,g. We first note that, by using
the a-operator,Hhop is rewritten asHhop= toxosax,s

† ax,s. Us-
ing this representation ofHhop as well asW= t /4, we then
obtain

Hu = Wo
xPL

o
s=↑,↓

ax,s
† bu,x,−sbu,x,−s

† ax,s + vu o
s=↑,↓

c̄0,s
† c̄0,s.

s15d

Since all the operators in the right-hand side are positive
semidefinite, a state that is annihilated by these operators is a
ground state, having zero energy. We show that this is the
case forFu,Ne

in s9d.
It follows from s6d and s7d, andsbu,x,s

† d2=0 that

bu,x,↓
† ax,↑zu

† = bu,x,↓
† S o

yPL

sUudx,yãy,↓
† + zu

†ax,↑D = zu
†bu,x,↓

† ax,↑.

s16d

Noting thatsUbdx,y and sUgdx,y are symmetric and antisym-
metric, respectively, with respect to the exchange ofx andy,
we similarly obtainbu,x,↑

† ax,↓zu
†=zu

†bu,x,↑
† ax,↓. These relations

imply thatFu,Ne
is a zero-energy state of the first term in the

right-hand side of s15d. Furthermore, using c̄0,s
=1/ÎuLuoxPLs1−4ld−1ax,s and

o
xPL

bu,x,s
† = 0, s17d

which follow from straightforward calculations, we find that
c̄0,szu

†=zu
†c̄0,s. This, together with the above result, leads to

HuFu,Ne
=0. Therefore,Fu,Ne

is a ground state ofHu. To see
that Fu,Ne

is actually a nonzero state, one rewriteszu
† as

zu
† = o

xPL\h0j
sãx,↑

† − ã0,↑
† dbu,x,↓

† s18d

by use ofs17d. Since each set ofhsãx,s
† − ã0,s

† dF0jxPL\h0j and
hbu,x,s

† F0jxPL\h0j is linearly independent,11 Fu,Ne
is nonvan-

ishing.
The representations18d of zu

† motivates us to introduce the
following lemma, from which the other statements in the
theorem follow.

Lemma. SupposelÞ0. Any zero-energy state of Hu with
u=b ,g, W= t /4 and Ne less than2uLu (where Ne is not fixed)
is expanded as

o
A,L\h0j

fASp
xPA

sãx,↑
† − ã0,↑

† dDSp
xPA

bu,x,↓
† DF0, s19d

where the coefficientsfA satisfyfA=fA8 for any subsets A,
A8 such thatuAu= uA8u.

This lemma implies that the ground state energy for odd
Ne is positive. Suppose that there are two linearly indepen-
dent zero-energy states for fixed evenNe. Since both of these
states must satisfy the statement in the lemma, we find that
the one is always represented by the other, which contradicts
the assumption. Therefore, the ground state for fixed evenNe
is unique. h

Proof of Lemma. The parameteru is assumed to beb or g
in this proof. Let us defineã0,s8 = c̄0,s and ãx,s8 = ãx,s− ã0,s for
xPL \ h0j and also definebu,0,s8 = c̄0,s and bu,x,s8 =bu,x,s for
xPL \ h0j. These new operators satisfy the anticommutation
relations

hã0,s8† ,ãx,s8 j = hbu,0,s8† ,bu,x,s8 j = d0,x s20d

for xPL. Furthermore, each set ofhãx,s8† F0jxPL and
hbu,x,s8† F0jxPL is linearly independent and spans the single-
electron Hilbert space. Thus, the collection of states
FsA,Bd

y =spxPAãx,y8†dspxPBbu,x,−y8† dF0 with subsetsA andB such
that uAu+ uBu=Ne forms a complete basis for theNe-electron
Hilbert space. Here, the spin indexy is fixed to either↑ or ↓.

Let F be an arbitrary zero-energy state ofHu with
W= t /4. We first expandF in terms of the basis statesFsA,Bd

↓

as F=oA,B,LfsA,BdFsA,Bd
↓ with coefficientsfsA,Bd. To be a

zero-energy state,F must satisfyc̄0,sF=0 andbu,x,−s
† ax,sF

=0 for s= ↑ ,↓ and xPL. From the former condition and
s20d, we find thatfsA,Bd=0 if 0 is contained in eitherA or B,
or both. From the latter condition forx0PL \ h0j with s=↓
and hãx,s8† ,ay,sj=dx,y for x, yPL \ h0j, we obtain
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o
A,B,L\h0j

xfx0 P A,x0 ¹ Bgsgnfx0;A,Bg

3 fsA,BdFsA\hx0j,Bøhx0jd
↓ = 0, s21d

wheresgnf¯g is a sign factor coming from exchanges of the
fermion operators, andx f“event”g takes 1 if “event” is true
and 0 otherwise. Since all the terms in the left-hand side are
linearly independent, we findfsA,Bd=0 if x0PA in addition
to x0¹B. This holds for anyxPL \ h0j, so that only the
terms withA, B such thatA,B,L \ h0j can contribute to the
expansion. Taking account of the above results, we rewriteF
as F=oA,B,L;uAuùuBufsA,Bd8 FsA,Bd

↑ with new coefficientsfsA,Bd8 .
Operatingc̄0,s andbu,x0,↓

† ax0,↑ on F in this form and repeating
an argument similar to the above, we find thatF is expanded
in terms ofFsA,Bd

↑ with A, B such thatA=B,L \ h0j.
Any zero-energy state is thus written asoA,L\h0jfAFsA,Ad

↑

where fA=fsA,Ad8 . We again consider the zero-energy state
condition bu,x0,↑

† ax0,↓F=0 for x0PL \ h0j and derive condi-
tions on fA. Here, it is noted thatbu,x0,s is expanded as
bu,x0,s=oyPL\h0jsUudy,x0

ãy,s8 . From this and the anticommuta-
tion relation hbu,x,s8† ,ax0,sj=hbu,x,s

† ,ax0,sj=sUudx,x0
for x

PL \ h0j, we deduce

o
A,L\h0j

o
y,y8PL\h0j

xfy ¹ A,y8 P Agsgnfy,y8;Ag

3 Fy,y8
x0 fAFsAøhyj,A\hy8jd

↑ = 0,

s22d

whereFy,y8
x0 =sUudx0,ysUudy8,x0

, andsgnf¯g is a fermion sign
factor. Let us choose a subsetA that does not contain a
nearest-neighbor sitey of x0 but does contain next-nearest-
neighbor sitey8 in the same direction.sThe sitesx0, y, andy8

are in the same axis.d For this set of sites,Fy,y8
x0 is nonzero.

By checking the coefficient ofFsAøhyj,A\hy8jd
↑ , we then have

ssgnfy,y8 ;AgfA+sgnfy8 ,y;Ay8→ygfAy8→y
d=0 whereAx→y is

defined forxPA and y¹A by Ax→y=sA\ hxjdø hyj. Since
sgnfy,y8 ;Ag=−sgnfy8 ,y;Ay8→yg, we obtainfA=fAy8→y

.

Repeating the same argument for allxPL \ h0j, we reach
the conclusion thatfA=fA8 wheneveruAu= uA8u, which com-
pletes the proof of the lemma. h

Now let us consider the case ofl=0 at half-filling with
the inclusion of the on-site repulsion. Here, we furthermore
assume thatvu=0 for all u and thatL1 and L2 are even
integers. In this case the Hamiltonian becomes
Hu,U

l=0=Woxoscx,s
† bu,x,−sbu,x,−s

† cx,s+Uoxcx,↑
† cx,↓

† cx,↓cx,↑ with U
.0, which is still positive semidefinite. At half-filling, zero-
energy states of on-site repulsion term are given by
spxPLcx,sx

† dF0 with sx= ↑ ,↓. Considering the zero-energy
condition for the first term in the Hamiltonian, we then con-
clude that the ground states ofHu,U

l=0 are twofold degenerate
and given by the Néel states, exhibiting antiferromagnetism.

One can readily find that the HamiltonianHu does not
possess spin rotational symmetry. In the case ofu=a ,b,
however, we can construct an isotropic model with
the ground state s9d as follows. Let us define
Hint,u8 =sW/2doxsax,↑

† bu,x,↑−ax,↓
† bu,x,↓dsbu,x,↑

† ax,↑−bu,x,↓
† ax,↓d for

u=a ,b. A straightforward calculation yields that
sbu,x,↑

† ax,↑−bu,x,↓
† ax,↓dzu

†=zu
†sbu,x,↑

† ax,↑−bu,x,↓
† ax,↓d,12 and, since

Hint,u8 is positive semidefinite,s9d remains the ground
state of Hu+Hint,u8 with W= t /4 for u=a ,b. Furthermore,
Hu+Hint,u8 is isotropic since it commutes with
Stot

s3d=oxscx,↑
† cx,↑−cx,↓

† cx,↓d /2 andStot
+ =oxcx,↑

† cx,↓.13 A construc-
tion of an isotropic model for the spin-1 pairing case and
detailed investigation of perturbed models of ours in both
spin-0 and -1 cases are left as an interesting future study.
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