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Extended Hubbard model with unconventional pairing in two dimensions
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We rigorously prove that an extended Hubbard model with attraction in two dimensions has an unconven-
tional pairing ground state for any electron filling. The anisotropic spin-0 or anisotropic spin-1 pairing sym-
metry is realized, depending on a phase parameter characterizing the type of local attractive interactions. In
both cases the ground state is unique. It is also shown that in a special case, where there are no electron-
hopping terms, the ground state has Ising-type Néel order at half-filling, when on-site repulsion is furthermore
added. Physical applications are mentioned.

DOI: 10.1103/PhysRevB.71.233102 PACS nun®er71.10.Fd, 74.20-z

Unconventional superconductivity with gap symmetriesthere are no electron-hopping terms, the model exhibits an-
other than the conventionalwave has been found ubiqui- tiferromagnetism at half-filling, when on-site repulsion terms
tously in correlated electron systems. Examples includef Hubbard-type are introduced. The model is expected to
heavy fermions, high T, cuprate, ruthenaté, organic  exhibit a quantum phase transition between the supercon-
conductors, etc. The common feature of those compounds isjucting and the antiferromagnetic states, which is an essen-
the proximity of antiferromagnetic or ferromagnetic order. A ia| feature of the cuprate superconductors, when parameters
vast number of studies have been devoted to revealing natugge varied away from an exactly solvable point in a param-
of these phenomena. So far, within the mean-field approachye, space.
it is recognized that effective electron-pair attraction depend- | ot s define the model. Let be a rectangular lattice of
ing on electron momentum can cause unconventional supefpe ¢4y A=[1,L,]X[1,L,]NZ? with periodic boundary
Which mocil captures the mechanism il As a many-boagondiions. I is assumed thas, is an odd positive nteger
problem, it is an extremely hard task to make a definite cri- n_d Lp=L,+2. (We need these CO”“"'OF‘S to prove the
terion to distinguish the validity of the models beyond theMdueness othhe ground state, as we will show [nisfe
mean-field level. Indeed, electron systems exhibit variou€l€note bYex (¢, ;) the annihilatioricreation operator for an
physical phenomena, relying on a subtle interplay betweeglectron with spiny=1, | at sitex. They satisfy the anticom-
kinetic and interaction energies. It is thus desirable to rigormutation relations{c ,,c }={c.,.c,}=0 and {c}.c,}
ously establish the occurrence of unconventional pairing irF xyd,, . We denote byb, a state without electrons and by
concrete models of correlated electrons. The attempts in thil§e the electron number.
direction will shed light on the mechanism for unconven- The hopping part of our Hamiltonian is given by
tional superconductivity and, in turn, give us useful informa-Hhop=EX,yEAEU:T,ltX,yc;,,cy,m where tx,y=(1+ﬂ7\2)t if x=y,
tion about possible sources of effective pair attraction in reaty,=—2\t if |[x-y|=1, t,,=2\%, if [x-y|=12, t,,=\% if
materials. Ix-y|=2, and zero otherwise.Here, it is assumed that

In this paper, we rigorously construct a series of the elect>0 and -1/4&x<1/4. In the wave space, it is
tronic models having ground states with unconventional pairrepresented asHhop=EkE,CEng,ls(k)ELUa(‘m where g(k)
ing symmetries. We consider a two-dimensional tight-=tg?(k) with g(k)=1-2\ cosk;—2\ cosk, for k=(ky,k,),
binding model with attractive interactions that act ona(,(rzl/\fmz)(e Aeik'XCx,m and
electrons occupying certain localized single-electron states
[corresponding t@¢2) and(3) below]. For each even number (m m)h —0 +1 +L| -1 0
of electrons, the model is proved to have the unique ground L, 'L, /) T T 2 )
staté in which all electrons form anisotropic pairs with spin
0 or spin 1, depending on a phase paramgdén (3)] of the
localized states. Here, we treat the model in two dimension
since the case is most relevant to the experiments mention%ﬁ
above. Extensions of the present method and idea to higher-
dimensional systems or other lattice structures are straight=

forward.
. . . . 8 s=Cyy— A , 2
Remarkably, unlike usual mean-field Hamiltonians, our Xo e 2 r @

The lattice structure and the single-electron dispersion rela-
sfion are shown in Figs. (&) and 1b).

', Let us introduce new fermion operators corresponding to
e single-electron states localized in the vicinity of site

A as follows:

- ) yeA;ly-x=1
Hamiltonian conserves the electron number. The occurrence
of the electron-pair condensation is thus nontrivial in the by = S ~i6(y-x) 3
present model, in which a model Hamiltonian is proved to Wﬂ_y Ay le .o )
e Aily-x|=

exhibit condensation of unconventional electron pairs includ-
ing spin-1 pair$. A further advantage of our model is a re- with 6e{a,8,y} where a=(0,0, B=(0,w), and vy
lation to the proximity of magnetic orders. In a case in which=(7/2,7/2). The interaction discussed in this paper is at-
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To state our main result, we need to introduce a further
notation. LetG be the Gram matrix for tha-operator(2)
whose matrix elements are given @)X,y:{a;g,ayyg}. By a
straightforward calculation, one finds th& is regular
and that its inverse matrix is given by(G)y,
=1/|A[Zyc g AKERY), Thus, it is possible to define dual
operators of the-operator ag, ,=2, . A(G‘l)yyxay,g, which
satisfy

{aI,U’EV,T} = {é‘l,o’ ay,r} = 5x,y51;,7- (6)

Since {'é:[ﬁd)o}XEA spans the single-electron Hilbert space,
the b,-operatorg3) are expanded as

boxe= 2 (Upy,dy,q- (7
yeA
Here, the expansion coefficientdl,),, are given by
(Uﬂ)y,X:{a;r/,(f’bﬂ,X,O'}‘ One finds tha(UH)x,y:(Ua)y,x:(Uo)y,x
for 6=a, B while (Uy),,==(Ugyx=(Uy),, for 6=1.
Using (Uy)y,, let us define

FIG. 1. (a) Lattice structure(b) Dispersion relation. Y,

traction between electrons in these localized states. The in-

teraction part of our Hamiltonian is given by 0= (Uo)x,y'é;{é;ly €S))
x,yeA
Hipe g=—W bl _ Dy _oal a 4 . . i,
nt.6 X% E’ | O~ 0X,~0 T, 0OxX 0 @ which are the creation operators for electron-pairing states.
. o o The main result in this paper is as follows:
with W>0. One easily finds that the summand () is Theorem. Supposex #0 and consider H with W=t/4

bounded below b){r ‘(%+4?\2)W, which is attained by the and fixed N less than2|A|. When N is even, the ground
states of the forma, by, _,---®. This indicates thaHy s  state is unique, has zero energy, and is given by
describes the attraction between two electrons with opposite N2

spins. Do, = (EpN*Dy. 9)

The whole Hamiltonian of our model is given by "
For odd N, the ground state has positive energy.

Hp=Hnop* Hinto + v > E&DEO,U, (5) Before proceeding to the proof, we discuss the properties
o=T1 of Hiy» and pairing states.
By using the Fourier transforms of tleeoperator, the fer-

mion operators} , b}, are expanded as

1

wherev,=0 if #=a andv,>0 otherwise. The last term is
added for a technical reason to show the unigueness.

al, == > g(kev] (10)
Y \“J|A|kE/C '
t —_1 ik-x~t
bhxo= 7= 2 dok€*T (11)
VIA|kek

A\
|
b

A
2
oot
7

where g4(k)=2[cogk, +6,) +cogk,+6,)] for k=(Kkq,kp)
and 6=(6,,6,). One also finds from (10) that
&l =1/|A[Sxg HK)EXXT] . Substitution of this and11)

\
’

AN
2o

J . into ¢}=S,. 13} b}, |, which follows from (7) and (8),
yields
-K
52: E gl )EZ,TETM- (12)

kek 9(K)

The precise expressions ofgy,k) are given by
ga(K)=2(cosk; +cosk,),  gg(k)=2(cosk,—cosk;), and

g,(k)=—2(sink, +sink,) (see Fig. 2 These mean tha{, and
g}z correspond to anisotropic spin-0 pairs, wh@ corre-
sponds to an anisotropic spin-1 pair.
FIG. 2. Wave-vector dependence gf(-k)/gk). (8 6=« We find from (10) and(11) that H;.; 4 is expressed in the
=(0,0. (b) 0=B=(0,m). (¢c) O=y=(wl2,7/2). wave space as
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1 —  — — right-hand side of (15). Furthermore, using Coo
Hinto =~ |A] 2 Wlf,k',qEILq,TCk’—q,ick’,iCk,T* (13 =1/\[A[S42(1-M) 18y, and
kK qek
2 by, =0, 1n
Wiy o= Wlatk + )gy(K' = q)gy(k')g(K) by
* gy(k+a)g(k’ ~ a)g(k")gy(k)]. (14 \which follow from straightforward calculations, we find that

One notices that our interaction Hamiltonian expressed aS.0¢y={iCo. This, together with the above result, leads to
above contains scattering processes of electron pairs witds®sn =0- Therefored,y is a ground state dfi,. To see
nonzero total momentum. It should be also noted that fothat®,y_is actually a nonzero state, one rewritgsas
scattering processes with zero total momentum, which only

are considered in mean-field-type arguments, the amplitudes gg: > @T ‘%r)blm (18)
Vvl‘i_k’q:2Wg(k+q)g,9(k+q)g€(k)g(k) become either positive xeAO} o

or negative, depending on values @fand k. Nevertheless,

the ground states are the superpositions of products of tHey use of(17). Since each set di(@ , 3] ,)Po}xc a0y and

electron pairs with zero total momentum. {b(T,VX,(,(I)O}XEA\{O} is linearly independerit, g, is nonvan-
In the case of#=y, if we consider a Hamiltonian jshing.
H! obtained by replacing Hiy, with H, The representatiofi8) of £} motivates us to introduce the

=-WE, 72 ot ] oDy x 08 435, Which is interpreted as  following lemma, from which the other statements in the

attraction between electrons with the same spin, the followtheorem follow.

ing states become ground states for0 and W=t/4: Lemma. Suppose# 0. Any zero-energy state of fith

Dy, g, = (8 NeIH(E, )Nei?Dg with even positive inte- 6=, y, W=t/4 and N less thar|A| (where N is not fixed)

gersNe; andN, less thar|A|, where the pairing operators is expanded as

are given by gw_,:_EX,yEA(Uy)xly“é;aa;ﬂﬁ For Nej#Ne,,

@, n,.n,, has afinite value ofNe; =N )/2, an eigenvalue > ¢A( I &, _531)>( 1 b;x,l>‘bo, (19)

of the third component of the total spin. This means that the ACA\0} xeA xeA

coexistence of ferromagnetism and spin-1 pair condensation .- . _

is realized in the ground statesidf, It is noted that the fully VAV,h iirt]ht?];:rs'fz(fi?t% salisfy = for any subsets A

polarized pairing stated,,, o and ®,on,  are stable for This lemma implies that the ground state energy for odd

the on-site repulsion or the ferromagnetic |nter§ct|on. Thesvf-\Ie is positive. Suppose that there are two linearly indepen-

results may ha_v_e some relevance to Fece”t'y discovered M@ent zero-energy states for fixed ewén Since both of these

terials exh'?rg'ﬂ)g superconductivity as  well S giataq must satisfy the statement in the lemma, we find that

ferromhagnelFs - hall he th the one is always represented by the other, which contradicts
In the following, we sha prove the theorem fGF'B,’ Y- the assumption. Therefore, the ground state for fixed &igen

The case off=a can be proved in a similar but slightly is unique. 0

simpler way. , . Proof of LemmaThe parametef is assumed to bg or y
Proof of Theorem fop=g, v. We first note that, by using in this proof. Let us defin@,, =Co, anda =3, %o, for
the a-operator,Hy,y, is rewritten as|—|hop=tExE(,a;UaX,(,. Us- A\ {0} and also defindo’ e~ PR

. ; ; ~ 000=Co. and by, ,=bg, , for
g]k?t;izls representation dfing, as well asW=t/4, we then x e A\{0}. These new operators satisfy the anticommutation

relations
Hy=W2 2 al byx-o0hy oaxet Vo > Ch,Cop- .. P
by XTeTOX o =1 {'501775‘;(,0}:{bejro,mbe,x,a}:5o,x (20)

(15 for xe A. Furthermore, each set ofé,’(I,CDO}XEA and
Since all the operators in the right-hand side are positive{bgL’UCI)O}XEA is linearly independent and spans the single-
semidefinite, a state that is annihilated by these operators isedectron Hilbert space. Thus, the collection of states
ground state, having zero energy. We show that this is theb(”A’B):(1'[)(6,{:51)’(’v)(HXEBb’’r )P with subsetsA andB such

0.~

case for®yy_ in (9). that |A|+|B|=N, forms a complete basis for thé.-electron

It follows from (6) and(7), and by, ,)*=0 that Hilbert space. Here, the spin indes fixed to either] or |.

+ f ot —t . ot Let & be an arbitrary zero-energy state bf, with

Box, 18180 = b@,x,i( EA (Upxydy, + faax,r) = {gPox, ax- W=t/4. We first expandp in terms of the basis states, 5,
ye

as ©=3ppcrdapPiap With coefficients gug). To be a
(16) zero-energy statep must satisfyc, ,&=0 and b;;xy_gax,gd)
Noting that(Up), and (U,)y, are symmetric and antisym- =0 for o=1,| andxe A. From the former condition and
metric, respectively, with respect to the exchange ahdy,  (20), we find thatés g =0 if O is contained in eitheA or B,
we similarly obtainb;max,l{kg’,ﬂbL’X,Taxyl. These relations or both. From the latter condition fo; e A\{0O} with o=
imply that®,_is a zero-energy state of the first term in the and{"é,’(’t,,ayyg}:éxyy for x, y e A\{O}, we obtain
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> %o € Axg ¢ Blsgrixo; A, B] are in the same axisFor this set of site§§?y, iS nonzero.

ABCAN0} By checking the coefficient O@(TAU{y}' Ay We then have

X d’(A,B)(I)%A\{xo},BU{xo}) =0, (2D (sgrly,y’;Algatsgrly’ ,y;quy]¢NHy):0 whereA, .y is

wheresgr- -] is a sign factor coming from exchanges of the deflned’ Tor)ie A anfj y.¢ A by AXHV_(A.\{X})_U {y}. Since
fermion operators, ang [“event”] takes 1 if “event” is true sgrly.y ,A]-—sgr[y Y Ay—yls we Obta'n¢A_¢Ay’~y'

and 0 otherwise. Since all the terms in the left-hand side are Repeating the same argument foraé A\{0}, we reach
linearly independent, we fingbng =0 if Xo € A in addition  the conclusion that,= ¢, wheneveriA|=|A’|, which com-

to o & B. This holds for anyxe A\{0}, so that only the Plétes the proof of the lemma. . U
terms withA, B such thatA C BC A\{0} can contribute to the N.OW Ie_t us consider the case pf:o at half-filling with
expansion. Taking account of the above results, we rewirite the inclusion oi the on-site repulsion. Here, we furthermore
aS(I):EA,BCA;\AIBIB\¢(,A,B)q)ZA|B) with new coefficients/ g, assume thav,=0 for all ¢ and thatL, and L, are even

s + i this f ) integers. In this case the Hamiltonian becomes
Operatingcy a.nd.boyxoy |8, ondint |s. orm and repeating Hz,:uozMx2acl,qbo,x,—qu,x,-acx,a_ +U_E>§CI,TC)1(.,10X,1CX,_T .With U
an argumentTS|m|Iqr to the above, we find tHais expanded > which is still positive semidefinite. At half-filling, zero-
in terms ofd, g, with A, B such thatA=BC A \{0}. energy states of on-site repulsion term are given by
Any zero-energy state is thus written Eﬁc,\\{o}@@(TA’A) (I, At x)dbo with o,=1,]. Considering the zero-energy

X, 0.

where d’A:d)(,A,A)' We again consider the zero-energy statecondition for the first term in the Hamiltonian, we then con-

condition b, 18, ®=0 for X, A\{0} and derive condi- clude that the ground states Hf‘;i,ola.r(.a twofold degenerate
tions on ¢A’ OHere it is noted thab, is expanded as and given by the Néel states, exhibiting antiferromagnetism.
. y X0 T

Do o= Zye o Uaya AL o From this and the anticommuta- One can_readlly_ find that the Hamiltonidth, does not
tiono relation {b!! 0y possess spin rotational symmetry. In the casedstr, S,

—int -
o B0 = Bgx Bt =(Uodxy T X however, we can construct an isotropic model with
e A\{0}, we deduce the ground sgrate 9) ;as foIIO\T/vs. LetT us define
S 3 AyeAy cAlsgiyy Al i, o= (W 22,8 Dy = Do ) (B 81 =D B y) O
ACAVO} yy' < AVO} 0=a,B. A straightforward calculation vyields that
" ' (D181 =Dl B, £h= Ch(0f 1B ~ By, ), *2 and, since
X E AL auiyavyy = 0 Hiy.o is positive semidefinite,(9) remains the ground
22) state of H,+H;, , with W=t/4 for 6#=«,B. Furthermore,
Hy+Hi., is isotropic since it commutes with
whereF%, =(Ug),y(Upy x, andsgrl---] is a fermion sign .gzzzx(CI,TFx,T‘CI,;Cx,D/2 andS{gt:EXc;’Tcxyl.“A construc-
factor. Let us choose a subsAtthat does not contain a tion of an isotropic model for the spin-1 pairing case and
nearest-neighbor sitg of x, but does contain next-nearest- detailed investigation of perturbed models of ours in both
neighbor sitey’ in the same direction(The sitesxg, y, andy’ spin-0 and -1 cases are left as an interesting future study.
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proved as follows. LeG, be the Gram matrices df-operators
whose matrix elements are given b§,),,={b} ,.bsy,.}- The
eigenvalues 06, areg(z,(k) with k e K. Sincel, andL, are odd
integers and differ by 2g,(k) with =8,y become zero if and

model by analyzing the exact ground states. only if k=(0,0). Thus, the dimension of the kernel & with
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states®, . are nonvanishing. Unfortunately, the unique- +WEX{S§-%%-§1H§“§ . where n2=3.al a, (P
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