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We study Andreev reflection in a ballistic one-dimensional channel coupled in parallel to a superconductor
via a tunnel barrier of finite length L. The dependence of the low-energy Andreev reflection probability RA on
L reveals the existence of a characteristic length scale �N beyond which RA�L� is enhanced up to unity despite
the low interfacial transparency. The Andreev reflection enhancement is due to the strong mixing of particle
and hole states that builds up in contacts exceeding the coherence length �N, leading to a small energy gap
�minigap� in the density of states of the normal system. The role of the geometry of such hybrid contacts is
discussed in the context of the experimental observation of zero-bias Andreev anomalies in the resistance of
extended carbon nanotube/superconductor junctions in field effect transistor setups.
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I. INTRODUCTION

The interest in proximity-induced superconductivity in
one-dimensional �1D� electron systems1–13 has recently re-
vived in light of successful experiments on electron transport
through carbon nanotubes contacted by superconductors.14–17

Despite possibly strong electron-electron interactions,16,18 in
many situations transport properties of metallic single-walled
carbon nanotubes can be interpreted within a ballistic model
assuming two conduction bands at the Fermi level.19 Hence,
superconductor/carbon-nanotube �S /CN� junctions can to
some extent be viewed as an experimentally accessible case
of 1D ballistic proximity structures.15

As in conventional normal-metal/superconductor �N /S�
junctions, the extent to which the proximity effect modifies
the electronic properties of carbon nanotubes strongly de-
pends on the quality of S /CN interfaces. In S /CN/S junc-
tions with highly nontrivial end bonding of the tubes it is
possible to achieve high transparency contacts and observe
induced supercurrents between the S banks.14,16,17 In a more
conventional field-effect transistor setup a superconductor is
sputtered on top of a nanotube covering it from the ends and
in this way connecting it to the leads.15 Such contacts exhibit
no observable superconducting coupling, probably because
of a Schottky barrier formed at the S /CN interfaces. Never-
theless, in this case the proximity effect manifests itself as a
pronounced zero-bias dip in the low-temperature resistance
to which either of the S /CN interfaces contributes
independently.15

The sensitivity of the zero-bias resistance anomaly to the
temperature15,17 suggests that it can be attributed to the con-
version of a normal current into a supercurrent via the An-
dreev reflection process20 during which particles with ener-
gies much smaller than the superconducting gap � are
coherently scattered from an S /CN interface as Fermi sea
holes back to the normal system. Under assumption of each
of the S /CN interfaces acting independently15 and in the pic-
ture of noninteracting electrons, such an interpretation must
reconcile with the well-established 1D scattering model for a

single N /S contact.21 However, for a point contact of average
quality �between metallic and tunnel regimes� the theory of
Ref. 21 predicts a zero-bias resistance peak at temperatures
T�� /kB, that is exactly the opposite to the experimental
findings of Refs. 15 and 17 in the same temperature regime.

Deviations of Andreev reflection physics in 1D proximity
structures from the standard model of Ref. 21 have so far
been ascribed to repulsive electron interactions2–4,8,10 or dis-
order in the normal channel.13 In the present paper we show
that clean noninteracting 1D systems can also exhibit un-
usual Andreev reflection properties if the contact to the su-
perconductor is not a pointlike one. Such contacts naturally
occur in field effect transistor setups due to a finite overlap
between a nanotube and a superconductor coupled in paral-
lel. In particular, in the device of Ref. 15 this overlap was as
large as 1 �m. To demonstrate the importance of the contact
geometry, we develop a scattering model for phase-coherent
electron transport through a normal 1D ballistic channel, part
of which is in parallel coupling to a 2D superconductor via a
low-transparency barrier �Fig. 1�. This model is in many as-
pects different from the device of Ref. 15 and it is not ex-
pected to describe all the experimental features. However, it
captures the most essential, for our purposes, attribute of the
S /CN contacts, namely, their extended character. Moreover,
the proposed geometry may serve as a minimum model ac-
counting for the zero-bias resistance features reported in
Refs. 22–24 for extended planar contacts between ballistic
2D electron systems and superconductors, whose cross-
sectional structure is similar to that shown in Fig. 1.

Our numerical simulation of elastic quasiparticle scatter-
ing shows that the probability of Andreev reflection depends
on the length L of the contact, approaching unity as L ex-
ceeds a certain length scale �N larger than the coherence
length in the superconductor �S. Most importantly, at zero
energy high-probability Andreev reflection occurs at any fi-
nite interfacial transparency for sufficiently long contacts.
This is in sharp contrast to the situation in point junctions.21

To rationalize this result we perform a numerical analysis of
the quasiparticle density of states �DOS� in the region of the
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1D system coupled to the superconductor in the limit L
��N. The DOS is found to have a proximity-induced gap
�minigap� at the Fermi level whose size Eg���S /�N�� is
much smaller than the gap � in the superconductor. The
minigap Eg scales with the interfacial transparency, which
implies that it is due to the formation of mixed particle-hole
�Andreev� states.25 A comprehensive analysis of the energy
dependence of electron scattering reveals that the gapped ex-
citation spectrum in the proximity region results in the en-
hancement of the Andreev reflection probability RA��� at fi-
nite �but small� energies ��Eg�� followed by its decrease
at intermediate energies Eg����. At the edge of the super-
conducting gap ��=�� the dependence RA��� exhibits one
more peak typical for tunnel junctions.21 These features
dominate the bias voltage dependence of the differential re-
sistance which at T�Eg /kB displays a dip around the zero
voltage similar to that observed in Ref. 15.

Previously, zero-bias conductance anomalies have been
extensively studied in mesoscopic superconducting contacts
with semiconductors22–24,26–37 and metals.13,38–44 These stud-
ies have predominantly focused on the diffusive transport
regime. According to the semiclassical scattering interpreta-
tion of Ref. 27, the excess conductance �i.e., exceeding the
value predicted by the theory of Ref. 21� is a signature of the
correlated particle-hole motion arising from multiple An-
dreev reflections at the interface mediated by elastic scatter-
ers in the normal system. Even for a low-transparency con-
tact the cumulative Andreev reflection probability can be �1
for trajectories hitting the interface many times provided that
the area of the contact is sufficiently large. In the less ex-
plored regime of ballistic propagation, a similar process,
sometimes called reflectionless tunneling29, occurs in ballis-
tic quantum wells in parallel long contacts with supercon-
ductors. In these setups, the multiple Andreev reflections are
due to the back wall of the quantum well.22,25,35

Therefore, the low-bias excess conductance discussed in
the present paper is a pronounced case of the reflectionless

tunneling in ballistic systems where RA��� can be interpreted
as the cumulative Andreev reflection probability due to the
correlated quantum particle-hole motion in the region of the
1D channel coupled to the superconductor. It is also known
that such correlations can lead to a minigap in the quasipar-
ticle DOS.25,40,41,43,45–47 We note that the previous studies of
reflectionless transport �Refs. 27 and 35� dealt with multiple
Andreev reflections semiclassically and at small energies
����Eg. Our quantum scattering approach is capable of de-
scribing the entire energy dependence of the subgap conduc-
tance which shows the crossover from reflectionless tunnel-
ing to independent electron tunneling through the barrier at
the N /S interface. In addition, our numerical technique al-
lows us to tackle the realistic geometry of finite-length par-
allel N /S contacts and to obtain an accurate complete depen-
dence RA�L� which has not been studied in the previous
models.

The structure of the article is as follows. In Sec. II, after a
brief description of our system, we present the numerical
results for the DOS in the 1D channel. An analytical model is
also developed that helps to rationalize the low-energy re-
gime. The length and energy dependence of the Andreev re-
flection probability is analyzed in Sec. III. In Sec. IV, we
summarize the implications of our results with a concluding
discussion on the bias voltage dependence of the resistance.

II. TWO-GAP SPECTRAL PROPERTIES OF EXTENDED
SUPERCONDUCTING TUNNEL CONTACTS

In this section we study the density of states �DOS� in a
quasi-one-dimensional electron system �Q1DES� coupled in
parallel to a superconducting film via an interfacial barrier.
We consider the two geometries shown in Figs. 1�a� and
1�b�. The heterostructures are assumed two-dimensional and
located in the plane x ,z. Our results can be easily extended to
an out-of-plane periodic structure defining a quasi-two-
dimensional electron system on the normal side.

A. Description of the method

To analyze the superconducting proximity effect in the
Q1DES we employ a numerical approach to solve the
Bogolubov–de Gennes �BdG� equation

�Ĥ �̂

�̂ − Ĥ*
��u�x,z�

v�x,z�
� = ��u�x,z�

v�x,z�
� �1�

for the electron u�x ,z� and hole v�x ,z� wave functions. The
method allows for performing a straightforward discretiza-

tion on a real-space grid of the one-particle Hamiltonian Ĥ

=−�	2 /2m���x
2+�z

2�+U�x ,z�−�, the pairing potential �̂
=��x ,z�, and the potential U�x ,z� �to be defined later�. � and
m are the chemical potential and the electron mass, both
constant throughout the entire system. No translational in-
variance in the x direction is invoked so that studies of the
structures in Figs. 1�a� and 1�b� are possible.

The discretized BdG equations read

FIG. 1. Quasi-one-dimensional electron system �Q1DES�
coupled to �a� semi-infinite and �b� finite length L superconductor
contacts. The interfacial barrier is depicted in black. The Q1DES
width is chosen to be WN�
F /2, where 
F is the Fermi
wavelength.
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�� − �4� + U�i, j� − ��	u�i, j�

+ �

i�j�

u�i�, j�� − ��i, j�v�i, j� = 0,

�− � − �4� + U�i, j� − ��	v�i, j�

+ �

i�j�

v�i�, j�� + ��i, j�u�i, j� = 0, �2�

where i and j refer to sites on a two-dimensional lattice in the
x and z directions, respectively, and primes denote summa-
tion over nearest neighbors. The origin of the coordinate
frame is indicated in Figs. 1�a� and 1�b� by the zero. If re-
quired, Eq. �2� can be generalized to a position dependent
effective mass for specific materials.48

The parameters of the numerical scheme are as follows.
The potential U�i , j� is infinite everywhere outside the N and
S systems. For every j within the materials, U�i , j�=0 for i
�0 and U�i , j�=U0�0 otherwise. A positive potential step
U0 accounts for the fact that the coupling to the supercon-
ductor may result in a slight reduction of the Fermi energy of
the Q1DES in region �II� in Figs. 1�a� and 1�b� compared to
that in the uncoupled region �I� �see Ref. 24�. This turns out
to be important when considering scattering of quasiparticles
incident at region �II�, which is analyzed in the next section.
The pairing potential ��i , j� in Eq. �2� is assumed position-
independent and equal to �
ij �s wave� in the superconductor
and zero everywhere else. Although the self-consistency is
ignored, the stepwise order parameter has proved to be a
satisfactory approximation for studying the proximity effect
in clean systems.29,33 The absolute value of � is inverse pro-
portional to the mesh parameter �, which is varied until con-
vergence of the results is reached. A sufficient condition is
�S ,
F��, where �S=	vF /2� is the superconducting coher-
ence length and 
F �vF� is the Fermi wavelength �velocity�.
To simulate the effect of a relatively thick superconducting
film, we consider WS /�S=15 for the spectral properties and
WS /�S=50 for the results of Sec. III. Increasing this ratio
does not have any quantitative effect at �����. In particular,
all features discussed below are already observed for
WS /�S�3 but with prominent finite-size effects for high qua-
siparticle energies �����. The width of the normal region is
fixed to WN /
F�1/2, allowing only one propagating mode
along the Q1DES. The ratio �S /
F is chosen to be 2 �see also
Ref. 49�.

A tunneling barrier at the N /S interface �dark area in Fig.
1� is introduced via an effective Hamiltonian equivalent to
adding



i�j�

��NS − ���
 j,0
 j�,1 + 
 j,1
 j�,0�u�i�, j�� = 0,



i�j�

��NS − ���
 j,0
 j�,1 + 
 j,1
 j�,0�v�i�, j�� = 0, �3�

to Eq. �2� for every i within region �II�. Essentially, the
above boundary conditions define the coupling between the
normal and the superconducting systems via the interfacial
constant �NS. The latter may arise from a formal procedure50

that projects out the degrees of freedom within an insulating
layer with a very high barrier, when neglecting the energy
and momentum dependence of the penetration length. In
what follows, we express all energies in units of � for con-
venience.

To calculate the DOS of the hybrid N /S system �region
�II� in Fig. 1	 and, later, to study the scattering and transport
properties of quasiparticles incoming from normal region �I�,
we use a volatile numerical method used in studies of the
magnetoresistance of hybrid systems,51,52 phonon transport,53

and more recently in molecular electronics.54 It is based on
recursive Green function techniques. Although some of the
implementation details may differ,55 the main stages of the
computational scheme are explained in Ref. 52.

B. Quasiparticle density of states

The proximity effect is reflected in the DOS, ����, of the
hybrid system plotted in Fig. 2 for �NS=0.32 and U0=0. The
solid line corresponds to the semi-infinite geometry shown in
Fig. 1�a�. In this case ���� is calculated from the Green func-
tion G�i , j , i� , j� ;�� of region �II� via the well-known relation
����=−�1/�N�Im
i,jG�i , j , i , j ;��, where the summation is
over all lattice sites in the hybrid part of the junction; the
factor N normalizes the area under the curve to a reference
unit and Im means the imaginary part. The dashed line cor-
responds to the geometry of Fig. 1�b� for a relatively long
wire L /�S�1. In this case, we obtain ���� using a recursive
technique �negative-factor counting56� that allows one to cal-
culate the effective �renormalized� interaction between the
normal leads50 by projecting out the degrees of freedom of
the middle region �II�.

Both approaches reveal the formation of a two-gap struc-
ture: a smaller gap �minigap� at Eg�0.21� and the usual
BCS singularity at �=� with a finite quasiparticle contribu-
tion at intermediate energies, Eg����. Figure 3�a� shows

FIG. 2. DOS ���� of a ballistic Q1DES-superconductor system.
The solid line corresponds to the semi-infinite geometry shown in
Fig. 1�a� for which ���� is calculated directly from the Green func-
tion of the system. The dashed line corresponds to the case of a
finite �but relatively long L /�S�1� S film �Fig. 1�b�	 where we use
the decimation technique.
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the DOS separately for the Q1DES �solid line� and for the
superconductor �dashed line� from which one can conclude
that the smaller gap opens in the DOS of the Q1DES. This
observation along with the dependence of Eg on the coupling
to the superconductor shown in Fig. 3�b� suggests that the
minigap formation is a signature of the superconducting cor-
relations induced in the Q1DES. They are maintained in the
course of multiple Andreev reflections in the channel which
mix particle and hole states with energies below the effective
pairing energy coinciding with Eg.25 At higher energies Eg
���� the electrons and holes in the Q1DES are weakly
correlated and hence can be treated as one-particle excita-
tions.

In mesoscopically large diffusive N /S. systems the forma-
tion of the minigap has been studied in a number of theoret-
ical papers �see, e.g, Refs. 40, 41, and 43�. In the clean limit,
the minigap structure has been analyzed to some extent in
billiard geometries resembling quantum dots.45–47 Below we
develop an analytical model, close in spirit to our numerical
approach, that provides a simple description of the supercon-
ducting correlations in ballistic wires based on a 1D BdG-
like equation with an effective proximity-induced pairing en-
ergy Eg.

C. Proximity effect in a clean quantum wire: An analytical
model

Although the physical mechanism responsible for the
minigap formation in ballistic 2D electron systems has been
explored in Ref. 25, the proposed method of derivation of Eg
heavily relies on the following assumptions. First, the pairing
potential in the superconductor ��z� was assumed homoge-
neous. Secondly, a finite-thickness normal system was mod-
eled by a rectangular confining potential Uc�z� enabling a
plane wave description of the multiple reflection in the nor-
mal channel. The advantage of the model of Ref. 25 is that it
allows one to obtain the minigap for an arbitrary interfacial
transparency. In this subsection we present an alternative mi-
croscopic derivation of Eg that does not rely on any particu-
lar models for ��z� and Uc�z�, but is restricted to low inter-
facial transparencies and low energies ����Eg��. By
focusing on this case �weak-coupling regime� we would like
to emphasize that the effects related to the minigap formation
can be observed even in samples with average interfacial
quality provided that the temperature is low enough. As in
Ref. 25, we also assume the translational invariance along
the N /S interface and different Fermi energies �S��N and
Fermi momenta pS� pN on the S and N sides.

It is convenient to rewrite the BdG equation �1� for the
two-component wavefunction �p�z�= �up�z� ,vp�z�	T in the
superconductor �z�0� in a more compact form:

���3 + �ES +
	2

2m
�z

2��0 − ��z�i�2��p�z� = 0. �4�

Here, p
 px is the momentum parallel to the interface; �2,3
and �0 are the Pauli and unity matrices, respectively. In the
normal system �z�0� the equation for �p�z� is

���3 + �EN +
	2

2m
�z

2 − Uc�z���0��p�z� = 0, �5�

with EN,S=�N,S− p2 /2m. The confining potential Uc�z� de-
fines a Q1D channel with a localized electron wavefunction
��z� in the z direction.

The interfacial barrier is assumed rectangular with the
electron penetration length �0

−1=	 / �2mU�1/2 determined by
the barrier height U measured from the Fermi energy. Inside
a high enough barrier one can neglect the energy and mo-
mentum dependence of the penetration length and write the

BdG equation as ��z
2−�0

2	�̃p�z�=0, 0�z�a, where a is the

barrier thickness. We introduce a special notation �̃p�z� for
the BdG wave function inside the barrier to distinguish it
from that outside the barrier. The continuity of the particle
current imposes usual boundary conditions at the barrier
walls, reading

�̃p�0� = �p�0�, �̃p�a� = �p�a� , �6�

�z�̃p�0� = �z�p�0�, �z�̃p�a� = �z�p�a� . �7�

The solution inside the barrier satisfying the boundary

condition �6� is �̃p�z�= �sinh �0�a−z� / sinh �0a	 �p�0�

FIG. 3. �a� Decomposition of the DOS ���� to that arising from
the Q1DES �solid curve� and the superconductor �dashed curve�.
Both curves are scaled to compare with each other. �b� DOS in the
proximity region for various interfacial transparencies. Inset: the
minigap Eg depends quadratically on the interfacial coupling �NS at
low transparencies, and starts deviating at higher values of �NS.
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+ �sinh �0z / sinh �0a� �p�a� Inserting it into the boundary
conditions �7� for the derivatives, we have:

�z�p�0� + ��p�0� = �t�p�a� , �8�

�z�p�a� − ��p�a� = − �t�p�0� , �9�

where �=�0 cotanh �0a and �t=�0 / sinh �0a. Equations �8�
and �9� serve now as effective boundary conditions for the
BdG equations in the superconductor and the normal system.
In the limit sinh �0a→�, the coupling between the “normal”
and the “superconducting” functions vanishes, which is de-
scribed by Eqs. �8� and �9� with zero right-hand sides.

We use boundary conditions �8� and �9� to describe An-
dreev reflection at the superconductor-Q1DES interface un-
der the assumption that the influence of the Q1DES on the
superconductor can be neglected. To proceed, it is conve-
nient to include the boundary condition �9� into the BdG
equation �4� by introducing appropriate delta-function terms
as follows

���3 + �ES +
	2

2m
�z

2 + ÛS�z���0 − ��z�i�2��p�z�

= −
�t	

2

2m

�z − a��p�0� . �10�

We note that the admitted singular potential ÛS�z�

�	2 /2m�
�z−a���z−�� reproduces Eq. �9� with zero right-
hand side �“isolated superconductor”�.

The penetration of Andreev bound states into the super-
conductor at low energies is described by a particular solu-
tion of Eq. �10� generated by the right-hand side containing
the “normal” function �p�0�. It can be expressed in terms of
the matrix Green function of Eq. �10� whose matrix elements
are constructed from the quasiparticle Gp,��z ,z�� and conden-
sate �Gorkov’s� Fp,��z ,z�� Green functions, namely,

�p�z� = −
�t	

2

2m
�Gp,��z,a� − F−p,−��z,a�

Fp,��z,a� G−p,−��z,a�
��p�0� . �11�

Here the Green functions satisfy boundary condition �9� with
zero right-hand side. Inserting this solution into the boundary
condition �8� at the “normal” side and neglecting both energy
and momentum dependence of the Green functions under
conditions ����� and p� pN� pS, one finds

�z�p�0� + ��p�0� =
�t

2	2

2m
Fi�2�p�0� , �12�

where F
Fp=�=0�a ,a� is the condensate Green function
taken at the boundary of the superconductor. We have omit-
ted the terms proportional to G since for ����� they would
only result in a shift of the dispersion.

The right-hand side of the boundary condition �12�, which
is off diagonal in the particle-hole space, takes into account
the conversion of a particle into a hole �and vice versa� due
to Andreev reflection, that occurs simultaneously with nor-
mal scattering. In a narrow quantum wire, whose thickness is
of order of the Fermi wavelength, the anomalous term in the
boundary condition �12� gives rise to an effective pairing

energy between particles and holes in the wire. Indeed, com-
bining the equation of motion �5� and the boundary condition
�12�, one can write

���3 + �EN +
	2�z

2

2m
− Uc�z� + ÛN�z���0��p�z�

= − 
�z���t	
2

2m
�2

Fi�2�p�z� , �13�

where the singular potential ÛN�z�
−�	2 /2m�
�z���z+�� is
equivalent to the boundary condition �12� with zero right-
hand side. For a weakly coupled Q1DES, the spatial depen-
dence of the BdG function �p�z���p��z� is almost unaf-
fected by tunneling. Therefore, multiplying Eq. �13� by ��z�
and integrating over z, one obtains the following one-
dimensional equation:

���3 + � pF
2 − p2

2m
��0 − Egi�2��p = 0, �14�

Eg 
 ��t	
2��0�/2m	2F . �15�

Egi�2 plays the role of the effective singlet pairing energy in
the wire; pF denotes the Fermi momentum in the Q1DES.

According to Eq. �14�, the excitation spectrum in the
Q1DES is �p

±= ± �vF
2��p�− pF�2+Eg

2	1/2 with the Fermi velocity
vF= pF /m. It has an energy gap given by Eq. �15� and, hence,
the DOS of the normal system displays a BCS-like singular-
ity at Eg. To estimate Eg, one can use the condensate Green
function of a superconductor with a homogeneous pairing
potential � at zero energy and parallel momentum F
�WS

−1
pz
� / ��2+vS

2�pz− pS�2	, where vS= pS /m. The integra-
tion over pz gives F�1/	vS. The boundary value ��0� of
the transverse function can be estimated using the unper-
turbed boundary condition ��0�=−�−1�z��0�, where on
the right-hand side one can use the “hard wall” wave
function ��z�= �2/WN�1/2sin �z /WN, which gives ���0��
��−1�2/WN�1/2�� /WN�. Thus, the effective pairing energy is

Eg =
	

WNpS

1

sinh2�0a
E0, �16�

with E0=	2�2 /2mWN
2 being the energy of the lowest occu-

pied subband in the quantum well. Equation �16� is equiva-
lent to the one obtained in Ref. 25 for a strong delta-shaped
barrier.

Equation �15� for the minigap Eg provides a link to the
numerical approach and results discussed earlier. According
to Eq. �15�, the size of the minigap depends on the parameter
�t	

2 /2m that characterizes “hopping” between the systems
�see Eq. �11�	. This parameter represents a direct analoge of
the coupling constant �NS that determines the size of the
minigap in the DOS in our numerical study �see Fig. 3�b�	.
Since Eg is quadratic in �t	

2 /2m, the numerical value of the
minigap should scale with �NS as

Eg � �NS
2 , �17�

which can indeed be verified numerically �see inset in Fig.
3�b�	. In the next section we will see that the parabolic de-
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pendence of the effective pairing energy �17� on �NS can also
be extracted from calculations of the Andreev scattering
probability.

III. QUASIPARTICLE SCATTERING: LENGTH AND
ENERGY DEPENDENCE

In this section we discuss electron scattering properties
that can be used as an independent and more complete probe
of the proximity effect in finite length parallel N /S contacts.
For definiteness we consider particles in the left region �I� of
Fig. 1 propagating to the right. When incident at the bound-
ary with the proximity region, these may be �a� Andreev
reflected, namely, converted into outgoing holes with the
probability RA, �b� normally reflected as outgoing particles,
i.e., without Andreev conversion, with the probability RN,
and �c� normally transmitted as particles with the probability
TN either in the region �II� of Fig. 1�a� or in the right region
�I� of Fig. 1�b�. Finally, the probability of being Andreev
transmitted to the right is determined via particle conserva-
tion, namely, 1−RA−RN−TN. In our calculations, this is en-
sured by the unitarity of the scattering matrix.

We examine first the dependence of the zero-energy An-
dreev reflection coefficient RA��=0� on the length L of the
proximity region �II� in Fig. 1�b� for different values of the
coupling parameter �NS and without any potential mismatch
at the �I�/�II� boundary �U0=0�. In conventional N /S /N
structures the Andreev coefficient is known to scale as RA
���L�2 for L much shorter than the coherence length
�S.57According to the results of the previous section, in our
case the effective pairing energy Eg �Eq. �15�	 should act as
� and therefore we expect that RA��EgL�2 or, according to
Eq. �17�, RA��NS

4 L2 for short enough contacts. This scaling
is demonstrated in Fig. 4 by the convergence of the appro-
priately normalized RA curves and their parabolic shape at

short lengths. As shown in the inset, there is a characteristic
length �N�5�S beyond which the Andreev probability RA�L�
approaches its unit limit. Moreover, the ratio of �N /�S coin-
cides with the ratio of the gaps � /Eg�5 found from the
analysis of the DOS in the previous section

�N/�S = �/Eg. �18�

The overall length dependence implies that the reflectionless
tunneling builds up due to the strong mixing of particles and
holes in long channels. In particular, the semiclassical ap-
proaches of Refs. 27 and 35 interpret reflectionless tunneling
in terms of the increase in the cumulative Andreev reflection
probability with increasing number of single Andreev reflec-
tions at the N /S boundary in the limiting case of an infinitely
long interface L /�N→�.

We now turn to the discussion of scattering of finite-
energy quasiparticles in the semi-infinite geometry of the
proximity region �Fig. 1�a�	 where the reflectionless tunnel-
ing is most pronounced. We also take into account a finite
potential step U0 at the boundary between the normal �I� and
proximity �II� regions that, as has been already mentioned,
may arise from the modification of the Fermi energy in re-
gion �II� due to the coupling to the superconductor. The en-
ergy dependence of the Andreev reflection coefficient is plot-
ted in Fig. 5�a� for various U0 and �NS=0.32. At low energies
��Eg=0.21� the shape of the dependence RA��� resembles
that of high-transparency N /S point contacts discussed by
Blonder, Tinkham, and Klapwijk �BTK�.21 If there is no po-
tential step U0 between the normal �I� and proximity �II�
regions, the probability RA equals unity and starts to drop at
��Eg. For U0�0, finite normal reflection RN builds up
�shown in Fig. 6�a�	 which results in smaller zero-energy
values of RA. The appearance of the second narrow peak at
�=�58 manifests the crossover from the reflectionless tunnel-
ing regime, which involves a two-particle process, to the
usual independent electron tunneling through the barrier.

In Fig. 5�b� we demonstrate that the low- and high-energy
peaks in the dependence of RA can be independently fitted by
the BTK model.21 To fit the low-energy behavior we use the
formulas of Table II in Ref. 21 with �BTK=Eg and a small
barrier parameter Z=0.278. For the tunneling peak we use
the same formulas with �BTK=� and the large barrier param-
eter Z=28. In either of the above limiting cases, the fit is
almost perfect. To describe the crossover between them, a
more general analytical model is needed.

In Fig. 6 all nonvanishing scattering coefficients are plot-
ted for �a� U0=0.8 and �b� no barrier between the normal �I�
and proximity �II� regions. For U0�0 there is normal reflec-
tion of particles at the �I�/�II� interface caused by the poten-
tial mismatch. For U0=0 it vanishes not only below the mini-
gap ��Eg but also at the intermediate energies Eg����.
This is due to the specific geometry of our tunnel junction
where quasiparticles with intermediate energies are mainly
transmitted through the channel experiencing low-probability
Andreev reflection �see the behavior of TN��� and RA���	. At
higher energies ���, when the superconductor becomes
transparent for quasiparticles, the lack of the translational
invariance of our system causes considerable normal scatter-

FIG. 4. Andreev reflection probability for various N /S coupling
constants as a function of the length of the proximity region �II� in
Fig. 2�b�. RA scales with the interfacial transparency and at short
lengths is quadratic in L. For L much larger than the proximity-
induced coherence length �N�5�S, the probability RA reaches unity
as a manifestation of the reflectionless tunneling despite the low
interfacial transparency �see inset for �NS=0.2�.
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ing and oscillations of all the coefficients due to the finite
thickness of the superconductor.

IV. CONCLUDING REMARKS

Scattering coefficients are related to the two-, three-, and
in general multiprobe conductances of N /S systems �see,
e.g., Refs. 21 and 33�. Therefore, the proximity effect dis-
cussed in the previous section should be observable in mea-
surements of the current-voltage characteristics of such hy-
brids. In order to explore this possibility and to elaborate on
our discussion of the experimental reports,15,22–24 we con-
clude by focusing on the two-probe differential conductance
g�eV�
dI /dV of the semi-infinite geometry of Fig. 1�a�.
This is given by33

g�eV� =
2e2

h
�

0

�

d��−
� fp

��
�1 − RN

p + RA
p� −

� fh

��
�1 − RN

h + RA
h�� ,

�19�

where fp�h�= �exp����eV� /kBT	+1�−1 with �−� for particles

�p� and �+� for holes �h�. The bias energy eV is introduced as
the difference between the chemical potentials in the normal
region and in the hybrid part of the junction, with the latter
taken as reference.

At zero temperature, Eq. �19� reduces to g�eV�= �2e2 /h�
��1+RA

p�eV�−RN
p �eV�	= �2e2 /h�� �1+RA

h�−eV�−RN
h �−eV�	 .

Hence, for a small barrier between the normal �I� and prox-
imity �II� regions of the wire, the dependence of g�eV� at
ultralow T reflects mainly the energy dependence of the An-
dreev probability �Fig. 5�a�	. The same is true for the length
dependence of the zero-bias conductance. In Fig. 7 we plot
the differential conductance for several values of interfacial
coupling �NS �i.e., Eg� at T=0.01� /kB. Unlike the tunneling
peaks at ±� /e, the proximity-induced anomalies at the mini-
gap energy ±Eg /e exhibit a strong dependence on �NS �see
Fig. 3�b�	.

In Fig. 8, the evolution of the differential resistance,
which is defined as the inverse of Eq. �19�, is shown as a
function of temperature. At intermediate T�Eg /kB, features
at the scale of the minigap are smeared and the resistance
exhibits an overall dip as a result of the reflectionless tunnel-
ing. With decreasing the temperature to T�Eg /kB the resis-
tance curve develops a finer structure reflecting the energy
dependence of the Andreev reflection probability. For vanish-

FIG. 5. �a� Andreev reflection coefficient for the geometry of
Fig. 1�a� with �NS=0.32 and various values of the potential U0 at
�I�/�II� boundary. For U0=0 the Andreev probability is exactly 1 for
energies below Eg. �b� To fit the low- and high-energy peaks we use
the formulas of the BTK model �Ref. 21� with parameters �BTK

=Eg, Z=0.278, and �BTK=�, Z=28, respectively.

FIG. 6. Andreev reflection RA, normal transmission TN, and nor-
mal reflection RN coefficients for the geometry of Fig. 1�a� with
�NS=0.32 and various potential landscapes in region �II�.
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ing potential step U0 �Fig. 8�a�	, there are two minima sym-
metric to zero bias at the energies of the superconducting
gap. In addition to those, for U0�0 �Fig. 8�b�	 the finite
normal reflection at ����Eg leads to a zero-bias resistance
peak superimposed on the Andreev dip.

According to Fig. 4, for pronounced Andreev reflection
the contact length L must be of order of the proximity-
induced coherence length �N=5�S. For 0.01 �m��S
�0.04 �m typical for Nb electrodes, �N can be estimated as
0.05 �m��N�0.2 �m. On the other hand, in the device of
Ref. 15 the contact overlap between the nanotube and the
superconductor was rather large, about 1 �m. Therefore, the
condition L��N could be met leading to the observed zero-
bias reduction of the contact resistance. Another feature of
our dV /dI�V� curves, namely, the appearance of a small
zero-bias peak superimposed on the Andreev dip due to finite
normal scattering at very low T �Fig. 8�b�	, is also consistent
with the experimental findings.

We note that in the experiment of Ref. 15 the low-bias
behavior of the resistance was sensitive to a gate voltage
applied to the carbon nanotube. In our model the effect of the
gate voltage can be incorporated into the difference U0 be-
tween the Fermi energies in the normal �I� and proximity �II�
regions in Fig. 1. We have focused on the most interesting
case of relatively small U0 when normal scattering does not
impede the conversion of the quasiparticle current into the
supercurrent in the proximity region. As U0 increases, the
low-bias resistance dip in Fig. 8�b� eventually evolves into
an overall peak above the normal state value as in nonideal
N /S point contacts.21,59

We emphasize that the zero-bias anomaly discussed here
is a property of a single parallel N /S contact. Although as
argued in Ref. 15 in their S /CN/S devices the two CN/S
interfaces acted independently, the role of the interelectrode
coupling remains unclear. Such a question has been investi-
gated numerically in Ref. 5 for a somewhat simpler system
where a carbon nanotube is connected to a normal metal and
a superconductor via tunnel barriers �N /CN/S�. It was
shown that resonant tunneling through Andreev levels in the
nanotube can significantly increase the low-bias subgap
conductance similar to the situation in mesoscopic
N /quantum dot/S structures.29 For a comprehensive theory
of transport in S /CN/S hybrids this aspect, together with the
contact geometry and electron interaction effects, must be
taken into account. In addition, one should bear in mind that
in the experimental realizations a number of CNs have been
contacted in parallel.

In Refs. 22 and 24 a strong zero-bias suppression of the
resistance was found in ballistic 2D electron systems in ex-
tended planar coupling to superconductors at T�� /kB.
These systems can be considered as a generalization of that
shown in Fig. 1. For perfect planar interfaces, individual
channels with possibly different barriers and interfacial
transparencies59 add up independently. However, interchan-
nel mixing must be considered for rough surfaces. The same
applies when considering experiments in quantum wires23

with few propagating modes. It is worth noting that in this
case the behavior similar to the low-T differential conduc-
tance of Fig. 7 was observed. We believe that the transport
anomalies observed in 1D,15 quasi-1D,23 and 2D �Refs. 22
and 24� systems have a contribution of a common nature
stemming from the proximity-induced mixing of particles
and holes which mediate the conversion of a normal current
into a supercurrent along the contact on the scale of the co-
herence length �N=�S� /Eg and at energies smaller than the
minigap Eg��.

FIG. 7. Differential conductance of the N /S hybrid in Fig. 5�a�
at ultralow temperature T�Eg /kB.

FIG. 8. Evolution of the differential resistance of the N /S hybrid
in Fig. 5�a�, as a function of temperature from kBT�Eg�� to T
�Eg for �a� vanishing and �b� finite potential step between regions
�I� and �II�.
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