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We study the properties of high-temperature superconductors witha-b plane mass anisotropy. We obtain
high precision ideal vortex lattices solutions of the generalized anisotropic nonlinear Ginzburg-Landau equa-
tions for arbitrary magnetic induction and vortex lattices symmetry. The effect ofa-b plane mass anisotropy on
various properties of the high-temperature superconductors, such as, order parameter, magnetic induction,
vortex lattice symmetry, reversible magnetization, and shear modulus of the vortex lattice are examined. We
compare our results with recent experimental data of YBa2Cu4O8.
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I. INTRODUCTION

Since the discovery of the high-temperature supercon-
ductors, interest in studying the vortex configurations in lay-
ered superconductors, the most important example being the
cuprates high-temperature superconductors, has greatly in-
creased. During the last decade many efforts have been fo-
cused on the understanding of the critical properties of
type-II superconductors in the frame work of the Ginzburg-
Landau theory. Ginzburg-Landau calculations for a single
vortex core structure and the geometry of the vortex lattices
of layered superconductors have produced many interesting
results which have been found to be very important for un-
derstanding the field and temperature dependence of the
critical-current density in these superconductors.1

However, most of these studies of Ginzburg-Landau
theory are limited to high or low magnetic field where the
theory is linear, i.e., the external magnetic fieldsBa→Bc1 for
isolated vortex solution orBa,Bc2 for periodic vortex lattice
solutions. On the other hand, recent small angle neutron scat-
tering sSANSd and the muon spin rotationsmSRd experi-
ments of the flux line lattice in high-temperature
superconductors2 and UPt3 superconductors3 have shown
anomalous magnetic field dependence of the scattering inten-
sities and the vortex lattice structure. Thus, to compare the
theoretical results with the SANS andmSR experiments,
study of the nonlinear Ginzburg-Landau equations is re-
quired for the entire range of magnetic fieldBc1,Ba,Bc2.
Some earlier attempts4 to study Ginzburg-Landau equations
for arbitrary magnetic induction, e.g., the extension of the
Bc2 solutions by Eilenberger, the circular cell method for the
extension ofBc1 sisolated vortexd solutions by Ihle, the varia-
tional method by Brandt and also Clem and Hao, had their
limitations. While Eilenberger solutions by complex series
expansion applies only in a narrow field range belowBc2, the
circular cell method by Ihle, even though it accurately com-
putes magnetization curves, cannot yield, in principle, prop-
erties related to different symmetries of the vortex lattice or
to its shear modulus. Similarly, the variational methods ac-
curacy depends on the number of variational parameters
used, which have to be compromised with the available com-
putational time and computer efficiency. These restrictions

associated with studying the Ginzburg-Landau equations for
arbitrary magnetic induction and any vortex lattice symmetry
was overcome by Brandt. In a recent pioneering work,
Brandt presented5 a novel iteration method that solves
Ginzburg-Landau equations for arbitrary magnetic induction
and any vortex lattice symmetry with high precision and ob-
tained many results which could not be obtained by earlier
methods,4 such as the shear modulus of the vortex lattice,
etc. This iterative method calculates various properties, such
as local magnetic field and order parameter within a few
iterative steps for any magnetic induction within the range
slightly above the lowest critical field up to upper critical
field.

Yet another limitation of the earlier studies of Ginzburg-
Landau theory is that most of these studies were for isotropic
type-II superconductors. However, it is well known that the
high-temperature superconductors are highly anisotropic.
Anisotropy can be accounted in terms of an effective mass
tensor. For biaxial superconductorsma, mb, andmc are dis-
tinct, whereas, for uniaxial superconductorsma=mb. Even in
some cases where the effect of anisotropy were studied, the
studies were mostly limited to uniaxial superconductors and
for special cases near the lower and upper critical fieldsBc1
and Bc2, respectively. Recent experiments have shown that
the effect of anisotropy introduces considerable changes,
such as distortion of flux line latticesFLLd, vortex lattice
melting via an intermediate phase, oblique structure of vor-
tex lattice, etc.6 It is observed that many properties of the
cuprate high-temperature superconductors are anisotropic
mainly due to the nature of the CuO2 planes. Experiments
using small angle neutron scattering as well as scanning tun-
neling microscopysSTMd7 show that there is significant lo-
cal electronic inhomogeneity which lead to anisotropy even
within a CuO2 plane. For example, YBa2Cu3O7 is not in the
pure tetragonal phase due to the existence of CuO chains in
theb direction.8 Large anisotropy betweena andb directions
for YBCO are seen in the measurements of penetration
depth9 and the vortex structure by STM.10 While a tetragonal
lattice structure is appropriate ford-wave pairing symmetry,
it is now believed that YBCOs have a dominants-wave com-
ponent in the order parameter in addition to thed-wave order
parameter. This type of two component order parameter is
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associated with the orthorhombic symmetry. The orthorhom-
bic lattice symmetry of YBCO originates from the mass an-
isotropy between thea andb directions, withma larger than
mb. Theoretical calculations have shown that the mass aniso-
tropy gives rise to a nonzeros-wave component and clear
evidence for this kind of mixing has been found in the recent
c-axis Josephson experiments.11 Similarly, measurements of
the magnetic-field dependence of the thermal conductivity of
BSCCO shows a large anisotropy in thea-b plane12 suggest-
ing that the number of thermally excited quasiparticles are
different along the two axes of thea-b plane.

In order to examine the effect of the mass anisotropy be-
tween a and b axis in the CuO2 plane of various high-
temperature superconductors, we present in this paper the
results of our high precision numerical study of an aniso-
tropic Ginzburg-Landau theory using Brandt’s iteration
method.5 For better comparison of our theoretical results
with the experiments, we study the anisotropic Ginzburg-
Landau theory for the entire ranges of magnetic fieldsBc1
,Ba,Bc2 and arbitrary value of Ginzburg-Landau param-
eter as well as arbitrary vortex lattice symmetry. To the best
of our knowledge, we present for the first time high precision
results of the ideal vortex lattice solutions of the nonlinear
anisotropic Ginzburg-Landau theory, for arbitrary magnetic
induction and vortex lattice symmetry.

We have taken the anisotropy into account based on an
anisotropic effective mass approximation within CuO2
planes and quantified the mass anisotropy through an aniso-
tropic mass parameterg=mx/my, wheremx and my are the
effective masses in thex and y directions, respectively. We
assume the vortex lattice to be aligned along the symmetry
axes of the crystal and accordingly considerx and y direc-
tions parallel toa and b directions of the anisotropica-b
plane, respectively. From the measurement of anisotropy of
the penetration depth, the mass anisotropy parameter of
YBa2Cu3O6.95 is obtained asg=2.4.9 Of course, the aniso-
tropy of the properties of a superconductor can set in as a
result of electron pairing in states with nonzero orbital angu-
lar momentuml. We, however, confine ourselves to the sim-
plests-type pairingsi.e., l =0d and therefore regard the effec-
tive c function of the Ginzburg-Landau theory as a complex
scalar. To study the effect of mass anisotropy we consider the
generalized anisotropic nonlinear Ginzburg-Landau equa-
tions and solve the equations numerically using the high pre-
cision iterative method due to Brandt.5 The advantages of
using Brandt’s iterative method are that this genuinely two-
dimensional method applies down to very low magnetic in-

ductions 10−3øb,1, whereb=B̄/Bc2 and also to all rel-
evant Ginzburg-Landau parameters 1/Î2øk,`. The best
advantage of Brandt’s method5 is that it can yield properties
related to the different symmetries of the vortex lattice or its
shear modulus. The other methods used for studying the
Ginzburg-Landau equations, for example, the circular cell
method,4 cannot yield properties related to the different sym-
metries of the vortex lattice or to its shear modulus. Calcu-
lation of shear modulussc66d is very important for determin-
ing the stability property of the vortex lattice, such as
melting of the vortex lattice. The vortex lattice in the high-
temperature superconductors is very soft mainly due to the

large magnetic penetration depthlB. It is believed that this
softness is further enhanced by layered structure and the
mass anisotropy of the high-temperature superconductors.
Thermal fluctuations and softening may “melt” the vortex
lattice and cause thermally activated depinning of the flux
lines. Very recently, the Lindenmann criteria of vortex lattice
melting has been formulated in terms of fluctuations of a
single vortex over a characteristic length termed as the
“single-vortex length” and this length also depends on the
shear modulusc66 of the vortex lattice.13 Therefore, we care-
fully examine the effect of mass anisotropy on the magnetic
field penetration depthfgiven mainly by the width of the
magnetic inductionBsx,yd curveg and the shear modulusc66

of the vortex lattice.
The paper is organized as follows. Section II describes the

theoretical formalism. Section III describes the numerical
method used for studying the problem, the results of the
numerical calculations, and analysis of the results. Finally, in
Sec. IV we conclude with suggestions for future work.

II. THEORETICAL FORMALISM

The free energy of the two-dimensional anisotropic
Ginzburg-Landau theory in a geometry such that the applied
field is orthogonal to the anisotropic plane can be written in
terms of the real gauge invariant functionsvsx,yd and
Qsx,yd as14

f =K− v +
v2

2
+ s¹ 3 Qd2 +

¹vG ¹ v

4ky
2v

+ vQGQL , s1d

whereQsx,yd=Asx,yd− ¹fsx,yd /ky is the supervelocity,A
is the vector potential,B= ẑB= ¹ 3A is the local field,
v= ucu2ø1 is expressed in terms of the Cooper pair
density or Ginzburg-Landauc function as csx,yd
=Îvsx,ydexpfifsx,ydg, andG is the anisotropic mass tensor
given by

G = Fmy/mx 0

0 1
G .

Here k¯l denote average value which is obtained by sum-
ming over equidistantN points in 2D grid with constant
weight 1/N.5 We have introduced here the reduced units14

Îa /b, F0/2pjy, andly for the order parametercsx,yd, mag-
netic vector potentialAsx,yd, and all lengths, respectively.
The Ginzburg-Landau parameter and the coherence length
along the y direction are defined as ky=ly/jy

=F0/2pÎ2Bcjy
2 and jy=" /Î2mya, respectively, where

Bc
2/8p=a /b, a and b being the standard Ginzburg-Landau

parameters. Hence the local magnetic fieldB is expressed in
units of Î2Bc. We expressv, B, andQsx,yd as the Fourier
series

vsr d = o
K

aKs1 − cosK · r d, s2d

Bsr d = B̄ + o
K

bK cosK · r , s3d
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Qsr d = QAsr d + o
K

bK
ẑ 3 K

K2 sinK · r , s4d

where the sums are over all reciprocal lattice vector space
K mnÞ0 with r =sx,yd. For vortex positionsR=Rmn=smx1
+nx2,ny2d, where m,n are integers, the reciprocal lattice
vectors are given byK =K mn=s2p /Sdsmy2,nx1+mx2d with

S=x1y2=F0/ B̄ the unit cell area. By varying these lattice
symmetry parametersx1, x2, andy2 we can continuously go
from one particular symmetry of the vortex lattice to the
other. For example, for square latticey2=x1 andx2=0, while
for triangular latticey2=Î3x1/2 andx2=x1/2. The shape of
the unit cell can be varied periodically from square to trian-
gular if y2=x1 and by increasingx2 continuously. This is
useful for calculation of shear modulusc66 of the vortex
lattice as described below. It should be noted that for the
mass anisotropic case, they2 value of the corresponding tri-
angular vortex lattice need not be equal toÎ3x1/2 as in the
isotropic case. They2 value for the anisotropic case can be
obtained by calculating the dependence of the free energy
fsx2=x1/2 ,y2d on y2 and locating the position of the mini-
mum of the free energy. Our goal is to determine the Fourier
coefficientsaK andbK for arbitrary magnetic induction, vor-
tex lattice symmetry, and Ginzburg-Landau parameter. Ear-
lier variational methods of obtaining the approximate solu-
tions of the Ginzburg-Landau equation were limited to
considering a finite number of Fourier coefficientsaK andbK
and determining these coefficients by minimizing the corre-
sponding free energyfsB,k ,aK ,bKd with respect to these
coefficients.4 However, the accuracy of the results obtained
by these variational methods depended largely on the number
of Fourier coefficients used and only few coefficients could
be used in practice since the computational time increases
very fast with increase in the number of these coefficients.
Brandt5 recently showed that a much faster and more accu-
rate solutions are obtained by iterating the two Ginzburg-
Landau equationsdf /dv=0 anddf /dQ=0. For stable and
rapidly converging iterations, the trick is to write these two
nonlinear Ginzburg-Landau equations as inhomogeneous
London-like equations, the inhomogeneous terms coming
from the nonlinear terms of the equations. Yet another trick
to improve the convergence of the iteration is to add a third
equation which minimizesf with respect to the amplitude of
v. The resulting three equations for determining the coeffi-
cientsaK andbK of the required solutions of the anisotropic
nonlinear Ginzburg-Landau equations are given by14

aK ª

− 4ky
2ks2v − v2 − vQGQ − gdcosK · r l

KGK + 2ky
2 , s5d

aK ª aK .
ksv − vQGQ − gdl

kv2l
, s6d

bK ª

− 2kfvB − v̄sB − B̄d + pgcosK · r l
mx

my
KGK + v̄

, s7d

whereg= ¹vG¹v /4ky
2v and p=s¹v3Qd ·ẑ. Here the no-

tationª denotes replacement.

III. NUMERICAL CALCULATIONS AND RESULTS

To start with, we calculate the dependence of the free
energy fsx2=x1/2 ,y2d on y2 and find the value ofy2 which
minimises the free energy, for various values of the mass
anisotropy parameter. We find that for the isotropic case
sg=1d the free energy is minimized fory2=Î3x1/2, as ex-
pected and for the anisotropic casesg.1d the corresponding
value of y2 is not equal toÎ3x1/2 but it depends on the
particular value of the mass anisotropy parametery2=y2sgd.
For example, forg=2 case, the free energyfsx2=x1/2 ,y2d is
minimized fory2=0.5x1. This is shown in Fig. 1, where we
have plottedfsx2=x1/2 ,y2d as a function ofy2 for g=2.
Similarly, we find that for the mass anisotropic parameter
g=3, 4, 5, 6, and 7, the free energy is minimized for
y2=0.635x1, y2=0.71x1, y2=0.779x1, y2=0.866x1, and
y2=0.92x1, respectively.

We iterate the three iteration Eqs.s5d–s7d to determine the
coefficientsaK andbK . Following Brandt,5 we start the itera-
tion with the coefficientsaK =aK

A andbK =0, whereaK
A denote

the Abrikosov value for the anisotropic system14 and then
follow the order of the iteration sequence as follows: we
iterate the first two equationsfEqs.s5d and s6dg a few times
to relaxv and then iterate all three equations Eqs.s5d–s7d to
relaxB. The number of such triple iteration steps required for
the solutions to remain constant up to the desired accuracy
depend on the parameter values in the theory as well as on
the desired symmetry of the vortex lattice. Our numerical
results shows that even small variations of the anisotropy
parameterg=mx/my have significant effect on several prop-
erties of the ideal vortex lattice, such as the order parameter,
magnetic induction profile, the reversible magnetization, the
shear modulus, etc. To compare our numerical results with
the available experimental data, we use parameter values in
our calculations appropriate to anisotropic high-temperature
superconductors YBCO. For example, the measuredk values
for YBa2Cu4O8 polycrystals15 and Nd1.85Ce0.15CuO4−d single
crystals16 arek=70 andk=80, respectively. Similarly, from
the measurements of the penetration depth, the mass aniso-
tropy parameter for YBa2Cu3O6.95 is obtained asg=2.4.9

The solutions of the anisotropic nonlinear Ginzburg-
Landau equations are obtained for arbitrary values of the

FIG. 1. Free energy in unitsBc
2/m0 versusy2 sin units x1d for

ky=70 and mass anisotropy parameterg=2.
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various parameters involved, such as mass anisotropy param-
eter g, Ginzburg-Landau parameterky, magnetic induction
parameterb=B̄/Bc2 and the vortex lattice symmetry param-
etersx2/x1 andy2/x1. The results are shown in the figures. It
is clear from these figures that thea-b plane mass anisotropy
have significant effect on the physical properties of the high
temperature superconductors.

Figure 2 shows the contour plots of the profilesvsx,yd
and Bsx,yd for different values of the mass anisotropy pa-
rameterg. The effects of the mass anisotropy on the order
parameter and the magnetic induction are very much evident
from these plots. For a given value of the parametersky and
b, the width of the order parametervsx,yd and the magnetic
inductionBsx,yd decreases with increase of mass anisotropy
parameterg. There is also an associated distortion of the
individual vortex profile with increase of mass anisotropy.
For a given value of the mass anisotropy parameterg, the
amplitudes as well as the width of the order parameter and
magnetic induction profile depends on the magnetic induc-
tion parameterb. However, the shape of the curves remains
qualitatively same for all values ofky. Similar behavior is
also observed in the study of the isotropic case.5 Figure 3
shows the plot of the peak amplitude variation ofBsx,yd
profile with mass anisotropy parameterg. As has been men-
tioned above, the variation of the amplitude and width of
Bsx,yd profile is directly related to the shear modulus of the
the vortex lattice since the shear modulus depends on the
penetration depth of the magnetic field. Figure 4 shows the
variation of width of the order parameter profilevsx,0d and
Bsx,0d with magnetic induction parameterb and mass aniso-
tropy parameterg. Since the shape of the profiles ofvsx,yd
and Bsx,yd becomes asymmetric with increase of mass an-
isotropy parameterg, we have plotted the width of the pro-
files along a particular direction in thex-y plane, which we

chose along thex axis. We define the width of the profile as
the distancesalong thex axisd where the amplitude of the
respective profile is half of its peak value. The widths so
defined approximately gives the characteristic lengths of the
systems, i.e., coherence length and the penetration depth. For
a given value ofky and magnetic induction parameterb,
there is significant decrease in the width of the order param-
eter profilevsx,0d and the magnetic fieldBsx,0d with in-
crease of mass anisotropy. Similar behavior is also seen for
the order parameter profilevs0,yd and the magnetic induc-
tion Bs0,yd. The shape of the curves in Fig. 4 remains quali-
tatively the same for all values ofky.1/Î2.

To examine the dependence of the equilibrium applied
magnetic fieldBa on the mass anisotropy, we have obtained
the reversible magnetization curveMsBad of the ideal vortex
lattice for the entire range of the applied magnetic fields
Bc1,Ba,Bc2, i.e., for arbitrary magnetic induction
0,b,1 and various values of the mass anisotropy param-
eter g. The magnetization is defined by the well-known
relation

FIG. 2. Contour plots showing vortex lattice of order parametervsx,yd for sad g=1, sbd g=5, scd g=10, magnetic inductionBsx,yd for

sdd g=1, sed g=5, sfd g=10, andb=B̄/Bc2=0.4.

FIG. 3. Variation of peak amplitude ofBsx,yd versus mass an-
isotropy parameterg=mx/my for ky=70,80,100.
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− 4pM = Ba − B̄. s8d

The equilibrium applied fieldBa is obtained numerically
from the virial theorem for the vortex lattice

Ba =
kv − v2 + 2B2l

k2Bl
s9d

which is proven in Ref. 17. Figure 5 compares our numeri-
cally obtained result with that of the experimentally observed
behavior15 of the reversible magnetization curve of the vor-
tex lattice for YBa2Cu4O8. The open circles are the experi-
mental results and the continuous line is the numerical result
obtained for the parameter valuesk=70 andg=2 which are
approximately equal to the measured parameter values of
YBCO. The agreement between the experimental and nu-

merical plot is excellent. Figure 6 shows the variation of the
reversible magnetization with mass anisotropy parameterg.
It can be seen that the variations are appreciable for low
values of equilibrium applied magnetic fieldBa. For lower
values ofBa, the reversible magnetization for mass aniso-
tropic casesg=2d is lower than that of its value for isotropic
case sg=1d, but the corresponding values increases for
higher values of the mass anisotropy. However, for higher
values of the equilibrium magnetic fieldsBa/Bc2.0.5d, the
reversible magnetization for the mass anisotropic case is al-
ways larger than that of its value for the symmetric case. For
mass anisotropic case, one can notice that there is a very
small sbut nonzero,10−5d value of the reversible magneti-
zation atBa/Bc2=1 which goes to zero atBa/Bc2=1.2. This
may be an indication of recent observation that mass aniso-
tropy enhances upper critical fieldBc2 value.18

We now compute the shear modulus of the vortex lattice.
As has been mentioned above, the advantage of using the
Brandt’s iteration method is that it allowed us to calculate the
effect of mass anisotropy on the shear modulusc66 of the
vortex lattice for arbitrary values of the magnetic induction
parameterb and Ginzburg-Landau parameterky. For the iso-
tropic case, the shear modulus can be expressed by the
difference of the free energies of the rectangular lattice
f rect swith x2=0 and y2=Î3x1/2d and the triangular
lattice f tr swith x2=x1/2 and y2=Î3x1/2d.5 This is so
since the free energy for constant unit cell height
y2 varies practically sinusoidally withx2, i.e., fsx2d
< f tr+f1+coss2px2/x1dgsf rect− f trd /2. We have checked the
validity of this relation even for mass anisotropic case. For
each value of the mass anisotropy parameter considered here,
we have checked that the free energy for the corresponding
constant unit cell heighty2sgd varies practically sinusoidally
with x2. The shear modulus for the mass anisotropic systems
thus depends on three parametersc66=c66sb,k ,gd and is
given by

c66 = 2p2fy2sgd/x1g2

3hf rectfx2 = 0,y2sgdg − f trfx2 = x1/2,y2sgdgj. s10d

For g=1 fy2sgd=Î3x1/2g this reduces to the same expression
of c66 for the isotropic system.5 We have studied the behavior
of the shear modulus with change of mass anisotropy param-

FIG. 4. Plots of width ofvsx,0d andBsx,0d with b=B̄/Bc2 for
various values of the mass anisotropy parameterg=1,2,5,7,10
andky=70.

FIG. 5. Reversible magnetization curve calculated forky=70
and mass anisotropy parameterg=2. The solid line represent nu-
merically calculated results and the circles gives the experimental
data for YBa2Cu4O8 sRef. 15d.

FIG. 6. Reversible magnetization curvessin units Bc2d for vari-
ous values of the mass anisotropy parameterg=1,2,5,7 and
ky=70.
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eterg. The plot ofc66 versus the magnetic induction param-
eterb for a particular value of the mass anisotropy parameter
g=2 is shown in Fig. 7. The positive value ofc66 implies that
the vortex lattice with the particular symmetry consideredsin
this case, triangulard is stable. The profile shows that thec66
value increases from its zero value with increase of magnetic
induction parameterb, reaching a peak value at an interme-
diate value ofb, and then decreases with increase ofb to
zero value. The profile of thec66 plot for the anisotropic case
sg=2d looks qualitatively similar to that of the isotropic case
sg=1d,5 however, the peak positionsthe value of parameterb
for which thec66 attains peak valued and the peak amplitude
of c66 changes with increasing mass anisotropy. The peak
position and the peak amplitude ofc66 are important quanti-
ties. While the peak amplitude determines the hardness of the
vortex latticesstability of the vortex latticed, the peak posi-
tion sb valued denotes the magnetic induction at the peak
value. Our study of the effect of mass anisotropy on shear
modulus shows interesting results. It is observed that the
peak value of the amplitude ofc66 increases with increase of
mass anisotropy parameter. Forg=1, the peak amplitude
value is 0.041 which is in agreement with the value for the
symmetric case.5 In Fig. 8 we have plotted the peak ampli-
tude value ofc66 versus mass anisotropy parameters forky
=70. This is an important result, for it shows that the shear

modulus increases with increase of mass anisotropy or the
vortex lattice becomes harder with increase of mass aniso-
tropy. This implies that the ‘melting’ of the vortex lattice
with increasing mass anisotropy becomes more difficult. This
is contrary to the popular belief that the softening of the
vortex lattice is enhanced further by the pronounced aniso-
tropy. This is also expected from our earlier result of the
decrease of the penetration depth of the magnetic induction
with increasing mass anisotropy parameter as shown in Fig.
4 above. Since the shear modulusc66,1/lB

2, therefore it
increases with decrease of the penetration depth and the vor-
tex lattice becomes harder. Similarly, from our numerical cal-
culations we also observe that the value of the magnetic in-
duction at which the amplitude of thec66 attains peak value
also decreases with increase of the mass anisotropy param-
eterg. This is shown in Fig. 9. This implies that for a given
value of the Ginzburg-Landau parameterky and at lower
magnetic induction, the vortex lattice become harder with
increase of mass anisotropy.

IV. CONCLUSIONS

In conclusion, we have presented a detailed analysis of
the generalized anisotropic nonlinear Ginzburg-Landau
theory for high-temperature superconductors witha-b plane
mass anisotropy. The anisotropic nonlinear Ginzburg-Landau
equations are solved using a recently proposed high preci-
sion iterative method. We find that it is important to consider
the effect ofa-b plane mass anisotropy as even a small varia-
tions of the mass anisotropy parameter have significant effect
on several properties of the anisotropic high-temperature su-
perconductors. Since recent SANS andmSR experiments in
high-temperature superconductors have shown anomalous
magnetic field dependence of the scattering intensities and
the vortex lattice structure, therefore we have studied the
problem for arbitrary magnetic induction instead of restrict-
ing near the upper or lower critical fields. We obtain excel-
lent agreement between our numerical results and experi-
mental data of YBCO. Special attention is paid to the role of
mass anisotropy on the shear modulus of the vortex lattice
and we have obtained the important results that the shear
modulus increases with increase ofa-b plane mass aniso-
tropy and also that the shear modulus attains its peak value at
lower values of magnetic induction with increase of mass

FIG. 7. The shear modulusc66 in units Bc
2/m0 versusb for ky

=70 and mass anisotropy parameterg=2.

FIG. 8. Peak amplitude of the shear modulusc66 sin units
Bc

2/m0d versus the mass anisotropy parameterg for ky=70.

FIG. 9. Peak position ofc66 versus the mass anisotropy param-
eterg for ky=70.
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anisotropy. This has very important implication in the melt-
ing of the corresponding vortex lattices.

As has been mentioned above, the orthorhombic lattice
symmetry of YBCO is related to the mass anisotropy in the
a-b plane. Similarly, YBCO have a dominants-wave com-
ponent in the order parameter in addition to thed-wave order
parameter. This type of two component order parameter is
also associated with the orthorhombic symmetry. Therefore,
one should further generalize our study of the effect ofa-b
plane mass anisotropy on properties of high-temperature su-
perconductors by considering Ginzburg-Landau theory for
two component order parameter. There have been some at-
tempts in this direction, such as the two-component
Ginzburg-Landau theory to determine the structure of the
vortex lattice of heavy fermion superconductor UPt3 sRef.
19d and other superconductors with odd-parity superconduct-
ing order parameter, e.g., Sr2RuO4,

20 and also for supercon-

ductors with dx2−y2 symmetry with an induceds-wave
component.21 However, these studies are restricted to isotro-
pic case and also for magnetic field near lowersBc1d and
uppersBc2d critical fields. As discussed above, it is required
to further generalize these two-component Ginzburg-Landau
theories by taking into account the effect of mass anisotropy
and study the problem for arbitrary magnetic induction and
vortex lattice symmetry for better comparison of the theoret-
ical results with experimental observations. Work along this
direction is in progress and will be reported elsewhere.
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