PHYSICAL REVIEW B 71, 224504(2005

Anisotropic Ginzburg-Landau theory for arbitrary induction and vortex lattice symmetry:
Effects of a-b plane mass anisotropy on the properties of high-temperature superconductors
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We study the properties of high-temperature superconductorsaalittplane mass anisotropy. We obtain
high precision ideal vortex lattices solutions of the generalized anisotropic nonlinear Ginzburg-Landau equa-
tions for arbitrary magnetic induction and vortex lattices symmetry. The effeztgflane mass anisotropy on
various properties of the high-temperature superconductors, such as, order parameter, magnetic induction,
vortex lattice symmetry, reversible magnetization, and shear modulus of the vortex lattice are examined. We
compare our results with recent experimental data of XBgOg.
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[. INTRODUCTION associated with studying the Ginzburg-Landau equations for
arbitrary magnetic induction and any vortex lattice symmetry
Since the discovery of the high-temperature superconwas overcome by Brandt. In a recent pioneering work,
ductors, interest in studying the vortex configurations in lay-Brandt presentéda novel iteration method that solves
ered superconductors, the most important example being th@inzburg-Landau equations for arbitrary magnetic induction
cuprates high-temperature superconductors, has greatly iand any vortex lattice symmetry with high precision and ob-
creased. During the last decade many efforts have been feained many results which could not be obtained by earlier
cused on the understanding of the critical properties ofmethods! such as the shear modulus of the vortex lattice,
type-ll superconductors in the frame work of the Ginzburg-etc. This iterative method calculates various properties, such
Landau theory. Ginzburg-Landau calculations for a singleas local magnetic field and order parameter within a few
vortex core structure and the geometry of the vortex latticesterative steps for any magnetic induction within the range
of layered superconductors have produced many interestingightly above the lowest critical field up to upper critical
results which have been found to be very important for un4ield.
derstanding the field and temperature dependence of the Yet another limitation of the earlier studies of Ginzburg-
critical-current density in these superconductors. Landau theory is that most of these studies were for isotropic
However, most of these studies of Ginzburg-Landauype-Il superconductors. However, it is well known that the
theory are limited to high or low magnetic field where the high-temperature superconductors are highly anisotropic.
theory is linear, i.e., the external magnetic fieRjs— B, for  Anisotropy can be accounted in terms of an effective mass
isolated vortex solution dB,~ B, for periodic vortex lattice  tensor. For biaxial superconductarg, m,, andm, are dis-
solutions. On the other hand, recent small angle neutron scainct, whereas, for uniaxial superconductarg=m,. Even in
tering (SANS) and the muon spin rotatiofuSR) experi-  some cases where the effect of anisotropy were studied, the
ments of the flux line lattice in high-temperature studies were mostly limited to uniaxial superconductors and
superconductofsand UP§ superconductofshave shown for special cases near the lower and upper critical filds
anomalous magnetic field dependence of the scattering inteand B.,, respectively. Recent experiments have shown that
sities and the vortex lattice structure. Thus, to compare théhe effect of anisotropy introduces considerable changes,
theoretical results with the SANS andSR experiments, such as distortion of flux line latticéFLL), vortex lattice
study of the nonlinear Ginzburg-Landau equations is remelting via an intermediate phase, oblique structure of vor-
quired for the entire range of magnetic fiedd; <B,<B.,.  tex lattice, et€ It is observed that many properties of the
Some earlier attemptgo study Ginzburg-Landau equations cuprate high-temperature superconductors are anisotropic
for arbitrary magnetic induction, e.g., the extension of themainly due to the nature of the Cu®lanes. Experiments
B, solutions by Eilenberger, the circular cell method for theusing small angle neutron scattering as well as scanning tun-
extension 0B, (isolated vortexsolutions by lhle, the varia- neling microscopy(STM)’ show that there is significant lo-
tional method by Brandt and also Clem and Hao, had theical electronic inhomogeneity which lead to anisotropy even
limitations. While Eilenberger solutions by complex serieswithin a CuQ, plane. For example, YB&u;O- is not in the
expansion applies only in a narrow field range beBw the  pure tetragonal phase due to the existence of CuO chains in
circular cell method by Ihle, even though it accurately com-the b direction® Large anisotropy betweenandb directions
putes magnetization curves, cannot yield, in principle, propfor YBCO are seen in the measurements of penetration
erties related to different symmetries of the vortex lattice ordept? and the vortex structure by STMWhile a tetragonal
to its shear modulus. Similarly, the variational methods aciattice structure is appropriate forwave pairing symmetry,
curacy depends on the number of variational parameterisis now believed that YBCOs have a dominaawvave com-
used, which have to be compromised with the available component in the order parameter in addition to th@ave order
putational time and computer efficiency. These restrictiongparameter. This type of two component order parameter is

1098-0121/2005/422)/2245047)/$23.00 224504-1 ©2005 The American Physical Society



A. ACHALERE AND B. DEY PHYSICAL REVIEW B 71, 224504(2005

associated with the orthorhombic symmetry. The orthorhomiarge magnetic penetration depth. It is believed that this
bic lattice symmetry of YBCO originates from the mass an-softness is further enhanced by layered structure and the
isotropy between tha andb directions, withm, larger than mass anisotropy of the high-temperature superconductors.
my,. Theoretical calculations have shown that the mass aniséFhermal fluctuations and softening may “melt” the vortex
tropy gives rise to a nonzerswave component and clear lattice and cause thermally activated depinning of the flux
evidence for this kind of mixing has been found in the recentines. Very recently, the Lindenmann criteria of vortex lattice
c-axis Josephson experimeftsSimilarly, measurements of melting has been formulated in terms of fluctuations of a
the magnetic-field dependence of the thermal conductivity okingle vortex over a characteristic length termed as the
BSCCO shows a large anisotropy in tad plané? suggest-  “single-vortex length” and this length also depends on the
ing that the number of thermally excited quasiparticles areshear modulusgg of the vortex latticé'® Therefore, we care-
different along the two axes of theeb plane. fully examine the effect of mass anisotropy on the magnetic
In order to examine the effect of the mass anisotropy befield penetration deptiigiven mainly by the width of the
tweena and b axis in the Cu@ plane of various high- magnetic inductiorB(x,y) curve] and the shear moduliuggg
temperature superconductors, we present in this paper ths the vortex lattice.
results of our high precision numerical study of an aniso- The paper is organized as follows. Section Il describes the
tropic Ginzburg-Landau theory using Brandt's iterationtheoretical formalism. Section Il describes the numerical
method® For better comparison of our theoretical resultsmethod used for studying the problem, the results of the
with the experiments, we study the anisotropic Ginzburg-numerical calculations, and analysis of the results. Finally, in
Landau theory for the entire ranges of magnetic fiddds  Sec. IV we conclude with suggestions for future work.
<B,<B, and arbitrary value of Ginzburg-Landau param-
eter as well as arbitrary vortex lattice symmetry. To the best
of our knowledge, we present for the first time high precision Il. THEORETICAL FORMALISM
results of the ideal vortex lattice solutions of the nonlinear ) ) ) )
anisotropic Ginzburg-Landau theory, for arbitrary magnetic_ 1he free energy of the two-dimensional anisotropic
induction and vortex lattice symmetry. anzburg-Landau theory in a geometry such that the _apph_ed
We have taken the anisotropy into account based on afield is orthogonal to the an!sotrqplc plane_can be written in
anisotropic effective mass approximation within GuO terms of the real gauge invariant functions(x,y) and
planes and quantified the mass anisotropy through an anis@(X.Y) as*
tropic mass parametey=m,/m,, wherem, and m, are the i Vol Vo
effective masses in the andy directions, respectively. We f={ -0+ +(VXQ?2+———+0QlI'Q), (1)
assume the vortex lattice to be aligned along the symmetry 2 Aryw

axes of the crystal and accordingly consideandy direc- whereQ(x,y)=A(x,y) - V ¢(x,y)/ x, is the supervelocityA
tions parallel toa and b directions of the anisotropie-b s the vector potentialeiBzV&A is the local field
plane, respeptively. From the measurement of anisotropy o£=|¢|z$1 is expressed in terms of the Cooper |E)air
the penetration depth, the mass anisotropy parameter %‘ensity or Ginzburg-Landauy function as Ax,y)

YBa,Cuy0g o5 is Obtained asy=2.42 Of course, the aniso- - [ . . . .
tropy of the properties of a superconductor can set in as a_\,w(x,y)exdlcp(x,y)], andT’ is the anisotropic mass tensor

result of electron pairing in states with nonzero orbital angu-g'ven by
lar momentunl. We, however, confine ourselves to the sim- my/m, 0
plests-type pairing(i.e.,|=0) and therefore regard the effec- = o 1

tive ¢ function of the Ginzburg-Landau theory as a complex

scalar. To study the effect of mass anisotropy we consider thelere (- -) denote average value which is obtained by sum-
generalized anisotropic nonlinear Ginzburg-Landau equaming over equidistanfN points in 2D grid with constant
tions and solve the equations numerically using the high preweight 1/N.> We have introduced here the reduced dfits
cision iterative method due to BrantfThe advantages of \a/p, ®y/2mE,, and\, for the order parametef(x,y), mag-
using Brandt’s iterative method are that this genuinely twonetic vector potentiaA(x,y), and all lengths, respectively.
dimensional method applies down to very low magnetic in-The Ginzburg-Landau parameter and the coherence length
ductions 10®<b<1, whereb=B/B, and also to all rel- along the y direction are defined asxy=\,/§
evant Ginzburg-Landau parametersy2& k<. The best =P/ 277\528C§§ and §&,=h/\2mya, respectively, where
advantage of Brandt's methdis that it can yield properties B2/8m=a/p, a and 8 being the standard Ginzburg-Landau
related to the different symmetries of the vortex lattice or itsparameters. Hence the local magnetic fiBlds expressed in
shear modulus. The other methods used for studying thenits of y2B.. We expressw, B, andQ(x,y) as the Fourier
Ginzburg-Landau equations, for example, the circular celkeries

method? cannot yield properties related to the different sym-

metries of the vortex lattice or to its shear modulus. Calcu- o(r) =2 ac(1-cosK -r), 2
lation of shear moduluécgg) is very important for determin- K

ing the stability property of the vortex lattice, such as .

melting of the vortex lattice. The vortex lattice in the high- B(r)=B+ >, b cosK -r, 3)
temperature superconductors is very soft mainly due to the K
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5% K 0.477

Q(r):QA(r)"'EbK? sinkK -, (4)
K

where the sums are over all reciprocal lattice vector space
Kmn# 0 with r=(x,y). For vortex positionR=R,,=(mx
+nx,,Nny,), where m,n are integers, the reciprocal lattice
vectors are given bK =K ,,=(27/S)(my,,nx; +mx,) with

S=x1y,=®y/B the unit cell area. By varying these lattice
symmetry parameters, X,, andy, we can continuously go
from one particular symmetry of the vortex lattice to the
other. For example, for square lattigg=x; andx,=0, while
for triangular latticey,=v3x,/2 andx,=x;/2. The shape of 0.462 , , :
the unit cell can be varied periodically from square to trian- % 0.4 0.6 0.8 1
gular if y,=x; and by increasing, continuously. This is Y2

useful for calculation of shear modulugg of the vortex

lattice as described below. It should be noted that for the FIG. 1. Free energy in unit8/ uo versusys (in units x,) for
mass anisotropic case, tiyg value of the corresponding tri- %y=70 and mass anisotropy paramejer2.

angular vortex lattice need not be equal®x,/2 as in the
isotropic case. The, value for the anisotropic case can be lll. NUMERICAL CALCULATIONS AND RESULTS

obtained by calculating the dependence of the free energy To start with, we calculate the dependence of the free
f(x,=x1/2,y,) ony, and locating the position of the mini- energyf(x,=x,/2,y,) ony, and find the value of, which
mum of the free energy. Our goal is to determine the Fourieminimises the free energy, for various values of the mass
coefficientsa, andby for arbitrary magnetic induction, vor- - anisotropy parameter. We find that for the isotropic case
tex lattice symmetry, and Ginzburg-Landau parameter. Earﬁ,z 1) the free energy is minimized fcyzz\gxl/z, as ex-

lier variational methods of obtaining the approximate solu- : ; ;
. . . S pected and for the anisotropic cage>1) the corresponding
tions of the Ginzburg-Landau equation were limited tovalue ofy, is not equal toy3x,/2 but it depends on the

considering a finite number of Fourier coefficienisandby : .
and determining these coefficients by minimizing the Corre_partmular value of the mass anisotropy paramgierys(y).

sponding free energy(B, x,ax ,bx) with respect to these F(_)r_ex_ample, forZ—Z case,_th_e free en(-_zrgygz_xllz,yz) IS
coefficients' However, the accuracy of the results obtainedmlnlmlzeOI foryz—_0.5x1. This is shown n Fig. 1, wher_e we
by these variational methods depended largely on the numbef "€ plottedf(x,=x,/2,y,) as a function ofy, for y=2.

of Fourier coefficients used and only few coefficients could Emlarly, we find that for the mass anisotropic parameter
be used in practice since the computational time increase’é_s’ 4, 5, 6, and 7, the free energy is minimized for

very fast with increase in the number of these coefficientsy2=0-63%1, ¥2=0.71x;, y,=0.77%,, y,=0.866, and

Brand? recently showed that a much faster and more aCCUYZzo'g.Z(l' respectively.. . .
y We iterate the three iteration Eq$)—(7) to determine the

t luti btained by iterating the t Ginzburg- . . .
[Zﬁdzz uelc?lTastic?rq?ﬁf? 55':5 angi/ (;f(/agang% F((a)r v;/;lblén;ngrg coefficientsax andby. Following Brandf we start the itera-

rapidly converging iterations, the trick is to write these two tion th')thkthe coeff;mer;tsaKta a ar.]dt:'(_(.)' Whetjr;:; %e?r?te
nonlinear Ginzburg-Landau equations as inhomogeneo € ADrikosov value Tor the anisotropic sys n en

London-like equations, the inhomogeneous terms comin pliow the Qrder of the i;eration sequence as foIIo_ws: we
from the nonlinear terms of the equations. Yet another tric erate the first two equatiorj&gs. (5) and (6)] a few times

to improve the convergence of the iteration is to add a third© rélaxw and then iterate all t_hfee_ equations E(@.—(?)_ to
equation which minimize$ with respect to the amplitude of relaxB. The number OT such triple iteration steps. required for
w. The resulting three equations for determining the coeffi-the solutions to remain constant up to the desired accuracy
cientsay andby of the required solutions of the anisotropic depend on the parameter values in the theory as well as on

nonlinear Ginzburg-Landau equations are giveHby the desired symmetry of the vortex I_attlce. Our nu_merlcal
results shows that even small variations of the anisotropy
 — 420 - 0* - wQI'Q - g)cosK - 1)

parametery=m,/m, have significant effect on several prop-

=X1/2 ’ yz)
e
N
~1
[\

&
=
=N
<

T(x,y

K- KTK + 22 ) erties of the ideal vortex lattice, such as the order parameter,
Y magnetic induction profile, the reversible magnetization, the
(0 - wQT'Q - g)) shear modulus, etc. To compare our numerical results with
K - > , (6) the available experimental data, we use parameter values in
(0% our calculations appropriate to anisotropic high-temperature
- superconductors YBCO. For example, the measuredlues
b, _ X[wB - w(B-B) + p]cosK -r) R for YBa,Cu,Og polycrystald® and Nd gCe, ;Cu0,_; single
K™ m, _ ’ crystal$® are k=70 and«x=80, respectively. Similarly, from
rr_lyKFK to the measurements of the penetration depth, the mass aniso-
tropy parameter for YB#Zu;0g o5 iS Obtained agy=2.49
whereg:le“VwMKf,w and p=(Vw X Q)-z. Here the no- The solutions of the anisotropic nonlinear Ginzburg-
tation := denotes replacement. Landau equations are obtained for arbitrary values of the
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FIG. 2. Contour plots showing vortex lattice of order parametex,y) for (&) y=1, (b) y=5, (c) y=10, magnetic inductiol(x,y) for
(d) y=1, (e) y=5, (f) y=10, andb=B/B,=0.4.

various parameters involved, such as mass anisotropy pararmhose along the axis. We define the width of the profile as
eter y, Ginzburg-Landau parametes, magnetic induction the distancgalong thex axis) where the amplitude of the
parameteb=B/B,, and the vortex lattice symmetry param- respective profile is half of its peak value. The widths so
etersx,/x; andy,/x,. The results are shown in the figures. It defined approximately gives the characteristic lengths of the
is clear from these figures that theb plane mass anisotropy Systems, i.e., coherence length and the penetration depth. For
have significant effect on the physical properties of the higta given value ofx, and magnetic induction parametby
temperature superconductors. there is significant decrease in the width of the order param-
Figure 2 shows the contour plots of the profileéx,y)  eter profilew(x,0) and the magnetic field(x,0) with in-
and B(x,y) for different values of the mass anisotropy pa-crease of mass anisotropy. Similar behavior is also seen for
rametery. The effects of the mass anisotropy on the ordetthe order parameter profile(0,y) and the magnetic induc-
parameter and the magnetic induction are very much evideriton B(0,y). The shape of the curves in Fig. 4 remains quali-
from these plots. For a given value of the parameigrand  tatively the same for all values of,> 1/v2.
b, the width of the order parametexx,y) and the magnetic To examine the dependence of the equilibrium applied
inductionB(x,y) decreases with increase of mass anisotropynagnetic fieldB, on the mass anisotropy, we have obtained
parametery. There is also an associated distortion of thethe reversible magnetization curi#(B,) of the ideal vortex
individual vortex profile with increase of mass anisotropy.lattice for the entire range of the applied magnetic fields
For a given value of the mass anisotropy parametethe B <By<Bc,, i.e., for arbitrary magnetic induction
amplitudes as well as the width of the order parameter an@<<b<'1 and various values of the mass anisotropy param-
magnetic induction profile depends on the magnetic induceter y. The magnetization is defined by the well-known
tion parameteb. However, the shape of the curves remainsrelation
qualitatively same for all values of,. Similar behavior is

also observed in the study of the isotropic caségure 3 040007}
shows the plot of the peak amplitude variation Bfx,y) Z
profile with mass anisotropy parametgrAs has been men- =
tioned above, the variation of the amplitude and width of §
B(x,y) profile is directly related to the shear modulus of the 2 0.40004|
the vortex lattice since the shear modulus depends on the E
penetration depth of the magnetic field. Figure 4 shows the 2
variation of width of the order parameter profiléx,0) and §

B(x,0) with magnetic induction parametbrand mass aniso- 0.40001

) : 0
tropy parametery. Since the shape of the profiles @fx,y)
and B(x,y) becomes asymmetric with increase of mass an-
isotropy parametet, we have plotted the width of the pro- FIG. 3. Variation of peak amplitude @(x,y) versus mass an-
files along a particular direction in they plane, which we isotropy parametey=m,/m, for «,=70,80,100.

224504-4



ANISOTROPIC GINZBURG-LANDAU THEORY FOR.. PHYSICAL REVIEW B 71, 224504(2005

-
n

0.55 V=
0.0003} 0.00036 | '

(S

B

7 | 0.00024

e
5

L 0.00012

0 0.015

width of ® (x,0)

0 04 08 .
(a) B/Bc, % 0.4 0.8 1.2
B,/B,,

0.5 Y=; FIG. 6. Reversible magnetization curv@s units B,) for vari-

//—/3 ous values of the mass anisotropy parameyerl,2,5,7 and

1 Ky=70.
. ﬁ/ merical plot is excellent. Figure 6 shows the variation of the
reversible magnetization with mass anisotropy paramgter
It can be seen that the variations are appreciable for low
values of equilibrium applied magnetic fiel,. For lower
values ofB,, the reversible magnetization for mass aniso-
tropic casegy=2) is lower than that of its value for isotropic
case (y=1), but the corresponding values increases for
higher values of the mass anisotropy. However, for higher
values of the equilibrium magnetic field,/B.>0.5), the
reversible magnetization for the mass anisotropic case is al-
_ ways larger than that of its value for the symmetric case. For
—47M =B, - B. (8)  mass anisotropic case, one can notice that there is a very
small (but nonzero~107°) value of the reversible magneti-
zation atB,/B.,=1 which goes to zero &,/B,=1.2. This
may be an indication of recent observation that mass aniso-
(0 - w?+2B?) tropy enhances upper critical fieR}, value!®

Q= T (9) We now compute the shear modulus of the vortex lattice.

As has been mentioned above, the advantage of using the
which is proven in Ref. 17. Figure 5 compares our numeri-Brandts iteration method is that it allowed us to calculate the

cally obtained result with that of the experimentally observedEfféct of mass anisotropy on the shear modudysof the
behaviot® of the reversible magnetization curve of the vor- vortex lattice for arbitrary values of the magnetic induction
tex lattice for YBaCu,Og. The open circles are the experi- Parameteb and Ginzburg-Landau parametey. For the iso-
mental results and the continuous line is the numerical resuffOPIC case, the shear modulus can be expressed by the
obtained for the parameter values 70 andy=2 which are difference of the free energies of the rectangular lattice
approximately equal to the measured parameter values dfect (With X;=0 and y,=v3x/2) and the triangular

YBCO. The agreement between the experimental and ndattice fy (With x,=xi/2 and y,=13x,/2).° This is so
since the free energy for constant unit cell height

y, varies practically sinusoidally withx,, i.e., f(x,)

=~ f, +[1+cod2mX,/%1)|(frec— i) /2. We have checked the
validity of this relation even for mass anisotropic case. For
each value of the mass anisotropy parameter considered here,
we have checked that the free energy for the corresponding
constant unit cell heighy,(y) varies practically sinusoidally
with x,. The shear modulus for the mass anisotropic systems
thus depends on three parametegg=cgs(b,x,y) and is
given by

Cos = 2L Y2(Y)Ixq ]

. . X{frecl X2 = 0,y2(Y)] = fulXo = x1/2,yo(y) ]} (10)

FIG. 5. Reversible magnetization curve calculated &g+ 70 — . .
and mass anisotropy parametgr2. The solid line represent nu- FOr y=1[y,(y)=y3x,/2] this reduces to the same expression
merically calculated results and the circles gives the experimentadf Cgg for the isotropic systerdWe have studied the behavior
data for YBaCu,Og (Ref. 15. of the shear modulus with change of mass anisotropy param-

=

width of B(x,0)
=
i

=4
-
(=]

04 0.8
(b) B/Bc,

FIG. 4. Plots of width ofw(x,0) andB(x,0) with b=B/ B, for
various values of the mass anisotropy parameted,2,5,7,10
and k,=70.

The equilibrium applied fieldB, is obtained numerically
from the virial theorem for the vortex lattice

0.02

- [l
S 0.01}
<
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0.6
031
04} o 0.26}
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- =
A=
M 0.221
0.2}
0.185 2 4 6 8
v
0% 0.2 0'.4_ 0.6 0.3 1 FIG. 9. Peak position ofgg versus the mass anisotropy param-
B/B,, etery for x,=70.

FIG. 7. The shear modulusg in units Bﬁ/,uo versusb for

~70 and mass anisotropy paramefer2. modulus increases with increase of mass anisotropy or the

vortex lattice becomes harder with increase of mass aniso-
o ) tropy. This implies that the ‘melting’ of the vortex lattice
etery. The plot ofces versus the magnetic induction param- with increasing mass anisotropy becomes more difficult. This
eterb for a particular value of the mass anisotropy parametefs contrary to the popular belief that the softening of the
y=2 s shown in Fig. 7. The positive value afsimplies that  yortex lattice is enhanced further by the pronounced aniso-
the vortex lattice with the particular symmetry considefied  tropy. This is also expected from our earlier result of the
this case, triangulauis stable. The profile shows that thg;  gecrease of the penetration depth of the magnetic induction
induction parameteb, reaching a peak value at an interme- 4 spove. Since the shear modulag~ 1/\2, therefore it
diate value ofb, and then decreases with increasebofo  jncreases with decrease of the penetration depth and the vor-
zero value. The profile of these plot for the anisotropic case ey |attice becomes harder. Similarly, from our numerical cal-
(¥=2) looks qualitatively similar to that of the isotropic case ¢yjations we also observe that the value of the magnetic in-
(y=1),° however, the peak positidthe value of parametdr  duction at which the amplitude of thgy attains peak value

for which thece attains peak valyeand the peak amplitude also decreases with increase of the mass anisotropy param-
of cgs changes with increasing mass anisotropy. The peaktery. This is shown in Fig. 9. This implies that for a given
position and the peak amplitude of are important quanti- value of the Ginzburg-Landau parametey and at lower

ties. While the peak amplitude determines the hardness of th@agnetic induction, the vortex lattice become harder with
vortex lattice(stability of the vortex latticg the peak posi- increase of mass anisotropy.

tion (b value denotes the magnetic induction at the peak
value. Our study of the effect of mass anisotropy on shear

modulus shows interesting results. It is observed that the IV. CONCLUSIONS
peak value of the amplitude afg increases with increase of ) . ,
mass anisotropy parameter. For1, the peak amplitude In conclusion, we have presented a detailed analysis of

value is 0.041 which is in agreement with the value for theth® generalized anisotropic nonlinear Ginzburg-Landau
symmetric casé.In Fig. 8 we have plotted the peak ampli- th€ory for high-temperature superconductors vaih plane
tude value ofcgg versus mass anisotropy parameters dr mass anisotropy. The anisotropic nonlinear Ginzburg-Landau

=70. This is an important result, for it shows that the sheafduations are solved using a recently proposed high preci-
sion iterative method. We find that it is important to consider

the effect ofa-b plane mass anisotropy as even a small varia-
tions of the mass anisotropy parameter have significant effect
Y on several properties of the anisotropic high-temperature su-
perconductors. Since recent SANS agnfiR experiments in
high-temperature superconductors have shown anomalous
magnetic field dependence of the scattering intensities and
the vortex lattice structure, therefore we have studied the
problem for arbitrary magnetic induction instead of restrict-
ing near the upper or lower critical fields. We obtain excel-
lent agreement between our numerical results and experi-
mental data of YBCO. Special attention is paid to the role of
0 . . mass anisotropy on the shear modulus of the vortex lattice
and we have obtained the important results that the shear
modulus increases with increase @b plane mass aniso-
FIG. 8. Peak amplitude of the shear modulug (in units  tropy and also that the shear modulus attains its peak value at
B2/ uo) versus the mass anisotropy parametdor Kky=70. lower values of magnetic induction with increase of mass

3

(]
T

—
T

Peak amplitude of ¢

Y

224504-6



ANISOTROPIC GINZBURG-LANDAU THEORY FOR.. PHYSICAL REVIEW B 71, 224504(2005

anisotropy. This has very important implication in the melt-ductors with d,2_,» symmetry with an induceds-wave
ing of the corresponding vortex lattices. component! However, these studies are restricted to isotro-
As has been mentioned above, the orthorhombic latticpic case and also for magnetic field near lowBy,) and
symmetry of YBCO is related to the mass anisotropy in theupper(B,) critical fields. As discussed above, it is required
a-b plane. Similarly, YBCO have a dominasiwave com- to further generalize these two-component Ginzburg-Landau
ponent in the order parameter in addition to theave order  theories by taking into account the effect of mass anisotropy
parameter. This type of two component order parameter iand study the problem for arbitrary magnetic induction and
also associated with the orthorhombic symmetry. Thereforeyortex lattice symmetry for better comparison of the theoret-
one should further generalize our study of the effecadf jcal results with experimental observations. Work along this
plane mass anisotropy on properties of high-temperature sitirection is in progress and will be reported elsewhere.
perconductors by considering Ginzburg-Landau theory for
two component order parameter. There have been some at-
tempts in this direction, such as the two-component
Ginzburg-Landau theory to determine the structure of the The authors would like to thank Dr. E. H. Brandt for help
vortex lattice of heavy fermion superconductor YPRef.  with the numerics. The authors would also like to thank DAE
19) and other superconductors with odd-parity superconducttindia) for financial assistance through the BARC-Pune Uni-
ing order parameter, e.g., Ru0,,?° and also for supercon- versity research collaboration program.
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