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We study effects of nonmagnetic impurities on the competition between the superconducting and electron-
hole pairing. We show that disorder can result in coexistence of these two types of ordering in a uniform state,
even when in clean materials they are mutually exclusive.
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I. INTRODUCTION der, are mutually exclusive, disorder stabilizesumiform

At low temperatures, many metals undergo a transitiorstate, in which su_percor)ducting and insulating order param-
into a state with a gap in the single-electron excitation spec€ters coexist. While having no effect on the superconducting
trum and become either superconductors or insulators with B@se, nonmagnetic disorder tends to close the CDW gap
periodic modulation of the electron charge or spin densityP€fore completely suppressing the corresponding order pa-
The insulating and superconductit®C) orders inhibit each ~rameter. Disorder induces low-energy states by breaking
other by reducing the fraction of the Fermi surface availables°me of the electron-hole pairs. The released electrons and
for the gap of the competing phase. The balance between tH¥!€s can subsequently form Cooper pairs, resulting in the
two phases is very sensitive to the Fermi surface shape arfexistence of the two phases. .
can be changed by, e.g., pressure, doping, or magnetic field. While in usuals-wave superconductors, nonmagnetic im-

Nonetheless, in a surprisingly large number of materialdurities have little effect on the transition temperattirex-
the SC and insulating states coes4idfThis paper is focused periments on electron irradiated transition metal dichalco-
on the coexistence of superconducting and charge densiénides have shown strong dependence Tef on the
wave (CDW) states, observed in, e.g., layered transitionconcentration of defects. This was attributed to the inter-
metal dichalcogenidess2NbSe and H-TaS,35the quasi- play between the SC and CDW orderings: Similarly to effect
one-dimensional compound NbSe tungsten bronzes of |_0ressuré'?;6 _dlsorder strongly suppresses the CDW state,
AWO,,78 and quarter-filled organic materid¥4® One of the which results in the observed increase of the SC critical tem-
best studied and best characterized CDW superconductorsR§rature. Theoretically, the combined effect of the CDW
the transiton metal dichalcogenideHNbSe. At T modulation and disorder on the pairing instability have been
=33.5K this compound undergoes a second-order phaseéume_d in Ref. 20, where an |_ncreaseTwaas found. How-_
transition to an incommensurate CDW stHté? which is  €Ver in that paper the amplitude of the CDW modulation
likely driven by the nesting of a part of the Fermi Was assumed to be fixed, which is clearly insufficient in view
surface!®14 The resistivity, however, remains metalliclike of. the strong suppression of t.he CDwW state by disorder. In
down to T,=7.2K, at which this material becomes this paper we solve self-consistency equations for both SC
superconducting?® and the superconductivity coexists with @1d CDW order parameters, which allows us to study the
the CDW modulationd® The coupling between the CDW interplay between these two different orders and obtain the
and SC order parameters, resulting from the competition bd€mperature versus disorder phase diagram of CDW super-
tween these two states, was observed in a number of expeffonductors. - _ _
ments. Thus, the suppression of the charge density modula- 1h€ remainder of the paper is organized as follows. In
tion by pressure and hydrogen intercalation results in arp€C- Il we formulate an effective model describing the inter-
increase ofT,.51617A similar interplay between the CDW play between the superconducting and excitonic pairing. The
and SC states upon applied pressure and doping is observé@lf_-cons_lstency equatlon_s for the two order parameters are
in NbSe and tungsten bronz&s? derived in Sec. lll, and in Sec. IV we analyze the phase

In this paper we adopt a rather general, though simplifiedg'agram of the quel. In Sec. V we Q|scuss the electron-hole
viewpoint on the interplay between the SC and CDW statesSYMmetry underlying the model and its consequences for the
We assume that it originates from the competition betweefh@se diagram. Finally, we conclude in Sec. VI. The details
two different Fermi surface instabilities: the instability to- Of the derivation of the effective model can be found in the
wards the electron pairing, which gives rise to superconducfPPendix.
tivity, and the instability towards the electron-hdler exci-
tonic) pairing. Here, we focus primarily on the effects of
quenched disorder on this competition. We show that even in
“the worst case scenario,” when the two states compete over In the following we consider the microscopic Hamil-
the whole Fermi surface and therefore, in absence of disotonian

Il. THE MODEL
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effects may be neglected. In the absence of disorder, the
B same mode(1) has been employed to study the competition
between SC and El states for an arbitrary ratio of electron
and hole densitie€ The effect of disorder on the El state
—p alone has been considered in the seminal work of Ref. 23,
where the analogy of the problem to amwave supercon-
ductor in presence of magnetic impurifiésvas drawn.

The particular fermion-fermion interactions considered in
Eq. (1)—attraction between electrons of the same type and
repulsion between tha andb electrons—open the possibil-
ity to have simultaneously both superconducting and insulat-

ep(k)

£a(k)

FIG. 1. Schematic picture of the holelika) and electronlikeb)
bands.

= dx P e (=iV.) + U(x . ing instapilities. A more realistic star.ting pgint wogld be a
f {g ]_:E&b Yiole 71V + UC0LY, model with attractive phonon-mediated interactions and
: : : : Coulomb repulsion between all types of electrons. However,
= 01(ay Y Yy Ya) + Pyt Yoy o o)) it is possible to demonstrate that, since the former are re-
1 + tarded, while the latter is practically instantaneous, the SC
+ / ;
922/ l/fagl/fagl/fb(,rllfbu} @ and El order parameters turn out to have a very different

dependence on the Matsubara frequeacyThis is clearly
describing two types of fermions, one with holelike disper-shown in Fig. 2: The SC order parameter is large at small
sion (a electrong and another with electronlike dispersiim  frequencies, while at higher values, it decreases in magnitude
electron, &j, (k)= (kK2 -k?)/2m(fi=1), whereu=kZ/2m  and finally changes sign whan is of the order of the pho-
denotes the chemical potentiakee Fig. 1 Here, in compari- non frequency),.?> By contrast, the El parameter is large at
son with the models generally used to represent CDW syshigh frequencies and has a dip fles < Q. In other words,
tems, two nested parts of a single Fermi surface are replacefle difference in frequency scales of the attractive and repul-
by two spherical Fermi surfaces matching at the Fermi wavgjye interactions allows both instabilities to be present simul-
vectorkg. The excitonic insulatofEl) state is the condensate taneously. Furthermore, in the weak coupling limit and for a

of pairs formed byb electrons andh holes (or vice versa weak disorder, i.eI’ <), the frequency dependence of the

‘(’j‘"th thte Z?rol tottal mhorlnentqﬁ%. It.t'ﬁ ?hn e:ntallog of the con- two order parameters can be found separatelysforl” and
ensate of electron-hole pairs wi € total momenti@ 0=, Furthermore, it can be shown that the self-

whereQ is a nesting wave vector, appearing in the CDWconsistency equations for the order parametegs=ed coin-

state. ) . ; .

The disorder potential(x) encapsulates the effect of cide with the ones obtained from the ”.‘0“33?" Wh'Ch. there-
nonmagnetic impurities in the system. Here, we assume th re can be mterpreted as an effective interacting model.
the latter is drawn at random from a Gaussian distribution echnical details together with the freq'u'ency depgndence of
with zero mean and variance given by the two order parameters and the explicit expressions for the

coupling constantg; and g, in terms of the Coulomb and

r electron-phonon couplings can be found in the Appendix.
(U)U(y)) = Py a(x-y), (2
F

whereT is the inverse scattering time ang=mk-/27° is

the density of states at the Fermi energy. For simplicity we
have assumed the electron and hole effective masses to be
equal.

The interaction term characterized by the coupling ™, /
strengthg, describes the attraction between electrons of the 0.11
same typele.g., due to the phonon exchangehile theg,
term describes th€Coulomb repulsion between tha andb
electrondg,;,9,>0). The attraction between electrons favors
s-wave superconductivity, while the second interaction leads
to an attraction between electrons and holes and vice versa,
favoring the EI state. Here, we neglect the interband electron
transitions due to scattering of impurities and electron-
electron interactions, so that the numbers of ¢hand b
electrons are separately conserved and fixed by the chemical -0.1 ' '

. . 210 -5 0 5 10
potential. Such terms will formally destroy long-range order 0/,
of the EI phase, corresponding to the suppression of the
long-ranged CDW order, due to the pinning of the CDW  FIG. 2. The dependence of the superconductauid line) and
phase by randomly distributed impurities. However, for theexcitonic (dashed ling order parameters on the Matsubara fre-
essentially short-length-scale physics we shall discuss, thesgencyw (see Appendix for details

0.2

-----------. ---.-,-.----
~—a -

Order parameter
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Ill. ORDER PARAMETERS
AND SELF-CONSISTENCY EQUATIONS Z"= f D(W, ¥ f DA,DA,
Four order parameters describing the SC and El states can B R A2 A2
be introduced by means of the following anomalous averages X ex J er dx| P19, + H)W + 29—l + Zg—2 .
0 1 2
A1a= 9xl e a))s Aan= 9ol ior o) Here, omitting the replica indices for clarity, the fermion
field is a;rrar]rged in a Nambu-like spinor¥’
Ay = —gz<¢;¢m>, Ay = —gz<¢;u//m>- =(thoy, hay» Y » ¥a)) In such a way the single quasiparticle

Hamiltonian takes the following form:

Since the numbers of tha- and b-fermions are separately
conserved, for homogeneous states, we use the global gauge
transformation

H= %‘3730'3 +UX) 13+ A7y + Ay7307, (3

where gﬁz—V)Z(/Zm—,u and the Pauli matrices, and o (c
=1, 2, 3 act, respectively, in the particle-hole and thea
subspace.

The ensemble average over the quenched random poten-

o> €924, P> €0y,

to make the SC order parametéyg, and A, real and posi-

tive. Moreover, as electrons and holes are characterized It_}éial distribu;ion(?) indzuces.a time nonlocal quartic interac-
the same dispersion, we can require, without a loss of gerfions Jdx(Jodm¥7s%)%, which can be decoupled by means
erality, that of a Hubbard-Stratonovich transformation with the introduc-

tion of a matrix field%(x) local in real space, and carrying
Ap=Ap=A,>0. replica, Matsubardw,=(2n+1)x/B] and internal(particle-

hole andb, a) indices. Integrating over the Fermionic fields
In case of a spin-independent interaction, as in @y. sin- V¥, one obtains the ensemble averaged replicated partition

glet and triplet exciton pairs are degenerate in energy. Thifinction
gives rise to a large symmetry class of transformations for
the El order parametek,,. In reality, however, this degen- (Z" = f DA,DA, f DIe A,
eracy is lifted by Coulomb exchange interactions and inter-
band transitions. Therefore, we will assume the exciton pairgyhereF is the free energy of the system
have zero total spin, i.e;;=A; =A,. 5 5 5
i A A -
. Flnally we note thg;, whem\;, A,#0 and _Az has an ge=| dr| dx 221,2%2) -6
imaginary part, a pairing of electrons of different types 0 g O
A1ap= 092 Wat o)) = —9a{ 1 tha) May be preserté However,
one can show the energy of the state with coexisting SC and TVE f d 2
: X -— t 4
El orders to be the lowest for redl,, in which caseA;,, r X200 7] @
=0. R
By analogy with the case of magnetic impurities in andg is the quasiparticle matrix Green function in the pres-
s-wave superconductofé restricting attention to the limitin ence of disorder
which the disorder potential imposes only a weak perturba- ~ A
tion on the electronic degrees of freed¢m<T’), the mean —G = logt GTaogt Ay + ApT0n t2(X). (5)

field (saddle-point equations together with the self- 1he mayrix fieldS (x) represents the contribution of the non-

consistency equations for the El and SC order parametermagnetiC impurity interaction to the self-energy.

can be obtained using the diagrammatic technique. However, The saddle-point associated with the actidh obtained

we will find it more convenient to use a path-integral ap-by variation with respect to the self-enerdy
proach. This will also allow us to obtain straightforwardly an

expression for the average free energy. S(x) =

The quantum partition functionZ=tr[e‘3;‘], where B 27vE
=1/T, can be expressed as a coherent state path integral over . s
fermionic fields. In order to facilitate the averaging of the can be solved in the limiu>T, A;, A5, whenX, Ay, and

Ty o it oA om0 51 = ST Lo e
engage the replica triék P pp :

Green function(5) is diagonal in frequency and momentum
space and can be explicitly inverted:

T3<X|§|X>Tg

1 1. (2h-1
F=-—(n2)=-—Iim : -~ < <
B Bn-o N G =- fwn+ &m303+ A1y + Ap1307

np ~2 2, A2, 2
oyt §p+A1+A2

Once replicated, a Hubbard-Stratonovich transformation can
be applied to decouple the interaction terms in the HamilHere, we have defined the “renormalized” expressions for
tonian. As a result, one obtains the frequency and order parameters:
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~ r 1 | | | ‘
@ 1-—7)%«, 1 n=05
( 2 Vi + A2+ A2
0.8 Tetracritical point
A (1 Lt )‘A /
+=5 — P B K]
2 V2 + A2+ A2

g 0.6
g0:\1
~ (T 1 "
A2(1+—T> =A2. (6) 04 EI
2@t + 27+ 13 SC
From the above equations of motion, one may deduce that 02
0, o
== (7) % 0.1 02 03 04 05
A, A1 [/4,(00)

or, In _Other _Words' that in the weak disorder limit nonmag-  giG. 3. The temperature vs disorder strength phase diagram of
netic impurities do not suppresswave superconductivity the model Eq.(1) for A\;*~\;'=0.5. The dimensionless disorder
(Anderson theore;ﬁﬁ) while introducing the parametens  syrength isT'/A,(T=0,I'=0) and temperature is measured in units
=w,/A, and=T"/A,, of T,(I'=0). The El and SC state are separated by a thin domain, in
which the two order parameters coexist.
wn {
—=ull-- .
A, VI +U3(1+AYwd)

8

| | _ T,(r=0) = 2206, (11)
Finally, the self-consistency equations for the SC and El T

order parameters can be found minimizing the actidn
with respect toA; ,:
< occurs at
A1,2

7T7\12
A 5= : . 9
T ; \/~2+ZZ+Z2 © Ve —1\
n Vo + A%+ A T, =0) = XE20 70, (12)
v

where(), is the frequency cutoff angz=1.78 is the Euler
constant while, forn,>\4, the transition into the El state

Here, \; ,=0; o7 represent dimensionless coupling con-

stants. Note that, as in conventional BCS theory, the integral Since charged nonmagnetic impurities act as electron-hole
over momentum can be performed by making use of th@ail’ breaking perturbations, while they do not affect the SC

identity [dp/(2m7)3=[dév(€) = ve [dé. Employing Eq.(8), state, forh;>\, the SC state dominates at any disorder

the self-consistency equations can then be rewritten in th&trengthl” and the El state never appears. On the other hand,

form for A\,>\,, the El phase is energetically more favorable at
weak disorder, becomes suppressed for larger valudg of
1 7_72 {A2+ w2<1 + i)]_m and eventually gives way to superconductivity. Nonmagnetic
A - B 175 u? ' impurities suppress the El state in exactly the same way as

magnetic impurities suppress the SC stat&. Therefore,
N A2\ ]-12 one can infer that the dependence of the El transition tem-
A,= AT {1 +u2<1 +_;>} (10) peratureT, on the disorder strength is described by the
on p standard Abrikosov-Gor’kov expression

Combining Egs(6) with (10), we are now able to discuss the T,(0) 1 r 1
finite- and zero-temperature mean-field phase diagram asso- In T,(I) = (5 + m) —‘1’<5)- (13
ciated with the mode(1). 2 2
At some critical disorder strength., the El and SC transi-
tion temperatures eventually coincideg(I’-)=T,(I'=0)=T.
IV. PHASE DIAGRAM and, forl'>T%, the system becomes superconducting at the
(I'-independenttemperaturel; given by Eq.(11).

One can therefore wonder in what way, at temperatures
In the absence of disordé¢ice., I'=0 andu=w,/A,), one lower thanT., the transition between the El and SC states
may note that, except for different coupling constants, thaakes place. In Fig. 3, the temperature versus disorder phase
two self-consistency equatiori0) are identical. Therefore, diagram is shown for values of the coupling constants such
since they cannot be satisfied simultaneously, even thougihat »=\;*-\;*=0.5. The pure El and SC states are sepa-

the SC and El instabilities can occur simultaneously, in cleamated by a very thin region located in the<I'. and T<T.
materials the corresponding orderings are mutually excluregion of the phase diagram, where the two order parameters
sive. For\; >\, the system becomes superconducting belowcoexist. The three ordered phagés, SC, and El+SCand

A. Temperature versus disorder phase diagram
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the high-temperature disordered phase merge at the tetracriti-
cal point(I'«,T+). The boundaries between the coexistence 1
region and the two pure phases are critical lines of second

order transitions although, due to the very small width of the 08
coexistence region, the evolution of one pure phase into an- SC
other is close to being of first order. This will be further

discussed in Sec. V. g 08
At the first critical lineT,(I") separating the pure El phase &
from the mixed El+SC phase, one hag—0 andA,+# 0. In 04
the A;— 0 limit, the self-consistency equatiof0) simplify El
to the expressions
0.2
1 u
= =27T; > —.
)\1 wp>0 wn\"l +u 0
0 0.1 0.2 0.3 0.4 0.5
T'/A,(0,0)
B2 ot > L (14)
— =27 _—. :
Ay 1wn>0 V1+u2 FIG. 4. The zero-temperature phase diagram. Close to the quan-

tum critical pointyp=I"=0, the coexistence region is extremely thin.
The second critical lind,(I") separates the mixed state from For 7<1 it practically coincides with the disorder interval, in
the pure SC state and is obtained by instead taking the limihich the El is gapless.
A,—0 for nonzeroA;. In this case, one can approximate

2  37°+8

uzﬁ(1+——2 2), () = 777]_ 37 772’

2 Vi + A
2  27°-8
whereupon Eqg(10) take the form yo ) = o 7, (16)
1 1
~ =27T, >, T where y=1"/A5(0,0). Therefore, the width of the coexist-
1 w=0 Ny + A7 ence region is approximately given ky—y; =0.087>.

For large values ofy, i.e., when the SC coupling; is
1 1 much smaller than the EI coupling, the coexistence region
)\_2 =2mT, 2;40 Vo2 + A2+T (195 essentially coincides with the disorder interval™* <y
“n no Tl <1/2 in which the EI state is gaple$s?* Therefore, fory
Note that the El order parametas appears at temperatures > 1+3m/4, the superconductivity appears at the same disor-
lower than the “upperT,(I) given by Eq.(13), and disap- der value, at which the EI becomes gaplesg=e ™*
pears below the “lowerT,(T'), given by Eq.(15). Figure 3 ~ =0.46, while I', asymptotically approaches the disorder
shows thaf; (at which the SC ordering sets in80) and ~ Strength at which the El state is destroyed in the absence of
I, (at which the EI ordering is destroyed Bt 0) are smaller ~Superconductivity:
than the disorder strength at the tetracritical pdintThere- 2,2
fore, in the intervall,<T' <T., the system passes through Y2 =12-7e"", 5> 1. a7
three consecutive phase transitions as the temperature d@fe note that forp<1+3m/4, the gap in the spectrum of
creases: Firstly the system becomes an excitonic insulatoguasiparticle excitations at zero temperature is nonzero for
then it enters the mixed phase with the two coexisting ordeg|| I, while for »>1+3x/4 it vanishes at a single poitit
parameters, and finally the growth of the SC order parametesr .

with decreasing temperature suppresses the El ordering, re- This reentrant behavior and the form of the phase diagram

sulting in the transition into the pure SC state with=0. are similar to what was found for the spin-Peierls compound
CuGeQ, which upon doping shows an antiferromagnetic or-
B. The zero-temperature phase diagram dering coexisting with spin-Peierls phase in some interval of

. _ .. doping concentration¥.%®
The zero-temperature phase diagram is shown in Fig. 4. pIng

The EI state exists only for positive [or equivalentlye™”
=A(T=0)/A,(T=0,I'=0)<1]. The coexistence region
(shadedl is confined between the two critical lind$;(7) To understand why the coexistence region is so narrow, it
<I',(7). The system is superconducting fbr>I";, while is instructive to plot the El and SC order parameters as func-
the excitonic condensate appears FoxI',). For small,  tions ofI" in the coexistence regiosee Fig. 5. In the inter-

i.e., close to the quantum critical point separating the El andial I'y <I" <T’, the excitonic(superconductingorder param-
SC states in the absence of disorder, the critical disordester decreasefincreasers fast with increasingl’, while A
values can be obtained as :v’A§+A§ stays approximately constant.

V. EI-SC SYMMETRY
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tiferromagnetism discussed in the context of highand
heavy fermion materiaf®-31

Away from the quantum critical point, and for nonzero
disorder, the electron-hole symmetry is broken. Solving Egs.

(6) for @y, Aq, andA,, perturbatively in the disorder strength
I', and replacing at =0 the summations over the Matsubara
frequencyw, in Eq. (19) by integrals, one can obtain an
expansion of the average energy density in powers: of

2 2 2
Q=E+E—A2|n<2&> - 2pee T2y
20 N Ay A) 2 2 A
2 2 2 2A2/A2 2
_ }A2(3A14+ AZ) 2 _ ™ AlAZ(A27_ 4Al) 1—‘3 + O(l"4)
3 A 16 A
(20)

Denoting the dimensionless disorder strengthdsyl™/ A

FIG. 5. The plots show the dependence of the superconducting1 and defining the angle

order parameted; (dashed lingand the excitonic order parameter

A, (thin solid line on the disorder strength’ in the region of
coexistence of the two phases fg=0.1 andT=0. ForI';<TI
<T',, A; andA, vary very fast, whileA =yA%+A?Z (thick line) stays
approximately constant.

This behavior results from the symmetry between bhe

and a electrons at the quantum critical poin{=A\, in the
absence of disorddl’=0):

V> @9nril Ay (18)

This transformation results in the rotation in the space of the

two order parameters over the ange= [0, 277],

A= A;cos¢p—A,sin g,

A,— A, cos¢g+A;sing.

At the mean-field level, the anomalous part of the averag
free energy per unit of volumef)=(F)/V, can be easily

Ai;=Acos¢, A,=Asin g,
we can recast Eq20) in the form

f A1l o
;—V)FzAZ In§—5+gc052¢+%(1—0052ﬁ)

- §(3 -2 - )
1 COS 26— cos 4p

+g—§(6+50032{>—6cos4,z$—5cosﬁ;5)+0(64)],

(21)

whereA is the geometric mean of the El and SC order pa-
rametersA=VAlAZ(O,O)=290e‘(*11“21)’2. The symmetry-
breaking terms in E¢21) (that depend on the angtp) are
roportional to powers ofy and 6. Thus, forn, 6<1, these
erms are small and the energy has the slightly deformed
“Mexican hat” shape with an almost flat valley connecting

evaluated starting from E@4) and making use of the replica e pointsA,(#), at which(f) has a minimum for a given

trick:
4 =
<f>:—7fE (vaﬁwiw%—

_277r2 A3 2 22. 200
B oy @2+A2+A2 M D Y

- I
wnt Sgr(wn)z ’ )

(19

This is illustrated in Fig. 6 where we plot thg depen-
dence of the minimal energy density for, respectivdly,
=0.234<I'y, I'=0.237 (in the coexistence regipnand I
=0.240>T', (in both casesy=0.5). For I'<I';, the energy
minimum is at¢=m/2 (the El stat¢ while atI'>1T", the
energy minimum is forp=0 (the SC state Though the¢
dependence of the minimal energy is, in general, rather com-

Let us notice that, in the absence of disorder, the free energylicated, the scale of the energy variations in all three cases

only depends on “the total gapt=yAZ+A3. This follows
from the fact that the generator of the EI-SC rotatiohs;
commutes with the Hamiltonia(8) for U(x)=0. Moreover,
for g;=g,, the last term in Eq(19) is equal to A?/g, [the
second term in Eq(19) vanishes forI'=0]. Thus, at the

is very small, i.e., the valley is practically flat. This is the
reason for the narrow width of the disorder intervgl<I’
<T',, in which the two phases coexist—a very small varia-
tion of the disorder strengtly is sufficient to shift the posi-
tion of the energy minimum frong=/2 to ¢=0 along the

quantum critical point the free energy has a ‘Mexican hat'energy valley, in whichA=\A%+A3 remains practically un-

profile as a function of the order parametéfs,A,), sym-

metric under the rotations transforming the excitonic insula-

changed.
Figure 6 also illustrates the absence of first-order transi-

tor into the superconductor. This symmetry betweentions in the model1). Note thatl'=0.237 is close td,, at
electron-electron and electron-hole pairing is analogous twhich the energies of the SC and El states become equal:
the symmetry unifying the-wave superconductivity and an- (f(0))=(f(s/2)). The first-order transition between the two

224502-6
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-0.295 ' ' - and SC order parameters near the quantum critical ps@g

Eqg. (20)], which we derived from the microscopic model.
Disorder distorts the shape of the energy potential and con-
tinuously shifts the position of the minimum from the point
corresponding to the excitonic insulator to the point corre-
sponding to the superconducting state, which gives rise to
the coexistence of the two states.

The microscopic origin of this coexistence is the break up
of a part of the electron-hole pairs by disorder and the sub-
sequent recombination of the released fermions into electron-
electron and hole-hole pairs. In other words, disorder trans-
forms the CDW gap in the single-electron density of states
into a pseudogap, filled with states describing the broken
electron-hole pairs. The SC phase develops inside this
-0.31 : : : pseudogap, which resembles the behavior observed in high-

0 0.5 1 1.5 T, cuprates?
In addition to the disorder-induced superconductivity, re-

FIG. 6. The plot shows the energy minimum versus the atgle sulting from the suppreSSI'on of the El staFe, the phaie dia-
at 7=0.5 and for different values df:I'=0.234<T; (solid ling, ~ 9ram of our model(see Fig. 3 shows an interesting “in-

I'~T4,=0.237(dashed ling and'=0.240>T, (dot-dashed ling verse” effect, namely, the suppression of_ the El state due to
the growth of the SC order parameter with decreasing tem-

# rature. Though this reentrance transition is just another
consequence of the competition between the two types of
rdering, we did not find any reports of such a behavior in
DW superconductors in the literature. This, however, has
been observed in the quasi-one-dimensional spin-Peierls

compound CuGe§) where impurities induce the long-range
Néel ordering?® In this material, the interplay between the
V1. DISCUSSION AND CONCLUSIONS dimeriz_ed and antiferromagnetic states allows for a similar
theoretical descriptiof. In most CDW superconductors the
We discussed effects of disorder in systems with compet€DW transition occurs at a much higher temperature than
ing instabilities, such as CDW superconductors. We considthe SC transition, so that the influence of the Cooper pairing
ered a simple model, which describes a metal with two peren the CDW modulations is difficult to observe. Further-
fectly nested electronlike and holelike parts of the Fermimore, the CDW gap only opens on a nested part of the Fermi
surface. In this model the interplay between the electronsurface. In quasi-one-dimensional NhSke fraction of the
electron and electron-hole pairings is very strong, as theyermi surface affected by the CDW transition was estimated
compete over the whole Fermi surface. to be ~0.6 at ambient pressufeln the two-dimensional
We showed that disorder can be used to tune the balan@H-NbSe this fraction is apparently very small, since the
between the two competing phases and to stabilize the statgap opening actually increases the conductivity of this
in which they coexist. The charged nonmagnetic impuritiesnaterial? and the part of the Fermi surface, where the gap
induce superconductivity by suppressing the CDW stateopens, was not found in angle-resolved photoemission spec-
Such a disorder-induced superconductivity is observed in thezoscopy experiments:1433even though the gap valug4
irradiated two-dimensional CDW materialH2TaS,.° In meV) is known3* For partially gapped Fermi surfaces the
other transition metal dichalcogenides, e.gd4-RbSe and  competition between the CDW and SC states is less strong,
2H-TaSe, which are CDW superconductors already in ab-so that in 4-NbSe they coexist even in absence of disorder.
sence of disorder, a small amount of irradiation-induced de- While the enhancement of the SC transition temperature
fects results in an enhancementTf'® Similar behavior is  upon the suppression of the CDW state is well documented
observed in the quasi-one-dimensional CDW materiain many materials, the experimental situation with influence
Nb,_,TaSe. In the pure NbSg T, is smaller than 50 mK at of the superconductivity on the CDW state is less clear. On
ambient pressur®. The substitution of Nb for Ta suppresses the one hand, Raman experiments df-8bSe show the
the resistivity anomalies due to the CDW transitions, whilesuppression of the intensity of the collective SC mode by
T, grows up to~2 K atx=0.05° The effect of impurities in  magnetic field with the concomitant enhancement of the in-
these materials is similar to that of pressure and hydrogetensity of the CDW mode¥®.3¢ On the other hand, no effect
intercalatior?-16:17 of the superconducting ordering below 7 K, and of the sup-
In agreement with these experimental findings, the phaspression of the SC state by magnetic field on the CDW
diagrams of our model Figs. 3 and 4, show a strong sensitivmodulation was observed in x-ray experimel¥t$he under-
ity of the ground state to disorder and the coexistence of thetanding of the behavior oft®-NbSe is complicated by the
SC and El states in the presence of disorder. This behavianulti-sheet structure of the Fermi surface and the momentum
can be easily understood and described analytically, usingnd sheet dependence of both order paramétdise inter-
the Landau expansion of the free energy in powers of the Eplay between the CDW and SC states in this and other ma-

pure states, however, does not occur, since the energy has
global minimum at some anglé, such that < ¢p< /2,
corresponding to a mixed ground state. Furthermore, whe
I'=0.237, the energy has a local maximumdat 7/2, en-
forcing the El state to be metastable.
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terials requires further experimental and theoretical studiesenergy gain due to the coupling to disordewF\s’m with
Crucially, one may note that the phase diagram of thehe loss in the elastic energyvev2L, we find that the fluc-

interacting system was inferred from the self-consistentuation is energetically favorable for

Hartree-Fock approximation which captures only the mean-

4 4,3
field characteristics. In view of the filamentary structure of L~ YF_ vk (24)
the coexistence region, the system can be susceptible to me- A 27 PAY

soscopic or sample to sample fluctuations due to the
quenched impurity potential. Such effects are recorded i ~ 20l mA
fluctuations of the fieldS(x) around its saddle-point or Thn e | dift . del from that dered
mean-field valuéas opposed to the leading terms gathered in € crucial diiference of our model from that considere
the low-orderl” expansion considered hérén the gapless In Ref: 38 is the "?‘bsence of an exact continuous symmetry.
regime, such effects can give rise to long-ranged diffusio ven |n.the coexistence region, the m|n|mal-energy valley
mode contributions to the generalized pair susceptibiIityconneCtIng the SC ar_ld El POW’-O and ¢_7/2.) IS not
(see, e.g., Ref. 37However, in the present case, the disorderperfeCtIy fIat._ Th_e typlcalzamplltude of the variations of the
potential imposes a symmetry breaking perturbation on th&Neray :jenitzzlstL];FA [Se(:'. Eq'l(%l)]t'h resulltmg n ftrt]ﬁ

El phase. As such, we can expect mesoscopic fluctuatio ergy 10Ss~ 17 ve proportional o the volume ot the -
due to disorder to impose only a short-ranged., local on gctuatlon, which SUPPresses large droplets. Comparing it
the scale of the coherence length of the EI order paraljnete}N'th the energy gain, we find

perturbation on the pair susceptibility. In the vicinity of the A

here we took into account that, in the coexistence region,

coexistence region, where the potential for the anglés L3< apa (25)
shallow, the effect of these mesoscopic fluctuations may be g
significant. Equations(24) and (25) hold simultaneously for

To understand the effect of random fluctuations in the
coexistence region, we consider the Ginzburg-Landau expan- vrke < 7A, (26)

sion for the ground-state energy close to the quantum criticayhich cannot be satisfied in the weak coupling limit. One
point =0, I'=0, at which the El and SC states are degenmay wonder why the conditiof26) does not hold even for
erate. In the vicinity of this point the phageof the “total”  ;=T"=0, where the model has a continuous symmetry. The
order parameted,; +iA,=A€? is a soft mode, so that weak reason is that in our model the role of disorder is twofold. On
disorder mainly induces spatial fluctuations of the phasejhe one hand, it couples to the order parameter, as in the
while the magnitude of the order paramefeapproximately  “random field” model discussed in Ref. 38 and tends to de-
stays constant. As in the derivation of HQ1), we expand  stroy the ordering. On the other hand, it affects the energy
the energy in powers of and disorder strength, assuming difference between the El and SC states and, therefore, sup-
thatl'< A, which is justified in the coexistence region, Wh_ere presses the phase fluctuations, by destroying the symmetry of
I'~(2n/m)A [see Eq(16)]. Assuming that the phase varies the energy potential. The second effect, which is linedF,in
slowly on the length scale of the correlation length s stronger than the first.
=vg/A, whereug is the Fermi velocity, we obtain Thus, the inhomogeneity of the order parameter, resulting
) from typical disorder fluctuations is small. The phase fluc-
UE tuations can also be induced by large disorder fluctuations
F= f dx[”F(E(V )+ u(x)cos 2¢> * <f>] (22) (L ifshitz tails”), but their contribution to the free energy is
exponentially smaff? This justifies our mean-field treatment

where the first term describes the “elastic energy” of an inOf disorder. _

homogeneous state, the disorder-averaged free eqgrdy This conclusion may not hold, however, for strongly
given by Eq.(21), andu(x) is the fluctuating part of disorder coup!ed.CDW superconductor_s or for other types of d|§order.
coupled to the phase of the order parameter. Neglecting Copuahtauvely, we expect that mhomogeneous'excnonlc and
relations on a scale smaller than the correlation lengft) supercondu_ctlng order_ parameters may result ina broadenlr_lg
can be approximately considered as a randoorrelated of the coexistence region. The local suppression of the exci-

- : ; _ ; tonic pairing near charged impurities can give rise to the
Gaussian variable with zero averaggx))=0 and variance .
» local enhancement of the superconducting order. The state

with such a nanoscale phase separation, in which two com-
, (23) peting orders alternate in antiphase without a loss of the

macroscopic coherence, can be more energetically favorable

than the uniform state and, therefore, can be stabilized in a
(we omit the lengthy calculations that lead to this resdlhe  wider interval of parameters. Such a state was observed in
coupling to disorder also occurs in higher orders of the exuSR experiments on doped CuGgQvhich shows both
pansion, but those terms are relatively small and can be nespin-Peierls and antiferromagnetic orderffig.
glected. In conclusion, we studied effects of disorder on systems

Following the Imry and Ma argumeft, we consider a with competing superconducting and charge-density-wave

large phase fluctuation, e.g., a droplet of the SC phase of thastabilities. We showed that even in the extreme situation,
spatial extent inside the El matrix. Comparing the typical when the competition takes place over the whole Fermi sur-

4F2A2

2k3

uxju(y)) =Adx-y), A=
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face and the superconducting and charge-density-wav@, and the propagatoDa,n=—Qé/(wﬁ+9§), we haveD(r
phases are mutually exclusive, disorder can give rise to their ;)= _) e%™7'/2 for T<(Q,. The second term in Eq.

coexistence in a spatially homogeneous state. Furthermorgay) is the instantaneous Coulomb interaction. We neglect
disorder itself can be used as a parameter, with which ong,e momentum dependence of the screened electron-phonon

can tune the balance between competing phases. Althoughyy coulomb couplings, which makes the electron-electron
our model is too simple to describe the physics behind the iaractions local in space.

coexistence of superconductivity and CDSDW) states in, The couplings for the andb electrons in Eq(A1) give
e.g., high; or heavy fermion materials, we believe that the (e to a large freedom in the choice of order parameters,
ability of disorder to bring together incompatible phases mayyhich in reality may not be present, e.g., due to the interband
be important for understanding phase diagrams of thesgcattering, which separately does not conserve the numbers
systems. of the a and b electrons. In what follows we restrict our-
selves to the anomalous averages considered in Sec. I,
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APPENDIX: COEXISTING INSTABILITIES AND T 5 )
DERIVATION OF THE EFFECTIVE MODEL Ay(wn) =~ K/2 (GepPw,o), = I (71Gp 1)
Pwp

In this appendix we obtain a condition under which both
the SC and EIl instabilities can occur simultaneously. Here, -
we consider more realistic interactions between electrons Az(wn):—z (gipthn—wr/]_gé)tr(73o-1Gp,wr/1)!
than those described by the mod#), namely, the phonon- av -
mediated interaction and the Coulomb repulsion. The Cou- R
lomb repulsion counteracts the phonon-mediated attractiowhere the electron Green function is given by ).
between electrons and suppresses the SC instability. The To simplify the algebra, we consider here only the zero
same holds for the |nstab|||ty towards the formation of thetemperature case. The Integration over the electron excitation
excitonic condensate with the difference that the two types ognergyé gives

pwn

interaction now change roles: the Coulomb force favors the 1 (*E 02

L . B , 5
electron-hole pairing, while the one-phonon exchange results Aq(w) = J do'| ki 5 5~ K2
in a repulsion between electrons and holes. We will show 2) g, (0= ")+ 05

that the SC and El instabilities can coexist due to different ~
frequency dependence of the two types of interactions. % Ay(@)

For retarded phonon-mediated interactions, the order pa- \/Z)’2+Zf(w’) +Z§(w'),
rametersA; andA, are frequency dependent, which compli-

cates the solution of the self-consistency equations. We 1 [*Ec 02
show, however, that in the weak coupling and weak disorder Ay(w) = —f dw[fcz - Kl%}
limit, the equations for the order parameters at zero fre- 2] g, (0— ")+ Qg
guency coincide with Eq(9), which justifies the model in- ~
troduced in Sec. Il. Moreover, we will give the explicit ex- % Ay(e) (A2)
pressions for the coupling constamtsand g, appearing in \/Z)’Z+Z§(w’) +Z§(w’)’
Eq. (2).
We describe effective electron-electron interactions by avhere we have introduced the dimensionless coupling con-
nonlocal action stants k= ve02 , and k,=veg2, and wherek, is the fre-
’ quency cutoff required for the instantaneous Coulomb inter-
S = g—ezllhf dXJdeT’p(X,T)D(T— )p(X,7) action. Moreover the variablés, A;, andA, are defined in
Eq. (6).

92 Although Eqgs.(A2) look at a first sight complicated, one
+ P J dxdrp?(x,7), (A1)  can see that, in the limit of weak coupling and weak disorder
Ay ,, I'<Qp<E, their solution can be found by making use
where p=3 (! o+ Ui i) is the total electron density. Of the fact that the order parametefs(w) and Ax(w)
The first term is the phonon-mediated effective attraction bestrongly vary at frequencies~ €, while @, Zl, andzz are
tween electrons anB(7—7') is the phonon Green function. nontrivial functions ofw only at much lower frequencies
For a single dispersionless optical phonon with the frequency-TI", whereA;(w) and A,(w) can be replaced by their zero
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frequency values. Therefore, we can solve E&) in two 1
steps: first we find the frequency dependence of the order |[y1(0),y2(0)]=f dx’
parameters\;(w) and A,(w) for arbitrary values ofA;(0) 0

and A,(0), and then we solve the self-consistency equation
for A ?(0)) and A,(0) W v ! y equat ?s used to stress the fact thgt andy, are assumed to be
1 .

frequency independent.

In the weak coupling limit the first term in the right-hand
side of Eq. (A4), proportional to the “large logarithm”
In\"y§+y§, is much larger than the second term, so this inte-

Vi(x")
VX 2+ F3(x') + FA(X)

It is convenient to use the dimensionless varialies
=w/ Qg andy; ,(X)=A; J(w)/Qq [and similarlyx andy; 5(x)],
in terms of which the first of EqSA2) reads

A ,(x) gral equation can be solved by iterations, which generate a
ya(X) = J X perturbative expansion foy;(x). To the lowest order, the

0 VX4 Y1) +¥5(x) frequency dependence of the order parameter coincides with

Ky 1 1 that of the kernéP
15 "2 + "2 —Kof,
2 (x+x)+1 (x=-x)+1
K ok
whereA =E./(),. We then introduce an intermediate scle ya(x) = ( 12 "2)|[y1(0)vyZ(0)]- (A5)

such thaty; ,<X<1. In the interval Gsx' <X, we can ne-
glect thex’ dependence of the kernel of this integral equationThen the self-consistency equation fby(0) coincides with
and the functiong/; ,(x’) (howevery; , andX’ still do de- Eq. (9) at T=0:
pend onx’). In the second intervaX<x' <A, we substitute

Y1/ VX'2+Y2+¥5 by y,(x')/x" and perform the integration by

. . o Ay(w)
parts. In this way we obtain A4(0) = MJ dw = = ) (A6)
0 P+ A2(w) +A2(w)
K1
y1(X) = = y1(A) k InA+< —x)
! ! 2 1+x2 72 and the effective coupling constant is given by
X kv ’
Y1(X')
X f dx’ -y1(0) In X} . K
F"I kY ’ kv ! = = —2
l 0 \1X2+yi(x)+y§(x) )\1—K1_K2—K1_1+K2|nEc/QO- (A?)
Taxme (L
- . X nx dx || 2\ (x+x)2+1 The negative term in the coupling constant describes the re-

duction of the attraction between electrons due to the Cou-
+ 1 )_ (x) (A3) lomb repulsion, but this reduction is itself reduced by the
(x-x)2+1 K2 Y1 ' presence of the large logarithm in the denominator due to the
difference in the time scales of the retarded phonon-mediated
where the limits of the second integration were extended to @ttraction and the Coulomb repulsidt! The first-order cor-
and, as there is convergence both at small and large frerection toy;(x), found by substituting Eq(A5) into the in-
guencies. tegral in Eq.(A4) (as well as all higher-order corrections
Since, atX>y; ,, Eq. (A3) is independent oK, we can  |eaves the form of the self-consistency equatid) un-
choosex=1[and still substitutg/; 5(X') by y; 5(0) in the first  changed, but results in a small modification of the expression

integral. The value ofy; at the cutoff is then given by for the effective coupling constant through and «:
1 v ’
* ya(x")
yi(A)=—« fdx’ = = - _k) o
1 2[ 0 \"L)Z,Z + yi(x/) + yg(X/) )\1 =Ky 1 2 Ky.
_ fo dxIn x% The frequency dependence of the excitonic insulator order
0 dx | parametei\,(w) and the self-consistency equation fos(0)
. can be obtained from Eq§A6) and (A7) by the substitution
wherex,=x,/(1+k,In A). For arbitraryx we have A=Ay, k1> =Ky, and k> —Ky:
_|_ K * Q X
X)=| — = &, |1[y1(0),y»(0 0 A
ya(x) (1 T K2> [y1(0),y2(0)] A,(0) =, J do A0 g
F . {[K . 0 &2+ E2w) +23w)
- dXInx'— —1<%
0 dx' [ 2 \(x+x)?+1 where the effective coupling constans is to the lowest

1 order given by
+ m) - Kz}yl(X’) : (A4)

K2

Np= —— 2.
2T 1 -y INEJQy

A9
where the notation (A9)
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In Fig. 2 we show the typical frequency dependence of

the SC and El order parameters, calculated foy
=0.25,«,=0.1, andl'=0. [Since in the absence of disorder
the SC and EIl states cannot coexist, we calculate@)
assumingA,=0 and vice versa.The SC order parameter

A;(w) is positive at small frequencies and changes sign at

o=, while the El order parameteX,(w) has a dip for

|w| < Q. The “separation” of the two order parameters in

frequency is crucial for the coexistence of instabilities.

PHYSICAL REVIEW B 71, 224502(2005
A A
)\1 > —2, )\1 < —2
1+NInA 1-NInA
hold simultaneously for

IS
7]_)\1 Ao Qo

A weak disorder has little effect on the frequency depen-

<In (A10)

The necessary condition for superconductivity to appeadence ofA; andA,. However, its presence is crucial for the

is N\ >0, while the instability towards the excitonic conden-

sate occurs fok,>0. These two conditions

stabilization of the mixed state, in which the two order pa-
rameters coexist.
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