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hole pairing. We show that disorder can result in coexistence of these two types of ordering in a uniform state,
even when in clean materials they are mutually exclusive.
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I. INTRODUCTION

At low temperatures, many metals undergo a transition
into a state with a gap in the single-electron excitation spec-
trum and become either superconductors or insulators with a
periodic modulation of the electron charge or spin density.
The insulating and superconductingsSCd orders inhibit each
other by reducing the fraction of the Fermi surface available
for the gap of the competing phase. The balance between the
two phases is very sensitive to the Fermi surface shape and
can be changed by, e.g., pressure, doping, or magnetic field.

Nonetheless, in a surprisingly large number of materials
the SC and insulating states coexist.1,2 This paper is focused
on the coexistence of superconducting and charge density
wave sCDWd states, observed in, e.g., layered transition
metal dichalcogenides 2H-NbSe2 and 2H-TaS2,

3–5 the quasi-
one-dimensional compound NbSe3,

6 tungsten bronzes
AxWO3,

7,8 and quarter-filled organic materials.9,10 One of the
best studied and best characterized CDW superconductors is
the transition metal dichalcogenide 2H-NbSe2. At Td
=33.5 K this compound undergoes a second-order phase
transition to an incommensurate CDW state,11,12 which is
likely driven by the nesting of a part of the Fermi
surface.13,14 The resistivity, however, remains metalliclike
down to Tc=7.2 K, at which this material becomes
superconducting,4,5 and the superconductivity coexists with
the CDW modulations.15 The coupling between the CDW
and SC order parameters, resulting from the competition be-
tween these two states, was observed in a number of experi-
ments. Thus, the suppression of the charge density modula-
tion by pressure and hydrogen intercalation results in an
increase ofTc.

5,16,17 A similar interplay between the CDW
and SC states upon applied pressure and doping is observed
in NbSe3 and tungsten bronzes.6–8

In this paper we adopt a rather general, though simplified,
viewpoint on the interplay between the SC and CDW states.
We assume that it originates from the competition between
two different Fermi surface instabilities: the instability to-
wards the electron pairing, which gives rise to superconduc-
tivity, and the instability towards the electron-holesor exci-
tonicd pairing. Here, we focus primarily on the effects of
quenched disorder on this competition. We show that even in
“the worst case scenario,” when the two states compete over
the whole Fermi surface and therefore, in absence of disor-

der, are mutually exclusive, disorder stabilizes auniform
state, in which superconducting and insulating order param-
eters coexist. While having no effect on the superconducting
phase, nonmagnetic disorder tends to close the CDW gap
before completely suppressing the corresponding order pa-
rameter. Disorder induces low-energy states by breaking
some of the electron-hole pairs. The released electrons and
holes can subsequently form Cooper pairs, resulting in the
coexistence of the two phases.

While in usuals-wave superconductors, nonmagnetic im-
purities have little effect on the transition temperature,18 ex-
periments on electron irradiated transition metal dichalco-
genides have shown strong dependence ofTc on the
concentration of defects.19 This was attributed to the inter-
play between the SC and CDW orderings: Similarly to effect
of pressure,5,6 disorder strongly suppresses the CDW state,
which results in the observed increase of the SC critical tem-
perature. Theoretically, the combined effect of the CDW
modulation and disorder on the pairing instability have been
studied in Ref. 20, where an increase ofTc was found. How-
ever, in that paper the amplitude of the CDW modulation
was assumed to be fixed, which is clearly insufficient in view
of the strong suppression of the CDW state by disorder. In
this paper we solve self-consistency equations for both SC
and CDW order parameters, which allows us to study the
interplay between these two different orders and obtain the
temperature versus disorder phase diagram of CDW super-
conductors.

The remainder of the paper is organized as follows. In
Sec. II we formulate an effective model describing the inter-
play between the superconducting and excitonic pairing. The
self-consistency equations for the two order parameters are
derived in Sec. III, and in Sec. IV we analyze the phase
diagram of the model. In Sec. V we discuss the electron-hole
symmetry underlying the model and its consequences for the
phase diagram. Finally, we conclude in Sec. VI. The details
of the derivation of the effective model can be found in the
Appendix.

II. THE MODEL

In the following we consider the microscopic Hamil-
tonian
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Ĥ =E dxHo
s

o
j=a,b

c js
† f« js− i=xd + Usxdgc js

− g1sca↑
† ca↑ca↓

† ca↓ + cb↑
† cb↑cb↓

† cb↓d

+ g2o
ss8

cas
† cascbs8

† cbs8J s1d

describing two types of fermions, one with holelike disper-
sion sa electronsd and another with electronlike dispersionsb
electronsd, « j=a,bskd= ± skF

2 −k2d /2ms"=1d, wherem=kF
2 /2m

denotes the chemical potentialssee Fig. 1d. Here, in compari-
son with the models generally used to represent CDW sys-
tems, two nested parts of a single Fermi surface are replaced
by two spherical Fermi surfaces matching at the Fermi wave
vectorkF. The excitonic insulatorsEId state is the condensate
of pairs formed byb electrons anda holes sor vice versad
with the zero total momentum.21 It is an analog of the con-
densate of electron-hole pairs with the total momentum"Q,
where Q is a nesting wave vector, appearing in the CDW
state.

The disorder potentialUsxd encapsulates the effect of
nonmagnetic impurities in the system. Here, we assume that
the latter is drawn at random from a Gaussian distribution
with zero mean and variance given by

kUsxdUsydl =
G

2pnF
dsx − yd, s2d

whereG is the inverse scattering time andnF=mkF /2p2 is
the density of states at the Fermi energy. For simplicity we
have assumed the electron and hole effective masses to be
equal.

The interaction term characterized by the coupling
strengthg1 describes the attraction between electrons of the
same typese.g., due to the phonon exchanged, while theg2
term describes thesCoulombd repulsion between thea andb
electronssg1,g2.0d. The attraction between electrons favors
s-wave superconductivity, while the second interaction leads
to an attraction between electrons and holes and vice versa,
favoring the EI state. Here, we neglect the interband electron
transitions due to scattering of impurities and electron-
electron interactions, so that the numbers of thea and b
electrons are separately conserved and fixed by the chemical
potential. Such terms will formally destroy long-range order
of the EI phase, corresponding to the suppression of the
long-ranged CDW order, due to the pinning of the CDW
phase by randomly distributed impurities. However, for the
essentially short-length-scale physics we shall discuss, these

effects may be neglected. In the absence of disorder, the
same models1d has been employed to study the competition
between SC and EI states for an arbitrary ratio of electron
and hole densities.22 The effect of disorder on the EI state
alone has been considered in the seminal work of Ref. 23,
where the analogy of the problem to ans-wave supercon-
ductor in presence of magnetic impurities24 was drawn.

The particular fermion-fermion interactions considered in
Eq. s1d—attraction between electrons of the same type and
repulsion between thea andb electrons—open the possibil-
ity to have simultaneously both superconducting and insulat-
ing instabilities. A more realistic starting point would be a
model with attractive phonon-mediated interactions and
Coulomb repulsion between all types of electrons. However,
it is possible to demonstrate that, since the former are re-
tarded, while the latter is practically instantaneous, the SC
and EI order parameters turn out to have a very different
dependence on the Matsubara frequencyv. This is clearly
shown in Fig. 2: The SC order parameter is large at small
frequencies, while at higher values, it decreases in magnitude
and finally changes sign whenv is of the order of the pho-
non frequencyV0.

25 By contrast, the EI parameter is large at
high frequencies and has a dip foruvu,V0. In other words,
the difference in frequency scales of the attractive and repul-
sive interactions allows both instabilities to be present simul-
taneously. Furthermore, in the weak coupling limit and for a
weak disorder, i.e.,G!V0, the frequency dependence of the
two order parameters can be found separately forv,G and
v*V0. Furthermore, it can be shown that the self-
consistency equations for the order parameters atv=0 coin-
cide with the ones obtained from the models1d, which there-
fore can be interpreted as an effective interacting model.
Technical details together with the frequency dependence of
the two order parameters and the explicit expressions for the
coupling constantsg1 and g2 in terms of the Coulomb and
electron-phonon couplings can be found in the Appendix.

FIG. 2. The dependence of the superconductingssolid lined and
excitonic sdashed lined order parameters on the Matsubara fre-
quencyv ssee Appendix for detailsd.

FIG. 1. Schematic picture of the holelikesad and electronlikesbd
bands.
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III. ORDER PARAMETERS
AND SELF-CONSISTENCY EQUATIONS

Four order parameters describing the SC and EI states can
be introduced by means of the following anomalous averages

D1a = g1kca↑ca↓l, D1b = g1kcb↑cb↓l,

D2↑ = − g2kca↑
† cb↑l, D2↓ = − g2kca↓

† cb↓l.

Since the numbers of thea- and b-fermions are separately
conserved, for homogeneous states, we use the global gauge
transformation

ca ° eiwaca, cb ° eiwbcb,

to make the SC order parametersD1a andD1b real and posi-
tive. Moreover, as electrons and holes are characterized by
the same dispersion, we can require, without a loss of gen-
erality, that

D1a = D1b = D1 . 0.

In case of a spin-independent interaction, as in Eq.s1d, sin-
glet and triplet exciton pairs are degenerate in energy. This
gives rise to a large symmetry class of transformations for
the EI order parameterD2s. In reality, however, this degen-
eracy is lifted by Coulomb exchange interactions and inter-
band transitions. Therefore, we will assume the exciton pairs
have zero total spin, i.e.,D2↑=D2↓=D2.

Finally we note that, whenD1, D2Þ0 and D2 has an
imaginary part, a pairing of electrons of different types
D1ab=−g2kca↑cb↓l=−g2kcb↑ca↓l may be present.22 However,
one can show the energy of the state with coexisting SC and
EI orders to be the lowest for realD2, in which caseD1ab
=0.

By analogy with the case of magnetic impurities in
s-wave superconductors,24 restricting attention to the limit in
which the disorder potential imposes only a weak perturba-
tion on the electronic degrees of freedomsm!Gd, the mean
field ssaddle-pointd equations together with the self-
consistency equations for the EI and SC order parameters
can be obtained using the diagrammatic technique. However,
we will find it more convenient to use a path-integral ap-
proach. This will also allow us to obtain straightforwardly an
expression for the average free energy.

The quantum partition function,Z=trfe−bĤg, where b
=1/T, can be expressed as a coherent state path integral over
fermionic fields. In order to facilitate the averaging of the
free energy over the disorder potentials2d, it is convenient to
engage the replica trick26

F = −
1

b
kln Zl = −

1

b
lim
n→0

kZnl − 1

n
.

Once replicated, a Hubbard-Stratonovich transformation can
be applied to decouple the interaction terms in the Hamil-
tonian. As a result, one obtains

Zn =E DsC,C†d E DD1DD2

3expHE
0

b

dtE dxFC†s]t + ĤdC + 2
D1

2

g1
+ 2

D2
2

g2
GJ .

Here, omitting the replica indices for clarity, the fermion
field is arranged in a Nambu-like spinorCT

=scb↑ ,ca↑ ,cb↓
† ,ca↓

† d in such a way the single quasiparticle
Hamiltonian takes the following form:

Ĥ = ĵp̂t3s3 + Usxdt3 + D1t1 + D2t3s1, s3d

where ĵp̂=−=x
2/2m−m and the Pauli matricestc and sc sc

=1, 2, 3d act, respectively, in the particle-hole and theb, a
subspace.

The ensemble average over the quenched random poten-
tial distribution s2d induces a time nonlocal quartic interac-
tions edxse0

bdtC†t3Cd2, which can be decoupled by means
of a Hubbard-Stratonovich transformation with the introduc-
tion of a matrix fieldSsxd local in real space, and carrying
replica, Matsubarafvn=s2n+1dp /bg and internalsparticle-
hole andb, ad indices. Integrating over the Fermionic fields
C, one obtains the ensemble averaged replicated partition
function

kZnl =E DD1DD2E DSe−bF,

whereF is the free energy of the system

bF =E
0

b

dtE dxS2
D1

2

g1
+ 2

D2
2

g2
D − tr lns− Ĝ−1d

−
pnF

G
E dx trfSsxdt3g2 s4d

and Ĝ is the quasiparticle matrix Green function in the pres-
ence of disorder

− Ĝ−1 = − ivn + ĵp̂t3s3 + D1t1 + D2t3s1 + Ssxd. s5d

The matrix fieldSsxd represents the contribution of the non-
magnetic impurity interaction to the self-energy.

The saddle-point associated with the actions4d obtained
by variation with respect to the self-energyS

Ssxd =
G

2pnF
t3kxuĜuxlt3

can be solved in the limitm@G , D1, D2, whenS , D1, and
D2 can be considered homogeneous. In this limit, which is
compatible with the self-consistent Born approximation, the
Green functions5d is diagonal in frequency and momentum
space and can be explicitly inverted:

Gvn,p
= −

iṽn + jpt3s3 + D̃1t1 + D̃2t3s1

ṽn
2 + jp

2 + D̃1
2 + D̃2

2
.

Here, we have defined the “renormalized” expressions for
the frequency and order parameters:

EFFECT OF DISORDER ON COEXISTENCE AND… PHYSICAL REVIEW B 71, 224502s2005d

224502-3



ṽnS1 −
G

2

1

Îṽn
2 + D̃1

2 + D̃2
2D = vn,

D̃1S1 −
G

2

1

Îṽn
2 + D̃1

2 + D̃2
2D = D1,

D̃2S1 +
G

2

1

Îṽn
2 + D̃1

2 + D̃2
2D = D2. s6d

From the above equations of motion, one may deduce that

ṽn

D̃1

=
vn

D1
s7d

or, in other words, that in the weak disorder limit nonmag-
netic impurities do not suppresss-wave superconductivity
sAnderson theorem18d while introducing the parametersu

=ṽn/ D̃2 andz=G / D̃2,

vn

D2
= uF1 −

z

Î1 + u2s1 + D1
2/vn

2d
G . s8d

Finally, the self-consistency equations for the SC and EI
order parameters can be found minimizing the actions4d
with respect toD1,2:

D1,2=
pl1,2

b
o
vn

D̃1,2

Îṽn
2 + D̃1

2 + D̃2
2
. s9d

Here, l1,2=g1,2nF represent dimensionless coupling con-
stants. Note that, as in conventional BCS theory, the integral
over momentum can be performed by making use of the
identity edp / s2pd3=edjnsjd.nFedj. Employing Eq. s8d,
the self-consistency equations can then be rewritten in the
form

1

l1
=

p

b
o
vn

FD1
2 + vn

2S1 +
1

u2DG−1/2

,

D2 =
l2p

b
o
vn

F1 + u2S1 +
D1

2

vn
2DG−1/2

. s10d

Combining Eqs.s6d with s10d, we are now able to discuss the
finite- and zero-temperature mean-field phase diagram asso-
ciated with the models1d.

IV. PHASE DIAGRAM

A. Temperature versus disorder phase diagram

In the absence of disordersi.e., G=0 andu=vn/D2d, one
may note that, except for different coupling constants, the
two self-consistency equationss10d are identical. Therefore,
since they cannot be satisfied simultaneously, even though
the SC and EI instabilities can occur simultaneously, in clean
materials the corresponding orderings are mutually exclu-
sive. Forl1.l2 the system becomes superconducting below

T1sG = 0d =
gE

p
2V0e

−1/l1, s11d

whereV0 is the frequency cutoff andgE.1.78 is the Euler
constant while, forl2.l1, the transition into the EI state
occurs at

T2sG = 0d =
gE

p
2V0e

−1/l2. s12d

Since charged nonmagnetic impurities act as electron-hole
pair breaking perturbations, while they do not affect the SC
state, for l1.l2 the SC state dominates at any disorder
strengthG and the EI state never appears. On the other hand,
for l2.l1, the EI phase is energetically more favorable at
weak disorder, becomes suppressed for larger values ofG,
and eventually gives way to superconductivity. Nonmagnetic
impurities suppress the EI state in exactly the same way as
magnetic impurities suppress the SC state.23,24 Therefore,
one can infer that the dependence of the EI transition tem-
peratureT2 on the disorder strengthG is described by the
standard Abrikosov-Gor’kov expression

ln
T2s0d
T2sGd

= CS1

2
+

G

2pT2sGdD − CS1

2
D . s13d

At some critical disorder strengthG* , the EI and SC transi-
tion temperatures eventually coincideT2sG*d=T1sG=0d=T*

and, forG.G* , the system becomes superconducting at the
sG-independentd temperatureT1 given by Eq.s11d.

One can therefore wonder in what way, at temperatures
lower thanT* , the transition between the EI and SC states
takes place. In Fig. 3, the temperature versus disorder phase
diagram is shown for values of the coupling constants such
that h=l1

−1−l2
−1=0.5. The pure EI and SC states are sepa-

rated by a very thin region located in theG,G* andT,T*
region of the phase diagram, where the two order parameters
coexist. The three ordered phasessEI, SC, and EI+SCd and

FIG. 3. The temperature vs disorder strength phase diagram of
the model Eq.s1d for l1

−1−l2
−1=0.5. The dimensionless disorder

strength isG /D2sT=0,G=0d and temperature is measured in units
of Tc2sG=0d. The EI and SC state are separated by a thin domain, in
which the two order parameters coexist.
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the high-temperature disordered phase merge at the tetracriti-
cal point sG* ,T*d. The boundaries between the coexistence
region and the two pure phases are critical lines of second
order transitions although, due to the very small width of the
coexistence region, the evolution of one pure phase into an-
other is close to being of first order. This will be further
discussed in Sec. V.

At the first critical lineT1sGd separating the pure EI phase
from the mixed EI+SC phase, one hasD1→0 andD2Þ0. In
theD1→0 limit, the self-consistency equationss10d simplify
to the expressions

1

l1
= 2pT1 o

vn.0

u

vn
Î1 + u2

,

D2

l2
= 2pT1 o

vn.0

1
Î1 + u2

. s14d

The second critical lineT2sGd separates the mixed state from
the pure SC state and is obtained by instead taking the limit
D2→0 for nonzeroD1. In this case, one can approximate

u .
vn

D2
S1 +

G

Îvn
2 + D1

2D ,

whereupon Eqs.s10d take the form

1

l1
= 2pT2 o

vn.0

1

Îvn
2 + D1

2
,

1

l2
= 2pT2 o

vn.0

1

Îvn
2 + D1

2 + G
. s15d

Note that the EI order parameterD2 appears at temperatures
lower than the “upper”T2sGd given by Eq.s13d, and disap-
pears below the “lower”T2sGd, given by Eq.s15d. Figure 3
shows thatG1 sat which the SC ordering sets in atT=0d and
G2 sat which the EI ordering is destroyed atT=0d are smaller
than the disorder strength at the tetracritical pointG* . There-
fore, in the intervalG2,G,G* , the system passes through
three consecutive phase transitions as the temperature de-
creases: Firstly the system becomes an excitonic insulator,
then it enters the mixed phase with the two coexisting order
parameters, and finally the growth of the SC order parameter
with decreasing temperature suppresses the EI ordering, re-
sulting in the transition into the pure SC state withD2=0.

B. The zero-temperature phase diagram

The zero-temperature phase diagram is shown in Fig. 4.
The EI state exists only for positiveh for equivalentlye−h

=D1sT=0d /D2sT=0,G=0d,1g. The coexistence region
sshadedd is confined between the two critical linesG1shd
,G2shd. The system is superconducting forG.G1, while
the excitonic condensate appears forG,G2d. For smallh,
i.e., close to the quantum critical point separating the EI and
SC states in the absence of disorder, the critical disorder
values can be obtained as

g1shd .
2

p
h −

3p2 + 8

3p3 h2,

g2shd .
2

p
h −

2p2 − 8

p3 h2, s16d

where g;G /D2s0,0d. Therefore, the width of the coexist-
ence region is approximately given byg2−g1.0.08h2.

For large values ofh, i.e., when the SC couplingl1 is
much smaller than the EI couplingl2, the coexistence region
essentially coincides with the disorder intervale−p/4,g
,1/2 in which the EI state is gapless.23,24 Therefore, forh
.1+3p /4, the superconductivity appears at the same disor-
der value, at which the EI becomes gapless,g1=e−p/4

.0.46, while G2 asymptotically approaches the disorder
strength at which the EI state is destroyed in the absence of
superconductivity:

g2 . 1/2 −he−2h2
, h @ 1. s17d

We note that forh,1+3p /4, the gap in the spectrum of
quasiparticle excitations at zero temperature is nonzero for
all G, while for h.1+3p /4 it vanishes at a single pointG
=G1.

This reentrant behavior and the form of the phase diagram
are similar to what was found for the spin-Peierls compound
CuGeO3, which upon doping shows an antiferromagnetic or-
dering coexisting with spin-Peierls phase in some interval of
doping concentrations.27,28

V. EI-SC SYMMETRY

To understand why the coexistence region is so narrow, it
is instructive to plot the EI and SC order parameters as func-
tions ofG in the coexistence regionssee Fig. 5d. In the inter-
val G1,G,G2 the excitonicssuperconductingd order param-
eter decreasessincreasesd fast with increasingG, while D
=ÎD1

2+D2
2 stays approximately constant.

FIG. 4. The zero-temperature phase diagram. Close to the quan-
tum critical pointh=G=0, the coexistence region is extremely thin.
For h!1 it practically coincides with the disorder interval, in
which the EI is gapless.
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This behavior results from the symmetry between theb
and a electrons at the quantum critical pointl1=l2 in the
absence of disordersG=0d:

C ° eift2s1/2C. s18d

This transformation results in the rotation in the space of the
two order parameters over the anglefP f0,2pg,

D1 ° D1 cosf − D2 sinf,

D2 ° D2 cosf + D1 sinf.

At the mean-field level, the anomalous part of the average
free energy per unit of volume,kfl=kFl /V, can be easily
evaluated starting from Eq.s4d and making use of the replica
trick:

kfl = −
4p

b
o
vn

SÎṽn
2 + D̃1

2 + D̃2
2 − Uṽn + sgnsṽnd

G

2
UD

−
2pG

b
o
vn

D̃2
2

ṽn
2 + D̃1

2 + D̃2
2

+
2

l1
D1

2 +
2

l2
D2

2. s19d

Let us notice that, in the absence of disorder, the free energy
only depends on “the total gap”D=ÎD1

2+D2
2. This follows

from the fact that the generator of the EI-SC rotationst2s1
commutes with the Hamiltonians3d for Usxd=0. Moreover,
for g1=g2, the last term in Eq.s19d is equal to 2D2/g1 fthe
second term in Eq.s19d vanishes forG=0g. Thus, at the
quantum critical point the free energy has a ‘Mexican hat’
profile as a function of the order parameterssD1,D2d, sym-
metric under the rotations transforming the excitonic insula-
tor into the superconductor. This symmetry between
electron-electron and electron-hole pairing is analogous to
the symmetry unifying thed-wave superconductivity and an-

tiferromagnetism discussed in the context of high-Tc and
heavy fermion materials.29–31

Away from the quantum critical point, and for nonzero
disorder, the electron-hole symmetry is broken. Solving Eqs.

s6d for ṽn, D̃1, andD̃2, perturbatively in the disorder strength
G, and replacing atT=0 the summations over the Matsubara
frequencyvn in Eq. s19d by integrals, one can obtain an
expansion of the average energy density in powers ofG:

kfl
2nF

=
D1

2

l1
+

D2
2

l2
− D2 lnS2

V0

D
D −

1

2
D2 +

p

2

D2
2

D
G

−
1

3

D2
2s3D1

2 + D2
2d

D4 G2 −
p

16

D1
2D2

2sD2
2 − 4D1

2d
D7 G3 + OsG4d.

s20d

Denoting the dimensionless disorder strength byd=G /D
!1 and defining the anglef

D1 = D cosf, D2 = D sinf,

we can recast Eq.s20d in the form

kfl
2nF

. D2Fln
D

D̄
−

1

2
+

h

2
cos 2f +

pd

4
s1 − cos 2fd

−
d2

12
s3 − 2 cos 2f − cos 4fd

+
pd3

512
s6 + 5 cos 2f − 6 cos 4f − 5 cos 6fd + Osd4dG ,

s21d

whereD̄ is the geometric mean of the EI and SC order pa-

rametersD̄=ÎD1D2s0,0d=2V0e
−sl1

−1+l2
−1d/2. The symmetry-

breaking terms in Eq.s21d sthat depend on the anglefd are
proportional to powers ofh andd. Thus, forh , d!1, these
terms are small and the energy has the slightly deformed
“Mexican hat” shape with an almost flat valley connecting
the pointsDminsfd, at whichkfl has a minimum for a given
f.

This is illustrated in Fig. 6 where we plot thef depen-
dence of the minimal energy density for, respectively,G
=0.234,G1, G=0.237 sin the coexistence regiond and G
=0.240.G2 sin both casesh=0.5d. For G,G1, the energy
minimum is atf=p /2 sthe EI stated, while at G.G2 the
energy minimum is forf=0 sthe SC stated. Though thef
dependence of the minimal energy is, in general, rather com-
plicated, the scale of the energy variations in all three cases
is very small, i.e., the valley is practically flat. This is the
reason for the narrow width of the disorder intervalG1,G
,G2, in which the two phases coexist—a very small varia-
tion of the disorder strengthg is sufficient to shift the posi-
tion of the energy minimum fromf=p /2 to f=0 along the
energy valley, in whichD=ÎD1

2+D2
2 remains practically un-

changed.
Figure 6 also illustrates the absence of first-order transi-

tions in the models1d. Note thatG=0.237 is close toGfo, at
which the energies of the SC and EI states become equal:
kfs0dl=kfsp /2dl. The first-order transition between the two

FIG. 5. The plots show the dependence of the superconducting
order parameterD1 sdashed lined and the excitonic order parameter
D2 sthin solid lined on the disorder strengthG in the region of
coexistence of the two phases forh=0.1 andT=0. For G1,G

,G2, D1 andD2 vary very fast, whileD=ÎD1
2+D2

2 sthick lined stays
approximately constant.
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pure states, however, does not occur, since the energy has the
global minimum at some anglef, such that 0,f,p /2,
corresponding to a mixed ground state. Furthermore, when
G=0.237, the energy has a local maximum atf=p /2, en-
forcing the EI state to be metastable.

VI. DISCUSSION AND CONCLUSIONS

We discussed effects of disorder in systems with compet-
ing instabilities, such as CDW superconductors. We consid-
ered a simple model, which describes a metal with two per-
fectly nested electronlike and holelike parts of the Fermi
surface. In this model the interplay between the electron-
electron and electron-hole pairings is very strong, as they
compete over the whole Fermi surface.

We showed that disorder can be used to tune the balance
between the two competing phases and to stabilize the state,
in which they coexist. The charged nonmagnetic impurities
induce superconductivity by suppressing the CDW state.
Such a disorder-induced superconductivity is observed in the
irradiated two-dimensional CDW material 2H-TaS2.

19 In
other transition metal dichalcogenides, e.g., 2H-NbSe2 and
2H-TaSe2, which are CDW superconductors already in ab-
sence of disorder, a small amount of irradiation-induced de-
fects results in an enhancement ofTc.

19 Similar behavior is
observed in the quasi-one-dimensional CDW material
Nb1−xTaxSe3. In the pure NbSe3, Tc is smaller than 50 mK at
ambient pressure.16 The substitution of Nb for Ta suppresses
the resistivity anomalies due to the CDW transitions, while
Tc grows up to,2 K at x=0.05.6 The effect of impurities in
these materials is similar to that of pressure and hydrogen
intercalation.5,16,17

In agreement with these experimental findings, the phase
diagrams of our model Figs. 3 and 4, show a strong sensitiv-
ity of the ground state to disorder and the coexistence of the
SC and EI states in the presence of disorder. This behavior
can be easily understood and described analytically, using
the Landau expansion of the free energy in powers of the EI

and SC order parameters near the quantum critical pointfsee
Eq. s20dg, which we derived from the microscopic model.
Disorder distorts the shape of the energy potential and con-
tinuously shifts the position of the minimum from the point
corresponding to the excitonic insulator to the point corre-
sponding to the superconducting state, which gives rise to
the coexistence of the two states.

The microscopic origin of this coexistence is the break up
of a part of the electron-hole pairs by disorder and the sub-
sequent recombination of the released fermions into electron-
electron and hole-hole pairs. In other words, disorder trans-
forms the CDW gap in the single-electron density of states
into a pseudogap, filled with states describing the broken
electron-hole pairs. The SC phase develops inside this
pseudogap, which resembles the behavior observed in high-
Tc cuprates.32

In addition to the disorder-induced superconductivity, re-
sulting from the suppression of the EI state, the phase dia-
gram of our modelssee Fig. 3d shows an interesting “in-
verse” effect, namely, the suppression of the EI state due to
the growth of the SC order parameter with decreasing tem-
perature. Though this reentrance transition is just another
consequence of the competition between the two types of
ordering, we did not find any reports of such a behavior in
CDW superconductors in the literature. This, however, has
been observed in the quasi-one-dimensional spin-Peierls
compound CuGeO3, where impurities induce the long-range
Néel ordering.28 In this material, the interplay between the
dimerized and antiferromagnetic states allows for a similar
theoretical description.27 In most CDW superconductors the
CDW transition occurs at a much higher temperature than
the SC transition, so that the influence of the Cooper pairing
on the CDW modulations is difficult to observe. Further-
more, the CDW gap only opens on a nested part of the Fermi
surface. In quasi-one-dimensional NbSe3 the fraction of the
Fermi surface affected by the CDW transition was estimated
to be ,0.6 at ambient pressure.6 In the two-dimensional
2H-NbSe2 this fraction is apparently very small, since the
gap opening actually increases the conductivity of this
material12 and the part of the Fermi surface, where the gap
opens, was not found in angle-resolved photoemission spec-
troscopy experiments,13,14,33even though the gap values34
meVd is known.34 For partially gapped Fermi surfaces the
competition between the CDW and SC states is less strong,
so that in 2H-NbSe2 they coexist even in absence of disorder.

While the enhancement of the SC transition temperature
upon the suppression of the CDW state is well documented
in many materials, the experimental situation with influence
of the superconductivity on the CDW state is less clear. On
the one hand, Raman experiments on 2H-NbSe2 show the
suppression of the intensity of the collective SC mode by
magnetic field with the concomitant enhancement of the in-
tensity of the CDW modes.35,36 On the other hand, no effect
of the superconducting ordering below 7 K, and of the sup-
pression of the SC state by magnetic field on the CDW
modulation was observed in x-ray experiments.15 The under-
standing of the behavior of 2H-NbSe2 is complicated by the
multi-sheet structure of the Fermi surface and the momentum
and sheet dependence of both order parameters.33 The inter-
play between the CDW and SC states in this and other ma-

FIG. 6. The plot shows the energy minimum versus the anglef
at h=0.5 and for different values ofG :G=0.234,G1 ssolid lined,
G,G fo=0.237sdashed lined, andG=0.240.G2 sdot-dashed lined.
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terials requires further experimental and theoretical studies.
Crucially, one may note that the phase diagram of the

interacting system was inferred from the self-consistent
Hartree-Fock approximation which captures only the mean-
field characteristics. In view of the filamentary structure of
the coexistence region, the system can be susceptible to me-
soscopic or sample to sample fluctuations due to the
quenched impurity potential. Such effects are recorded in
fluctuations of the fieldSsxd around its saddle-point or
mean-field valuesas opposed to the leading terms gathered in
the low-orderG expansion considered hered. In the gapless
regime, such effects can give rise to long-ranged diffusion
mode contributions to the generalized pair susceptibility
ssee, e.g., Ref. 37d. However, in the present case, the disorder
potential imposes a symmetry breaking perturbation on the
EI phase. As such, we can expect mesoscopic fluctuations
due to disorder to impose only a short-rangedsi.e., local on
the scale of the coherence length of the EI order parameterd
perturbation on the pair susceptibility. In the vicinity of the
coexistence region, where the potential for the anglef is
shallow, the effect of these mesoscopic fluctuations may be
significant.

To understand the effect of random fluctuations in the
coexistence region, we consider the Ginzburg-Landau expan-
sion for the ground-state energy close to the quantum critical
point h=0, G=0, at which the EI and SC states are degen-
erate. In the vicinity of this point the phasef of the “total”
order parameterD1+ iD2=Deif is a soft mode, so that weak
disorder mainly induces spatial fluctuations of the phase,
while the magnitude of the order parameterD approximately
stays constant. As in the derivation of Eq.s21d, we expand
the energy in powers ofD and disorder strength, assuming
thatG!D, which is justified in the coexistence region, where
G,s2h /pdD fsee Eq.s16dg. Assuming that the phase varies
slowly on the length scale of the correlation lengthj
=vF /D, wherevF is the Fermi velocity, we obtain

F .E dxFnFSvF
2

6
s¹fd2 + usxdcos 2fD + kflG , s22d

where the first term describes the “elastic energy” of an in-
homogeneous state, the disorder-averaged free energykfl is
given by Eq.s21d, andusxd is the fluctuating part of disorder
coupled to the phase of the order parameter. Neglecting cor-
relations on a scale smaller than the correlation length,usxd
can be approximately considered as a randomd-correlated
Gaussian variable with zero averagekusxdl=0 and variance

kusxdusydl = Adsx − yd, A =
p4G2D2

2kF
3 , s23d

swe omit the lengthy calculations that lead to this resultd. The
coupling to disorder also occurs in higher orders of the ex-
pansion, but those terms are relatively small and can be ne-
glected.

Following the Imry and Ma argument,38 we consider a
large phase fluctuation, e.g., a droplet of the SC phase of the
spatial extentL inside the EI matrix. Comparing the typical

energy gain due to the coupling to disorder,nF
ÎAL3 with

the loss in the elastic energy,nFvF
2L, we find that the fluc-

tuation is energetically favorable for

L .
vF

4

A
=

vF
4kF

3

2p2h2D4 , s24d

where we took into account that, in the coexistence region,
G,s2h /pdD.

The crucial difference of our model from that considered
in Ref. 38 is the absence of an exact continuous symmetry.
Even in the coexistence region, the minimal-energy valley
connecting the SC and EI pointssf=0 andf=p /2d is not
perfectly flat. The typical amplitude of the variations of the
energy density is,h2nFD2 fsee Eq.s21dg, resulting in the
energy loss,h2nFD2L3 proportional to the volume of the
fluctuation, which suppresses large droplets. Comparing it
with the energy gain, we find

L3 ,
A

h4D4 . s25d

Equationss24d and s25d hold simultaneously for

vFkF , hD, s26d

which cannot be satisfied in the weak coupling limit. One
may wonder why the conditions26d does not hold even for
h=G=0, where the model has a continuous symmetry. The
reason is that in our model the role of disorder is twofold. On
the one hand, it couples to the order parameter, as in the
“random field” model discussed in Ref. 38 and tends to de-
stroy the ordering. On the other hand, it affects the energy
difference between the EI and SC states and, therefore, sup-
presses the phase fluctuations, by destroying the symmetry of
the energy potential. The second effect, which is linear inG,
is stronger than the first.

Thus, the inhomogeneity of the order parameter, resulting
from typical disorder fluctuations is small. The phase fluc-
tuations can also be induced by large disorder fluctuations
s“Lifshitz tails” d, but their contribution to the free energy is
exponentially small.39 This justifies our mean-field treatment
of disorder.

This conclusion may not hold, however, for strongly
coupled CDW superconductors or for other types of disorder.
Qualitatively, we expect that inhomogeneous excitonic and
superconducting order parameters may result in a broadening
of the coexistence region. The local suppression of the exci-
tonic pairing near charged impurities can give rise to the
local enhancement of the superconducting order. The state
with such a nanoscale phase separation, in which two com-
peting orders alternate in antiphase without a loss of the
macroscopic coherence, can be more energetically favorable
than the uniform state and, therefore, can be stabilized in a
wider interval of parameters. Such a state was observed in
mSR experiments on doped CuGeO3, which shows both
spin-Peierls and antiferromagnetic ordering.40

In conclusion, we studied effects of disorder on systems
with competing superconducting and charge-density-wave
instabilities. We showed that even in the extreme situation,
when the competition takes place over the whole Fermi sur-
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face and the superconducting and charge-density-wave
phases are mutually exclusive, disorder can give rise to their
coexistence in a spatially homogeneous state. Furthermore,
disorder itself can be used as a parameter, with which one
can tune the balance between competing phases. Although
our model is too simple to describe the physics behind the
coexistence of superconductivity and CDWsSDWd states in,
e.g., high-Tc or heavy fermion materials, we believe that the
ability of disorder to bring together incompatible phases may
be important for understanding phase diagrams of these
systems.
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APPENDIX: COEXISTING INSTABILITIES AND
DERIVATION OF THE EFFECTIVE MODEL

In this appendix we obtain a condition under which both
the SC and EI instabilities can occur simultaneously. Here,
we consider more realistic interactions between electrons
than those described by the models1d, namely, the phonon-
mediated interaction and the Coulomb repulsion. The Cou-
lomb repulsion counteracts the phonon-mediated attraction
between electrons and suppresses the SC instability. The
same holds for the instability towards the formation of the
excitonic condensate with the difference that the two types of
interaction now change roles: the Coulomb force favors the
electron-hole pairing, while the one-phonon exchange results
in a repulsion between electrons and holes. We will show
that the SC and EI instabilities can coexist due to different
frequency dependence of the two types of interactions.

For retarded phonon-mediated interactions, the order pa-
rametersD1 andD2 are frequency dependent, which compli-
cates the solution of the self-consistency equations. We
show, however, that in the weak coupling and weak disorder
limit, the equations for the order parameters at zero fre-
quency coincide with Eq.s9d, which justifies the model in-
troduced in Sec. II. Moreover, we will give the explicit ex-
pressions for the coupling constantsg1 and g2 appearing in
Eq. s1d.

We describe effective electron-electron interactions by a
nonlocal action

Seff =
ge-ph

2

2
E dxE dtdt8rsx,tdDst − t8drsx,t8d

+
gC

2

2
E dxdtr2sx,td, sA1d

where r=osscas
† cas+cbs

† cbsd is the total electron density.
The first term is the phonon-mediated effective attraction be-
tween electrons andDst−t8d is the phonon Green function.
For a single dispersionless optical phonon with the frequency

V0 and the propagatorDvn
=−V0

2/ svn
2+V0

2d, we haveDst
−t8d=−V0e

−V0ut−t8u /2 for T!V0. The second term in Eq.
sA1d is the instantaneous Coulomb interaction. We neglect
the momentum dependence of the screened electron-phonon
and Coulomb couplings, which makes the electron-electron
interactions local in space.

The couplings for thea andb electrons in Eq.sA1d give
rise to a large freedom in the choice of order parameters,
which in reality may not be present, e.g., due to the interband
scattering, which separately does not conserve the numbers
of the a and b electrons. In what follows we restrict our-
selves to the anomalous averages considered in Sec. II,
which, for retarded interactions Eq.sA1d, are time dependent
sj =a, b ands= ↑ , ↓d:

D1st − t8d = − fge-ph
2 Dst − t8d + gC

2gkci↑stdci↓st8dl,

D2st − t8d = − fge-ph
2 Dst − t8d + gC

2gkcasstdcbsst8dl.

In the frequency representation the self-consistency equa-
tions read

D1svnd = −
T

4V
o
pvn8

sge-ph
2 Dvn−vn8

− gC
2dtrst1Gp,vn8

d

D2svnd =
T

4V
o
pvn8

sge-ph
2 Dvn−vn8

− gC
2dtrst3s1Gp,vn8

d,

where the electron Green function is given by Eq.s5d.
To simplify the algebra, we consider here only the zero

temperature case. The integration over the electron excitation
energyj gives

D1svd =
1

2
E

−Ec

+Ec

dv8Fk1
V0

2

sv − v8d2 + V0
2 − k2G

3
D̃1sv8d

Îṽ82 + D̃1
2sv8d + D̃2

2sv8d
,

D1svd =
1

2
E

−Ec

+Ec

dv8Fk2 − k1
V0

2

sv − v8d2 + V0
2G

3
D̃1sv8d

Îṽ82 + D̃1
2sv8d + D̃2

2sv8d
, sA2d

where we have introduced the dimensionless coupling con-
stantsk1=nFge-ph

2 and k2=nFgC
2, and whereEc is the fre-

quency cutoff required for the instantaneous Coulomb inter-

action. Moreover the variablesṽ , D̃1, andD̃2 are defined in
Eq. s6d.

Although Eqs.sA2d look at a first sight complicated, one
can see that, in the limit of weak coupling and weak disorder
D1,2, G!V0,Ec, their solution can be found by making use
of the fact that the order parametersD1svd and D2svd
strongly vary at frequenciesv,V0, while ṽ , D̃1, andD̃2 are
nontrivial functions ofv only at much lower frequenciesv
,G, whereD1svd and D2svd can be replaced by their zero
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frequency values. Therefore, we can solve Eqs.sA2d in two
steps: first we find the frequency dependence of the order
parametersD1svd and D2svd for arbitrary values ofD1s0d
andD2s0d, and then we solve the self-consistency equations
for D1s0d andD2s0d.

It is convenient to use the dimensionless variablesx
=v /V0 andy1,2sxd=D1,2svd /V0 fand similarlyx̃ andỹ1,2sxdg,
in terms of which the first of Eqs.sA2d reads

y1sxd =E
0

L

dx8
ỹ1sx8d

Îx̃82 + ỹ1
2sx8d + ỹ2

2sx8d

3Hk1

2
F 1

sx + x8d2 + 1
+

1

sx − x8d2 + 1
G − k2J ,

whereL=Ec/V0. We then introduce an intermediate scaleX,
such thaty1,2!X!1. In the interval 0øx8øX, we can ne-
glect thex8 dependence of the kernel of this integral equation
and the functionsy1,2sx8d showever,ỹ1,2 and x̃8 still do de-
pend onx8d. In the second intervalXøx8øL, we substitute
ỹ1/Îx̃82+ ỹ1

2+ ỹ2
2 by y1sx8d /x8 and perform the integration by

parts. In this way we obtain

y1sxd = − y1sLdk2 ln L + S k1

1 + x2 − k2D
3FE

0

X

dx8
ỹ1sx8d

Îx̃82 + ỹ1
2sx8d + ỹ2

2sx8d
− y1s0d ln XG

−E
0

`

dx8 ln x8
d

dx8
HFk1

2
S 1

sx + x8d2 + 1

+
1

sx − x8d2 + 1
D − k2Gy1sx8dJ , sA3d

where the limits of the second integration were extended to 0
and `, as there is convergence both at small and large fre-
quencies.

Since, atX@y1,2, Eq. sA3d is independent ofX, we can
chooseX=1 fand still substitutey1,2sx8d by y1,2s0d in the first
integralg. The value ofy1 at the cutoff is then given by

y1sLd = − k2
*FE

0

1

dx8
ỹ1sx8d

Îx̃82 + ỹ1
2sx8d + ỹ2

2sx8d

−E
0

`

dx ln x
dy1

dx G ,

wherek2
* =k2/ s1+k2 ln Ld. For arbitraryx we have

y1sxd = S k1

1 + x2 − k2
*DIfy1s0d,y2s0dg

−E
0

`

dx8 ln x8
d

dx8
HFk1

2
S 1

sx + x8d2 + 1

+
1

sx − x8d2 + 1
D − k2

*Gy1sx8dJ , sA4d

where the notation

Ify1s0d,y2s0dg =E
0

1

dx8
ỹ1sx8d

Îx̃82 + ỹ1
2sx8d + ỹ2

2sx8d

is used to stress the fact thaty1 and y2 are assumed to be
frequency independent.

In the weak coupling limit the first term in the right-hand
side of Eq. sA4d, proportional to the “large logarithm”
lnÎy1

2+y2
2, is much larger than the second term, so this inte-

gral equation can be solved by iterations, which generate a
perturbative expansion fory1sxd. To the lowest order, the
frequency dependence of the order parameter coincides with
that of the kernel25

y1sxd = S k1

1 + x2 − k2
*DIfy1s0d,y2s0dg. sA5d

Then the self-consistency equation forD1s0d coincides with
Eq. s9d at T=0:

D1s0d = l1E
0

V0

dv
D̃1svd

Îṽ2 + D̃1
2svd + D̃2

2svd
, sA6d

and the effective coupling constant is given by

l1 = k1 − k2
* = k1 −

k2

1 + k2 ln Ec/V0
. sA7d

The negative term in the coupling constant describes the re-
duction of the attraction between electrons due to the Cou-
lomb repulsion, but this reduction is itself reduced by the
presence of the large logarithm in the denominator due to the
difference in the time scales of the retarded phonon-mediated
attraction and the Coulomb repulsion.25,41The first-order cor-
rection toy1sxd, found by substituting Eq.sA5d into the in-
tegral in Eq.sA4d sas well as all higher-order correctionsd,
leaves the form of the self-consistency equationsA6d un-
changed, but results in a small modification of the expression
for the effective coupling constant throughk1 andk2:

l1 = k1S1 −
k1

2
D − k2

* .

The frequency dependence of the excitonic insulator order
parameterD2svd and the self-consistency equation forD2s0d
can be obtained from Eqs.sA6d andsA7d by the substitution
D1°D2, k1°−k1, andk2°−k2:

D2s0d = l2E
0

V0

dv
D̃2svd

Îṽ2 + D̃1
2svd + D̃2

2svd
, sA8d

where the effective coupling constantl2 is to the lowest
order given by

l2 =
k2

1 − k2 ln Ec/V0
− k1. sA9d
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In Fig. 2 we show the typical frequency dependence of
the SC and EI order parameters, calculated fork1
=0.25,k2=0.1, andG=0. fSince in the absence of disorder
the SC and EI states cannot coexist, we calculatedD1svd
assumingD2=0 and vice versa.g The SC order parameter
D1svd is positive at small frequencies and changes sign at
v.V0, while the EI order parameterD2svd has a dip for
uvu,V0. The “separation” of the two order parameters in
frequency is crucial for the coexistence of instabilities.

The necessary condition for superconductivity to appear
is l1.0, while the instability towards the excitonic conden-
sate occurs forl2.0. These two conditions

l1 .
l2

1 + l2 ln L
, l1 ,

l2

1 − l2 ln L

hold simultaneously for

uhu = U 1

l1
−

1

l2
U , ln

Ec

V0
. sA10d

A weak disorder has little effect on the frequency depen-
dence ofD1 andD2. However, its presence is crucial for the
stabilization of the mixed state, in which the two order pa-
rameters coexist.
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