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While the Bethe ansatz solution of the Haldane-Shastry model appears to suggest that the spinons represent
a free gas of half-fermions Bernevig, Giuliano, and Laughlin �BGL� �Phys. Rev. Lett. 86, 3392 �2001�; Phys.
Rev. B 64, 24425 �2001�� have concluded recently that there is an attractive interaction between spinons. We
argue that the dressed scattering matrix obtained with the asymptotic Bethe ansatz is to be interpreted as the
true and physical scattering matrix of the excitations, and hence, that the result by BGL is inconsistent with an
earlier result by Essler �Phys. Rev. B 51, 13357 �1995��. We critically reexamine the analysis of BGL, and
conclude that there is no interaction between spinons or spinons and holons in the Haldane-Shastry model.
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The Haldane-Shastry model �HSM�4–8 plays a unique role
among the integrable models of spin S= 1

2 chains. In what
might be referred to as a brilliant theoretical coup, Haldane
and Shastry discovered independently in 1988 that a trial
wave function proposed by Gutzwiller9 in 1963 provides the
exact ground state to a Heisenberg-type spin Hamiltonian
whose interaction strength falls off as the inverse square of
the distance between two spins on the chain. If one imposes
periodic boundary conditions �PBCs�, and embeds the one-
dimensional chain into a two-dimensional complex plane by
mapping it onto the unit circle with the S= 1

2 spins located at
complex positions ��=exp�i�2� /N� ��, where N denotes the
number of sites and �=1,… ,N, the Hamiltonian

HHS = J�2�

N
�2

�
���

N
S� · S�

��� − ���2
�1�

possesses the exact ground state

�0�z1,…,zM� = 	
i�j

M

�zi − zj�2	
j=1

M

zj , �2�

for N even, M =N /2. The corresponding state vector is given
by

��0
 = �
�z1,…,zM�

�0�z1,…,zM�Sz1

+
¯ SzM

+ �↓↓…↓
 , �3�

where the sum extends over all possible ways to distribute
the positions zi of the up spins over the N sites. The model is
fully integrable even for a finite number of sites; the algebra
of the �infinite number of� conserved quantities is generated
by the total spin and rapidity operators

S = �
�=1

N

S�, � =
i

2 �
���

N
�� + ��

�� − ��

�S� � S�� , �4�

which both commute with the Hamiltonian but do not com-
mute mutually. The unique feature of the model, from a prac-
tical point of view, is that in addition to its amenability to
solution by the asymptotic Bethe ansatz �ABA�,6,10–12 the
ground state and many of the excited states �in principle, all
the ones where the spins of the spinon excitations are fully

polarized� can be written down in closed form, i.e., the wave
functions are known explicitly. In particular, the wave func-
tion for an individual spinon excitation, which carries spin
one-half but no charge, at site �� is constructed in complete
analogy to the wave function for a quasihole excitation in a
fractionally quantized Hall liquid13

���z1,…,zM� = 	
j=1

M

��� − zj�	
i�j

M

�zi − zj�2	
j=1

M

zj , �5�

where N odd, M = �N−1� /2. The model may hence be used
to illustrate the sense in which spinons are fractionally quan-
tized excitations: the spin of the spinon is one-half, while the
Hilbert space �3� is built up from spin flips, which carry spin
one.

On a more profound level, the model is unique in that
there is no spin exchange between spinon excitations,6 which
follows directly from the commutativity of � with HHS. Fur-
thermore, the spinon excitations of the model have or had
been considered to constitute an ideal gas of half-fermions,
that is, an ideal gas of particles obeying fractional
statistics.14,15 This view has received strong support from
Essler,3 who calculated the dressed scattering matrix of the
spinon excitations using the ABA, and found it to be S= ± i.
The fact that S does not depend on the spinon momenta
implies that they are noninteracting or free; the phase i im-
plies that they obey half-fermion statistics. This picture, and
in particular the applicability of the ABA to the HSM, were
commonly accepted until a few years ago.

In 2001, this picture was challenged by Bernevig,
Giuliano, and Laughlin �BGL�,1,2 who investigated the na-
ture of the spinon interaction by working out the wave func-
tions for the spin-polarized two-spinon eigenstates explicitly.
They found “clear evidence for a short-range, attractive in-
teraction between spinons.”1 Furthermore, they “prove rigor-
ously that this enhancement”—meaning a probability en-
hancement as the spinons are close together—“is responsible
for the square-root singularity in the dynamical spin
susceptibility,”1 which has been evaluated exactly in the ther-
modynamic limit for the HSM by Haldane and Zirnbauer,16

and experimentally observed in KCuF3 by Tennant et al.17

According to BGL, “the experiments provide evidence that
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spinons do interact and that the spinon interaction is what
determines the peculiar low-energy physics of spin one-half
antiferromagnetic chains.” 2 BGL attribute the apparent con-
tradiction between their results and the ABA result to the fact
that “the interaction between spinons is encoded in the defi-
nition of the pseudomomenta” which label the Bethe ansatz
solutions.1 In other words, they assert that it is a special
feature of the ABA technique that the spinon excitations ap-
pear to be free, while there is in fact an attractive interaction
between them.

This line of reasoning may sound convincing at first sight.
Indeed, in models like the Sutherland-Calogero10,18 or the
Haldane-Shastry model, the long-range interaction of the
particles or spins, respectively, is encoded in the definition of
the pseudomomenta. The interacting degrees of freedom the
Hilbert space is built up from, the particles or spin flips, are
mapped through a nonlocal and highly nontrivial transforma-
tion into a new set of degrees of freedom, the pseudomo-
menta, which do not interact. In a sense, in the HSM both the
1/r2 tail of the spin-flip terms S�

+S�
− as well as the “potential

energy” term S�
z S�

z are encoded in the pseudomomenta. In the
framework of the ABA, spinon excitations for the HSM cor-
respond to fractional holes in the otherwise uniform distribu-
tion of pseudomomenta. Specifically, a pair of spinons is
constructed by shifting the pseudomomenta quantum num-
bers Ii from integer to half-integer values or vice versa, and
leaving the Ii’s or pseudomomenta associated with the
spinons unoccupied. The energy of the state is given by a
sum of “kinetic energies” of each occupied pseudomomen-
tum, without an interaction between them. The information
regarding the 1/r2 interaction between the original spins is
no longer accessible in this framework.

What is still accessible, however, is the information re-
garding the energies of and the interaction between the
spinon excitations. The energies of the spinons are given by
the change in the kinetic energies associated with the occu-
pied pseudomomenta as we shift them. The interaction be-
tween the spinons is encoded in the way this shift in the
pseudomomenta induced by one spinon is affected by the
existence of another. In the spin one-half Heisenberg chain,
for example, there is a rather complicated change or “screen-
ing” of the pseudomomenta due to an interaction between the
spinons. In the HSM, by contrast, the creation of a spinon
only induces a constant shift of the pseudomomenta, which
implies that the spinons are free. The most reliable way to
extract this information, however, is to calculate the spinon-
spinon scattering matrix. If the ABA is applicable to the
HSM at all, which is not garanteed a priori as the spin-spin
interaction is long ranged, the result by Essler quoted above
unambigously confirms that the spinons are free.

In the remainder of this paper, we resolve the contradic-
tion between the conclusions reached by Essler3 and BGL.1,2

The result is that we find no reason to doubt the applicability
of the ABA, and completely agree with Essler’s conclusions.
We also agree with the explicit calculations of BGL, but do
not agree with their interpretation of the calculations. In par-
ticular, their conclusion that there is an attraction between
spinons or spinons and holons in the HSM, title to several
publications,1,2,19–21 is incorrect.

To begin with, it is worth noting that there is a physical
reason to be suspicious of BGL’s result. They conclude that

there is an attractive interaction between spinons, but no
bound state. If there was an arbitrarily weak attraction, how-
ever, it would presumably yield a bound state due to the
Cooper instability.22 Cooper’s argument was originally for-
mulated for two electrons outside a completely occupied
Fermi sphere, which are subject to an arbitrarily weak attrac-
tion. The argument is independent of the number of dimen-
sions. The Fermi surface is only relevant in that it blocks
certain states, and renders the density of states available to
the two electrons at the point where their kinetic energy is
minimal �i.e., at the Fermi surface� finite. The Fermi statis-
tics of the electrons accounts for the formation of a spin
singlet, but is not essential to the instability; for example,
one would also find a bound state if one were to use spinless
bosons instead. The only subtlety involved in applying the
argument to spinons in the HSM is the half-fermi statistics of
the spinons. It is not plausible to us, however, that this sta-
tistical interaction would preclude the pairing, as there is not
even an angular momentum barrier associated with the sta-
tistical interaction in one dimension.

Let us now critically reexamine the arguements presented
by BGL. We begin with a review of their analysis, and then
explain why we disagree.

BGL construct exact two-spinon eigenstates for the HSM
starting from basis states with the two spinons localized at
sites �� and ��

����z1,…,zM� = 	
j=1

M

��� − zj���� − zj�	
i�j

M

�zi − zj�2	
j=1

M

zj ,

�6�

where M = �N−2� /2 denotes the number of up or down spins
condensed in the uniform singlet sea. The momentum space
basis states are obtained by Fourier transformation,

�mn�z1,…,zM� = �
�,�

N
��̄��m

N

��̄��n

N
����z1,…,zM� , �7�

where M �m�n�0. For m or n outside this range, �mn will
vanish identically, reflecting the overcompleteness of the po-
sition space basis �6�. Acting with the Haldane-Shastry
Hamiltonian on Eq. �7� yields

HHS��mn
 = Emn��mn
 + �
l=1

lM

Vl
mn��m+l,n−l
 , �8�

where

Emn = − J
�2

24
�N −

19

N
+

24

N2� +
J

2
�2�

N
�2m�N

2
− 1 − m�

+ n�N

2
− 1 − n� −

m − n

2
� , �9�

lM =min�M −m ,n�, and Vl
mn=−�J /2��2� /N�2�m−n+2l�.

Since the “scattering” of HHS acting on the nonorthogonal
basis states ��mn
 only occurs in one direction, increasing the
difference m−n while keeping the “total momentum” m+n
fixed, the �unnormalized� eigenstates of HHS have energy ei-
genvalues Emn and are of the form
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�	mn
 = �
l=0

lM

al
mn��m+l,n−l
 �10�

with a0
mn=1. A recursion relation for the coefficients al

mn is
easily obtained from Eq. �8�. Combining Eqs. �10� and �7�,
one thus obtains an expansion of the exact energy eigenstates
�	mn
 in terms of localized spinon states ����
.

In a technically truly remarkable analysis, BGL have fur-
ther succeeded in obtaining the coefficients pmn���−�� in the
inverse expansion

����
 = �
m=0

M

�
n=0

m

�− 1�m+n��
m��

n pmn���−���	mn
 �11�

of the localized spinon states in terms of the energy eigen-
states by solving a hypergeometric differential equation.
Since a spin flip S�

− acting on the Haldane-Shastry ground
state yields a state with a pair of spinons localized at
�� ,S�

−��0
=������
, the expansion of Sq
−��0
 in terms of

�	mn
 is determined by pmn�1�,

Sq
−��0
 = �

�=1

N

����kS�
−��0


= N�
m=0

M

�
n=0

m

�− 1�m+n
m+n+k+1,0 pmn�1��	mn
 , �12�

where q=2�k /N and the Kronecker 
 is defined modulo N.
The explicit expression for pmn�1� enabled BGL to calculate
the dynamical spin susceptibility �DSS�

�q��� � − Im��0�S−q
+ 1

� − �HHS − E0� + i0
Sq

−��0
 , �13�

for finite chains as well as in the thermodynamic limit, thus
providing an alternative derivation of the Haldane-Zirnbauer
formula.16 The DSS shows a square-root singularity at the
lower threshold frequency of the two-spinon continuum,
which is a characteristic feature of spin one-half chains.23

As already mentioned, we completely agree with these
calculations. We disagree, however, with BGL’s interpreta-
tion of the results as evidence for a spinon attraction.

The first argument given by BGL in favor of a spinon
interaction is based on a plot of �pmn�ei��2 for m=M ,n=0, as
a function of . They interpret �pmn�ei��2 as probability for
finding the spinons at a distance  along the circle from each
other, and show it to be strongly enhanced at small . The
problem with the argument is that, as one can easily see from
Eq. �11�, the pmn���−��’s are the coefficients in the expansion
of the overcomplete basis states ����
 at fixed � ,� in terms
of �	mn
. Due to this overcompleteness, the pmn���−��’s as
functions of ��−� have no direct physical interpretation. The
actual relative spinon-spinon wave function �mn���−�� for
given m and n provides the coefficients in

�	mn
 = �
�=1

N

�
�=1

N

�mn���−�����+���m+n�/2 ����

�����
�

. �14�

It is easily seen from Eqs. �10� and �7� that a possible choice
for �mn���−�� is

�mn���−��=�
l=0

lM

al
mn���−���m−n+2l�/2 �����
� . �15�

Depending on m and n, one finds that �mn�ei� is sometimes
enhanced and sometimes suppressed for small , but even if
there was a clear enhancement, it would not allow for a
conclusion regarding a spinon attraction. The reason is sim-
ply that the overcompleteness of the basis states ����
 im-
plies that �mn���−�� is not uniquely determined, i.e., there
are infinitely many choices for �mn���−�� which yield the
same �	mn
 in Eq. �14�.

The second argument of BGL is that the last term in the
energy �9� of the two-spinon state �	mn
 represents “a nega-
tive interaction contribution that becomes negligibly small in
the thermodynamic limit.”1 The problem here is that BGL
identify the momenta qm and qn of the individual spinons
according to

qm =
�

2
−

2�

N
�m +

1

2
�, qn =

�

2
−

2�

N
�n +

1

2
� , �16�

and interpret the two preceding terms in Eq. �9� as the kinetic
energies of the individual spinons. The correct identification
of the spinon momenta for m�n, however, is

qm =
�

2
−

2�

N
�m +

3

4
�, qn =

�

2
−

2�

N
�n +

1

4
� , �17�

which implies that the kinetic energy of the spinons is given
by all three terms in the square bracket in Eq. �9�. With
E�q�= �J /2���� /2�2−q2�, one finds

Emn = − J
�2

24
�N +

5

N
−

6

N2� + E�qm� + E�qn� . �18�

The alleged spinon interaction term has disappeared. Physi-
cally, the shift between qm and qn by one-half of a momen-
tum spacing 2� /N is nothing but a manifestation of the half-
fermi statistics of the spinons. While the allowed values for
the total momenta qm+qn are those for PBCs, the allowed
values for the difference in the momenta qm−qn are those for
anti-PBCs, i.e., PBCs with the ring threaded by a flux �.

Finally, BGL claim to prove that the enhancement of
�pmn�ei��2 they find when plotting it as a function of the
spinon separation  is responsible for the square-root singu-
larity in the DSS.1 Their proof then consists of the derivation
of the Haldane-Zirnbauer formula sketched above. In their
longer paper,2 BGL conclude that their “analysis definitely
proves that the square-root sharp edge on top of the broad
spectrum is nothing but the interaction between spinons,”
and say that “this result is of the utmost importance, since it
represents a way to experimentally test the interaction among
spinons in one dimension.”

There are several problems attached to this line of reason-
ing. First, the coefficients �pmn�ei��2 cannot be interpreted as
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a probability as a function of the spinon separation , as
explained above. Second, it is not pmn�ei� as a function of 
for fixed m and n which enters the derivation of the Haldane-
Zirnbauer formula, but pmn�1� as a function of m and n, as
one can directly see from Eq. �12�.

The square-root singularity in the DSS is accordingly not
due to an alleged spinon attraction, but a general conse-
quence of the fractional quantization of spin excitations in
spin one-half chains. The position space basis for these frac-
tional excitations, the spinons, is necessarily overcomplete.
The local creation of two spinons through a spin flip is in
general not equivalent to a creation of all two-spinon energy
eigenstates with the same relative weight. The process rather
creates predominantly spinons with lower energies, which is
reflected in the square-root singularity in the DSS. �These
general considerations are of course not sufficient to explain
the precise functional form of the DSS, but do provide an
intuitive understanding of how a singularity can occur even
though the spinons are free.� Since the fractional quantiza-
tion of spin excitations is a generic feature of spin one-half
chains, the square-root singularity in the DSS must be ge-
neric as well. It exists in the HSM, where spinons are free,
but also in the Heisenberg model, where spinons are inter-
acting. With the experimental observation of the square-root
singularity in KCuF3, Tennant et al.17 have indirectly ob-
served fractional quantization in spin chains.

In the context of this analysis, it is worthwhile to mention
a curiosity of the two-spinon eigenstates. In the evaluation
reviewed above, BGL obtained the coefficients al

mn by ex-
plicitly solving the Sutherland equation �8� using the ansatz

�10�. The coefficients al
mn were hence determined by the

Hamiltonian, and appear to contain information inflicted on
the system by the Hamiltonian. In principle, this could in-
clude information regarding an interaction between spinons.

In fact, however, the Hamiltonian is not even required in
determining the coefficients al

mn. If we wish to construct an
orthogonal basis �	mn
 according to Eq. �10� with a0

mn=1
from the nonorthogonal basis ��mn
, the overlaps
��mn ��m�n�
 for all m ,n ,m� ,n� completely determine all the
coefficients al

mn, as the reader will be able to verify easily for
himself. The coefficients al

mn as well as pmn����, and there-
fore also the “scattering amplitudes” Vl

mn in Eq. �8�, hence
contain no information except the one regarding the Hilbert
space structure of the fractionally quantized excitations. Ac-
cordingly, it seems impossible as a matter of principle to
reach a conclusion regarding an interaction between the
spinons by studying these coefficients.

In conclusion, we have shown that the spinons in the
HSM represent an ideal gas of half-fermions, and thereby
dispersed all evidence that the ABA might not be applicable
to the model. An analysis similar to the one presented here
shows that there is likewise no interaction between spinons
and holons in the HSM. The conclusions drawn by BGL with
regard to this question19,20 are likewise incorrect.

We wish to thank N. Andrei for sharing his expertise on
the Bethe ansatz with us. This work was partially supported
by the German Research Foundation �DFG� through
GK 284.
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