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We calculate the spin correlation function and the magnetic longitudinal and transverse susceptibilities of a
two-dimensional antiferromagnet doped with a small concentration of holes, in thet-J model. We find that the
motion of holes generates spin fluctuations that add to the quantum fluctuations, the spin correlations decaying
with the inverse of the spin distance, while increasing with doping as the critical hole concentration, where the
long-range order disappears, is approached. Moreover, the longitudinal susceptibility becomes finite in the
presence of doping due to the strong damping effects induced by the hole motion, while the transverse
susceptibility is renormalized by softening effects. Both the longitudinal and transverse susceptibilities increase
with doping, the former more significantly than the latter. Our results imply that doping destroys the long-range
order while local antiferromagnetic spin correlations persist. This is consistent with experiments on doped
copper oxide superconductors.

DOI: 10.1103/PhysRevB.71.224412 PACS numberssd: 75.10.Nr, 74.25.Ha, 71.27.1a, 75.30.Cr

Since their discovery,1 the copper oxide high-Tc supercon-
ductors have shown unusual magnetic characteristics, along
with the unconventional transport properties.2 The undoped
materials, e.g., La2CuO4, are antiferromagneticsAFd insula-
tors, and doping, e.g., in La2−dSrdCuO4, introduces holes,
which are the charge carriers, in the spin lattice of the copper
oxide planes. The CuO2 planes are described by a spin-1/2
Heisenberg antiferromagnet on a square lattice with moving
holes that strongly interact with the spin array. A remarkable
feature of the copper oxides is the strong dependence of their
magnetic properties on the hole concentrationd. In previous
work3–5 we studied the effects of doping on various magnetic
properties, and showed that the motion of holes generates
significant softening and damping of the spin excitations,
leading, in particular, to the disappearance of the long-range
AF order at a small hole concentration, due to the decay of
spin waves. We found that the staggered magnetization van-
ishes at a hole concentration well below the one for which
the spin-wave velocity vanishes, or even the one for which
all spin waves become overdamped. This suggests that al-
though the long-range order has disappeared, strong AF cor-
relations persist, which allow the spin-wave excitations to
exist. This is in agreement with experiments in the copper
oxides, which show that, although the long-range order dis-
appears, AF correlations persist up to fairly high doping, into
the superconducting state.2,6–9 It is therefore of interest to
study the spin correlations in these materials, because of
their unusual behavior and their possible connection to high-
Tc superconductivity.

In this work we use thet-J model to calculate the spin
correlation function of a two-dimensional antiferromagnet as
a function of the hole concentration, which allows to inves-
tigate the local spin fluctuations, and also calculate the lon-
gitudinal and transverse magnetic susceptibilities, which re-
flect the global response of the system, accounting for the
total spin fluctuations. We consider zero temperature and the
low doping regime where the long-range AF order still ex-
ists. It is shown that the motion of holes generates spin fluc-
tuations that add to the quantum fluctuations of the system,
and increase with hole concentration. Moreover, we find that

the longitudinal spin susceptibility, which is zero in a pure
Heisenberg antiferromagnet at zero temperature, becomes fi-
nite in the presence of doping, increasing significantly with
hole concentration, more pronouncedly than the correspond-
ing transverse spin susceptibility.

We describe the copper oxide planes with thet-J model,

Ht-J = − t o
ki,jl,s

scis
† cjs + H.c.d + Jo

ki,jl
SSi ·Sj −

1

4
ninjD , s1d

where Si =
1
2cia

† sabcib is the electronic spin operator,s are
the Pauli matrices,ni =ni↑+ni↓, andnis=cis

† cis. To enforce no
double occupancy of sites, we use the slave-fermion
Schwinger boson representation10 for the electronic operators
cis= f i

†bis, where the slave-fermion operatorf i
† creates a hole

and the boson operatorbis accounts for the spin, subject to
the local constraintf i

†f i +bi↑
† bi↑+bi↓

† bi↓=2S. For the undoped
system, models1d describes a spin-1/2 Heisenberg antiferro-
magnet, exhibiting long-range Néel order at zero tempera-
ture. The Néel state is represented by a condensate of Bose
fields bi↑=Î2S and bj↓=Î2S, respectively, in the up and
down sublattices, and bosonsbi =bi↓ and bj =bj↑ are then
spin-excitation operators on the Néel background. After a
Bogoliubov-Valatin transformation on the boson Fourier
transform, bk =ukbk +vkb−k

† , where uk =fss1−gk
2d−1/2

+1d /2g1/2 and vk =−sgnsgkdf(s1−gk
2d−1/2−1) /2g1/2, with gk

=scoskx+coskyd /2, we arrive at the effective Hamiltonian

H = −
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where Vsq ,kd=ztsgquk +gq+kvkd represents the interaction
between holes and spin waves resulting from the motion of
holes with emission and absorption of spin waves,vk

o

=szJ/2ds1−gk
2d1/2 is the dispersion for spin waves in the un-

doped antiferromagnet, andz is the lattice coordination num-
bersz=4d, N the number of sites in each sublattice. The sums
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are performed in the first Brillouin zone of an antiferromag-
net on a square lattice.

The magnetic properties are calculated in terms of the
spin-wave Green’s functions

D−+sk,t − t8d = − ikTbkstdbk
†st8dl,

D+−sk,t − t8d = − ikTb−k
† stdb−kst8dl,

D−−sk,t − t8d = − ikTbkstdb−kst8dl,

D++sk,t − t8d = − ikTb−k
† stdbk

†st8dl,

wherek¯l represents the average over the ground state. The
spin-wave Green’s functions verify the Dyson equations

Dmysk,vd = Do
mysk,vd + o

ag

Do
mask,vdPagsk,vdDgysk,vd,

with m ,y ,a ,g=±. The free Green’s functions are
Do

−+sk ,vd=1/sv−vk
o+ ihd, Do

+−sk ,vd=1/s−v−vk
o+ ihd, sh

→0+d, Do
−−sk ,vd=Do

++sk ,vd=0. Pagsk ,vd are the self-
energies generated by the interaction between holes and spin
waves, which we calculate in the self-consistent Born ap-
proximation sSCBAd. This corresponds to considering only
“bubble” diagrams with dressed hole propagators, describing
the decay of spin waves into “particle-hole” pairs. The spin-
wave self-energies take the form4

Pagsk,vd =
1

N
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Uagsk,qdfYsq,− k ;vd + Ysq − k,k ;− vdg,

s3d

with U−−sk ,qd=U++sk ,qd=Vsq ,−kdVsq−k ,kd, U+−sk ,qd
=Vsq−k ,kd2, U−+sk ,qd=Vsq ,−kd2, and
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.

The SCBA provides a spectral function for the holes,9–16

rsq ,vd, which is composed of a coherent quasiparticle peak
with weight a0.sJ/ td2/3 and dispersion «q.«min+sq
−qid2/2m, with effective massm.1/J, the Fermi surface for
the holes consisting of pockets, of radiusqF=Îpd, located at
qi =s±p /2 , ±p /2d in the Brillouin zone, and an incoherent
continuum taking the approximate formhusuvu−zJ/2dus2zt
+zJ/2−uvud, with h.s1−aod /2zt. We calculated the self-
energies to lowest order in the hole concentrationd.

The spin correlation function is defined as

Csr d =
1

2N
o
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where the sum runs over all lattice sites. Writing the spin
operators,Sj

z, Sj
x=sSj

++Sj
−d /2, Sj

y=sSj
+−Sj

−d /2i, in terms of the
electron operators, one hasSj
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† cj↓d /2, Sj
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−=cj↓
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and the boson condensation associated with the Néel state,
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z=s1−dds1/2−bj
†bjd, Sj

+=s1−ddbj, Sj
−=s1−ddbj
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+=s1−ddbj
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Sj
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proximationf j f j
†=1−d. In terms of the spin-excitation boson

operators, one has
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After Fourier transform and the Bogoliubov-Valatin transfor-
mation, we make the mean-field decouplingkABCDl
<kABlkCDl+kAClkBDl+kADlkBCl. This allows to express
the correlation functions5d in terms of the spin-wave Green’s
functions in the form

Csr d = s− 1dx+ys1 − dd2H 1
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wherer =sx,yd. The prefactor ofs−1d arises when the corre-
lation is between sites on different sublattices.

To lowest order in the hole concentrationd, we obtain for
the correlation functions6d the expression

Csr d = s1 − dd2fCosr d + Cdsr dg s7d

where
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1
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1
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k
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vk
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is the correlation function for a pure Heisenberg antiferro-
magnet, accounting for the quantum fluctuations, and

Cdsr d = − F1 +
1

N
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contains the effect of doping on the spin correlations associ-
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ated to the hole motion; the prefactors1−dd2 corresponds to
spin dilution, being negligible in the low doping regime con-
sidered. In Fig. 1 we present the correlation functionCsrd,
Eq. s7d, calculated for two different directions,x=y and y
=0, in the case ofd=0.02, and the pure case,d=0.0. One
sees that the spin correlations are independent of the spatial
direction, a result that is verified at any doping. In Fig. 2 we
plot the correlation function as a function of the spin distance
r for various hole concentrations. We observe thatCsrd in-
creases with doping, and decays, at large distances, as 1/r
sFig. 2 insetd, both in the pure and doped cases. One can
describe the behavior ofCsrd at large distances asCsrd
=Asdd / r, where Asdd=Ao+Bda, with Ao=1/Î2p and a
=0.42.Asdd contains the doping dependence, which is rep-
resented in Fig. 3. The dominant contribution toCdsrd, at
large r, comes from the imaginary part of the spin-wave
self-energies, which depend on the hole concentration essen-
tially asÎd.5 In Fig. 4 we compare the increase ofCsrd with
the hole concentrationd at fixed smallr fFig. 4sadg and large
r fFig. 4sbdg. The decay ofCsrd with 1/r was expected for
the undoped case since in a two-dimensional antiferromagnet
at zero temperature the correlation length is infinite.2,17 One
also expectedCsrd to increase with doping since the motion

of holes generates spin fluctuations that eventually lead to
the destruction of the long-range AF order at a finite critical
concentrationdc. In previous work,5 we found that the stag-
gered magnetization vanishes at a small critical concentra-
tion se.g., dc.0.07 for t /J=3d, while the long-wavelength
spin excitations remain well defined up to a higher hole con-
centrationsd* .0.17 also fort /J=3d. Here we find that the
doping does not qualitatively change the behavior ofCsrd
with r, as compared to the pure case, which reflects the ro-
bustness of the local AF order in the doped material. Spin
correlations in the copper oxides were studied before, both
experimentally2,6–9 and theoretically,18–20 but in a higher
doping regime where the long-range AF order has already

FIG. 1. Correlation functionCsrd vs spin distancer at the hole
concentrationd=0.02 for directionsx=y sopen circlesd and y=0
sdiamondsd on the square lattice, witht /J=3. Inset:Csrd vs r in the
pure antiferromagnetsd=0.0d.

FIG. 2. Correlation functionCsrd vs spin distancer, x=y, for
various hole concentrationsd with t /J=3. Inset:Csrd vs 1/r for
large r.

FIG. 3. Spin correlation amplitudeAsdd at large spin distances
vs hole concentrationd with t /J=3.

FIG. 4. Correlation functionCsrd vs hole concentrationd with
t /J=3 for fixed r, x=y. sad In the range of smallr. sbd In the range
of large r.
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disappeared. In this regime the spin correlations decrease
with increasing doping, as the system moves away from the
critical hole concentration.

In the presence of long-range AF order one distinguishes
a longitudinal and a transverse susceptibility. The longitudi-
nal spin susceptibility is defined as

xi = xisk = 0,v = 0d, s10d

where the dynamical susceptibility is given by

xisk,vd = iE
0

+`

dteivtkfSzsk,td,Szs− k,0dgl.

In terms of the spin-wave Green’s functions one has

xi = lim
k→0

i
1

No
k1

E
−`

+` dv

2p
f2uk1

vk1
uk1−kvk1−k − uk1

2 uk1−k
2

− vk1

2 vk1−k
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which to lowest order in the hole concentration gives

xi = 4
1
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The transverse spin susceptibility is defined by

x' = x'sk = 0,v = 0d, s12d

where

x'sk,vd = iE
0

+`

dteivtkfSxsk,td,Sxs− k,0dgl.

In terms of the spin-wave Green’s functions the transverse
spin susceptibility is expressed as3

x' = − lim
k→0

S1 − gk

1 + gk
D1/2

fReD+−sk,0d + ReD++sk,0dg,

which, to lowest order in the hole concentrationd, is given
by

x' = lim
k→0

1

zJs1 + gkdH1 −
2

zJs1 − gk
2d1/2fReP+−sk,0d

+ ReP++sk,0dgJ . s13d

We found thatx' takes the simple form

x' = Zxx'
o ,

wherex'
0 =1/s2zJd is the transverse spin susceptibility for a

pure Heisenberg antiferromagnet andZx=1+4dao
2st /Jd2 is a

renormalization factor.
Comparing Eqs.s11d ands13d one sees that the motion of

holes influences the longitudinal and transverse susceptibili-
ties in different ways; the former is produced by the imagi-
nary part of the self-energy while the latter is renormalized
by the real part of the self-energies. In a pure Heisenberg
antiferromagnet the longitudinal susceptibility is zero. How-
ever, with doping,xi acquires a finite value due to the decay
of spin waves into “particle-hole” pairs, generated by hole

motion. The renormalization ofx' reflects a softening of the
spin coupling induced by the hole motion. In Figs. 5 and 6
we plot the longitudinal, Eq.s11d, and the transverse, Eq.
s13d, susceptibilities as a function of the hole concentration
for t /J=3,4, in thedoping range where the long-range AF
order exists, in the approach considered.5 We find that both
susceptibilities increase with doping, although the longitudi-
nal one is far more sensitive to the hole concentration than
the transverse one. The transverse susceptibility reflects the
stiffness of the antiferromagnetic lattice. In contrast, the lon-
gitudinal susceptibility is set by the strong damping effects,
which are also responsible for the disappearance of the long-
range AF order at low doping.5 When the long-range order is
broken, the susceptibility of the system should be essentially
given by x= 1

3xi+
2
3x', with the longitudinal susceptibility

providing an important contribution. Also, in the ceramic
samples whose crystal axis are randomized, the susceptibility
x is given by an average of the susceptibilities for the three
directions. An increase of the spin susceptibility with doping
has in fact been observed experimentally.21–24

In summary, we studied the effects of hole motion on the
spin correlation function and the magnetic longitudinal and
transverse susceptibilities of a two-dimensional antiferro-
magnet doped with a small concentration of holes. We found
that the spin fluctuations increase with doping, the spin cor-
relations decaying with the inverse of the spin distance,
which indicates that the local AF correlations remain quite
robust. Furthermore, we show that the longitudinal magnetic
susceptibility acquires a finite value in the presence of

FIG. 5. Longitudinal susceptibilityxi as a function of dopingd
for t /J=3 sopen circlesd and t /J=4 sdiamondsd.

FIG. 6. Transverse susceptibilityx' as a function of dopingd
for t /J=3 sopen circlesd and t /J=4 sdiamondsd.
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doping due to the strong damping effects generated by the
hole motion, while the transverse magnetic susceptibility is
renormalized. Both susceptibilities show a significant in-
crease with doping, which is however more pronounced in

the longitudinal one. Our results imply that doping destroys
the long-range AF order while local spin correlations persist.
This is consistent with experimental observations in the cop-
per oxide high-Tc superconductors.
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