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We investigate the effects that lithographically defined defects cause on the vortex structure in magnetic
submicron-size disks. It is shown that the vortex is attracted and pinned by point defects. The pinning potential
is estimated taking into account both exchange and magnetostatic effects. The influence of an external mag-
netic field is also considered.
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Recent progresses of nanotechnology have resulted in ma-
terials with large potential applications, which include high-
density magnetic storage using an array of dot structures1,2 as
well as high-resolution magnetic field sensors.3 As a conse-
quence, there is a great interest in the micromagnetic prop-
erties of nanostructured magnetic thin films. The application
of magnetic particle in devices requires reproducible control-
lable switching behavior between well-defined magnetic
configurations. In this respect, magnetic vortex structures,
which are frequently observed in submicron-sized ferromag-
netic particles, may play an important role. Many features of
vortex behavior in nanodots of several shapes have been
studied experimentally and theoretically by many authors.4–9

In general, these works do not consider possible irregularities
on the dot structure. Influence of defects on the magnetiza-
tion distribution may also lead to interesting applications.
For instance, it might be advantageous to keep the magnetic
nanoparticle of proper shape in the vortex state and to move
the vortex core between artificial pinning sites, instead of
reversing the magnetization of the nanoparticle as a whole.
Recently, it has become possible the fabrication of disk-
shaped permalloy particle, which contain a single or more
lithographically defined defects.10–12 Measurements of the
magnetization reversal in these nanodisks with holes indicate
that the magnetic vortex structure can be manipulated
intentionally.10–12In fact, micromagnetic simulations and ex-
periments of Refs. 10 and 11 have shown that a vortex core
can be pinned at a point defect if the trajectory of the vortex
core moves toward the defect. However, to the author’s
knowledge, there are not any analytical results concerning
the vortex-hole interactions for this problem. Of course, any
attempts to develop an analytical approach for studying mag-
netic vortices in a submicrodisk is worthwhile. The object of
this paper is to study the vortex behavior near such hole
defects using analytical calculations. We employed a model
that combines the rigid vortex model7,13 and a recent impu-
rity model proposed to study the vortex-vacancy interactions
in layered magnets.14–16 This combination is not so simple
since the impurity model has to be adjusted to the magneto-
static energy present in a finite system such a nanoparticle. It
should be noted that the rigid vortex model is considered
effective for qualitative understanding for the case of small
enough vortex displacements.7,13 At the same time, the im-
purity model14–16 can make reasonable predictions about the
behavior of the interactions between topological excitations
and nonmagnetic impurities in two-dimensional magnets.

Concerning the vortex behavior near the point defect in a
nanodisk, our calculations are in qualitative agreement with
experiments and micromagnetic simulations of Ref. 11.

We shall start describing the magnetic dot as a small cyl-
inder having thicknessL and radiusR, with aspect ratio

L /R!1. Therefore we can assume that the magnetizationMW

along thez axis sthe cylinder symmetry axisd is uniform.
Thus, in the continuum limit, the energy can be approxi-
mated by an integral over the dot plane as follows:
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1
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fAs]mmW ds]mmW d − Ms
2mW ·hWmgUsrW − rW0dd2r ,

s1d

m=1,2,whereA is the exchange constant,mW =MW /Ms is a unit
vector describing the magnetization distribution,Ms being
the saturation magnetization,D is the area of the cylinder

face, rW=sx,yd is a point on the face, andhWm=HW m/Ms is the
demagnetizing fieldsa function ofmW d created by the magne-
tization distribution. The functionUsrW−rW0d describes a defect
hole centralized atrW0, and in the simplest and symmetric
case, it can be defined asUsrW−rW0d=0 if urW−rW0u,r and UsrW
−rW0d=1 if urW−rW0uùr. In this definition, the defect is seen as a
small cylindrical cavity of radiusr!R, hallowed out from
the nanodisk structure and centralized at distancer0 away
from origin sthe disk centerd. Such disk-shaped permalloy
particles with diameters between 300 and 800 nm and thick-
ness from 20 to 60, which contain a single lithographically
defined defect with an approximate diameter of 25 nm have
been fabricated recently.10,11 If the exchange length or the
unit cell element sizea2=A/4pMs

2 is 434 nm, the hole with
a diameter of 25 nm will contain many missing magnetic
cells in each face of the nanodisk. One question is then
opened: does a vortex in the face of a cylindrical nanodisk
interact with j empty cellssneighbors or notd as it interacts
with only one empty cell? This problem was first considered
in Ref. 15, which studied the problem of interaction between
a vortex and nonmagnetic impurities in layered magnetic
systems. In fact, the presence of other nonmagnetic impuri-
ties in the system must affect the influence that an isolated
nonmagnetic impurity has on a single vortex. It was pro-
posed in Ref. 15 that the effects of two or more spin vacan-
cies on the vortex configuration do not obey the principle of
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superposition. This assumption will be considered in this pa-
per to estimate the vortex-defect interactions in magnetic
nanodisks.

In Eq. s1d, the sources of magnetostatic fieldhWm are both

volume and surface magnetic charges arising from¹W ·mW , and
from the discontinuity of the normal component of the mag-
netization on the surfacemW ·n̂, where the unit vectorn̂ is
normal to the disk surfaces. In our case there are the external
surfaces of the magnetic cylinderslateral and the two facesd
and a little internal surface inside the cavitysthe walls of the
cavityd of the artificial defect. Then the demagnetizing field
can be expressed with the help of Maxwell equations through
its magnetostatic potentialsFv, Fedge

ext , andFedge
int , which are

the magnetostatic potentials from volume, external edge, and
internal edge, respectively. The potential is thenF=Fv

+Fedge
ext +Fedge

int and the demagnetizing field ishWm=−¹W F. For
consideration of the vortex state it is natural to express the
magnetizationmW through angular variables in the polar coor-
dinate systemmW =ssinu cosw ,sinu sinw ,cosud. As justified
above, for thin dots the magnetization is uniform along thez
axis and is essentially two dimensional. The vortex state in a
dot without defect hole and in the absence of an external
magnetic field is given by the ansatzu=uvsrd , w
=arctansy/xd±p /2, where the functionuvsrd is determined
numerically, having asymptotic solutions given asuvsrd→0
for r →0 snear the disk centerd and uvsrd.p /2 for rvø r
øR, whererv is the vortex radius. For the determination of

hWm, the above vortex distribution in the absence of defects is

very simple because¹W ·mW =0 and umW ·n̂ur=R=0, thereby giv-
ing neither edge nor volume contributions. The sole source

of hWm in the ground state is the out-of-plane component of
the magnetizationmz=cosuvsrd in the cylinder faces. For a
thin enough nanodot this gives the contribution to energy

−mW ·HW m/2=2pmz
2,17 which is an effective local easy-plane

anisotropy. However, in the presence of a point defect, this is
not the stable configuration because the vortex must be at-
tracted to the hole,14,15,18,19which, in general, may not be
located at the nanodisk center. To see this effect we consider
first a simple calculation based only on the exchange energy,
using a hole with radiusa sthe cell sized. Later we generalize
the calculations to larger defects and include the magneto-
static energy as well as the influence of an external magnetic
field. For a vortex center located at origin in the presence of
a holesof radiusr=ad, which the center is placed at distance
r0 away, the effective potential experienced between the two
defects due to the exchange energy is defined asveffsr0d
=eholesr0d−e, where eholesr0d and e are the reduced vortex
energies in the presence of the hole placed atr0 and in the
absence of a hole, respectivelysehole=Whole

ex /L, e=Wex/Ld. If
r0 is large enough, i.e.,r0. rv!R, the reduced effective po-
tential can be approximated by14

veffsr0d =
pA

2
lnS1 −

a2

r0
2 + b2D , s2d

whereb is a constant of the order of the cell sizea intro-
duced to avoid spurious divergence in the vortex energy

when the vortex center coincides with the hole center.14 In-
deed, this constant can be obtained assuming that the pinning
energysthe vortex energy when its center coincides with the
hole centerd is of the order of −3.54A.14 However, this value
for the pinning energy is valid in the limit of an infinite
lattice. Therefore, in Refs. 14,19, it was shown that this value
does not vary very much as the lattice is decreased and then
we will use this inferior limit, which leads tob.1.054a. In
our approximations, we also assume that the potential given
by Eq. s2d is valid for all range of distances of separation
vortex hole. It is based on the results of Zaspelet al.20 and
also Wysin.19 They have shown that the easy-plane aniso-
tropy in layered magnets necessary to keep the vortex in the
in-plane form is drastically increased by a vacancy. In nano-
disks, the exchange energy density increases rapidly toward
the vortex center and then the magnetization turns out of the
plane in order to minimize the energy. Hence, for defect
holes with sizes of the order of 25 nm, which is of the same
order of the vortex radiusrv for many dot sizesR, it is
expected that out-of-plane magnetization is not so necessary
to minimize the exchange energy.

Now, we want to know what happens to Eq.s2d when the
defect hole is larger, containing many neighbor cellssr
. ja , j .1d. The arguments used here generalize that of Ref.
15: imagine j empty cellssj holes with sizead distributed
around the disk face and keeping fixed distances among
them. If the vortex is pinned on an individual hole, the pres-
ence of other holes must decrease the pinning energy be-
cause they also attract the vortex. Indeed, each hole attracts
the vortex center through an effective potential similar to that
of Eq. s2d, but now the constantb should be different in
order to give a new pinning energy. It is estimated consider-
ing the j hole centers and the vortex center placed at the
same point. In the limit that the separation vanishes, the sys-
tem is equivalent to a simpler problem of a vortex on a single
vacancy, but now, to conserve the number of holes, the total
pinning energy isspA/2dlns1−a2/bj

2d j, which must be equal
to −3.54A. It means thatbj =af1−exps−2.254/jdg−1/2 and as a
good approximation we can user,bj. Essentially, the pin-
ning energy now depends not only on the number of holes
but also on their distribution on the space. However, our
interest is in the case of only one hole with arbitrary sizesof
course,r!Rd. Here, a typical defect hole is then composed
by j neighbor empty cells of radiusa preferentially ordered
to form a larger empty circle with radiusr. Volumetrically, it
is a cylindrical cavity inside the dot, which the symmetry
axis is parallel to the dot axisfsee definition ofUsrW−rW0d in
Eq. s1dg. We will assume that the defect hole is placed along
the x axis atr0=x0.0.

The above calculations only consider part of the exchange
energy. In this case, if a vortex is initially located at the dot
center, the hole placed atrW0=x0x̂ will make the vortex to
dislocate in its direction, pinning the vortex center on its
center, minimizing the system energy. Based on the “rigid”
vortex model, Guslienkoet al.7 have shown that, for small
displacementd sd!Rd of the vortex center from the disk
center, the reduced exchange energy is also decreased by
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wsdd =
pA

2
lnS1 −

d2

R2D . s3d

Thus, a displacement of the vortex center towards the defect
hole center decreases the exchange energy as follows:

vexss,r0d =
pA

2
lnFs1 − s2dS1 −

a2

sr0 − sRd2 + bj
2DG , s4d

where s=d/R. However, for a nanodisk, if the vortex is
shifted from the dot center due to the potential in Eq.s4d, a
restoring force acts on it. Of course, the restoring force ap-
pears due to finite dot in-plane size and is directed toward the
dot center. It is calculated by considering magnetostatic con-
tribution to the total vortex magnetic energy in the dot and is
related only to surface magnetic chargesmW ·n̂ appearing
along the envelop of the disk and along the wall of the hole
cavity. The contribution along the disk envelop was calcu-
lated in Ref. 7 and is given by

v1mssd = w1mssd − wms0d = 2Ms
2sR2 − r2d o

g.0
Fgsb1mdIg

2ssd,

s5d

where

Fgsb1md =E
0

` dt

t
fsb1mtdJg

2std, fsqd = 1 −
1 − eq

q
, s6d

Igssd = 2E
0

p

dt
sinstdsinsgtd

Î1 − 2scosstd + s2
, s7d

g=1,2, . . .,Jg are Bessel’s functions andb1m=L /R. The con-
tribution of the cavity surface is estimated considering two
distinct regions:us−r0/Ru,r /R and us−r0/Ruùr /R. Due to
the symmetry, if the vortex center coincides with the hole
centerus−r0/Ru=0, this contribution vanishes. Then, for the
first regionus−r0/Ru,r /R, the contribution of the magneto-
static energy can be written as

v2mssd = 2Ms
2sR2 − r2dss− r0/Rd2o

g.0
Fgsb2mdIg

2ss− r0/Rd,

s8d

whereb2m=L /r. By the other hand, in the second regionus
−r0/Ruùr /R, in which the vortex center is outside the hole,
the productmW ·n̂ will be negative on one half of the cavity
surface and positive on the other half. In this circumstance,
the symmetric distribution of “magnetic charges” in the cav-
ity wall does not change appreciably as the distance between
the vortex and the hole centers changes. Thus, we approxi-
mate the contribution of the second region as

v2mssd . 2Ms
2sR2 − r2dsr/Rd2o

g.0
Fgsb2mdIg

2sr/Rd. s9d

For small displacementss!1d, the total effective interac-
tion vortex-defect-surface can be written as

Veff =
pA

2
lnFs1 − s2dS1 −

a2

sr0 − sRd2 + bj
2DG + 2p2Ms

2

3sR2 − r2dF1sb1mds2 + 2ap2Ms
2sR2 − r2dF1sb2md

3ss− r0/Rd2 + 2np2Ms
2sR2 − r2dF1sb2mdsr/Rd2,

s10d

where a=1, n=0 if us−r0/Ru,r /R and a=0, n=1 if us
−r0/Ruùr /R. For estimates we use typical parameters for
permalloy,A1/2/Ms=17 nm, givinga=4.8 nm. Considering
R=250 nm, L=30 nm, r.12.5 nm, one getsF1sb1md
.0.07 andF1sb2md.0.364. In Fig. 1, we plotted the effec-
tive potential well as a function ofs for r0=20 nm. As ex-
pected, the equilibrium value for the vortex centers0 inside
the holesthe bottom of the welld, obtained by minimizing
Veffssd, is not located at the hole centerr0. In fact, in this
case, the magnetostatic energy pushes the vortex toward the
dot center, dislocating the vortex center fromrW0 by a distance
that depends on the size and position of the defectsfor in-
stance, forr0=20 nm, the vortex center is shifted from the
hole center by a distance,3 nmd. For r0,r there is essen-
tially only one minimum in Eq.s10d. In contrast, forr0.r,
there are two minimasan absolute minimum and a local
minimumd due to the competition between exchange and
magnetostatic energies. Indeed, forr0 smaller than a critical
distancerc, the absolute minimum is inside the hole and the
local one is located at origin, while forr0. rc, one has the
oppositive situation. The critical sizerc is estimated taking
Veffss0d=Veffs0d. For the above example,Veffs0d,3.79A, giv-
ing rc.31 nm. At zero field, it is conceivable that, forr0
, rc, vortex configurations would preferentially nucleate
about the hole. Figure 2 shows how the reduced vortex cen-
ter equilibrium positions0 varies as a function of the hole
center positionr0.

FIG. 1. The effective interactionsin units of the exchange con-
stantAd of a vortex with a hole and the disk surfaces in a permalloy
nanodisk. the origin of the coordinate system is the center of the
disk and the hole center is placed atr0=20 nm sor s=0.08d along
the x axis. The material is described in the text. At the hole border
sthe pointss,0.03 ands,0.13d, the potential suffers a strong
change.
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The presence of an external magnetic field along the di-
rection perpendicular to the line joining the disk-hole centers
can also contribute to the vortex dislocation along thex di-
rection. Supposing that the field is applied along they direc-
tion, the Zeeman energy contribution can be approximated to

be whext
.−pMs

2sR2−r2dhextfss−s0d+Oss3dg, where hWext

=HW ext/Ms is the external magnetic field. The energy is now
given byV=Veff+whext

. Here, if the magnetic field is positive
shext.0d, the new equilibrium position issh.s0 sright shiftd.
On the other hand, i.e., ifhext,0, the new equilibrium value
obeyssh,s0 sleft shiftd. Figure 3 shows the interaction po-
tential vortex defects in the presence of a magnetic field ap-

plied along they axis shext=−0.05 andhext=0.05d. It was
used the same parameters for the case without a field. Note
that an external magnetic field can control the depth of the
potential well induced by the defect, permitting a convenient
control of the trapped state for a vortex in nanodisks. The
attractive well generated by the point defectsin the presence
or absence of an external fieldd suggests that such defect may
induce interesting magnetization dynamics. It is possible that
a vortex develops small amplitude oscillations around the
bottom of the well. Possible oscillatory motion was predicted
for topological excitations around a nonmagnetic impurity in
layered magnets.16,21,22

In summary, we have investigated analytically the prob-
lem of vorticessin the presence and absence of an external
magnetic fieldd interacting with a lithographically defined de-
fect in submicron-sized disk-shaped magnetic elements.
Such disk permalloy particles were fabricated recently.10,11

We have used the rigid vortex model combined with an im-
purity model employed to study vortex-vacancy14–16 and
soliton-vacancy21,22 interactions in two-dimensional mag-
nets. The rigid vortex model is based on the assumption that
vortices are rigid objects that do not deform as they move. A
detailed discussion of the applicability of this model is pre-
sented in a recent interesting paper by Sarvel’ev and Nori.23

These authors have used the rigid magnetic vortex model to
develop a substantially modified Landau theory approach for
analytically studying phase transitions between different spin
arrangements in circular submicron magnetic dots subject to
an applied magnetic field. Some predictions of their work are
consistent with recent and earlier micromagnetic
computations.24–26 At the same time, the impurity model is
based on a support manifold being not simply connected and
has been shown to be very useful to predict some features of
the vortex-vacancy interactions in layered magnets.14,16

However, in reality, the vortex configuration suffers small
changes when the vortex moves and when the vortex is
around large holes.16 Nevertheless we believe that our ap-
proach is a good approximation and useful for qualitative
understanding of the mechanism of the vortex-defect inter-
actions in nanodisks in the case of a holesor holesd near the
disk center sand hence, involving small vortex displace-
mentsd. In fact, concerning the vortex-defect interactions, the
analytical results obtained here indicate that the vortex core
can be pinned by a point defect, in qualitative agreement
with recent experiments and micromagnetic simulations of
Refs. 10 and 11. Our calculations give the vortex-hole effec-
tive interaction potential as a function of the relevant disk
parameters and the defect position. Only the case in which a
magnetic field is applied perpendicularly to the line joining
the hole center and the disk center was considered. Of
course, the path of the vortex core depends on the direction
of the external field and it can lead to interesting new situa-
tions not investigated here.

We acknowledge support from CNPq and FAPEMIG
sBrazild.

FIG. 2. The dependence of the equilibrium position for the vor-
tex centersinside the holed on the hole position is linear.

FIG. 3. The potential wellsin units of Ad induced by the point
defect in the presence of an external magnetic field applied perpen-
dicularly to the line joining the disk-hole centers. Solid and dotted
lines correspond tohext=−0.05 andhext=0.05, respectively. The
field can control the depth and the position of the bottom of the
well.
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