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The role of fluctuation-dissipation relationsstheoremsd for the magnetization dynamics with Landau-
Lifshitz-Gilbert and Bloch-Bloembergen damping terms are discussed. We demonstrate that the use of the
Callen-Welton fluctuation-dissipation theorem, which was proven for Hamiltonian systems, can give an incon-
sistent result for magnetic systems with dissipation.
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I. INTRODUCTION

The study of linear stochastic magnetization dynamics is
of great importance in applications to nanomagnetic devices
and ultrathin films. In general, gyromagnetic magnetization
motion around an effective field is randomly forced by fluc-
tuations on spins by means of interaction with a thermal bath
sphonons, magnons, conduction electrons, impurities, etc.d.
Fluctuation-dissipation relations provide a very useful tool to
find a correspondence between the dynamic variable fluctua-
tions, temperature, and dissipation for a given magnetic dy-
namic systemssee, e.g., Refs. 1–5d.

The most frequently used fluctuation-dissipation relations
are known as the Callen-Welton fluctuation-dissipation theo-
rem sFDTd.6,7 There are two integrals that express this theo-
rem. The first one gives the correlation function of the dy-
namic variables in terms of an integral of the system
susceptibility. The second form relates the correlation func-
tion of the applied noise to an integral of the inverse suscep-
tibility. This theorem is proved for rather general assump-
tions swe will discuss them laterd and therefore appears to be
very attractive for general problems. The aim of this paper is
to discuss the inapplicability of the second relation to mag-
netization dynamics in ferromagnetic systems. In particular,
we demonstrate that Callen-Welton FDT gives mathematical
inconsistency and cannot provide an argument to discrimi-
nate between different damping models.

II. FLUCTUATION-DISSIPATION THEOREM

The Callen-Welton fluctuation-dissipation theorem is
proved under very general assumptions forHamiltonian sys-
temsof an arbitrary typessee, e.g., Refs. 8 and 9d. These
systems have no internal dissipation at all. The energyV of
the external perturbation acting on the system is taken in the
form

V = − o
j

xjstdf jstd, s1d

wherexjstd is the j th component of the dynamic variable and
f jstd is the j th component of the external alternating field. All
dynamic variables are assumed to be equal to zero in the
absence of the perturbation, and the linear responses are de-
fined by

xjstd = o
k
E

−`

t

Kjkst − tdfkstddt, s2d

whereKjkstd is a memory function that depends on the prop-
erties of the dynamic system.10 A “thermal bath” in this theo-
rem is modeled as a set of periodic external fields, which are
absorbed by the dynamic system. On the other hand, the
external fields stimulate radiation from the system and cause
a loss of energy. For a periodic external field

f jstd = 1
2ff0je

−ivt + f0j
* eivtg, s3d

one can rewrite Eq.s2d in the form

xjstd =
1

2o
k

fx jksvdf0ke
−ivt + x jk

* svdf0k
* eivtg, s4d

where

x jksvd =E
0

`

Kjkstdexpsivtddt s5d

is the susceptibility tensor.
The change of the total energyE swhich includes the per-

turbation energyVd in the dynamic system that plays an im-
portant part in this theory is expressed as

dE
dt

= − o
j

xjstd
dfjstd

dt
. s6d

Averaging this equation over the period of the external fields
s3d and taking into account Eq.s4d, one obtains the following
expression for the dissipated power:

Q =
iv

4 o
j ,k

fx jk
* svd − xkjsvdgf0j f0k

* . s7d

In the derivation both the absorbed and radiated averaged
powers are usually expressed quantum mechanically in terms
of transitions probabilitiessper unit timed between infinitely
narrow energy levels, i.e., no linewidth or damping is taken
into account. Temperature is introduced by the thermody-
namic weights of the energy levels. This gives a thermal
averaging over a thermal bath. Summing up over frequencies
v, one can obtain the balance between absorption and irra-
diation. This balance, expressed in terms of dynamic suscep-
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tibility, gives the Callen-Welton FDT. In the classical limit it
can be written as

kxjstdxks0dl =
kBT

2p
E

−`

` xkjsvd − x jk
* svd

iv
e−ivtdv. s8d

HerekB is the Boltzman constant, andT is the temperature.
Angular brackets denote both thermal averaging and averag-
ing over random phases in the periodic fields.

A second form of the Callen-Welton FDT is also intro-
duced

kf jstdfks0dl =
kBT

2p
E

−`

` xkj
*−1svd − x jk

−1svd
iv

e−ivtdv. s9d

This form results from the reversibility of the linear relation

xjsvd = x jksvdfksvd s10d

to

f jsvd = x jk
−1svdxksvd. s11d

It should be noted that the firsts8d and seconds9d rela-
tions can be interpreted differently. Namely, in the first case
we have a reasonable correspondence between the correla-
tions of dynamic variables and the susceptibility of the dy-
namic system. Changing the dynamic system properties and,
hence, the susceptibility, we change the correlations of the
dynamic variable. A specific external noise mechanism is
excluded, and the role of the thermal bath is included implic-
itly by assuming a system in thermal equilibrium. This gives
a linear dependence on the temperatureT.

On the other hand, in the second case the noise correla-
tions are associated with the inverse susceptibility of the dy-
namic system. In other words, two principally different
physical characteristics, the noiseswhich results from a ther-
mal bath dynamicsd and the susceptibilityswhich describes
just the properties of the dynamic systemd should correspond
to each other. From Eq.s9d it follows that by changing prop-
erties of the dynamic system, one can change the noise cor-
relations.

However, physically it seems impossible, in general, that
the dynamic susceptibility determines the noise variance. It
is not clear that the correspondence betweens10d and s11d
applies for general random processes. This follows from the
fact that the integrals2d depends on the form of stochastic
integration becausefkstd are random variables. For example,
the Ito and Stratonovich approaches to stochastic integration
have no general relationship between each other in the case
of multiplicative noise.11

In applications to systems with dissipation, the Callen-
Welton fluctuation-dissipation theorem may be used just as
an approximation, which must be validated. For some dissi-
pative systems the Callen-Welton FDT gives reasonable es-
timates. It covers, for example, the Einstein relation for
Brownian motion and the classical Nyquist formula for volt-
age fluctuations. However, these particular cases do not
prove that the theorem is applicable for any linear system
with dissipation. Some criticism of the Callen-Welton FDT is
given by Klimontovich.9,12

III. FDT AND MAGNETIC DAMPING

A commonly used theoretical approach to magnetic dy-
namics, which is purely phenomenological, is based on the
Landau-Lifshitz equation,13 or its modification in the Gilbert
form.14 Local and isotropic phenomenological damping
terms and corresponding local random fields are assumed to
describe a “thermal bath” in a magnetic material. On the
other hand, a microscopic approach predicts nonlocal field
fluctuations15 and magnetization dynamics in the form of the
Bloch-Bloembergen equations; the Landau-Lifshitz-Gilbert
equations occur only for uniaxial symmetry.16,17

Recently Smith,18 using the second form of the Callen-
Welton theorems9d, claimed that fluctuation-dissipation re-
lations provide a means for discriminating between alternate
phenomenological magnetic damping models. Here we dem-
onstrate that, by using Eq.s9d, the fluctuation-dissipation re-
lations for stochastic dynamics with Landau-Lifshitz-Gilbert
damping and Bloch-Bloembergen damping are inconsistent.

For simplicity we shall consider a single-domain particle
with the magnetic energyE in the vicinity of equilibrium

E
MsV

=
Hx

2
mx

2 +
Hy

2
my

2 − hxmx − hymy. s12d

Here mx and my are the transverse components of the unit
vectorm oriented along the magnetization,Ms is the satura-
tion magnetization,V is the volume of the sample, andHx
andHy are the Kittel stiffness fieldssin general,HxÞHy, for
example, in a thin filmd. For a general stochastic problem
hxstd andhystd are random variables arising from the interac-
tion with a thermal bath. To illustrate the utilization of
Callen-Welton FDT one assumes thathxstd and hystd are
equivalent to the external alternating fieldsf j in Eq.s1d that
leads to the forms of Eqs.s8d and s9d.

The linearized Landau-Lifshitz-Gilbert equation can be
written in the form

1

g
sṁx + aṁyd = − Hymy + hystd,

s13d
1

g
sṁy − aṁxd = Hxmx − hxstd,

or, equivalently, as

1

g̃
ṁx = − aHxmx − Hymy + hystd + ahxstd,

s14d
1

g̃
ṁy = − aHymy + Hxmx − hxstd + ahystd,

whereg̃=g / s1+a2d, g is the gyromagnetic ratio, anda is a
dimensionless damping parameter. From Eq.s13d one can
obtain the inverse susceptibility

x jk
−1svd =

1

gMsV
S− iav + gHx iv

− iv − iav + gHy
D , s15d

wherehjsvd=x jk
−1svdmksvdMsV;mksvdMsV is thekth compo-

nent of the magnetic moment. Substituting Eq.s15d and its
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Hermitian conjugate into Eq.s9d, the second form of Callen-
Welton FDT can be expressed as

Skhxstdhxs0dl khxstdhys0dl
khystdhxs0dl khystdhys0dl

D =
2kBTa

gMsV
S1 0

0 1
Ddstd.

s16d

The case of linearized Bloch-Bloembergen magnetization
dynamics is described by

1

g
ṁx = −

1

gT2
mx − Hymy + hystd,

1

g
ṁy = −

1

gT2
my + Hxmx − hxstd, s17d

whereT2 is the relaxation time. From Eq.s17d we can obtain
the following inverse susceptibility:

x jk
−1svd =

1

gMsV
S gHx iv − T2

−1

− iv + T2
−1 gHy

D . s18d

Application of Eq.s9d yields FDT

Skhxstdhxs0dl khxstdhys0dl
khystdhxs0dl khystdhys0dl

D =
kBT

gMsV
S0 − 1

1 0
Dsgnstd

T2
.

s19d

Note that the difference between Eqs.s16d and s19d lies in
the tensor on the right-hand side of each equation. Because
of the diagonal tensor, Eq.s16d implies no correlations be-
tweenhx andhy. On the other hand, Eq.s19d does show such
correlations. One can argue that the Bloch-Bloembergen
form of damping is not physical because of the nondiagonal
form of s19d. However, as we show below, there is an incon-
sistency in the use of the second form of the Callen-Welton
FDT.

Let us now consider the uniaxial case when both dynam-
ics should coincide. We examine the dynamics of a soft mi-
cromagnetic particlesno anisotropyd in an external magnetic
field H0 and small damping approximationa!1 sthe most
interesting cased, when terms,a2 can be neglected. Thus
Hx=Hy=H0, and the Landau-Lifshitz-Gilbert equations14d is
reduced to

1

g

dmx

dt
= − aH0mx − H0my + hystd + ahxstd,

s20d
1

g

dmy

dt
= − aH0my + H0mx − hxstd + ahystd.

Thus far, ashxstd and hystd represent two independent ran-
dom fields, their linear combinations are also random. We
can consider the following orthogonal transformation:

h̃ystd =
hystd + ahxstd

Î1 + a2
. hystd + ahxstd,

s21d

− h̃xstd =
− hxstd + ahystd

Î1 + a2
. − hxstd + ahystd.

Thus, random fieldsh̃xstd and h̃ystd are independent and Eq.
s20d can be rewritten in the form

1

g

dmx

dt
= aH0mx − H0my + h̃ystd,

s22d
1

g

dmy

dt
= aH0my + H0mx − h̃xstd.

From Eqs.s16d and s21d one can easily calculate pair corre-

lations for h̃xstd and h̃ystd sthe terms,a2 are neglectedd

Skh̃xstdh̃xs0dl kh̃xstdh̃ys0dl

kh̃ystdh̃xs0dl kh̃ystdh̃ys0dl
D =

2kTa

gMsV
S1 0

0 1
Ddstd.

s23d

Note that the Eq.s22d is an exact mathematical analog of
the Bloch-Bloembergen equations17d s1/T2=agH0d for the

transverse magnetic components with random fieldsh̃xstd and

h̃ystd. Thus, we see that the fluctuation-dissipation relations
s23d ands19d are principally different in the case when they
must coincidesGilbert and Bloch-Bloembergen dynamics are
the samed. The second form of the Callen-Welton FDT can-
not be used to verify the validity of one form of damping
versus another.

The origin of the inconsistency is in the use of the second
form s9d of Callen-Welton FDT, applied to systems with dis-
sipation sLandau-Lifshitz-Gilbert and Bloch-Bloembergen
equationsd. Without dissipationsa=0d this inconsistency dis-
appears. It should be pointed out that Eqs.s20d and s22d
describe stochastic magnetization dynamics withkhxstdl
=khystdl=kmxstdl=kmystdl=0 in accordance with thermody-
namics.

Note that for no damping the dynamic susceptibility of
the Landau-Lifshitz-Gilbert equations15d and the Bloch-
Bloembergen equations18d are identical in form. In the sto-
chastic case with random fieldshxstd and khystdl at first
glance Eqs.s14d and s17d appear to be different. However,
we have shown that by a simple transformations21d both
equations are equivalent in the case of uniaxial anisotropy.

Application of the first FDTs8d to both Landau-Lifshitz-
Gilbert and Bloch-Bloembergen stochastic dynamics does
not give such a strong inconsistency as does the second form.
Using s8d with s15d, we obtain the following averages for the
Gilbert dynamics:
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Skmxstdmxs0dl kmxstdmys0dl
kmystdmxs0dl kmystdmys0dl

D
=

gakBT

pMsV
E

−`

` dv

uDGsvdu2
e−ivt

3Sv2s1 + a2d + sgHyd2 − ivgsHx + Hyd
ivgsHx + Hyd v2s1 + a2d + sgHxd2D , s24d

where DGsvd=v0
2−v2s1+a2d− iavgsHx+Hyd and v0

2

=g2HxHy is the ferromagnetic resonance frequency.
On the other hand, the use ofs8d with s18d gives

Skmxstdmxs0dl kmxstdmys0dl
kmystdmxs0dl kmystdmys0dl

D
=

gT2
−1kBT

pMsV
E

−`

` dv

ivuDBBsvdu2
e−ivt

3S i2vgHy v0
2 + v2 + T2

−2

− v0
2 − v2 − T2

−2 i2vgHx
D , s25d

whereDBBsvd=v0
2−v2+T2

−2−2ivT2
−1.

In general, magnetic correlationss24d ands25d differ from
each other. However, in the most important case of the noise
power st=0d both s24d and s25d are reduced to

S kmx
2s0dl kmxs0dmys0dl

kmys0dmxs0dl kmy
2s0dl

D =
kBT

MsV
SHx

−1 0

0 Hy
−1D .

s26d

This equation is completely consistent with thermodynamics,
namely, with energy equipartion

kEl
2

=
MsVHx

2
kmx

2l =
MsVHy

2
kmy

2l =
kBT

2
. s27d

IV. DISCUSSION

Other forms of the fluctuation-dissipation relations, which
are similar to the first Callen-Welton FDT, have been derived
by Kubo19 for the permeability of a dynamic system and by

White2 for the susceptibility of a general magnetic system. A
standard method to study stochastic dynamics in systems
with dissipation is the Langevin approach.9,20 Application of
the Langevin approach, utilizing specific dissipation mecha-
nisms, can be found in.15–17

The analysis of damping in magnetic systems has had a
long history se.g., Refs. 21,22d. Each spin wavesmagnond
interacts with a so-called thermal bath, which consists of
magnons, phonons, conduction electrons, impurities, etc.
Analyzing the processes of relaxation, one can find the spin-
wave dampingssee, e.g., Ref. 21d and the corresponding
thermal noise. The microscopic stochastic differential equa-
tion sSDEd is shown to be of the Langevin form for a
damped harmonic oscillator for a wide class of relaxation
processes.17 Note that the collective description works even
in the case of local interactions. A local defect or impurity
perturbs the band structure of the magnetic crystalssee, e.g.,
Ref. 2d and affects the spin-wave spectrum, whose imaginary
part is responsible for the damping of collective magnetic
excitations.

The occurrence of delocalized damping has been directly
demonstrated in the problem of two coupled magnetic grains
with local thermal baths.15 Stochastic forces are uncorrelated
in the spin-wave coordinates, but become correlated when
the SDEs are expressed in the original magnetization coordi-
nates. Because of the system interactions, even though the
coupling to the thermal bath may be purely local, there is no
physical requirement that the stochastic forces in the magne-
tization coordinates be uncorrelated.

In summary, we have argued that the second form of the
Callen-Welton fluctuation dissipation theorem does not cor-
rectly apply to damped systems, has inconsistencies in its
application and thus cannot distinguish between relaxation
models.
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