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Fluctuation-dissipation considerations and damping models for ferromagnetic materials
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The role of fluctuation-dissipation relatiorisheorem$ for the magnetization dynamics with Landau-
Lifshitz-Gilbert and Bloch-Bloembergen damping terms are discussed. We demonstrate that the use of the
Callen-Welton fluctuation-dissipation theorem, which was proven for Hamiltonian systems, can give an incon-
sistent result for magnetic systems with dissipation.
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I. INTRODUCTION E t
: . o o x(t) = f Kik(t = nf(n)d7, (2
The study of linear stochastic magnetization dynamics is ) k J o Ik «

of great importance in applications to nanomagnetic devices , ,
and ultrathin films. In general, gyromagnetic magnetizationVNereK(t) is a memory function that depends on the prop-

motion around an effective field is randomly forced by fluc- €rties of the dynamic systetiA “thermal bath” in this theo-
tuations on spins by means of interaction with a thermal battiém is modeled as a set of periodic external fields, which are
(phonons, magnons, conduction electrons, impurities). etc.@0sorbed by the dynamic system. On the other hand, the
Fluctuation-dissipation relations provide a very useful tool toxternal fields stimulate radiation from the system and cause
find a correspondence between the dynamic variable fluctu& 108s of energy. For a periodic external field
tions, temperature, and dissipation for a given magnetic dy- ) = 1rf  amiot  §F Aot
namic systen(see, e.g., Refs. 135 [0 =5l o™ + foe], ®

The most frequently used fluctuation-dissipation relationsone can rewrite Eq(2) in the form
are known as the Callen-Welton fluctuation-dissipation theo-
rem (FDT).‘f'7 There are two integrals that express this theo- X;(t) = 12 [xje(@)foe™ + X;k(w)fgkeiwt]' (4)
rem. The first one gives the correlation function of the dy- 2%
namic variables in terms of an integral of the system
susceptibility. The second form relates the correlation funcVhere
tion of the applied noise to an integral of the inverse suscep- o
tibility. This theorem is proved for rather general assump- xik(®) :f Kik(t)expliwt)dt 5
tions (we will discuss them lat¢rand therefore appears to be 0
very attractive for general problems. The aim of this paper isg he susceptibility tensor.

to discuss the inapplicability of the second relation to mag- e change of the total energy(which includes the per-

netization dynamics in ferromagnetic systems. In particulary,hation energy) in the dynamic system that plays an im-
we demonstrate that Callen-Welton FDT gives mathemaUc%ortant part in this theory is expressed as
inconsistency and cannot provide an argument to discrimi-
nate between different damping models. d_é’ _ 2 « (t)df»(t) ®)
dt 577 dt
ll. FLUCTUATION-DISSIPATION THEOREM Averaging this equation over the period of the external fields
The Callen-Welton fluctuation-dissipation theorem is(3) and taking into account E¢4), one obtains the following

proved under very general assumptionsH@miltonian sys- ~ expression for the dissipated power:
temsof an arbitrary type(see, e.g., Refs. 8 and.9These

i * *
systems have no internal dissipation at all. The enéigf Q= —wz [Xjk(w) = Xxj(@) Ifofox- (7)
the external perturbation acting on the system is taken in the 45k
form In the derivation both the absorbed and radiated averaged

powers are usually expressed quantum mechanically in terms
of transitions probabilitiegper unit timg between infinitely
narrow energy levels, i.e., no linewidth or damping is taken
wherex;(t) is the jth component of the dynamic variable and into account. Temperature is introduced by the thermody-
f;(t) is thejth component of the external alternating field. All namic weights of the energy levels. This gives a thermal
dynamic variables are assumed to be equal to zero in thaveraging over a thermal bath. Summing up over frequencies
absence of the perturbation, and the linear responses are dg; one can obtain the balance between absorption and irra-
fined by diation. This balance, expressed in terms of dynamic suscep-

V== 2 %00, ()
j
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tibility, gives the Callen-Welton FDT. In the classical limit it . FDT AND MAGNETIC DAMPING

can be written as A commonly used theoretical approach to magnetic dy-

namics, which is purely phenomenological, is based on the
Landau-Lifshitz equatiof® or its modification in the Gilbert
form!* Local and isotropic phenomenological damping
Hereks is the Boltzman constant, anilis the temperature. terms and corresponding local random fields are assumed to
Angular brackets denote both thermal averaging and averaglescribe a “thermal bath” in a magnetic material. On the

KeT (* xii(®) = xul(@)
<xj(r)xk(0)>:2'3—w f &’()TX‘Me“de. (8)

ing over random phases in the periodic fields. other hand, a microscopic approach predicts nonlocal field
A second form of the Callen-Welton EDT is also intro- fluctuations® and magnetization dynamics in the form of the
duced Bloch-Bloembergen equations; the Landau-Lifshitz-Gilbert

equations occur only for uniaxial symmetf?’

Recently SmitH® using the second form of the Callen-
Welton theorem(9), claimed that fluctuation-dissipation re-
lations provide a means for discriminating between alternate
This form results from the reversibility of the linear relation phenomenological magnetic damping models. Here we dem-

onstrate that, by using E9), the fluctuation-dissipation re-
Xj(w) = xjk(@)fi(w) (100 Jations for stochastic dynamics with Landau-Lifshitz-Gilbert
damping and Bloch-Bloembergen damping are inconsistent.

k * yat(w) = xiH(w)
(10 =L [ Xl g, g

© For simplicity we shall consider a single-domain patrticle
fi(w) :Xj_kl(w)xk(w)- (11 with the magnetic energ¥ in the vicinity of equilibrium
It should be noted that the firé8) and second9) rela- € _He 5 Hy 5
tions can be interpreted differently. Namely, in the first case MV~ 2 M+ 5> My~ ham,—hym,. (12)

we have a reasonable correspondence between the correla- )
tions of dynamic variables and the susceptibility of the dy-Here m, andm, are the transverse components of the unit
namic system. Changing the dynamic system properties anj€ctorm oriented along the magnetizatioi, is the satura-
hence, the susceptibility, we change the correlations of thHOn magnetizationV is the volume of the sample, aridy
dynamic variable. A specific external noise mechanism indHy are the Kittel stiffness fieldéin generalH,# H,, for
excluded, and the role of the thermal bath is included implic€xample, in a thin film For a general stochastic problem
itly by assuming a system in thermal equilibrium. This givesx(t) andhy(t) are random variables arising from the interac-
a linear dependence on the temperat’ure tion with a thermal bath. To illustrate the utilization of
On the other hand, in the second case the noise correléallen-Welton FDT one assumes thaft) and hy(t) are
tions are associated with the inverse susceptibility of the dyequivalent to the external alternating fielfjsin Eq.(1) that
namic system. In other words, two principally different leads to the forms of Eq$8) and(9).
physical characteristics, the noigehich results from a ther- The linearized Landau-Lifshitz-Gilbert equation can be
mal bath dynamidsand the susceptibilityvhich describes Wwritten in the form
just the properties of the dynamic systeshould correspond 1
to each other. From Eq9) it follows that by changing prop- —(m,+amy) =-Hym +h(t),
erties of the dynamic system, one can change the noise cor- Y
relations. . (13
However, physically it seems impossible, in general, that Lo _
the dynamic susceptibility determines the noise variance. It y(my amy) = Hamy = hy(),
is not clear that the correspondence betw&H) and (11) )
applies for general random processes. This follows from th@" €quivalently, as
fact that the integra(2) depends on the form of stochastic 1
integration becausf(7) are random variables. For example, —m=-aH,m - Hm, +h(t) + ah,(t),
the Ito and Stratonovich approaches to stochastic integration Y
have no general relationship between each other in the case 1 (14)
of multiplicative noise-* L= — + _ +
In applications to systems with dissipation, the Callen- E/my atymy + Hym = (0 + ahy (1),
Welton flu_ctua'_uon-dlsslpatlon theorer_n may be used just aﬁvhere&z yI(1+a?), y is the gyromagnetic ratio, and is a
an approximation, which must be validated. For some dissi-,. . .
pative systems the Callen-Welton FDT gives reasonable eéi_lme_nsmnlgss damping p:_;lrg.meter. From ExB) one can
timates. It covers, for example, the Einstein relation forObtaln the inverse susceptibility
Brownian motion and the classical Nyquist formula for volt- . 1 [-iaw+ yHy )
age fluctuations. However, these particular cases do not Xjk (@) = M.V
prove that the theorem is applicable for any linear system VM
with dissipation. Some criticism of the Callen-Welton FDT is Wherehj(w)=Xj‘k1(w)mk(w)MSV; m(w)MV is thekth compo-
given by Klimontovich®1? nent of the magnetic moment. Substituting Et5) and its

>, (15

-iw —law+yH,
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Hermitian conjugate into E9), the second form of Callen- h,(t) + ahy(t)

Welton FDT can be expressed as hy(t) = —y\lT = hy(t) + ah,(t),
(21)
(<hX(T)hX(O» <hX(T)hy(O)>) ) 2kBTa<l 0>5(T)' = OENO s ahy
(hy(DN(0) (hy(ANy(©0)/ ~ MV \0 1 ==z — MmO+,
(16)
The case of linearized Bloch-Bloembergen magnetization - ~ ]
dynamics is described by Thus, random field$,(t) andhy(t) are independent and Eg.
(20) can be rewritten in the form
1. 1
—my=-—m—Hm +h(t),
Y T2 1dm, ~
S - eHomc Homy +hy(0),
1. 1
~iy == e+ Ham- by, 17 Ldm, i} (2
oo S - @Homy* Homy = (0.

whereT, is the relaxation time. From E§L17) we can obtain
the following inverse susceptibility:
From Egs.(16) and(21) one can easily calculate pair corre-

1 yHy iw-T," lations forle(t) andﬁy(t) (the terms~ o are neglected
Xik (w) = . 1 (18)
YMN\-iw+T, yHy
Application of Eq.(9) yields FDT ((EX(T)FIX(O» <F1X(T)F1y(0)>) _ ATa (1 0)5(7)
(y(Dh(0) (hy(nhy(0)/ YMVI0 1/
((hx(T)hx(0)> <hx(T)hy(0)>) _ kT (0 ‘1>59r(7) (23)
(hy(Dh(0)) (h(nhy(0))/ wMN;\1 0/ T, °

Note that the Eq(22) is an exact mathematical analog of
(19 the Bloch-Bloembergen equatidt?) (1/T,=ayHg) for the

Note that the difference between E¢$6) and (19 lies in Eransverse magnetic components with random fijds and

the tensor on the right_hand Side of each equation. Becauéb(t). ThUS, we see that the f|uctuati0n—diSSipati0n relations
of the diagonal tensor, Eq416) implies no correlations be- (23) and(19) are principally different in the case when they
tweenh, andhy. On the other hand, E419) does show such must coincidgGilbert and Bloch-Bloembergen dynamics are
correlations. One can argue that the Bloch-Bloembergefhe samg The second form of the Callen-Welton FDT can-
form of damping is not physical because of the nondiagonaot be used to verify the validity of one form of damping
form of (19). However, as we show below, there is an incon-Versus another.
sistency in the use of the second form of the Callen-Welton The origin of the inconsistency is in the use of the second
FDT. form (9) of Callen-Welton FDT, applied to systems with dis-
Let us now consider the uniaxial case when both dynamsipation (Landau-Lifshitz-Gilbert and Bloch-Bloembergen
ics should coincide. We examine the dynamics of a soft miequations Without dissipation{(=0) this inconsistency dis-
cromagnetic particléno anisotropyin an external magnetic appears. It should be pointed out that E¢&0) and (22)
field Hy and small damping approximation<1 (the most ~ describe stochastic magnetization dynamics witi(t))
interesting case when terms~a? can be neglected. Thus =(hy(t))=(m,(t))=(my(t))=0 in accordance with thermody-
Hx=H,=Hy, and the Landau-Lifshitz-Gilbert equatiéi¥4) is  namics.

reduced to Note that for no damping the dynamic susceptibility of
the Landau-Lifshitz-Gilbert equatiofl5) and the Bloch-
1dm, Bloembergen equatiof18) are identical in form. In the sto-
St == aHgm, — Hom, + hy(t) + ah,(1), chastic case with random fields(t) and (hy(t)) at first

glance Eqs(14) and (17) appear to be different. However,

1d (20 we have shown that by a simple transformati@i) both
“amy__ aHom, + Hom, — hy(t) + ahy(t). equations are equivalent in the case of uniaxial anisotropy.
y dt Application of the first FDT(8) to both Landau-Lifshitz-

Gilbert and Bloch-Bloembergen stochastic dynamics does
Thus far, ash,(t) and hy(t) represent two independent ran- not give such a strong inconsistency as does the second form.
dom fields, their linear combinations are also random. WeJsing(8) with (15), we obtain the following averages for the
can consider the following orthogonal transformation: Gilbert dynamics:
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<<mx(r)mx(0)> <mx(r)my(0)>>
(m(DmM(0)) (my(7m,(0))

ya/kBTf’o do .~
WMSV —00 |DG(w)|

(1+a®)+(yH)? —iwy(H+H
X("J ( a’) + (y y) , Iw'Y(Z X y) 2>' (24)
|w7(Hx+Hy) o (1+a) +(yH))
where DG(w):wg—w2(1+ae2)—iawy(Hx+Hy) and wg

:yszHy is the ferromagnetic resonance frequency.
On the other hand, the use @) with (18) gives

<<mx(7')mx(0)> <mx(7')my(0)>>
(my(1mM,(0)) (my(1m,(0))
do —ioT

_ VTElkBwa e
MYV )., iw|Dgg(w)|?

i2wyH
x( 7y

2 2 2
wot o +T,

2 i20yH,

_ _ . 2_T32

>, (25)

whereDgg(w) = 03— 0?+T,2- 20T,
In general, magnetic correlatiof4) and(25) differ from

each other. However, in the most important case of the n0|s

power (7=0) both (24) and(25) are reduced to

( (m2(0)) <mx<o>my<o>>): @(H;l 0)
(MO)m(0))  (m&(0)) MV 0 HY/
(26)

This equation is completely consistent with thermodynamics,

namely, with energy equipartion

£
O MV o - M gy =21

> (27)

IV. DISCUSSION

PHYSICAL REVIEW B71, 224402(2009

Whitée? for the susceptibility of a general magnetic system. A
standard method to study stochastic dynamics in systems
with dissipation is the Langevin approatf. Application of

the Langevin approach, utilizing specific dissipation mecha-
nisms, can be found i1’

The analysis of damping in magnetic systems has had a
long history (e.g., Refs. 21,22 Each spin wavémagnon
interacts with a so-called thermal bath, which consists of
magnons, phonons, conduction electrons, impurities, etc.
Analyzing the processes of relaxation, one can find the spin-
wave damping(see, e.g., Ref. 21and the corresponding
thermal noise. The microscopic stochastic differential equa-
tion (SDE) is shown to be of the Langevin form for a
damped harmonic oscillator for a wide class of relaxation
processes’ Note that the collective description works even
in the case of local interactions. A local defect or impurity
perturbs the band structure of the magnetic cryse¢, e.g.,
Ref. 2 and affects the spin-wave spectrum, whose imaginary
part is responsible for the damping of collective magnetic
excitations.

The occurrence of delocalized damping has been directly
demonstrated in the problem of two coupled magnetic grains
with local thermal bath&? Stochastic forces are uncorrelated

the spin-wave coordinates, but become correlated when

e SDEs are expressed in the original magnetization coordi-
nates Because of the system interactions, even though the
coupling to the thermal bath may be purely local, there is no
physical requirement that the stochastic forces in the magne-
tization coordinates be uncorrelated.

In summary, we have argued that the second form of the
Callen-Welton fluctuation dissipation theorem does not cor-
rectly apply to damped systems, has inconsistencies in its
application and thus cannot distinguish between relaxation
models.
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