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We investigate a two-dimensionals2Dd strongly anisotropic crystals2D SACd on substrate: 2D system of
coupled linear chains of particles with strong intrachain and weak interchain interactions, each chain being
subjected to the sine background potential. Nonlinear dynamics of one of these chains when the rest of them
are fixed is reduced to the well known Frenkel-KontorovasFKd model. Depending on strengh of the substrate,
the 2D SAC models a variety of physical systems: polymer crystals with identical chains having light side
groups, an array of inductively coupled long Josephson junctions, anisotropic crystals having light and heavy
sublattices. Continuum limit of the FK model, the sine-GordonssGd equation, allows two types of soliton
solutions: topological solitons and breathers. It is known that the quasi-one-dimensional topological solitons
can propagate also in a chain of 2D system of coupled chains and even in a helix chain in a three-dimensional
model of polymer crystal. In contrast to this, numerical simulation shows that the long-living breathers inherent
to the FK model do not exist in the 2D SAC with weak background potential. The effect changes scenario of
kink-antikink collision with small relative velocity: at weak background potential the collision always results
only in intensive phonon radiation while kink-antikink recombination in the FK model results in long-living
low-frequency sG breather creation. We found the survival condition for breathers in the 2D SAC on substrate
depending on breather frequency and strength of the background potential. The survival condition bears no
relation to resonances between breather frequency and frequencies of phonon band—contrary to the case of the
FK model.

DOI: 10.1103/PhysRevB.71.224303 PACS numberssd: 63.20.Ry, 05.45.2a, 63.20.Dj

I. INTRODUCTION

The Frenkel-KontorovasFKd modelsa linear chain of har-
monically coupled particles on the sine background
potentiald1 is the the most commonly used and comprehen-
sively investigated ssee monographsd2,3 one-dimensional
s1Dd model of a crystal. In the case of weak background
potentialsweakly discrete systemd it seems to be especially
appropriate for polymer crystals: quasi-1D topological soli-
tonlike excitations predicted by its continuum limit, the sine-
Gordon ssGd equation, can propagate in a chain of a two-
dimensionals2Dd system of coupled chains4,5 and even in a
helix chain in a three-dimensionals3Dd model of polymer
crystal ssee, for example, Ref. 6d. The sG equation is the
only nonlinear wave equation of type

utt − uxx + gsud = 0 s1d

which possesses also one-parametric family of exact solu-
tions in the form of low-frequency breathers.7 Frequencies of
the breathers fill the gap between zero and the minimal fre-
quency in phonon spectrumvFK. If the breather frequency
approachesvFK, the breather amplitude tends to zero, and
the breather width—to infinitys“phonon” limitd. If the
breather frequency tends to zero, the breather approaches a
full kink-antikink profile.

Although exact time-periodic space-localized solutions
are absent in the FK model,8 numerical simulations9,10 show
that in the FK model the sG breathers survive, and, although
lose energy due to resonances of odd multiples to the
breather frequency with phonon frequencies, have their life-
time long enough even in the case of strong discreteness

s104–105 periods when the third harmonic to its frequency is
greater than the upper phonon band edged.9 In the case of
weak discreteness the losses of energy are hardly
perceptible.10

In connection with studying real physical quasi-1D sys-
tems such as long Josephson junctions and quasi-1D ferro-
magnets there emerged many works treating behavior of sG
breathers under action of perturbations breaking exact inte-
grability: dissipative and diverse conservative termsssee
Ref. 11–13, and references thereind. Analytical treatment of
the problem is possible if one considers the corresponding
perturbation in the inverse scattering transform11 or if one
obtains the multiple-scale asymptotic expansion12 in the limit
of high breather frequencies. It is also possible to derive
some estimates in general case.13 As one can easily predict,
the breather lifetime proved to be long if perturbation is
small. In nonintegrable models with background potentials
sufficiently different from the sine function breatherlike
long-living nonlinear excitations are observed numerically
sthe f4 model—Ref. 14, the double sG, the square well
potential—Ref. 15d. For thef4 model it is shown16 that the
radiation rate of a small-amplitude “breather” lies beyond all
orders in asymptotic expansion.

All this allows one to look on such breathers as being
“elementary excitations” in a crystal, together with kinks and
antikinsstopological solitonsd and phonons. This implies that
the breathers can noticeably contribute to thermodynamic
properties of a crystal17 and even must be used in phenom-
enological approaches to the sG thermodynamics instead of
phonons.18,19

But a real crystalsfor example, a polymer one with iden-
tical chains having light side groups as polyethylened con-
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sists of all mobile chains, the moving neighbors being creat-
ing the background potential for every chain. It is interesting
to investigate whether the low-frequency breathers could sur-
vive by such an extension of the FK model. The simplest
generalization enough for this purpose is a 2D array of par-
allel linear coupled chainssintrachain interactions are much
stronger than interchain onesd:4 2D strongly anisotropic crys-
tal s2D SACd. Two neighboring moving chains create the
background potential for every chain, and the system pos-
sesses translational invariance exactly as a genuine 3D crys-
tal.

Considering other physical situations which allow use of
the FK model, one can find it useful to extend the model by
imposition of the sine background potential on every chain
of the array. A manifest example is an array of inductively
coupled long Josephson junctionsssee, for instance,
reviewd.20 One can also have in mind a crystal including
chains of strongly interacting light atomic groups coupled to
nearly immobile heavy clusters of atoms creating a back-
ground potentialsan instance is 4-methyl-pyridine crystal
which includes chains of pairs of rotating methyl groups at-
tached to heavy pyridine rings—see, for example, articled.21

To take into account similar situations we have extended our
model imposing the background sine potential on every
chain s2D SAC on substrated.

The paper is organized as follows. In Sec. II we introduce
the model of a 2D SAC: free and on substrateswith back-
ground potential imposed on every chaind. In Sec. III we
obtain phonon spectrum of the model presented. In Sec. IV
we describe a low-frequency breather degradation in the free
crystal. Section V is devoted to investigation of the survival
condition for low-frequency breathers in the crystal on sub-
strate. Section V contains conclusions of the investigation.

II. THE 2D STRONGLY ANISOTROPIC CRYSTAL: FREE
AND ON SUBSTRATE

Let us first take a 2D array of parallel linear coupled
chainssintrachain interactions are much stronger than inter-
chain onesd of sclassicald particlessFig. 1d: a free 2D SAC.
To catch the main physical meaning of the model it is
enough to allow interchain interactions only between par-
ticles of the nearest neighboring chains. Then Hamiltonian of
the system is written as

H0 = o
m,n
H1

2
u̇m,n

2 +
1

2
sum,n+1 − um,n + c − c0d2

+ o
j=−`

+`

Usrm,n; jdJ , s2d

where the dot denotes time derivative,c0 is the period of a
separate chain,c—the longitudinal period of the crystal,um,n
is longitudinal deviation of the particlesm,nd from its equi-
librium position sshown in Fig. 1d in the crystalswe keep
transversal deviationym,n=0d, the potential Usrm,n; jd de-
scribes interaction of thenth particle in themth chain with
the sn+ jdth particle in thesm+1dth chain, rm,n; j being the
distance between the particles

rm,n; j = hfs j − s− 1dm/2dc + um+1,n+j − um,ng2 + b2j1/2.

The ground state of the systemsum,n= u̇m,n=0d has the energy
per particle

Esb,c,c0d =
1

2
sc − c0d2 + o

j=−`

+`

UsRjd,

where Rj =fb2+c2s j +1/2d2g1/2 is the distance between the
nth and thesn+ jdth particles of themth sm is oddd and sm
+1dth chains. Equilibrium values ofb and c minimize the
expression at givenc0. Equivalently, if one choosesc as unit
length, one can find equilibrium values ofc0 andb. Hereafter
we imply that the crystal is initially in its equilibrium ground
state withc=1.

The present 2D model was first introduced in Ref. 4. One
can take into account also transversal displacements of
particles.5 The model allows existence and propagation of
quasi-1D topological solitonlike excitations. The authors of
the articles4,5 used the Morse potential for interactions be-
tween particlesUsrm,n; jd as very suitable for numerical cal-
culations. Here we exploit the more physical Lennard-Jones
potentialstruncatedd

Usrd = «S r0

r
D6FS r0

r
D6

− 2G fsrd, s3d

where the truncation function fsrd=h1−tanhfmsr
−d0dgj /2sm,1, d0@ r0d is introduced for convenience of
numerical calculations. It allows one to avoid taking into

FIG. 1. The 2D strongly anisotropic crystal: 2D array of weakly
coupled chains: intrachain interactions are much stronger than in-
terchain onessweak discreteness limitd. We choose unit length so
that c=1 in the equilibrium ground state of the free crystal. In the
2D SAC on substrate the sine potential is imposed on every chain of
the free crystal so that minima of the potential coincide with equi-
librium positions of the particles.
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account interactions of the particles placed one from another
farther thanr <d0.

It is known22 that if the equilibrium distance between par-
ticles r0 falls into the interval 0.91, r0,` the shape of the
background potential generated by neighboring chains is
close to the sine function. We have chosenr0=1.67sd0

=20,m=2d because it corresponds to model of polyethylene
crystal with “united atoms.”6,23 At this value ofr0 the back-
ground potential generated by immobile neighbors

Vsud = 2 o
j=−`

+`

hUfr jsudg − UsRjdj, s4d

wherer jsud=fb2+su+ j +1/2d2g1/2 fnote thatRj =r js0dg, is the
sine function accurate within 0.1%:Vsud.ef1−coss2pudg,
where background potential amplitudee=0.1757«. So dy-
namics of one chain when the rest of them are fixed is re-
duced to the FK model

H0
sFKd = o

n
h 1

2u̇n
2 + 1

2sun+1 − und2 + Vsundj . s5d

The width of a static kink of tension in the model of poly-
ethylene crystal with united atomssabout 30 periodsd coin-
cides with the width of a static kink in our model of coupled
linear chains if the intensity of interchain interactions«
=0.0007. We have also considered the cases of stronger in-
teractions«=0.007, 0.07. The first two cases correspond to
limit of weak discreteness. In the last case the sound velocity
in transversal direction is equal to one in longitudinal direc-
tion ssee Table Id. When the chains are assembled into the
crystal the transversal equilibrium period appears to beb
=1.5666 independent on«. Only c0 is « dependent.

Now let us introduce the SAC on substrate. The substrate
is the sine background potentialVs imposed on every chain
of the free crystal. The Hamiltonian of the system becomes

H = H0 + o
m,n

Vssum,nd, Vssud = esf1 − coss2pudg. s6d

When we fix all the chains in the model except one, we get
the FK model with more strong background potential

HsFKd = H0
sFKd + o

n

Vssund

= o
n

h 1
2u̇n

2 + 1
2sun+1 − und2 + Ef1 − coss2pundgj ,

s7d

whereE=e+es. Let us introduce the parameter of “fasten-

ing” a=es/E s0øaø1d. In the crystal with all mobile
chains on substrate the valuea is the imposed part of the
background potential for a chain and the values1−ad is the
part created by mobile neighboring chains.

The system of equations of motion for the SAC on sub-
strate takes the form

üm,n = −
]H

]um,n
,

n = 0, ± 1, ± 2,…, m= 0, ± 1, ± 2,… s8d

with the Hamiltonians6d. In numerical simulations we con-
sidered the dynamics of a bounded rectangular fragment of
the crystals1ønøN,1ømøMd with fixed boundary con-
ditions in both directions.

III. PHONON SPECTRUM OF THE SAC ON SUBSTRATE

As we have chosen particles numeration not coinciding
with one based on translation of the crystal cell, phonon
modes have the more complicated form

u2m,n = A expifq1n + q22m− vtg,

u2m+1,n = A expifq1sn − 1/2d + q2s2m+ 1d − vtg,

n = 0, ± 1, ± 2,…, m= 0, ± 1, ± 2,…. s9d

whereA!1. Substituting the anzatzs9d into the linearized
system of Eqs.s8d with imposed periodic boundary condi-
tions in both directions one can obtain the dispersion equa-
tion

Vsq1,q2d = S4p2es + 2s1 − cosq1d

+ 4o
j=0

+`

Kjh1 − cosfs j + 1/2dq1gcosq2jD1/2

,

s10d

where rigidities areKj =U9sRjds j +1/2d2/Rj
2+U8sRjdb2/Rj

3.
Values of the rigidities are in direct proportion to the param-
eter of interchain interaction«; for «=0.07 they areK0
=0.199,K1=−0.061,K2=−0.014,K3=−0.002.

Dispersion Eq.s10d gives the minimal

vmin = Vs0,0d = 2pÎes s11d

and the maximal

vmax
n
;Vsp,q2d = S4p2es + 4 + 4o

j=0

+`

KjD1/2

= s4p2E + 4d1/2

s12d

possible frequencies. In the crystal without substrateses=0d
the minimal frequency is zerosthere is no lower gap in the
spectrumd because in this case the crystal possesses transla-
tional invariance and there appear acoustic phonons in the
spectrum. The cut of the dispersion surfaces10d at q2=p /2

TABLE I. Dependence of longitudinalsx and transversalsy

sound velocities, characteristic frequenciesvmax andvFK in the free
SAC on the value of the parameter«.

« sx sy/b vmax vFK

0.07 0.7530 0.4916 2.1174 0.6952

0.007 0.9781 0.1555 2.0120 0.2197

0.0007 0.9978 0.0492 2.0012 0.0694
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produces the dispersion curve for the corresponding FK
model sthe crystal with only one chain mobiled:

VFKsqd = Vsq,p/2d =H4p2es + 2f1 − cossqdg + 4 o
j=−`

+`

KjJ1/2

= h4p2E + 2f1 − cossqdgj1/2.

The minimal frequency for the FK model is nonzero at any
value ofes:

vFK = 2pÎE. s13d

We have presented the plot of the dispersion surface forE
=0.001 and different values ofa in Fig. 2 together with the

dispersion curve for the corresponding FK model.
In the free crystalses=0d the velocity of longitudinal long

phononssx and the velocity of transversal long phononssy
equal to

sx = lim
q1→0

Vsq1,0d/q1 = F1 + o
j=−`

+`

s j + 1/2d2KjG1/2

,

sy = b lim
q2→0

Vs0,q2d/q2 = bS o
j=−`

+`

KjD1/2

.

Dependence of some quantities characterizing the free crys-
tal on the parameter of interchain interactions« is presented
in the Table I.

IV. LOW-FREQUENCY QUASI-1D BREATHER
DEGRADATION IN THE FREE 2D SAC

We carried out all the simulations in finite crystal contain-
ing 51 chains of 400 particles each. We have imposed damp-
ing on all the boundary particlessutmost particles of every
chain and all the particles of two utmost chainsd so to secure
absorption of phonons radiated by the breather. We chose
zero initial conditions for all the chains except the central
one where we started with the profile in accord with the
breather solution of the sine-Gordon equation

unstd =
2

p
arctanHÎ1 − n2

n

sinsnvFKtd
coshsnvFK

Î1 − n2d
J s14d

s0ønø1d because in all simulations we deal with the case
of weak discreteness and we seek for stablesthough may be
slowly dampedd solutions similar to the sG breathers, local-
ized mainly on one chain. So we expect that if there is such
a solution, and it is a stable one, it will be formed from the
initial sG profile, some radiation being emitted in the act of
forming and adsorbed at the utmost particles of the crystal.

Let us first compare behavior of a sG breather in the FK
model fall the chains are kept immobile except one—with
numberm=sM +1d /2—containing the breatherg and in the
model of crystalsall the chains are mobiled without imposed
background potential. To cover situations from very weak to
moderate interchain interactions we performed numerical
simulations at three values of the parameter«=0.07, 0.007,
0.0007.

Numerical simulation with the initial conditions according
with the analytical form of the sG breathers14d showed that
the sG breather in the FK model enjoys regular stable oscil-
lations for a very long time. Figure 3sad shows an example
for the breather with frequencyvb=0.07vFK=0.0157s«
=0.007d. We have observed at least 104 oscillations without
visible decrease in amplitude. Analysis of the work done by
the frictional force applied to the two utmost particles of the
chain and the Fourier analysis of particles’ oscillations
showed that the breather very slowly emits phonons having

FIG. 2. Dispersion surfacev=Vsq1,q2d for the 2D SAC. The
model parametersr0=1.67, E=0.001. We show the surface for
three descending values of fastening parametera: a=0.9 sad, a
=0.45sbd, a=0—the free crystalscd. The curve on the surface is the
dispersion curve for the corresponding FK modelsapproximation of
immobile chainsd v=Vsq1,p /2d.
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frequency equal to threefold frequency of the breather. The
emission is much less than one which was observed in work9

because we deal with the case of weak discreteness.
Then we tried to find similar quasi-1D breatherlike exci-

tation in the crystal with all the chains mobile. We started
with the same initial conditions according withs14d as in the

FK model. The simulation showed that so excited breather
quickly comes to ruin. Its lifetime is less than two its periods
fFig. 3sbdg. The destruction results from the intensive emis-
sion of phonons into the neighboring chainsssee Fig. 4d.
Energy of the excitation spreads to all the particles. So one
can conclude that the low-frequency quasi-1D breathers

FIG. 3. Low-frequency sG
breather in the free 2D SACsa
=0, e=0.007, M =51, N=400d:
oscillations in the FK modelsthe
case of immobile neighboring
chainsd sad and degradation in the
crystal with all mobile chainssbd.
We show the displacementsu26,n

of the 26th chain containing the
breather in successive time mo-
mentst. Breather frequency isvb

=0.0157.

FIG. 4. State of the free 2D
crystal sa=0, e=0.007, M =51,
N=400d resulting from destruc-
tion of a low-frequency svb

=0.0157d sG breather placed onto
the 26th chain. The displacements
um,n are shown at time momentt
=150.
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similar to the sG ones are absent in the model of free 2D
crystal.

This conclusion accords with the observed difference be-
tween the two models under study in scenario of kink-
antikink recombination when they collide with small relative
velocity. Indeed, in the FK modelswith the sine potential as
well as with the double sine or the square well onesd kink
and antikink can form oscillating breatherlike state, their en-
ergy remaining for a long time localized15—see Fig. 5sad,
while in the model of free crystal the energy of colliding
solitons scatters at once with phonons—see Fig. 5sbd.

This result seems to be trivial because our free 2D SAC
possesses translational invariance like a genuine one, so its
phonon spectrum has not the lower gap in phonon spectrum
fsee Fig. 2scdg and all the breather’s frequencies fall into
phonon band. Therefore the resonance interaction between a
breather and a corresponding phonon must take place and the
breather energy is to be transmitted to the phonons, resulting
in quick breather degradation.

But situation turns out to be not so simple as that. Indeed,
let us now impose the sine background potential on every
chain in the array. There appears the lower gap in the phonon
spectrum. Considering like before, we may suppose that the

breather with the frequency below the lower bound of the
phonon spectrum will survive, while the one above it will be
ruined through interaction with phonons. Let us check on
this supposition.

V. LOW-FREQUENCY QUASI-1D BREATHER SURVIVAL
CONDITION IN THE SAC ON SUBSTRATE

Now we exploit the full models6d. Let us choose an ex-
ampleE=0.001. So we fix the full background potential gen-
erated by both the substrate and the mobile neighboring
chainssE=es+ed. If the neighboring chains are fixed too, we
obtain the FK model where the breather form is well ap-
proximated by the sG breathers14d becauseE=0.001 corre-
sponds to the case of weak discreteness. If we keep the value
of E, the dispersion curve of this FK model does not change.
Its minimal and maximal frequencies are froms12d ands13d
vFK=2pÎE=0.1987 andvmax=s4p2E+4d1/2=2.01. As we
have seen in the previous section, the sG breathers with fre-
quenciesvb=nvFKs0ønø1d survive in such a model.

Let us now investigate the survival of such breathers by
continual changing the part of imposed background potential
a=es/E over the range 0øaø1. Fixed value ofE conserves

FIG. 5. Kink-antikink recom-
bination in a chain having immo-
bile sad and mobilesbd neighbor-
ing chains. Collision of solitons in
the FK modelssoliton velocity s
=0.005d results in creation of a
low-frequency sG breather. Colli-
sion of solitons in a chain of the
free 2D SAC ssoliton velocity s
=0.25d results in intensive radia-
tion of phonons. Crystal param-
eters are«=0.007,a=0.
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the dispersion curve of the corresponding FK model and cor-
responding sG breather solutionss14d which are used as ini-
tial conditions, while decreasing value ofa lowers the lower
bound of the phonon spectrumvmin=ÎavFK. So one should
expect that the breather with frequency parametern in the
crystal with parameter of “fastening”a will survive if n
øÎa: if breather frequency falls into the lower gap of the
phonon spectrum.

We have used the initial conditions in accord with the
analytical form of the sG breathers14d sexpecting, as in the
previous section, that a stable quasi-1D breather will be
formed from the initial sG profiled and watch the following
behavior of the excitation in the same as in the previous
section finite crystal having 51 chains of 400 particles each,
the utmost particles of the crystal being subjected to damping
force.

The result of the investigation is presented in Fig. 6. One
can see that the area of parameters in which the stable
quasi-1D breathers are formed, is sufficiently less than the
lower gap in phonon spectrum. At weak substrate there are

no quasi-1D breathers at all, although the lower gap does
exist. Comparing curves 1 and 3 one can also conclude that
the position of the triple breather’s frequency relative to the
phonon band has nothing to do with the survival condition as
well—contrary to the case of the discrete FK model.9,10 One
can suppose that there is another type of instability which
destroys quasi-1D breathers in the crystal with interchain in-
teractions much stronger than the substrate. In this area of
parameters sufficiently 2D breathers may be stable ones in-
stead of quasi-1D breathers which we are seeking for.

The form of the stable quasi-1D breather is shown in Fig.
7. The breather is mainly localized on one chain, only two
chains next to this one have small perturbations. Fourier
analysis of particles’ oscillations shows that the stable
breather very slowly emits phonons having frequency equal
to threefold frequency of the breather. In addition, in the
frequency spectrum of the particles not belonging to the
main chain the lower frequency of the phonon band is al-
ways present. The relative weight of this oscillations is the
higher the father is the chain from the main one. The breath-

FIG. 6. Survival condition for
the quasi-1D breather with the fre-
quencyvb=nvFK in the 2D SAC
on substratesE=0.001d having the
fastening parametera. Curve 1 is
the boundary between stable and
damped breathers. It is the result
of numerical experiments. The
taupe areasbd is the survival zone
of stable breathers. Curve 2 shows
the lower frequencysdivided by
vFKd of phonon band in the crys-
tal n=Îa, curve 3 is one third of
the value of the curve 2. The grey
areasad is the lower part of pho-
non band. Points 4, 5, and 6 mark
the breathers which behavior is
represented in Fig. 8.

FIG. 7. Form of the stable
quasi-1D breather with frequency
vb=0.8vFK at time moment t
=2640 in the 2D SAC on sub-
strate sE=0.001d having the fas-
tening parametera=0.9.
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ers far away from the survival area have a finite short
lifetime—see Fig. 8sad. Figures 8sad–8scd show a rather
sharp transition from the damped mode to the stable one.

VI. CONCLUSIONS

So one can see that survival of quasi-1D low-frequency
breather in 2D strongly anisotropic crystal on substrate de-
pends mainly on the degree of fastening of the crystal. In
weakly discrete caseE=0.001 stable breather mode can exist
only at strong fasteninga.0.69 for breathers with low fre-
quencies. For breathers with higher frequencies the survival
area is still more narrow. The survival condition bears no
relation to resonances between breather frequency and fre-

quencies of phonon band—contrary to the case of the FK
model. Low-frequency breathers can not exist as “elementary
excitations” in free crystalssas crystalline polyethylened,
while they can be present in crystals on substrate with strong
external background potentialsanisotropic crystals with
heavy and light sublattices as 4-methyl-pyridine crystald.
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FIG. 8. Transition from
the damped breather mode to
the stable one in the 2D SAC
on substrate sE=0.001d. We
show time dependence of function
akstd=maxnfuM/2+1,n8 stdg2—squared
maximal velocity of particle in the
chainM /2+1 containing breather
with frequency vb=0.8vFK for
three values of fastening param-
eter a: a=0.4 sdashed line repre-
sents the case ofa=1 for com-
parisond sad, a=0.8 sbd, a=0.9
scd.
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