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Survival condition for low-frequency guasi-one-dimensional breathers in a two-dimensional
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We investigate a two-dimension€é2D) strongly anisotropic crystdD SAC) on substrate: 2D system of
coupled linear chains of particles with strong intrachain and weak interchain interactions, each chain being
subjected to the sine background potential. Nonlinear dynamics of one of these chains when the rest of them
are fixed is reduced to the well known Frenkel-Kontor¢®K) model. Depending on strengh of the substrate,
the 2D SAC models a variety of physical systems: polymer crystals with identical chains having light side
groups, an array of inductively coupled long Josephson junctions, anisotropic crystals having light and heavy
sublattices. Continuum limit of the FK model, the sine-Gorde) equation, allows two types of soliton
solutions: topological solitons and breathers. It is known that the quasi-one-dimensional topological solitons
can propagate also in a chain of 2D system of coupled chains and even in a helix chain in a three-dimensional
model of polymer crystal. In contrast to this, numerical simulation shows that the long-living breathers inherent
to the FK model do not exist in the 2D SAC with weak background potential. The effect changes scenario of
kink-antikink collision with small relative velocity: at weak background potential the collision always results
only in intensive phonon radiation while kink-antikink recombination in the FK model results in long-living
low-frequency sG breather creation. We found the survival condition for breathers in the 2D SAC on substrate
depending on breather frequency and strength of the background potential. The survival condition bears no
relation to resonances between breather frequency and frequencies of phonon band—contrary to the case of the
FK model.
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I. INTRODUCTION (10°~1@ periods when the third harmonic to its frequency is
The Frenkel-KontorovéK) mode(a inear chain of har-  $,e2€" (120 11° uPPer hodon bant oo e code B
monically coupled particles on the sine baCkgrO“”dperceptibléo

potentia)* is the the most commonly used and comprehen- |, connection with studying real physical quasi-1D sys-
sively investigated (see monograph&® one-dimensional tems such as long Josephson junctions and quasi-1D ferro-
(1D) model of a crystal. In the case of weak backgroundmagnets there emerged many works treating behavior of sG
potential (weakly discrete systejit seems to be especially preathers under action of perturbations breaking exact inte-
appropriate for polymer crystals: quasi-1D topological soli-grability: dissipative and diverse conservative terfsge
tonlike excitations predicted by its continuum limit, the sine-Ref. 11-13, and references thepeiAnalytical treatment of
Gordon (sG) equation, can propagate in a chain of a two-the problem is possible if one considers the corresponding
dimensional(2D) system of coupled chaifidand even in a  perturbation in the inverse scattering transf&rror if one
helix chain in a three-dimension&BD) model of polymer obtains the multiple-scale asymptotic expan&ion the limit
crystal (see, for example, Ref.)6The sG equation is the of high breather frequencies. It is also possible to derive

only nonlinear wave equation of type some estimates in general ca3és one can easily predict,
the breather lifetime proved to be long if perturbation is
Uy — Uygx+ g(u) =0 (1) small. In nonintegrable models with background potentials

hich | ic familv of Isufficiently different from the sine function breatherlike
which possesses also one-parametric family of exact solgng |iving nonlinear excitations are observed numerically
tions in the form of low-frequency breather&requencies of (the ¢* model—Ref. 14, the double sG, the square well
the breathers fill the gap between zero and the minimal frepotential—Ref. 1% For tﬁe(ﬁ“ model it is s:howﬁ6 that the

quency in phonon spectrumg. If the breather frequency ragiation rate of a small-amplitude “breather” lies beyond all
approachesory, the breather amplitude tends to zero, andorders in asymptotic expansion.

the breather width—to infinity(“phonon” limit). If the All this allows one to look on such breathers as being
breather frequency tends to zero, the breather approaches'@lementary excitations” in a crystal, together with kinks and
full kink-antikink profile. antikins(topological solitonsand phonons. This implies that

Although exact time-periodic space-localized solutionsthe breathers can noticeably contribute to thermodynamic
are absent in the FK mod&humerical simulatiorfs'® show  properties of a crystdl and even must be used in phenom-
that in the FK model the sG breathers survive, and, althougknological approaches to the sG thermodynamics instead of
lose energy due to resonances of odd multiples to th@honons®19
breather frequency with phonon frequencies, have their life- But a real crystalfor example, a polymer one with iden-
time long enough even in the case of strong discretenedtcal chains having light side groups as polyethylenen-
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sists of all mobile chains, the moving neighbors being creat- ~ OMWWWWOWWMWOWWOWWOWWOWWO

ing the background potential for every chain. It is interesting

to investigate whether the low-frequency breathers could sur- ,@C|
vive by such an extension of the FK model. The simplest
generalization enough for this purpose is a 2D array of par- (m+2.0-2) (m+2n-1) (m+2m) (m+2m+1) (m+2,0+2)

allel linear coupled chain@ntrachain interactions are much

stronger than interchain ones2D strongly anisotropic crys- OWMOWOWWMOMWWMOMMOMWWO

tal (2D SAOQO. Two_neighboring moying chains create the Gt dye2) (pia=1) (midn) Amrcimel) (meld)
background potential for every chain, and the system pos- b
sesses translational invariance exactly as a genuine 3D CryEOMNVWO’VWVWO’WWWO'VWWVO"WWWOWNWO

tal. (mn-2) (mn-1I) (m,n) (mu+l)  (mn+2)

Considering other physical situations which allow use of
the FK model, one can find it useful to extend the model by
imposition of the sine background potential on every chain OMOMMOMMOWNOMMOWNWO
of the array. A manifest example is an array of inductively (PRl (L) QAL slns)] [l
coupled long Josephson junctiontsee, for instance,
review).” One can also have in mind a crystal including OWWOMWMOMMOMWWOMMOMWWO
chains of strongly interacting light atomic groups coupled to il -t ) U-SalieLh YD)
nearly immobile heavy clusters of atoms creating a back-
ground potential(an instance is 4-methyl-pyridine crystal oW OWMWOMWWOMWWOMWMWOMWWO
which includes chains of pairs of rotating methyl groups at- ) ]
tached to heavy pyridine rings—see, for example, ajtfdie FIG. 1. The 2D strongly anisotropic crystal: 2D array of weakly

To take into account similar situations we have extended oug:oupled chains: intrachain interactions are much stronger than in-

model imposing the background sine potential on ever)}erchain onegweak discreteness limitWe choose unit length so
chain (2D SAC on substraje thatc=1 in the equilibrium ground state of the free crystal. In the

The paper is organized as follows. In Sec. Il we introduceZD SAC on substrate the sine potential is imposed on every chain of

the model of a 2D SAC: free and on substrasth back- t.he. free cry;tal so that minima of the potential coincide with equi-
A . librium positions of the particles.

ground potential imposed on every chaiitn Sec. Il we

obtain phonon spectrum of the model presented. In Sec. IV _ " b o

we describe a low-frequency breather degradation in the free  mnj ={[(J = (= D™/2)C+ U1 psj = Umpl= + DG4

crystal. Section V is devoted to investigation of the survival P

condition for low-frequency breathers in the crystal on sub-The grognd state of the systef,,=Un,=0) has the energy

strate. Section V contains conclusions of the investigation. PE" Particle

+oo
1
II. THE 2D STRONGLY ANISOTROPIC CRYSTAL: FREE E(b,c,cp) = E(C - Co)2 + E U(RJ-),
AND ON SUBSTRATE

j:—oo

Let us first take a 2D array of parallel linear coupledwhere Rj=[b?+c?(j+1/2)?]¥2 is the distance between the
chains(intrachain interactions are much stronger than internth and the(n+j)th particles of thanth (m is odd and(m
chain onepof (classical particles(Fig. 1): a free 2D SAC.  +1)th chains. Equilibrium values df and ¢ minimize the
To catch the main physical meaning of the model it isexpression at given,. Equivalently, if one choosesas unit
enough to allow interchain interactions only between pardength, one can find equilibrium values @fandb. Hereafter
ticles of the nearest neighboring chains. Then Hamiltonian ofve imply that the crystal is initially in its equilibrium ground
the system is written as state withc=1.

The present 2D model was first introduced in Ref. 4. One
can take into account also transversal displacements of
particles> The model allows existence and propagation of
quasi-1D topological solitonlike excitations. The authors of
S Ul 2) the article4® used the Morse potential for interactions be-

= mnijZ tween particledJ(r, ;) as very suitable for numerical cal-

culations. Here we exploit the more physical Lennard-Jones

where the dot denotes time derivatiwg,is the period of a potential(truncated
separate chairg—the longitudinal period of the crystai,, ,
is longitudinal deviation of the particlen,n) from its equi- (1o 5 (rg)\®
librium position (shown in Fig. 1 in the crystal(we keep Ul =e )\ —2fm), )
transversal deviatiory,,,=0), the potential U(r, ;) de-
scribes interaction of thath particle in themth chain with where  the truncation function f(r)={1-tanfu(r
the (n+j)th particle in the(m+1)th chain,ry,,; being the —dg)]}/2(u~1, dy>r() is introduced for convenience of
distance between the particles numerical calculations. It allows one to avoid taking into

1. 1
HO = 2 Eurzn,n + E(um,n+l “UpptC— C0)2
mn

+oo
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TABLE |. Dependence of longitudinas, and transversab, ing” a=e¢/E (0<a=<1). In the crystal with all mobile
sound velocities, characteristic frequencigs,, andwry in the free  chains on substrate the valueis the imposed part of the

SAC on the value of the parameter background potential for a chain and the valte «) is the
part created by mobile neighboring chains.
€ Sx s/b Pmax WFK The system of equations of motion for the SAC on sub-
0.07 07530  0.4916 21174  0.p952 Strate takes the form
0.007 0.9781 0.1555 2.0120 0.2197 . oH
0.0007 0.9978 0.0492 2.0012 0.0694 mn =~ 0

=0,+1, + =0,+1, +
account interactions of the particles placed one from another n=0,+1,£2,., m=0,21,%2,. ®)

farther thanr = d. with the Hamiltonian(6). In numerical simulations we con-

It is knowr?? that if the equilibrium distance between par- sidered the dynamics of a bounded rectangular fragment of
ticlesrg falls into the interval 0.9% ry<<ec the shape of the the crystal(l1=n<N,1<m=M) with fixed boundary con-
background potential generated by neighboring chains iglitions in both directions.
close to the sine function. We have chosgy¥1.67d,
=20,u=2) because it corresponds to model of polyethylene ||, pHONON SPECTRUM OF THE SAC ON SUBSTRATE
crystal with “united atoms®?23 At this value ofr, the back-

ground potential generated by immobile neighbors As we have chosen particles numeration not coinciding
with one based on translation of the crystal cell, phonon

modes have the more complicated form

+oo

V(W =22 {U[rj(w]-UR)}, 4)
j=— Uzmn = A €XPi[gin + g2m = wt],
wherer;(u)=[b?+(u+j+1/2?]*? [note thatR =r;(0)], is the .
sine function accurate within 0.19%/(u) =  1-cog2u)], Uzms1n = Aexpi[gy(n— 1/2) + gx(2m+ 1) - wt],
where background potential amplitude=0.175%. So dy-
namics of one chain when the rest of them are fixed is re- n=0,+1,+2,..., m=0,+1,+2,... 9

duced to the FK model where A<1. Substituting the anzat®) into the linearized
(FK) — 1.2, 1 2 system of Eqs(8) with imposed periodic boundary condi-
Ho zn: {Zu”+ 2(Un+1 = Un) +V(u”)}' ®) tions in both directions one can obtain the dispersion equa-
tion
The width of a static kink of tension in the model of poly-
ethylene crystal with united atormgbout 30 periodscoin- (4,2
cides with the width of a static kink in our model of coupled (01,02 = | 47°€s+ 2(1 - cosqy)
linear chains if the intensity of interchain interactions

=0.0007. We have also considered the cases of stronger in- - 12
teractionse=0.007, 0.07. The first two cases correspond to +42 Ki{1 - co$(j + 1/2q,]cosqy} |
limit of weak discreteness. In the last case the sound velocity i=0

in transversal direction is equal to one in longitudinal direc- (10

tion (see Table ). When the chains are assembled into the T - . 2121 5153
crystal the transversal equilibrium period appears tobbe where r|g|d|t|e_s_a_r¢Kj—U (RJ')(]H'/Z) /R “_LU (Ry)b IR.
=1.5666 independent an Only ¢, is & dependent. Values of the rigidities are in direct proportion to the param-

Now let us introduce the SAC on substrate. The substrat§!e" Of interchain interactiom; for £=0.07 they areKo
is the sine background potenti] imposed on every chain =0.199,K,=-0.061,K,=-0.014,K3=-0.002.

of the free crystal. The Hamiltonian of the system becomes DiSPersion Eq(10) gives the minimal
_
H=Ho+ 2 VUno),  V(u) = eJ1 - cog2mu)].  (6) @min = 40,0/ = 2mve, (A3
mn

and the maximal
When we fix all the chains in the model except one, we get 1/2
the FK model with more strong background potential Omal O, 0p) = <4ﬂzes+ 4+4> KJ-) = (472E + 4)12

j=0
HFO = HFR + > v(u,)
n

+oo

(12
- 1:2,1 — )2 _ possible frequencies. In the crystal without substfate 0)
= U+ 5(Upsq — Uy)© + E[1 - co$2mu,) ]y, o . . )
En: {2 0" 2t~ ) [ 42m n)]} the minimal frequency is zertihere is no lower gap in the

) spectrum because in this case the crystal possesses transla-
tional invariance and there appear acoustic phonons in the
where E=e+e¢,. Let us introduce the parameter of “fasten- spectrum. The cut of the dispersion surfdté) at g,=/2

224303-3
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FIG. 2. Dispersion surface=Q(qy,q,) for the 2D SAC. The
model parametersy=1.67,E=0.001. We show the surface for
three descending values of fastening parameterr=0.9 (), «
=0.45(b), a=0—the free crystalc). The curve on the surface is the
dispersion curve for the corresponding FK mo@adproximation of
immobile chainy w=Q(q,, 7/2).
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dispersion curve for the corresponding FK model.

In the free crystale;=0) the velocity of longitudinal long
phononss, and the velocity of transversal long phonags
equal to

1/2
2 (+1U2%K; |

j:—oo

+oo

8= lim Q(q,,0)/g9, = | 1+
g;—0

+oo 1/2
s,=blim Q(0,q)/d,=b| X K;
Q24’O j:—oc
Dependence of some quantities characterizing the free crys-
tal on the parameter of interchain interactions presented
in the Table I.

IV. LOW-FREQUENCY QUASI-1D BREATHER
DEGRADATION IN THE FREE 2D SAC

We carried out all the simulations in finite crystal contain-
ing 51 chains of 400 particles each. We have imposed damp-
ing on all the boundary particleégitmost particles of every
chain and all the particles of two utmost chaise to secure
absorption of phonons radiated by the breather. We chose
zero initial conditions for all the chains except the central
one where we started with the profile in accord with the
breather solution of the sine-Gordon equation

V1 -2

v cosinweg\1 —19)

S|n( Vw,:Kt)

(14)

2
u,(t) = —arcta
o

(0=<wv=<1) because in all simulations we deal with the case
of weak discreteness and we seek for stdtlleugh may be
slowly damped solutions similar to the sG breathers, local-
ized mainly on one chain. So we expect that if there is such
a solution, and it is a stable one, it will be formed from the
initial sG profile, some radiation being emitted in the act of
forming and adsorbed at the utmost particles of the crystal.
Let us first compare behavior of a sG breather in the FK
model [all the chains are kept immobile except one—with
numberm=(M +1)/2—containing the breathkrand in the
model of crystalall the chains are mobilevithout imposed

produces the dispersion curve for the corresponding proackground potential. To cover situations from very weak to

model (the crystal with only one chain mobijte
+00 1/2

Qr(Q) = Q(q,m/2) = | 47+ 2[1 - cogq)] +4 > K;

j:—m

={47°E + 2[1 - cogq) |}*2.

moderate interchain interactions we performed numerical
simulations at three values of the parameter0.07, 0.007,
0.0007.

Numerical simulation with the initial conditions according
with the analytical form of the sG breathg4) showed that
the sG breather in the FK model enjoys regular stable oscil-
lations for a very long time. Figure(8 shows an example

The minimal frequency for the FK model is nonzero at anyfor the breather with frequencyw,=0.07wp=0.0157¢

value of e
(13

We have presented the plot of the dispersion surface=for
=0.001 and different values af in Fig. 2 together with the

WEK = ZW\E .

=0.007. We have observed at least*i@scillations without
visible decrease in amplitude. Analysis of the work done by
the frictional force applied to the two utmost particles of the
chain and the Fourier analysis of particles’ oscillations
showed that the breather very slowly emits phonons having

224303-4
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[y

Ute1)2n

|
-

J
2000 ’ 400

1500 300 FIG. 3. Low-frequency sG
breather in the free 2D SACa
1000 200 1 =0, €=0.007, M=51, N=400:
500 100 oscillations in the FK mode(the
case of immobile neighboring
chaing (a) and degradation in the
crystal with all mobile chaingb).
We show the displacementsg,
of the 26th chain containing the
breather in successive time mo-
mentst. Breather frequency isy,
=0.0157.

Unts1)2.n

400

frequency equal to threefold frequency of the breather. Th&K model. The simulation showed that so excited breather
emission is much less than one which was observed inworkquickly comes to ruin. Its lifetime is less than two its periods
because we deal with the case of weak discreteness. [Fig. 3b)]. The destruction results from the intensive emis-
Then we tried to find similar quasi-1D breatherlike exci- sion of phonons into the neighboring chaifeee Fig. 4.
tation in the crystal with all the chains mobile. We startedEnergy of the excitation spreads to all the particles. So one
with the same initial conditions according with4) as in the can conclude that the low-frequency quasi-1D breathers

FIG. 4. State of the free 2D
0024 -

o crystal (=0, €=0.007, M=51,
S* 0 N=400 resulting from destruc-
-0.02 tion of a low-frequency (wy

=0.0157 sG breather placed onto
the 26th chain. The displacements

400 Umn are shown at time momett
=150.

-0.04
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Uts1)2.n

400

FIG. 5. Kink-antikink recom-
bination in a chain having immo-
bile (a) and mobile(b) neighbor-
ing chains. Collision of solitons in
the FK model(soliton velocity s
=0.005 results in creation of a
low-frequency sG breather. Colli-
sion of solitons in a chain of the
free 2D SAC (soliton velocity s
=0.25 results in intensive radia-
tion of phonons. Crystal param-
eters ares=0.007, a=0.

Unts1)2n

similar to the sG ones are absent in the model of free 2breather with the frequency below the lower bound of the

crystal. phonon spectrum will survive, while the one above it will be
This conclusion accords with the observed difference beruined through interaction with phonons. Let us check on

tween the two models under study in scenario of kink-this supposition.

antikink recombination when they collide with small relative

velocity. Indeed, in the FK modéivith the sine potential as v, LOW-FREQUENCY QUASI-1D BREATHER SURVIVAL

well as with the double sine or the square well gnldsk CONDITION IN THE SAC ON SUBSTRATE

and antikink can form oscillating breatherlike state, their en-

ergy remaining for a |0ng time localizEd—see F|g 53), Now we eXplOit the full mOde(G) Let us choose an ex-

while in the model of free crystal the energy of colliding @mpleE=0.001. So we fix the full background potential gen-

solitons scatters at once with phonons—see Fib).5 erated by both the substrate and the mobile neighboring
This result seems to be trivial because our free 2D SACEhains(E=&s+ ). If the neighboring chains are fixed too, we

possesses translational invariance like a genuine one, so @9tain the FK model where the breather form is well ap-

phonon spectrum has not the lower gap in phonon spectruioximated by the sG breathét4) becausee=0.001 corre-

[see Fig. 2c)] and all the breather’s frequencies fall into sponds to the case of weak discreteness. If we keep the value

phonon band. Therefore the resonance interaction betweenc4 E, the dispersion curve of this FK model does not change.

breather and a corresponding phonon must take place and tHé minimal and maximal frequencies are fr¢t®) and(13)

breather energy is to be transmitted to the phonons, resultingrk =2mVE=0.1987 andwme=(47°E+4)12=2.01. As we

in quick breather degradation. have seen in the previous section, the sG breathers with fre-
But situation turns out to be not so simple as that. Indeedguenciesw,=vwgx(0=< r<1) survive in such a model.

let us now impose the sine background potential on every Let us now investigate the survival of such breathers by

chain in the array. There appears the lower gap in the phonotontinual changing the part of imposed background potential

spectrum. Considering like before, we may suppose that the=e¢s/E over the range & a<1. Fixed value oE conserves

224303-6
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1

FIG. 6. Survival condition for
the quasi-1D breather with the fre-
(a) o? o® quencyw,=vwgg in the 2D SAC
0.75r on substrat¢E=0.00]) having the
fastening parametet. Curve 1 is
> the boundary between stable and
2 1 damped breathers. It is the result
of numerical experiments. The
0.5f taupe aredb) is the survival zone
of stable breathers. Curve 2 shows
the lower frequency(divided by
wpk) of phonon band in the crys-
0.25k- 3 _--=-" tal v:\e"z, curve 3 is one third of
T the value of the curve 2. The grey
- area(a) is the lower part of pho-
-7 non band. Points 4, 5, and 6 mark
™ the breathers which behavior is

! L represented in Fig. 8.
0.25 0.5 0.75 1

the dispersion curve of the corresponding FK model and cormo quasi-1D breathers at all, although the lower gap does
responding sG breather solutiofis!) which are used as ini- exist. Comparing curves 1 and 3 one can also conclude that
tial conditions, while decreasing value eflowers the lower the position of the triple breather’s frequency relative to the
bound of the phonon spectru@},,=\@we«. S0 one should phonon band has nothing to do with the survival condition as
expect that the breather with frequency parametém the  well—contrary to the case of the discrete FK mot#lOne
crystal with parameter of “fastening& will survive if v can suppose that there is another type of instability which
<Va: if breather frequency falls into the lower gap of the destroys quasi-1D breathers in the crystal with interchain in-
phonon spectrum. teractions much stronger than the substrate. In this area of
We have used the initial conditions in accord with the parameters sufficiently 2D breathers may be stable ones in-
analytical form of the sG breathé¢t4) (expecting, as in the stead of quasi-1D breathers which we are seeking for.
previous section, that a stable quasi-1D breather will be The form of the stable quasi-1D breather is shown in Fig.
formed from the initial sG profileand watch the following 7. The breather is mainly localized on one chain, only two
behavior of the excitation in the same as in the previoushains next to this one have small perturbations. Fourier
section finite crystal having 51 chains of 400 particles eachanalysis of particles’ oscillations shows that the stable
the utmost particles of the crystal being subjected to dampingreather very slowly emits phonons having frequency equal
force. to threefold frequency of the breather. In addition, in the
The result of the investigation is presented in Fig. 6. Ondrequency spectrum of the particles not belonging to the
can see that the area of parameters in which the stablmain chain the lower frequency of the phonon band is al-
guasi-1D breathers are formed, is sufficiently less than thavays present. The relative weight of this oscillations is the
lower gap in phonon spectrum. At weak substrate there arbigher the father is the chain from the main one. The breath-

FIG. 7. Form of the stable
quasi-1D breather with frequency
wp=0.8wpk at time momentt
=2640 in the 2D SAC on sub-

B strate (E=0.00) having the fas-
400 tening parametex=0.9.

300
200
10 100
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T T T
0.006 g
=2
S
0.003
0
FIG. 8. Transition from
0.006 the damped breather mode to
the stable one in the 2D SAC
A2 on substrate (E=0.00). We
S show time dependence of function
a(t)=max,[Uyo,1 (t) *—squared
0.003 maximal velocity of particle in the
' chainM/2+1 containing breather
with frequency wp=0.8wgk for
three values of fastening param-
etera: «=0.4 (dashed line repre-
sents the case of=1 for com-
0 | I | _ parison (a), «=0.8 (b), «=0.9
0 100 t 200 300 ().
0.006| (C) |

0 800 t‘ 1600 2400

ers far away from the survival area have a finite shortquencies of phonon band—contrary to the case of the FK
lifetime—see Fig. 8). Figures 8a)-8(c) show a rather model. Low-frequency breathers can not exist as “elementary
sharp transition from the damped mode to the stable one. excitations” in free crystaldas crystalline polyethyleng
while they can be present in crystals on substrate with strong
external background potentialanisotropic crystals with
VI. CONCLUSIONS heavy and light sublattices as 4-methyl-pyridine crystal

So one can see that survival of quasi-1D low-frequency
breather in 2D strongly anisotropic crystal on substrate de-
pends mainly on the degree of fastening of the crystal. In
weakly discrete case=0.001 stable breather mode can exist The authors thank the Russian Foundation for Basic Re-
only at strong fastening:> 0.69 for breathers with low fre- search(Award Nos. 04-02-17306 and 04-03-32]11®@r fi-
guencies. For breathers with higher frequencies the survivalancial support. One of the authdis.A.Z.) also acknowl-
area is still more narrow. The survival condition bears noedges substantial help of the Russian Science Support
relation to resonances between breather frequency and fré&oundation.
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