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A fine mechanical analysis of a polycrystalline material subjected to large stresses must distinguish between
intergranular and crystalline matter because they have different mechanical properties. Homogeneity is an
illusion at the grain level. It is shown that a grain boundary under the action of a strong enough in-plane shear
stress becomes unstable, buckling into periodic trenches or a corrugated profile. The former should always
occur; the latter demands the existence of steps, intersecting hard particles or triple junctions. Strongly varying
stress fields, spontaneously induced to preserve mechanical equilibrium at the grain scale, cause intergranular
matter to begin to release and capture vacancies in alternate sectors. The subsequent active lattice diffusion
near the buckled boundary causes adjacent crystallites to slide. The effect is translated into the macroscopic
scale to derive a closed-form constitutive equation relating stress, strain rate, temperature, grain size, and grain
boundary thickness, without undetermined parameters. The agreement with available experimental data on the
superplastic deformation of alloys, over the whole range of strain rates and temperatures, is remarkable.
Applications to Al-8090 SPF, Al-7475, and Ti-6Al-4V are shown. The degradation of superplastic properties at
high strain rates or temperatures is explained.
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I. INTRODUCTION

High-strength superplastic materials offer important and
attractive engineering applications because they exhibit out-
standing mechanical properties and allow for special fabrica-
tion techniques. Most uses occur in the aerospace industry,
which currently applies superplastic aluminum and titanium
alloys for the production of airplane structural components1

and engine parts. Superplastic forming combined with diffu-
sion bonding is a standard technique for producing the hol-
low wide chord blades of large turbofan engines. In the race
for more efficient aeroengines, lighter TiAl-based alloys are
promising candidates to replace the nickel-based superalloys
in turbine blades and combustion chambers. However, be-
sides these large technical advances, the atomic mechanism
which produces superplastic behavior is currently under dis-
cussion and remains as an open solid-state physical problem.

Surprisingly, superplastic flow takes place in a relatively
narrow range of temperature, which is ordinarily far below
the melting point. The strain rate also has a finite value that
maximizes the ductile behavior. This is perhaps counterintui-
tive, since one would assume that deformation occurring at
higher temperatures, with lower strain rates, should produce
the larger elongations to fracture. Also, fracture is anomalous
because it is ordinarily neckless and occurs by the nucleation
and interlinkage of bulk cavities.

Many polycrystalline solids whose grain size is stable and
smaller than about 10 �m grain size exhibit superplastic be-
havior when the temperature and strain rate are kept within
proper ranges. In the superplastic regime of deformation, the
material can undergo large uniform strains prior to
fracture.2,3 Elongations of 10–20 times are quite common in
superplastic samples subjected to uniaxial tensile stresses,
and neck-free strains as large as 70–80 times have been
reported.4 The absence of internal residual stresses after dis-

tortion is another interesting property of the superplastic de-
formation because it is reminiscent of Pascal’s law for fluid
flow.

Although this phenomenon has been extensively investi-
gated, there is in fact no existing theory which begins from
the atomic, or grain, scale that permits a quantitative under-
standing in a unified way of the several features of superplas-
tic flow. In particular, there is no clear-cut answer as to why
the grains of a polycrystal become so prone to slide when the
composition, temperature, and strain rates reach such precise
conditions. Thus, superplasticity constitutes a challenge to
solid-state theorists and, in spite of the large amount of em-
pirical studies reported in the literature, the precise physical
origin of superplastiity is still a mystery.

What we do know from experiments reveals that the tem-
perature dependence of the superplastic strain rate for fixed
stress follows a thermally activated law, with activation en-
ergy close to that of lattice diffusion.5 Thus, vacancies have
an important role in superplastic flow. However, a simple
estimate demonstrates that the observed matter flow rates
cannot be explained by merely a stream of vacancies in the
opposite sense along the whole sample. Unreasonable con-
centrations would then be required. Therefore, although the
motion of vacancies plays a principal role in the deforma-
tion, it is subsidiary to grain boundary sliding processes.

Most theoretical approaches reported in the literature ex-
tend the mechanisms of creep and assume that superplastic-
ity is set in motion by grain boundary sliding accommodated
by diffusional flow. The strain rate �̇ turns out to be related to
the applied stress � by a power law �̇=A�n.6–17 However,
this approach falls short because such a law does not fit the
experimental data for constant n and does not shed light on
other features of superplasticity. In particular, the most basic
question as to why some alloys are superplastic, and others
are not, has no clear-cut answer in current theories. The sin-
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gular plastic characteristics, common to all superplastic ma-
terials, suggest that the phenomenon springs from a very
basic origin, which still remains unclear.

Two recent advances seem to shine new light on the
underlying atomic origin of superplasticity. Direct experi-
mental evidence was supplied by Vetrano et al.18,19 for the
deformation-induced supersaturation of vacancies in the vi-
cinity of many grain boundaries of a Al-Mg-Mn alloy during
superplastic deformation. Rapid quenching of the sample
while being superplastically deformed, by spraying a freon-
type liquid on its surface, revealed the formation of nano-
cavities in 25% of the grain boundaries. The cavities pro-
duced in this manner are very unstable, quickly coalescing
and disappearing after moderate heating. They are shown not
to exist during deformation, but rather start forming after
cooling and subsequent load release to polish and mount the
sample in the transmission electron microscope.

They conclude that the presence of cavities provides evi-
dence of a supersaturation of crystal vacancies near the slid-
ing grain boundaries. The defects condense into voids when
sliding abruptly ceases. Hence, vacancy excess is associated
with the grain boundary sliding process. The supersaturation
of vacancies is observed mainly in boundaries at 45° with
respect to the tensile axis, where the shear stress is maximal,
with near small particles intersecting the grain boundaries.

Vetrano et al. claim that boundary accommodation of two
sliding crystallites involves the motion of dislocations with
edges at the common boundary plane.18 As real boundaries
have in general complex shapes, the motion of the disloca-
tions should combine glide and climb processes in order to
respond to the accommodation demands. Climbing processes
necessarily involve the release and capture of a large number
of vacancies. Thus, the ability of the grain boundary to ex-
change these point defects has a rate-limiting role in the ac-
commodation of sliding boundaries, even if one accepts that
dislocations have the whole responsibility for the phenom-
enon. This explanation of the observed supersaturation of
vacancies in superplastic deformation rests entirely on shape
accommodation, and not on the sliding mechanism.

By the time of the publication of the papers of Vetrano
et al.,18,19 a novel mechanism for superplastic grain boundary
sliding was put forward by the author20 of this article, which
clearly explains the general features and the role of vacancies
in sliding. First, it begins by recognizing that the mechanical
analysis of a stressed polycrystalline material must distin-
guish between intergranular and crystalline matter, because
they have different mechanical properties and superplasticity
does occur at the grain scale.20,21 It is shown that a shear
stress greater than a critical value applied in the plane of a
nonideal grain boundary �having a step, intersecting hard
particle, or triple junction� should buckle it, producing a pe-
riodic transversal deformation in the boundary.20 This bound-
ary corrugation induces a periodic normal stress field that
alternates compression and traction on the surfaces of the
adjacent crystal surfaces.

On the other hand, it is well known that grain boundaries
are efficient sinks and sources for vacancies.16 The concen-
tration of crystal vacancies in equilibrium with the grain
boundaries depends on the temperature and normal stress.
Therefore, the periodic stress induced by the buckled bound-

ary yields a periodic variation of the equilibrium value for
the concentration of crystal vacancies. The grain boundary
then evaporates and condenses the point defects in alternate
sectors, producing streams of defects in closed loops that
cross the boundary and involve the two adjacent crystals.
These closed loops perform as the driving pulleys of a con-
veyor belt and the phenomenon provides both an accommo-
dation mechanism and the driving force for crystal sliding.20

Besides the remarkable quantitative agreement of the results
with the temperature-dependent stress-strain rate experimen-
tal data for a number of alloys, the theory can also explain
other phenomenological features of superplastic deforma-
tion. For example, it provides an insight for the causes of
void nucleation and growth, observed in the superplastic de-
formation of many materials, and their prompt failure at high
strain rates.

Most materials develop cavities during superplastic defor-
mation. This fits the theory because it predicts that the slid-
ing grain boundaries evaporate and condense vacancies in
alternate, very close sectors. Normally, supersaturation of the
point defects should not produce voids because they are rap-
idly captured after production. However, boundaries slide
randomly during deformation. If a boundary suddenly stops
sliding, both vacancy release and capture will cease as well,
and the region near the boundary will remain supersaturated
with vacancies. Then voids will start to nucleate.22

The explanation for the prompt fracture at high deforma-
tion rates is particularly interesting in the described scheme.
The loop motion of vacancies, ascribed by the theory as the
cause of superplasticity, explains remarkably well the experi-
mental stress-strain rate curves even for very large strain
rates, for which samples promptly fail. It seems contradic-
tory that the alleged mechanism of superplastic deformation
remains operative for strain rates where the effect is lost.
However, the reduction of the final fracture elongation when
the strain rate increases beyond the optimal value can be
explained by the same mechanism. The overly rapid evapo-
ration of vacancies at the grain boundaries produces high
local concentrations of these defects and the consequent
nucleation of them into rapidly growing coalescent voids,
which weakens the sample. Additionally, it is shown here
that superplastic properties must degrade either beyond the
upper bounds of temperature and strain rate or for grain sizes
too small.

This paper presents a more detailed account of the theory
of Ref. 20, outlined above, and discusses several possibilities
and properties that were not considered before. A new pos-
sible elastic instability of grain boundaries is studied, in ad-
dition to the corrugation effect discussed previously.20 A
closed-form constitutive equation relating stress, strain rate,
temperature, grain size, and grain boundary thickness, with
no undetermined or adjustable parameters, is derived from
the theory. The agreement of this equation with experiment,
over the whole range of these magnitudes essayed in the
experiments, is excellent. The theoretical approach gives in-
sight into the origin of some other phenomena, concurrent
with superplastic distortion, such as cavitation, prompt fail-
ure at high strain rates, threshold stress, dependence on the
grain size, and loss of superplasticity at high temperatures.
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II. INTERACTION OF VACANCIES WITH GRAIN
BOUNDARIES

One of the main hypotheses is that grain boundaries can
be considered as perfect sources and sinks of crystal
vacancies.16 The structure of the atomic ordering close to a
grain boundary is quite complex. Intergranular regions, or
grain boundaries, are relatively wide layers, with typical
thickness of several atomic distances. They couple two crys-
tal structures oriented in different directions, with minimal
deviation from crystal order. Such intermediate structure is
required because any departure from the crystal ordering that
minimizes the energy involves a very high local energy. The
sudden change from one structure to the rotated one would
involve a boundary surface with no crystal order and, hence,
an energy per site far beyond the melting heat.

Dislocations have a principal role in the atomic structure
of grain boundaries. Burgers23,24 realized that, in order to
attain minimal deviation from crystalline order, the space
between two deviated crystallites should be filled by dislo-
cations placed regularly, as wedges inserted between the
crystal planes that gradually modify their orientation. Using
this hypothesis, Read and Shockley25 calculated the energy
as a function of the angle between the crystals and obtained
excellent agreement with experiment for small-angle grain
boundaries. Grain boundaries of higher angles may be more
complex, but in any event it is expected that dislocations will
also play a principal role in their atomic structures. It is
customary to consider intergranular matter as dislocation
tangles that fill the space between the atomic planes at ir-
regular angles.

However, a dislocation is a plane condensate of vacancies.
Therefore, one can think of the grain boundary as a structure
combining atoms and vacancies in a relatively ordered way.
The fact that the vacancies constituting the grain boundary
may be largely configured as dislocations is not important
since an edge dislocation captures or releases lattice vacan-
cies quite efficiently when climbing.26 Hence, vacancies can
be taken as its elementary constituents.

The picture of a grain boundary as a complex structure
made of point defects raises the problem of the equilibrium
of such a structure and its dependence on composition, tem-
perature, and stress. Going a little further, one may think of
intergranular matter in a polycrystalline solid as a thermody-
namic phase of condensed vacancies.27–29 In this manner,
vacancies in the polycrystal can be either in free states, dif-
fusing inside the crystallites, or condensed in the grain
boundaries at a relatively uniform mean concentration. If the
system is in thermodynamical equilibrium, then the two
phases coexist and exchange vacancies reversibly and in
equivalent rates; that is, the same number of defects are
trapped by the boundary region and released by it, per unit
time and unit area.

Changes in the local values of the thermodynamical
variables—i.e., stress components, concentration of free va-
cancies, energy, or temperature—should result in a breaking
of equilibrium, accompanied by the evaporation or conden-
sation of vacancies at the interphases. The thermodynamics
of such a system can be described as a lattice gas with a
condensed phase. Its statistical mechanics has been fully

worked out in the past, yielding an equilibrium equation.27–29

However, there is a simpler way to derive this equation. As-
sume that the atomic concentration of vacancies diffusing in
the crystals is � and the concentration in the condensed
phase representing the grain boundary is denoted by the con-
stant 1 /�. Hence the grain boundary contains on average �
crystal sites, or �−1 atoms, per vacancy. The condition for
the thermodynamical equilibrium between the two phases,
which is the physical situation describing a polycrystal, turns
out to be27–29

��1 − ���−1 =
1

�
exp�− 	�B� , �1�

where �B is the binding energy of a vacancy in the grain
boundary relative to the energy of a free defect,
	=1/ �kBT�, kB is the Boltzmann constant, and T is the abso-
lute temperature. The numerical constant � satisfies

1 
 � 
 2 �2�

and takes the values 1 and 2 in the two extreme cases of no
shape entropy and unrestricted shape freedom, respectively.

Equation �1� has a very simple physical interpretation: at
equilibrium, the two phases exchange defects reversibly. The
rates of evaporation and condensation per unit area at the
interphase must be the same. The rate of evaporation pro-
cesses is proportional to the probability �1−��exp�−	�B�
that a condensed vacancy is in front of a nonvacant crystal
site, whose probability is 1−� and has the energy �B, neces-
sary to go through the free phase. On the other hand, the rate
of condensation events is proportional to the probability
��1−��� associated with the encounter of a free vacancy
with � nonvacant sites in a vicinity of the condensed phase.
Except for the 1/� factor, expression �1� results from equat-
ing these two probabilities. The coefficient 1 /� accounts for
the possibility of events that create new condensed regions.
If one assumes that the shape of the boundaries is stable and
no additional condensed structures are created, then �=1.

The equilibrium concentration � depends on the compo-
nents �ij, where i , j=x ,y ,z, of the stress tensor through the
dependence of �B on them. Generally, when considering a
free and condensed vacancy in a stressed material, one may
expect that the energy departure from their values in the
unstressed condition is determined largely by the variation of
the volume available. Consequently, �B=����, where � is
the volume per atom of the stressed crystallites. Thus, up to
first order,

�B��0 + �0�ii� = �B��0� − ��B� ��0�ii, �3�

where the summation convention over repeated indices is
assumed, �ij denotes the strain tensor, �ii is the elastic dila-
tion, and �B� =d�B /d�, and �0 represents the atomic volume
of the undistorted crystal. The absolute value ��B� � was intro-
duced because the volume derivative �B� is negative. Replac-
ing Hooke’s law

� = B�ii, �4�

where B is the bulk modulus, �ij represents the stress tensor,
and � is the hydrostatic tension,
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� =
1

3
�ii, �5�

the equilibrium Eq. �1� becomes

� =
�B

�* +
kBT

�* ln����1 − ���−1� , �6�

where

�* = ��B� �
�0

B
. �7�

It is implicit in Eq. �4� that � is positive for traction.
Equation �6� determines the relation between the thermo-

dynamic variables at equilibrium and has a preeminent role
in what follows. The grain boundaries capture or release va-
cancies when the temperature, concentration of vacancies, or
stress departs from the equilibrium values given by Eq. �6� or
when energy is provided. Isotropy is implicit in Eq. �4�.

The equilibrium, Eq. �6�, has an important consequence:
as the grain boundaries perform as sources or sinks for va-
cancies, the diffusion equation does not hold there, and
smooth stream lines of vacancies do occur only inside the
crystallites. The exchange of vacancies among adjacent crys-
tals occurs by stream lines which in general may change
direction abruptly at the boundary. The component of the

vacancy flux density vector J� normal to the boundary, Jn,
must be the same in the two sides; otherwise, the boundary
region would increase or decrease indefinitely. The compo-
nents parallel to the boundary may differ. Therefore, if the
flux of vacancies changes direction at the grain boundary, the
component of the density of flux parallel to the boundary has
different values in the two sides of it and the two adjacent
crystals will slide.

There is a more direct way expression �6� has a role in the
deformation of a polycrystal.20 For given temperature and
local stress, Eq. �6� determines the concentration ��� ,T� of
vacancies the crystallites should have to be in equilibrium
with the adjacent grain boundary. If the local normal stresses
are not uniform and vary along the boundary, then � and the
equilibrium concentration should vary as well. The inter-
granular region will release or capture vacancies in order to
reproduce the corresponding nonuniform equilibrium con-
centration ��� ,T� in the vicinity of the boundary. The con-
sequent concentration gradients will produce diffusive flow
of vacancies, and matter, along the grain boundary.

III. MECHANICS IN THE GRAIN SCALE

In the macroscopic scale, for which the characteristic dis-
tances are always much larger than the grain size, the mate-
rial is homogeneous and isotropic. Macroscopic stresses and
strain fields change smoothly and undergo no significant
variation in points separated by distances of the order of the
grain size. However, at the grain scale the material is highly
inhomogeneous because the mechanical properties of the
grain boundaries and crystallites in general do differ. This
inhomogeneity may induce intense stress fields that vary sig-
nificantly from grain to grain, or inside grains, and average

to zero in a larger scale.20,21 The granular metallographic
structure may induce strongly varying stresses in the grain
scale in a number of ways. The next subsections offer some
examples.

A. Pinch and twist of grain boundary matter

Figure 1 illustrates an elementary mechanism by which
the inhomogeneous nature of the stressed material may give
rise to rapidly varying stress fields. The small piece of matter
placed between the two grain surfaces 1 and 2 may represent
a small crystallite or a sector of the intergranular matter. The
main stress field caused by the forces external to the sample
determines that the side crystals 1 and 2 exert a shear stress
� to the central piece. The shear forces are parallel to the
plane of the boundaries. The system is in quasiequilibrium,
and the torque exerted on the intergranular region by the
shear forces parallel to the boundaries is equilibrated by the
normal stress fields �1�x�� and �2�x�� induced in the two
crystals 1 and 2. The x� axis is parallel to the boundary.
Considering both crystals and the region in between as three
elastic bodies, one concludes that the induced normal fields
vary linearly with x�. The slope k of this linear relation can
be determined replacing �=kx� in the equilibrium equation
for the force momenta,

�
−d�/2

d�/2

x�� dx� = �d�d1, �8�

where d� and d1 are the dimensions of the central piece of
matter in the directions parallel and perpendicular to the
boundary, respectively. If it were a crystallite, d� and d1
would be the grain size d. If the central body represents a
piece of intergranular matter, d1 is the grain boundary thick-
ness. This way, solving Eq. �8� to obtain k,

�1 =
12d1

d�2 �x�, �2 = −
12d1

d�2 �x�, − d�/2  x�  d�/2.

�9�

FIG. 1. Shear stress � exerted in a section of the grain boundary
delimited by two fissures. If intergranular matter performs as an
elastic body, then a normal stress field ��x�� is induced at the crys-
tal surfaces.

MIGUEL LAGOS PHYSICAL REVIEW B 71, 224117 �2005�

224117-4



There is an important remark to add concerning the pre-
vious derivations. In a homogeneous material, the torque ex-
erted by the shear forces parallel to the boundary, and asso-
ciated with the stress component �=�x�z� shown in Fig. 1, is
equilibrated by the torque of the stress component �z�x�. The
latter involves shear forces in the plane perpendicular to the
boundary, along the z� axis. The induced normal stresses �1
and �2 appear in the supposed absence of these very forces.
The elastic interaction of the central body with the rest of the
material in the x� direction was simply neglected, as it were
bounded by fissures in that direction. A justification for this
procedure is given in the next section.

Both induced normal stress fields change sign at x�=0, as
depicted in Fig. 1, which determines tractioned and com-
pressed regions in crystals 1 and 2. Vacancies evaporate from
the grain boundary in the tractioned areas, where Eq. �6�
determines a higher equilibrium concentration �, and con-
dense in the compressed regions, where the equilibrium con-
centration is lower. The stress variation along the x� direction
induces a gradient in the concentration of vacancies and,
consequently, diffusive flow parallel to the boundary in both
crystals. The flow has opposite senses in the two crystals and
the stream lines are essentially closed loops crossing the
grain boundary, as shown schematically in Fig. 2. Lattice
diffusion in closed loops between contiguous crystallites in-
volves a relative motion, or sliding, of the two crystals. For
future reference, the slope of the induced stress field along
the grain surface is

d�

dx�
=

12d1

d�2 � . �10�

B. Trench formation instabilities of grain boundaries

Interfaces in stressed solids were the subject of a recent
study which shows that, in general, ideally planar structures
in bulk polycrystalline materials become rough when sub-
jected to strong enough in-plane shear forces.30 This effect
is clearly a bulk analog of the Asaro-Tiller-Grinfeld
instability—i.e., the stress-induced buckling of solid surfaces
into trenches or islands31–33—and also of the spontaneous

roughening of thin films produced by large in-plane stresses
arising from lattice mismatch with the substrate.34–39 This
mismatch originates an in-plane shear on the film, and the
consequent bending torque accumulates to a length at which
the film buckles and corrugates or collapses into trenches.
These two related surface effects are of practical importance
and have received considerable attention.

The Asaro-Tiller-Grinfeld instability of surface layers, or
films on substrates, is well established by theory, computer
simulation, and experiment. The mechanical analysis of a
planar structure inside a stressed solid, like a grain boundary,
does not differ essentially from that of a surface layer, and
hence a similar elastic instability should be expected in it. In
effect, using a Monte Carlo simulation and analytical treat-
ment, Bellon and Averback30 show that bulk interfaces and
grain boundaries under overcritical in-plane stress undergo
an elastic instability, followed by atomic transport driven by
the induced stress fields. The bulk effect is more complex
than its surface counterpart, since the elastic instability is
followed by a structural one. The experimental observations
of the surface instabilities36,39,40 provide indirect experimen-
tal support to the bulk effect, which has the same physical
origin but is more difficult to detect experimentally.

The continuous mechanical model introduced in Ref. 20
will be reviewed and employed in the next sections to show
that the boundary separating two crystallites may become
elastically unstable when subjected to an overcritical shear
stress. The instability may produce two effects: a periodic
trenching should always occur in a sheared infinite plane
layer immersed in an elastic medium, but a concurrent in-
plane compression may induce a corrugation which inhibits
trenching. For the purposes of the present analysis, the main
consequence of both effects is the rise of periodic normal
stress fields in the two adjacent crystal surfaces. According to
Eq. �1�, these periodic stress fields should modify the local
thermodynamic equilibrium of vacancies in the interfaces be-
tween the two crystals and the intergranular matter.

The hypothesis is that in a polycrystal subjected to exter-
nal forces, the mechanical analysis must distinguish inter-
granular and crystalline matter as separate units because they
have slightly different mechanical properties.20,21 Intergrain
matter is assimilated into a thin elastic plate immersed in a
different elastic medium representing the crystals. The two
contiguous crystallites exert shear forces on the plate repre-
senting the intergrain matter. These shear forces are in the
plane of the elastic plate of thickness d1, width b, and length
L and are parallel to the main direction, which is the dimen-
sion of length L. The corresponding shear stress is denoted �.

Up to this point the model is incomplete because lacks an
in-plane compressing force, which is expected to occur in
any real grain boundary under shearing. In effect, a pure
shear exerted by the two crystallites on the intergrain region
may be partially transformed into in-plane compression by
geometric imperfections in the crystallite surfaces, like inter-
face steps, second phase inclusions, or particles and triple
junctions. To take this into consideration, two compressing
in-plane forces of strength F, parallel to the main dimension
as well, are applied to the edges of size b of the plate. Only
the main dimension and transversal deformations, normal to
the plane of the plate, will be considered. The magnitudes b
and L will not appear in the final solution.

FIG. 2. The normal stress field induced in the two crystal sur-
faces modifies the equilibrium concentration ���� of vacancies, de-
termined by Eq. �6�. Evaporation and condensation of vacancies
from, and to, the grain boundary does occur, together with diffusive
flow through the crystals. Lattice diffusion takes place in closed
loops.
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The elastic plate modeling the grain boundary is im-
mersed in a solid medium with different elastic constants,
representing crystalline matter. In this way, if a section �x of
the plate, at distance x from the left end along the main
dimension, undergoes a transversal shift y�x�, then the elastic
medium will exert on it a restitutive force −2�y�x�b �x,
where 2� is a constant proportional to the Young’s modulus
of the crystals. If F=�=0, the undeformed plate remains
plane.

The shape function y�x� of the plate is governed by the
following general equation, originally attributed to Euler and
commonly used in materials mechanics to calculate shapes
of loaded beams:

y�

�1 + y�2�3/2 = −
M�x�

EI
, �11�

where E denotes Young’s elasticity modulus of the plate and
I the moment of inertia of the transversal section. The func-
tion M�x� stands for the moment of the forces applied in the
interval �0,x� with respect to the point x of the plate. The
left-hand side of Eq. �1� is the curvature at x—i.e., the in-
verse of the radius of the osculating circle. By replacing, in
Eq. �11�, M�x� with the total moment of the forces �bx, F
and −2�by�x�, one obtains for y�x� the integro-differential
equation20

y�

�1 + y�2�3/2 =
�bd1

EI
x −

F

EI
�y − y0�

−
2�b

EI
�

0

x

y�x���x − x��dx� −
M0

EI
, �12�

where y0=y�0� and M0 is an external moment applied at
x=0.

By simply examining Eq. �12� with the physical meaning
of its terms in mind, one can conclude that a long plate
cannot be stable and would collapse into strips if � is big
enough. In effect, the second and third terms of the right-
hand side of Eq. �12� are bounded because any physical so-
lution for the transversal displacement y�x� has finite limits.
However, the first term increases indefinitely with x and,
consequently, the whole right-hand side of the equation is not
bounded if x is not bounded as well. Therefore, the curvature
of y�x�, represented by the left-hand side of Eq. �12�, can
reach values as high as desired for a large enough �x�.

To put this in a more quantitative fashion, assume that the
shear stress � is large and the elastic medium in which the
plate is immersed is very stiff. In such a situation, it is ex-
pected that the transversal deformation y�x� is small for any
x in �0,L� and the first term on the right-hand side of Eq.
�12� is dominant. The resulting approximate equation

y�

�1 + y�2�3/2 =
�bd1

EI
x −

M0

EI
�13�

can be solved exactly. The first integration gives

y��x� =

�bd1

EI
x2 − C

�1 − � �bd1

EI
x2 − C	2

, �14�

with

C = −
y0�

�1 + y�0
2

�15�

and y0�=y��0� is the slope at the origin. It is evident from Eq.
�15� that �C�
1. The slope y��x� of the displacement func-
tion is real for

�x�  � =� 2EI

�bd1
�1 +

�y0��
�1 + y�0

2	 �16�

and �y��±���=�. The maximum transversal displacement oc-
curs at

x0 = ±��2 −
2EI

�bd1
, �17�

where y��x0�=0. Therefore, the plate modeling the grain
boundary is expected to break at points x1, with �x0�
 �x1�

�, and develop a periodic structure of parallel fissures, or
trenches, whose period is approximately 2�. Replacing y0�

0 and the moment of inertia

I =
d1

3b

12
�18�

in Eq. �16�, one obtains for the ratio of the semiperiod �
between trenches and the grain boundary thickness d1:

�

d1

� E

6�
. �19�

Placing E
105 MPa and �
1 MPa one obtains 2�=260d1.
At this point, it may be helpful to offer a more pictorial

example of the situation described above. Consider two bod-
ies with two plane faces stuck by a thin film of glue of
thickness d1. Shear forces parallel to the plane faces applied
to the bodies make the glue collapse when they are high
enough to make 2� smaller than the dimension d of the body
faces. In that moment, the glue develops trenches whose
edges start to curl. Therefore the in-plane shear stress � has a
threshold

�c =
2E

3
�d1

d
	2

, �20�

which follows from replacing 2�=d in Eq. �19�.
The sectors between trenches of a collapsed grain bound-

ary can be identified with the central piece of matter referred
to in the previous section and appearing in Fig. 1. The
present analysis explains why the shear stress �z�x� was omit-
ted in the equilibrium equations in that section. Once the
transversal fissures are produced in the boundary, the local
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shear stresses �z�x� disappear and the induced normal stresses
�1�x�� and �2�x�� arise to equilibrate the in-plane shear
forces associated with �x�z�.

C. Buckling and corrugation of grain boundaries

In addition to the trenching effect of the previous section,
there is another class of mechanical instability of grain
boundaries which was already considered in connection with
superplasticity.20 Assume a class of solutions of Eq. �12� for
which y��x��1 for any x in �0,L�. Then the equation can be
simplified to

y� =
�bd1

EI
x −

F

EI
�y − y0� −

2�b

EI
�

0

x

y�x���x − x��dx� −
M0

EI
,

�21�

which admits the solution

y�x� = � sin�kx� , �22�

provided that M0=y0=0,

k4 −
F

EI
k2 +

2�b

EI
= 0, �23�

and

�d1 =
2��

k
. �24�

Equations �23� and �24� determine the periodicity 2��
=2� /k and amplitude � of the solution. However, Eq. �23�
has real solutions for k only when F�2�2�bEI�Fc. There-
fore, the existence of sinusoidal solutions demands an in-
plane compressing force F greater than the critical value Fc.

The coefficient k also has a minimal value, given by

kmin
2 =�2�b

EI
, �25�

which determines a stress independent maximum for the
semiperiod ��.

It is illustrative to make an estimation of �� to compare
with the semiperiod � of the trenching effect considered be-
fore. By substituting in Eq. �25� �=E� /d and the explicit
expression for the moment of inertia �18�, where E� is the
Young’s modulus of the crystallites and d the grain size, one
obtains that the semiperiod ��=� /k of the sinusoidal solu-
tion has an upper bound:

��  ��d d1
3E

24E�
	1/4

. �26�

Taking E�
E ,d=10−3 �cm� and estimating the grain bound-
ary thickness as d1
3�10−7 �cm�, Eq. �26� gives ���max�

10−6 �cm�=10−2 ��m� for the semiperiod of the corruga-
tional buckling effect.

For the same value of d1 the semiperiod of the trenching
instability turns out to be �
4�10−5 �cm�=0.4 ��m�—that
is, about 40 times greater than the semiperiod of ondulational
buckling.

Hence, a sheared grain boundary subjected to a concur-
rent in-plane compressing force F greater than the critical
value Fc should periodically distort the boundary with semi-
period ��. The relevant conclusion is that the boundary dis-
tortion induces a periodic normal stress field

�1�x� = ± �� sin� �

��
x	 �27�

in the surfaces of the two adjacent crystallites. The positive
sign applies to one of the crystal surfaces and the minus sign
applies to the other. In effect, for each value of x the stresses
in the two crystal surfaces have opposite signs. If one of the
crystals is compressed by the transversal displacement of the
grain boundary, the other one is tractioned.

IV. MATTER FLOW INDUCED BY THE GRAIN
BOUNDARY MECHANICAL INSTABILITIES

AND STRAIN RATE TENSOR

When identifying the central piece of matter in Figs. 1
and 2, referred to in Sec. III A, with a sector of the grain
boundary between two trenches, then d�=2� and the stress
fields �9� induced in the two adjacent crystals read

�1 =
3d1

�2 �x�, �2 = − �1, − �  x�  � . �28�

The concentration of vacancies in the two crystal surfaces, in
equilibrium with the common grain boundary, are
���+�1�x��� and ���−�1�x���. Hence the variation of the
normal stresses in the two crystal surfaces determines con-
centration gradients in them. These gradients drive opposed
currents of vacancies near the crystal surfaces, as shown
schematically in Fig. 2. The flow of crystal vacancies implies
matter flow in the opposite sense and the two crystals will
slide. Now there is the issue of evaluating the relative speed
of the two adjacent crystallites.

Taking gradient of Eq. �1� and making use of the same
equation to reduce the resulting expression, one obtains

1 − ��

��1 − ��
�� = − 	 � �B. �29�

The density � /�0 of crystal vacancies close to the grain
boundary, where �0 is the volume per atom, is related with

the vector density of flux J�v of the vacancy stream by

J�v = −
D

�0
�� , �30�

where D is the diffusion coefficient for vacancies. Substitut-
ing this and

��B = − �* � � , �31�

Eq. �29� turns into

J�v = −
D

kBT

�*

�0

��1 − ��
1 − ��

� � . �32�

This expression determines the flow of vacancies parallel,
and close, to a crystal boundary, produced by a normal stress
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gradient. However, physically, the stream of vacancies can
be thought of as an opposite flux of atoms, whose vector
flow density

J�lattice =
1

�0
v� , �33�

where 1/�0 represents the atomic density and v� the mean

atomic drift velocity, satisfies J�lattice=−J�v. Combining this
with Eqs. �32� and �33� one obtains

v� = −
D

kBT

��1 − ��
1 − ��

�* � � . �34�

Applying Eq. �34� to the two adjacent crystal surfaces and
recalling that because of Eqs. �28� the derivative of the nor-
mal stresses in the surfaces of the contiguous crystals are

d�1

dx�
= ±

3d1

�2 � , �35�

it follows that the relative speed between two adjacent crys-
tallites is

�v =
6d1

�2

D

kBT

��1 − ��
1 − ��

�*� . �36�

The next step is the transformation of Eq. �36� into a
practical equation relating the flow stresses to the strain rate.
To accomplish this task, it is necessary to better define the
frames of references. Let �xyz� be the main frame of refer-
ence, whose axes are parallel to the principal directions of
the stress tensor. The principal stresses are �x, �y, and �z.
Figure 3 shows an elementary section of the material, much
longer in the z direction, that cuts a large number n of grain
boundaries in that direction �in Fig. 3, n=4 because of the
space available�. Each boundary differentiates two crystals
that slide with relative velocity �v� . The local frame of ref-
erence �x�y�z�� is rotated so that the x�y� plane is in a grain
boundary surface. According to Eq. �36�, the components of
�v� in the rotated frame of reference are

�vi� = Q �i�z�, �vz� = 0, i� = x�,y�, �37�

where the shear stress appearing in Eq. �36� was written in
the more precise notation �=�i�z� and

Q �
6d1

�2

D

kBT

��1 − ��
1 − ��

�*. �38�

The example of Fig. 4 shows the relation between the
relative velocities between a number of contiguous crystals
along the z direction and the components �̇iz of the strain rate
in the main system of reference, where

�̇iz =
1

nd
�
p=1

n

�vi�p�, i = x,y,z , �39�

where the sum runs over a series of n grain boundaries along
the z axis, p enumerates the boundaries, and �vi�p� denotes
the i component of the relative velocities of the pair of crys-
tallites with a common boundary p. Equation �39� can be
written as

�̇iz =
1

d
�vi�z, i = x,y,z , �40�

where �vi�z is the projection of the relative slide velocity on
the i axis of the main frame of reference �xyz�, averaged over
all orientations of the boundary. Notice that the average must
keep the normal to the boundary plane �the z� direction� in
the semispace z�0. Therefore, to obtain an expression for
�̇iz we must express the relative velocities given by Eq. �37�
in the principal frame of reference �xyz�, and then average
over all directions of the local frame �x�y�z�� with z� in the
upper semispace.

Despite the fact that the components of the relative veloc-
ity �v� are defined in Eq. �37� in terms of the components of
the stress tensor, it is actually a vector and transforms as one.
As the axes of the main frame of reference are oriented in the
principal directions of the stress tensor, in the main frame

FIG. 3. A narrow section of the material, supposedly much
longer in the z direction, cuts many boundary planes. The local
frame of reference �x�y�z�� associated with one of these planes is
shown.
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this tensor is diagonal and reads ��i�ij�. The principal
stresses �i are assumed to be the input data. Hence, the first
step for obtaining the components �vi in the main frame
�xyz� is the transformation of ��i�ij�,

��i�j�� = R��,����x 0 0

0 �y 0

0 0 �z
�RT��,�� , �41�

to express it in the rotated local frame �x�y�z��. In Eq. �41�,
R�� ,�� is the rotation matrix associated with the transforma-
tion �xyz�→ �x�y�z��. The angles � and � are the correspond-
ing Euler angles. Explicitly, R�� ,�� reads

R��,�� = � cos � sin � 0

− sin � cos � cos � cos � sin �

sin � sin � − cos � sin � cos �
� , �42�

when the rotated x� axis remains in the xy plane, forming an
angle � with the x axis, and the other Euler angle � is the
angle between the rotated z� and old z axes. The angles � and
� are such that the normal to the plane of the grain boundary
is given by the unit vector

n̂� = � sin � sin �

− cos � sin �

cos �
� . �43�

Once the tensor ��i�j�� is obtained, the relative velocities �37�
in the rotated frame can be constructed explicitly from the
components �i�z� �i�=x� ,y�� of the rotated tensor. These are

�x�z� = ��x − �y�sin � cos � sin � ,

�y�z� = − ��x sin2 � + �y cos2 � − �z�sin � cos � . �44�

The average of the relative velocities is calculated per-
forming first the inverse transformation

�vx

vy

vz
� = RT��,���vx�

vy�

0
� , �45�

to express �v� in the main coordinate axes, and then integrat-
ing the Euler angles � and � over the semispace z�0, in this
way taking into account all possible orientations of the
boundary planes. The procedure is rather tedious but
straightforward. Skipping the details, the relative velocity be-
tween sliding crystallites turns out to be

�v� = Q� ��x − �y�sin � cos2 � sin � + ��xsin2 � + �ycos2 � − �z�sin � sin � cos2 �

��x − �y�sin2 � cos � sin � − ��x sin2 � + �y cos2 � − �z�cos � sin � cos2 �

− ��x sin2 � + �y cos2 � − �z�sin2 � cos �
� . �46�

The components of the average sliding velocity

�v��z =
1

�2�
0

�/2

d��
0

2�

d� �v���,�� , �47�

expressed as the z components of the strain rate tensor, take
the simple form

�̇xz = 0, �̇yz = 0, �̇zz =
Q

3�d
�− �x − �y + 2�z� . �48�

The other components of the strain rate tensor are analogous.
Writing the latter in full and replacing the explicit expression
�38� for Q one finally has

��̇ij� =
2d1

�d�2

D�T�
kBT

�����1 − �����
1 − �����

�*

��2�x − �y − �z 0 0

0 − �x + 2�y − �z 0

0 0 − �x − �y + 2�z
� .

�49�

The explicit dependence of the strain rates on the princi-
pal stresses �i is obtained combining Eqs. �6� and �49�. Con-
sidering that the atomic concentration satisfies ��1, Eq. �6�
reduces to the much simpler expression

FIG. 4. The narrow section of the material, supposedly much
longer along the z axis, that cuts n=3 crystals in that direction is
shown in two instants. Sliding of the boundary surfaces causes plas-
tic strains. The strain rates �̇zz and �̇xz are proportional to the sum of
the relative velocities projected over the z and x axes. Equations
�39� and �40� follow.
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� =
1

�
exp�−

�B − �*�

kBT
	 . �50�

Replacing as well a thermally activated expression for the
diffusion coefficient,

D�T� = D0 exp�−
�a

kBT
	 , �51�

one finally obtains

��̇ij� =
2d1

��d�2

D0

kBT
exp�−

�a + �B

kBT
	exp� �*

kBT
�	�*

��2�x − �y − �z 0 0

0 − �x + 2�y − �z 0

0 0 − �x − �y + 2�z
� .

�52�

As expected, �̇ii=0, which means that volume remains un-
changed in the deformation. In Eqs. �50� and �52� �= ��x

+�y +�z� /3 is the hydrostatic tension.
There is an important aspect to clarify at this point. Notice

that, although Eq. �19� indicates that � does depend on the
local shear stress �, this magnitude was taken as a constant in
the derivations that follow. If Eq. �19� for � were replaced in
Eq. �38� for Q, then the relative velocity given by Eq. �37�
would be quadratic in the stresses, instead of linear. The
point is crucial since Eq. �37� constitutes the starting point in
the derivation of the strain rates �52�. The distance 2� be-
tween trenches was assumed as a stress-independent constant
because the stress-induced trenching is a phenomenon previ-
ous in time to the deformation and boundary sliding. In this
theory, the latter is an effect of the former. On the other hand,
a fissure in the grain boundary should remain at the point
where it was formed and should not be able to promptly
displace to respond to variations of the shear stress which
produced it initially, particularly because the dependence of
� on the stress � is rather weak, as shown by Eq. �19�.

Therefore, by the physical arguments given above, we can
assume that grain boundaries buckle into periodic trenches
for in-plane shear stresses greater than the critical value
given by Eq. �20�. The period 2� between trenches is com-
mensurate with the grain boundary face and remains fixed,
irrespective of the applied stress, provided that it is greater
than the critical one. This assumption has proven to be sound
because Eq. �52� gives an excellent agreement with the ex-
perimental results, as is shown in a forthcoming section. In-
stead, no reasonable fit of the data can be attained with a
quadratic dependence on the tensile stress.

The analysis of this section gives all credit to the splitting
of grain boundaries into sections by the apparition of
trenches at a critical in-plane shear stress, explained in Sec.
III B. It differs from that given in Ref. 20 in that the latter
considers only the corrugation effect, reviewed in Sec. III C.
Formally, the final result for the strain rate tensor obtained in
that previous paper20 differs from Eq. �52� only in a numeric
factor of the order of unity. The coefficient 2 / ���� of Eq.
�52� should be replaced by � /3 to recover the corresponding
expression of Ref. 20. �In the latter it was assumed �=2.�

However, the two theories have deep physical differences.
The main difference is the meaning of the semiperiod � ap-
pearing in the two results. As was discussed in Sec. III, the
semiperiod � of the trench formation effect is expected to be
about 40 times larger than ��, the semiperiod of the corruga-
tion effect of Sec. III C and Ref. 20.

V. THRESHOLD STRESS AND DEPENDENCE
ON GRAIN SIZE

The trench formation effect involves a threshold for the
in-plane shear stress

� = ��x�z�
2 + �y�z�

2 �53�

exerted on a grain boundary face. In effect, Eq. �19� shows
that the distance 2� between two trenches decreases for in-
creasing �. If 2��d, the grain size being d, no fissure can
occur. When � increases and reaches a critical value �c, given
by Eq. �20� for which 2�=d, trenches start to develop at the
extremes of the grain boundary into consideration. The
mechanism of boundary sliding then becomes operative.

For uniaxial tensile stress �z along the z axis, �x=�y
=0,�=�z /3 and Eq. �52� can be written as

�̇ = C0
�*��z − �0�

kBT
exp�−

�0 − 1
3�*�z

kBT
	 , �54�

where �̇= �̇zz,

�0 � �a + �B, �55�

and the coefficient C0 is given by

C0 =
4d1D0

��d�2 . �56�

The energy �0 is the activation energy for the exchange of
vacancies between the crystal and grain boundary region. In
effect, �a is the energy barrier for such point defect between
two bulk crystal sites and �B is the energy difference between
vacancies at equilibrium in the perfect crystal and grain
boundary. Hence, the sum �0 is the height of the barrier a
vacancy has to overcome to evaporate from the boundary to
the crystal.

Equation �54� is not exactly a particularization of the re-
sult �52� because it incorporates a threshold stress �0 sub-
stracted to �z in the preexponential factor.22 The derivation
of Eq. �52� assumes from the beginning that the grain bound-
aries are buckled, which actually occurs only when the in-
plane shear stresses �53� exerted on the boundaries exceed
the critical value. Therefore, Eq. �52� overestimates the de-
formation rate �̇ for small stresses. A simple way to correct
this is by introducing the threshold term �0. By virtue of it,
Eq. �54� predicts that the strain rate vanishes for a finite
applied stress �z=�0. At any rate Eq. �52� and its modified
version �54� may overestimate a bit the strain rate. In effect,
the shear stress vanishes in surfaces normal to the principal
axes. Therefore, no matter how strong the externally applied
force may be, there are always some grain boundaries for
which the shear stress is below the critical value �c, simply
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because their normals are close to a principal axis. However,
the average �47� considers all orientations in the same
footing.

The excellent agreement of Eqs. �54� and �56� with a
great amount of highly reliable experimental data opens a
rather puzzling issue. In effect, Eq. �54� reproduces within
the experimental uncertainties the results of tensile tests con-
ducted for a variety of aluminum, titanium, and copper su-
perplastic alloys, over the whole range of strain rates and
temperatures tested in the experiments. An example of this
remarkable agreement between Eq. �54� and the published
experimental data on superplastic deformation is provided in
Ref. 20 and in a forthcoming section of this paper. In addi-
tion, adjusting the coefficient C0 to make Eq. �54� fit the
experimental curves, one obtains excellent consistency with
Eq. �56� for a reasonable choice of d1, D0 from tables, ex-
perimental d, and �=130d1, as was estimated from Eq. �19�.

Although the comparison between theory and experiment
is the matter of a subsequent section, advancing a comment
here is in order to take note of a paradox contained in the
results written above. While Eqs. �54� and �56� give a notice-
ably precise numerical concordance with the experimental
facts for fixed d, Eq. �56� predicts a d−1 dependence on the
grain size. This contradicts most authors, who claim that the
superplastic strain rate varies as d−p, with 2 p3. More-
over, it will be shown later that Eq. �54� fits the experimental
data on the superplastic deformation of samples with differ-
ent grain sizes for C0 proportional to d−3.

However, the failure of Eq. �56� in giving the right depen-
dence of C0 on the grain size d is not real. It can be explained
by the already mentioned rigidity of � to respond to the shear
stress applied to the grain boundary and the condition that 2�
must be commensurate with d in each boundary face. When
the critical shear stress �20� is just surpassed, a fissure arises
close to each of the two triple junctions in the verges of the
boundary plane. If the in-plane shear stress � is increased
continuously, the situation does not vary promptly. The
trenches just formed do not move and no new fissure
emerges because 2� must be commensurate with d. The
boundary face splits into two sections by a central trench
only when the in-plane stress reaches the new critical value

8E

3
�d1

d
	2

= 4�c, �57�

which follows from replacing 2�=d /2 in

� =
E

6
�d1

�
	2

. �58�

Hence the situation remains stationary for �c
�
4�c, and
just when the in-plane stress � exceeds 4�c, the boundary
surface splits into two sections. In turn, each of these sec-
tions splits into two parts after the shear stress becomes
higher than 16�c and so on. In general,

� =
d

2n for 4n−1�c 
 � 
 4n�c, n = 1,2,… , �59�

2�n−1� being the number of sectors separated by parallel
trenches in which the grain boundary face splits.

To realize the importance of this effect, an example is in
order. For aluminum �E=7�1010 Pa� of d=10 �m and esti-
mating d1=3�10−7 cm �ten atomic distances�, Eq. �20�
gives �c=4.2�103 Pa. For n=5 relation �57� indicates that

2� =
d

16
for 1 MPa 
 � 
 4 MPa,

2� =
d

32
for 4 MPa 
 � 
 16 MPa. �60�

The example shows that the stress applied to a sample may
vary over a wide range without affecting the magnitude of �
in the different grain boundary faces. The same applies to the
grain size d, which can vary in a relatively wide range with-
out modifying n and �.

Therefore, one can substitute �=d /2n and write

C0 =
16��2d1D0

��d3 , �61�

where ��= 2n� is twice the number 2n−1 of trenches in a
buckled grain boundary face averaged over a large number
of these faces. Equation �61� expresses the physics of the
system better than Eq. �56� because it incorporates the fact
that 2� is commensurate with d through a very stable integral
number. The relation �59� turns into

1

4
��2�c  �  ��2�c, �62�

which determines the interval in which the shear stresses �
can vary without changing the local value of �.

Irrespective of the strength of the principal stresses �i, the
shear stress � exerted on the boundary faces of the different
grains varies from zero, for boundary planes normal to the
principal directions, up to the maximum. Hence n always
runs from zero to the maximum value determined by relation
�59�, which causes the average �� to be a smooth, slowly
varying function of �i and d. Any modification of the num-
ber of grain boundary trenches demands an increase of the
shear stress in about 4 times. Further refinement of Eqs. �54�
and �61� to fully describe the relation between strain rate,
stress, temperature, grain size, and grain boundary thickness
would demand the derivation of the precise dependence of
�� and �0 on these variables. However, the comparison with
a large amount of experimental results indicates that this task
is of minor utility because eventual variations of �� and �0

are not observed under the physical conditions used in the
experiments.

The previous discussion assumes an ideal situation, in
which the grain boundary surfaces are planar with no defects.
However, any step or hard second-phase particle intersecting
a boundary may stabilize more the spatial distribution of
trenches or change the period of the phenomenon, since it
must be commensurate with a different distance, smaller than
the grain size. As the occurrence of defects in the grain
boundaries is statistically proportional to the grain size
through a fixed constant, the linear relation between 2� and d
is maintained.
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The constitutive equation �54� with the coefficient C0
given by Eq. �61� and �*=0 has some formal resemblance
with the boundary term of the equation given by Ashby and
Verrall.16 The theories behind them are quite different, in-
deed. Here, D0 is not related to boundary diffusion, but to
vacancy transport through crystalline matter. The exponential
dependence of the strain rate on the flow stress and the con-
stant �*, absent in the work of Ashby and Verrall, are capital
in the present approach, together with the factor ��2, which
accounts for the buckling degree of the grain boundaries.

The size of the constant �* is what makes the difference
between superplastic and nonsuperplastic materials. In effect,
the strain rate increases exponentially with �*� and the
mechanism for grain boundary sliding explained before will
dominate over other possible deformation processes if �* is
large enough.

VI. GRAIN SHAPE ACCOMMODATION AND LOSS
OF SUPERPLASTIC PROPERTIES

The theoretical approach to superplastic deformation put
forward above gives all the credit to grain boundary sliding.
However, two grains cannot slide without modifying con-
tinuously their irregular shapes to maintain contact over all
their surfaces, at the atomic level, with other surrounding
units. Therefore, it cannot be disregarded that grain boundary
sliding is necessarily concurrent with the continuous defor-
mation of all the crystallites involved in the process. One
may adopt the point of view that the plastic flow of the
material is caused primarily by the sliding of its crystallites
and that the simultaneous grain deformation is an effect of
that sliding. In this view, the issue is how the continuous
shape accommodation of the grains affects the relative speed
�v between adjacent grains. Certainly, the accommodation
of sliding grains involves shear forces that reduce the driving
force causing the relative motion between these grains.

Consider a plane grain boundary surface, parallel to the
x�y� plane, that slides along the x� direction toward a triple
junction. The surface of the crystal beyond the junction
makes an angle � with the x�y� plane. To maintain the slid-
ing speed �v the crystal matter should undergo a continuous
shear deformation of magnitude �z�x�=tan � at the junction.
This deformation is produced by a shear force perpendicular
to the x�y� plane, induced by the grain shift. Hence a local
shear stress field �z�x�

ind , associated with the deformation shear
force, arises as a consequence of the sliding. However, as-
suming quasiequilibrium where

�z�x�
ind = �x�z�

ind , �63�

which means that a shear stress �x�z�
ind , opposed to the shear

stress �x�z� originated by the external forces applied to the
material, is induced in the x�y� plane. Therefore, the sliding
relative speed between the grains is now

�vx� = Q��x�z� − �x�z�
ind � �64�

instead of Eq. �37�. Of course, sliding is possible only if
�x�z���x�z�

ind .

The relation between �x�z�
ind and �x�z� is not simple because

the mechanism of crystal deformation is not. However, one
does not need to go into the details of the deformation pro-
cesses to obtain what is important for our problem. Making
the very natural assumption that the volume d2�vx� which is
being deformed in �z�x�=tan � per unit time is proportional
to the induced shear stress �z�x�

ind one can write

�z�x�
ind = ��vx�. �65�

Replacing this in Eq. �64� and solving for �vx� obtains

�vx� =
Q

1 + �Q
�x�z�. �66�

In this way the general form of Eq. �37� is recovered.
However, while the coefficient � is expected to be almost

independent of temperature and stress, Q varies exponen-
tially with these two variables, as given by Eqs. �38� and
�50�. Therefore, one can expect that �Q
1 only under very
special conditions of temperature and stress, and that the
most common situations are

�vi� = �Q �i�z�, Q � 1/� ,

�1/���i�z�, Q � 1/� ,
�i� = x�,y�. �67�

The simple equation �67� expresses a very important re-
sult. In the first case, grain boundary sliding dominates the
plastic flow of the polycrystal and grain shape accommoda-
tion has a minor effect. As Q increases rapidly with tempera-
ture and stress, the first case occurs for moderate enough
values of these variables. For higher temperatures or stresses
the system may enter the second case, in which the reluc-
tance of the grains to be deformed imposes a limit to the
plastic strain rate. In this second situation of a high plastic
strain rate or high temperature, the equations of the previous
section cease to be valid. It follows a very neat explanation
to why the high ductility associated with superplasticity is
reduced for temperatures higher than the ideal. Also a too
fine-grained size d may increase Q to force the system into
the second regime, which is presumably nonsuperplastic.
Therefore, in the present theory the occurrence of super-
plasticity demands that Q be high enough to ensure that the
mechanism explained above contributes the most to the
strain rate, but not so high that �Q�1, in which case the
system would enter the second regime of deformation.

One can conclude as well that, when not dominant, grain
shape accommodation does not affect significantly the con-
stitutive equation relating stress, strain rate, temperature,
grain size, and grain boundary thickness derived previously.

VII. COMPARISON WITH EXPERIMENT

For �0=0, Eq. �54� is formally identical to the result
obtained in Ref. 20. Apart from some trivial constants
in the definition of the coefficient C0 and the implicit depen-
dence of � on d, the only difference is the factor 1 /3 of �* in
the argument of the exponential function. It is due only to the
definition of �, which in that previous paper was simply
the sum of the principal stresses. Figure 1of Ref. 20 shows
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how well Eq. �54� with �0=0 can reproduce the experimen-
tal data of Hamilton, Bampton, and Paton41 for the aluminum
alloy Al-7475 at four temperatures in the superplastic
regime.

Figure 5 exhibits the uniaxial tensile stresses �z=3� ap-
plied to samples of Al-8090 SPF, another superplastic
aluminum-based alloy, very popular in airplane construction,
to achieve constant stress rates �̇ at the five temperatures
displayed in the inset. The solid curves represent the results
given by Eq. �54� and the experimental points are due to
Pilling and Ridley.42 The magnitudes of the constants �*, �0,
and C0 are also shown in the figure. While the former two
constants are the same for all curves, the value shown for C0
is only an average because a small dispersion was found for
this magnitude in order to optimize the fit of the four curves
independently. The values for the temperature dependent

threshold stress �0, listed with the temperatures, were chosen
to improve the fits at �̇5�10−5 s−1.

Figure 6 shows experimental results of Hamilton et al.,
who tested for superplastic deformation four classes of
samples of Al-7475 that differ only in grain size.41 In addi-
tion to the scans for several temperatures performed with one
of these materials, displayed in Fig. 1 of Ref. 20, the proce-
dure was conducted for the three other classes of samples at
the unique temperature T=789 K. The grain shape was in all
cases rather elongated, having short transverse dimensions
dST of 6.4, 7.8, 8.5, and 10.7 �m. The corresponding longi-
tudinal dimensions dL were close to twice dST in the four
classes of samples. Two tests with samples whose grains
were extremely asymmetrical, with dL as large as 69.4 and
156.3 �m, were also carried out, but gave poor ductility, no
superplastic behavior, and therefore are disregarded here.
The alloy Al-7475 is specially suited for testing theory be-
cause it has a particularly stable grain size under changing
conditions of temperature, deformation, and deformation
rate. The experiment of Hamilton, Bampton, and Paton is
also particularly accurate and complete, and scans a wide
range of temperatures.

Figure 6 exhibits the experimental data referred to in the
previous paragraph. The four plots are identified by the mean
grain size d. The solid lines represent Eq. �54� with the same
values of the constants �* and �0 obtained from the fit of the
temperature-dependent data accomplished in Ref. 20. Again,
�0=0. Hence the only adjustable parameter for the fit of the
four sets of data in Fig. 6 is C0.

Figure 7 exhibits a logarithmic plot of the values of C0
obtained from the best fit to the experimental points of Fig. 6
as a function of the mean grain size d. The data arrange very
close to the straight line

log10 C0 = − 3 log10 d + 11.91, �68�

where the units are those of the graph. The highly accurate
d−3 dependence of C0 is clearly demonstrated by Fig. 7.

FIG. 5. Plot of the experimental results of Ref. 42 for the alloy
Al-8090 SPF at the five temperatures indicated in the graph. The
solid lines represent Eq. �54� with the constants �*, �0, and C0

appearing in the inset. Small variations of C0 around the shown
value were accomplished in order to optimize the fit for each tem-
perature. The other two parameters are the same in the five curves.
The values of �0 were chosen to optimize the fit at �̇5�10−5 s−1.

FIG. 6. The data of Hamil-
ton, Bampton, and Paton �Ref.
41� for Al-7475 at T=789 K and
samples having four different
grain sizes d. The solid lines rep-
resent Eq. �54� with �* and �0

obtained in Ref. 20. C0 was cho-
sen to attain the best fit between
the theoretical curve and the data
for each grain size �notice that
the definition of �* in Ref. 20
differs from the one given here
by a factor 1 /3�.
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Figure 8 shows another example of application, this time
in the commercial superplastic alloy Ti-6Al-4V, which is
probably the titanium superplastic alloy most used in air-
plane design. The circles represent the data taken by Cope43

and Cope et al.44,45 at the six temperatures appearing in the
figure. Another inset exhibits the magnitude of the constants
�*, �0, and C0 that, inserted into Eq. �54� together with the
corresponding temperature, give the solid lines. The six
curves were obtained with exactly the same set of parameters
and no dispersion was found for them. The agreement be-
tween theory and experiment is striking, and perhaps better
for titanium than aluminum, because C0 does not exhibit any
random variations with T, as was the case for the latter ma-
terial. Small values of �0 were used to improve the fits in the
region below �̇=5�10−5 s−1.

Replacing in Eq. �59� C0=3.52�104 s−1, which is the
value obtained from the fit to the experimental results for
titanium, the mean grain size d=2.28 �m �the grain size var-
ied with temperature between 1.5 and 4.0 �m�, d1=3
�10−7 cm, and D0 from tables, one can estimate ��2 and,
inserting the result in Eq. �62�, check whether a reasonable
range for the stresses is obtained. Unfortunately, only a very
rough estimation can be done at present because the value of
the preexponential factor D0 of the diffusion coefficient �48�,
appearing in expression �58�, is rather uncertain. Measure-
ments of Ti autodiffusion give values for D0 as different as
3.58�10−4 cm2 s−1 �Ref. 46� and 1.6�10−3 cm2 s−1 �Ref.
47�. The corresponding activation energies �a in these two
experiments do not differ remarkably �31.2 and 35
�K cal/model�, respectively�. The precise measurement of
D0 is quite difficult because, as the exponential factor in
expression �51� varies rapidly with �a, a relatively small error
in the activation energy may produce a large variation of D0
in order to fit the experimental data. Additionally, in our case
we are considering the diffusion of vacancies in paths close
to the grain boundary, which is not the normal condition.
With the previous remarks one obtains

��2 = �1413; D0 = 3.58 � 10−4 cm2 s−1,

316, D0 = 1.6 � 10−3 cm2 s−1,
� �69�

which correspond to an average of 18 and 9 trenches per

sliding grain facet, respectively. Inserting E=1.16�1011 Pa
�Ref. 48� relation �62� becomes

31 MPa  �  125 MPa, D0 = 3.58 � 10−4 cm2 s−1,

7 MPa  �  28 MPa, D0 = 1.6 � 10−3 cm2 s−1.

�70�

In both situations the range of variation for the shear stress
falls in the range of the stress applied to the sample, which
proves the consistency of the theory.

Equation �54� reproduces with great accuracy the defor-
mation properties of superplastic alloys over the whole range
of strain rate, stress, and temperature in which superplasticity
is observed. From a practical point of view, it permits the
classification of superplastic materials by three constants and
is certainly a much better constitutive equation than the
power law usually utilized.

In the scheme put forward here, the physical origin of the
phenomenon is the mechanical instability of grain bound-
aries subjected to overcritical stresses, which induces strong
stress fields that vary rapidly in the subgrain scale. These
stress gradients, in turn, affect the thermodynamical equilib-
rium between the grain boundaries and the adjacent grains.
Two kinds of grain boundary mechanical instabilities were
treated in Sec. III, but in particular Sec. III B. The effect
explained in Sec. III C was discussed before, in Ref. 20.
Formally, the only difference occurs in the coefficient C0 and
in its dependence on the grain size d. In general, other
sources of strongly varying stress fields in the grain scale
may be possible, but their formal consequences should affect
only the coefficient C0 of Eq. �54�.

ACKNOWLEDGMENT

This work was partially supported by Fondecyt Grant
1020091.

FIG. 7. The values of C0 that produce the four curves displayed
in Fig. 6 are shown in a graph of log10 C0 vs log10 d. The four points
lie very close to a straight line with slope −3, which shows the d−3

dependence of C0 on the grain size. FIG. 8. Plot of the experimental results of Refs. 43–45 for the
titanium alloy Ti-6Al-4V at the six temperatures indicated in the
inset. The solid lines represent Eq. �54� with the constants �*, �0,
and C0 appearing in the left side of the graph. The six curves use the
same constants, and no adjustment of C0 was done to improve the
fit at different temperatures. A small threshold stress �0 was intro-
duced, which improves the concordance with the experiment below
�̇=5�10−5 s−1.
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