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Energy landscapes ofs21̄1̄dk111l deformation twinning in bcc Mo ands111dk112̄l deformation twinning in
fcc Al and Cu are determined using density functional theory for sliding of layers numbering up to 7. In bcc
Mo, the minimum thickness of a metastable twin is two layers, while twin embryos of three and four layers are
unstable. Starting from five layers, the Mo twin can grow in a layer-by-layer fashion. The twin boundary
formation and migration energies are found to be 607 and 40 mJ/m, respectively, implying that partial dislo-
cations on twin boundaries will have wide cores and high mobilities. The stress to homogeneously nucleate a
partial loop on the boundary of a thick twin is determined to be only 1.4 GPa, indicating that once a defor-
mation twin in Mo reaches a critical thickness, which we estimate to be six layers, it can grow rather easily.
Based on simple defect mechanics considerations, we estimate the condition for runaway defect growth re-
quires twin embryo thickness to be tens of layers. Comparing the twinning energy landscape for Mo with those
of Al and Cu, we find the former to have a longer ranged interlayer mechanical coupling, which is due to
angular bonding and weaker electron screening in the intervening layers. Between Al and Cu, interactions in
the former are relatively longer ranged.
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I. INTRODUCTION

The nature of all plastic dissipation processes in solids is
to reduce the free energy by converting elastic strain to in-
elastic stransformationald strain. Elastic strains tend to be
small in amplitude and spatially diffuse, while inelastic
strains tend to be large in amplitude and spatially localized.
For example, dislocation can be regarded as the bounding
rim of a shear shock, one-atomic layer in thickness, inside
which the inelastic strain isubu /d0, whereb is the Burgers
vector andd0 is the equilibrium interplanar spacing. Outside
this shock the inelastic strain is zero,1 but there exists elastic
strain because of diffuse accommodation of the displacement
incompatibility at dislocation. Small deviations from the ref-
erencesequilibriumd state on the energy landscape are ex-
pressed through elastic strains, whereas large deviations
manifest through inelastic strains that probe the nonconvex-
ity of the energy landscape. The well-known generalized
stacking faultsGSFd energy2–8 gsxd represents the energy of
inelastically straining the material in the one-atomic-layer
thin shear shock as a function of the inelastic shear displace-
ment x. Because it is a periodic function,gsbd=gs0d;0,
ultimately it is energetically favorable to condense any dif-
fuse elastic strain in the bulk into localized one-atomic-layer
thin platelet of inelastic strainubu /d0 son the slip planed, be-
cause the latter has vanishing energy, whereas the former
selastic strain energyd is always finite and positive.

In the above comparison, we have ignored the energy due
to the dislocation, which must accompany any finite-sized
shear shock. A dislocation loop of radiusR requires a forma-
tion energy of~2pRfEcore+K lnsR/ r0dg, whereEcore is the

dislocation core energy,9 and K is a combination of elastic
constants. So on a per-area basis, the energy cost is only
~2pRfEcore+K lnsR/ r0dg /pR2 in order to establish unit-area
shear shock with inelastic displacementb. As R→`, the
above unit-area cost tends to 0, so it does not affect our
argumentsthat thermodynamically the elastic strain energy
cannot compete against arrangements of localized inelastic
strains that satisfy the given macroscopic boundary con-
straint, thus providing the driving force for plastic deforma-
tiond in the ultimate sense. But clearly, at finiteR, the above
energy accounting is of controlling importance in the conver-
sion of elastic strain to localized inelastic strain, which leads
to a critical dislocation nucleation size scaleR* and activa-
tion energyDEsR*d.10

Deformation twinning11 is another important mode of
strain energy relaxation in metals,12 and competes with dis-
location slip to be the dominant carrier of plasticity. The
correlation between energy and defect configuration, as we
will find in more detail later, is different since deformation
twins can grow in the thickness direction. Indeed, it is often
kinetically easier to thicken a twin fromn to n+1 layers,
than to nucleate it from 0 to 2 layers, for example. In this
work we will see how and why this is the case for bcc Mo
based on first-principles calculations. There is an extra en-
ergy per unit area of 2gTBF for deformation twinning which
is absent in dislocation full slip, wheregTBF is the twin
boundary formation energy. So the energy trade-off is only
guaranteed to favor inelastic strain whenn, the thickness of
the deformation twin, is tending to infinity as well. This is in
contrast to full slip where justR→` is sufficient guarantee.
Thus there exists a minimum stresstn~2gTBF/nubpu for a
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planar twin of fixed thicknessn, below which it cannot sur-
vive at any sizeR.

The competition between deformation twinning and full
slip depends on the orientation and magnitude of the applied
stress,13 along with temperature, existing defects such as
cracks14 and intrinsic material properties15 such as crystal
structure and nature of bonding.7 It is generally believed that
at low to intermediate stress levels, the activation energy for
nucleating deformation twin is greater than that of slip. How-
ever, once nucleated, a deformation twin is able to produce
large amount of inelastic strain within a very short time by
thickening. Therefore, deformation twinning tends to occur
more frequently under high strain-rate loading such as laser
shock,16 at lower temperatures,17 and near high stress
concentrators.12,18 It has been proposed that the kinetics of
twin growth, at the mesoscale, involves the pole
mechanism19 and variants,20,21 and the double-cross-slip
mechanism.22,23 On the other hand, information concerning
the energetics of the process at the microscopic level has
been lacking.

Recently, Tadmor and collaborators establish an intrinsic
material property called the “twinnability,”14 which is the
ratio of gUS, the unstable stacking energy, togUT, the un-
stable twinning energy, both in J/m2. Basically, gUS is the
barrier preventing a one-layer partial fault from becoming a
one-layer full faultswith zero energyd, andgUT is the barrier
against a one-layer partial fault becoming a two-layer partial
fault. The assertion thatgUS/gUT fully characterizes twin-
nability implicitly assumes that a two-layer partial fault can
be considered a mature twin embryo, or the subsequent evo-
lutions sthree-layer, four-layer,…, partial faultsd are similar
to the one-layer to two-layer transition, with no additional
material properties needed to be introduced. This is true for
simple fcc metals as we confirm in this work using density
functional theorysDFTd calculations. But using DFT we also
find that it is not the case for bcc metals.8 Along the twinning
pathway of bcc Mo, the fault energy does not manifest
steady-state oscillation pattern untiln=6 layers.

The concept of GSF energy established by Frenkel2 and
Vitek3,4 plays a fundamental role in the understanding of
crystalline defects. Its most general form is an energy func-
tion EshDxijd, where i P−`¯` labels sequential atomic
stacking planes andDxi is the relative shear displacement
between planei andi +1. By definition,EshDxijd=0 when all
Dxi’s are zero. Clearly,EshDxijd=EshDxi +nibjd, that is, this
strain energy is periodic with periodb, the full Burgers vec-

tor, which is b=f111ga0/2 and f011̄ga0/2 in bcc and fcc
crystals, respectively.

We begin with the formulation of our calculation of
EshDxijd as a function of shear displacements in Sec. II and
give results on equilibrium properties as well as on responses
at large uniform strains. In Sec. III we describe the calcula-
tion of energy landscape and pathway variations with shear
displacement, results which would allow us to extract the
twin boundary formation and migration energies. We will
also show how one can examine the stability of various de-
formation twin embryos. Twin growth in a layer-by-layer
fashion is considered in Sec. IV using the Peierls-Nabarro
model for a partial dislocation, and in the following section
we consider simple estimates of the local stress at the edge of
twin band. In Sec. VI we return to a discussion of the valence
charge density distributions that can be extracted from the
present DFT calculations, and discuss aspects of interaction
range and bond directionality in Sec. VII. We conclude with
a concise summary of our results in Sec. VIII.

II. FORMULATION

Recently, two aspects ofEshDxijd in fcc metals have been
probed using electronic-structure calculations.6,15 One is
to compare side by side a family of functionsgisxd
;EshDxijd /NS0, with Dx1=Dx2=¯ =DxN=x, all other
Dxi’s zero, andS0 is the cross-sectional area, and study the
asymptotic approach ofgNsxd to g`sxd, the affine strain en-
ergy landscape. This turns out to be a good measure of di-
rectional bonding.6 The other aspect is examineEshDxijd on
the so-called twinning pathway,gtsld;EshDxijd /S0, with
Dxi =fsl− idHsl− id−sl− i −1dHsl− i −1dgbp, bp is the par-
tial Burgers vector of the twinning systemsbp=f111ga0/6 in

bcc andf112̄ga0/6 in fccd, and Hsxd is the Heaviside step
function ssee Fig. 1d. In fcc metals, the competition between
dislocation nucleation and twin nucleation has been shown to
be governed by the values of saddle energies ong1slbpd and
gtsld, respectively.14 gtsld of fcc metals is relatively simple,
possessing a metastable minimum at everyl=n for n
=1,2,3, . . ., andconverging to a steady oscillating pattern
for lùn=2. In this paper, we show that bcc Mo possesses a
much more complicated twinning energy pathway, indicating
strong directional bonding and long-range mechanical cou-
pling, with N=1, 3, and 4 metastable minima missing, and
does not converge to a steady oscillating pattern untillùn
=6. This further enriches the scenario of dislocation-
twinning competition in bcc metals, which occurs more often
than in fcc metals.

We use the Viennaab initio Simulation Package24 sVASPd

FIG. 1. sColor onlined Sche-
matic illustration of the twinning
pathway examined.bp is partial
Burgers vector. See the text for the
detail of definitions of thel and i
and sliding plane and direction.
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with Perdew-Wang generalized gradient approximation25

sGGAd exchange-correlation density functional and ultrasoft
sUSd pseudopotential.26 The supercell ise13e23me3, with

e1;f111ga0/2, e2;f01̄1ga0, and e3;f21̄1̄ga0, and six at-

oms per e13e23e3 for Mo, with e1;f112̄ga0/2, e2

;f1̄10ga0/2, and e3;f111ga0, and six atoms pere13e2

3e3 for Al and Cu. Brillouin zonesBZd k-point sampling is
performed using the Monkhorst-Pack algorithm. BZ integra-
tion follows the Methfessel-Paxton scheme27 with the smear-
ing width chosen so the “−TS” term is less than
0.5 meV/atom. We use 233, 162, and 292 eV planewave en-
ergy cutoffs throughout the calculations for Mo, Al, and Cu,
respectively.

As benchmark, the perfect crystal properties are computed
first. In Table I, the equilibrium lattice constantsa0d and bulk
modulus sBd are compared with experimental results. We

then perform direct affine shear ins11̄0dk111l, s21̄1̄dk111l,
ands32̄1̄dk111l systems for Mo and ins111dk112̄l for Al and
Cu, with the five subsidiary stress components all relaxed
and unrelaxed, respectively, to determine the relaxedsGrd
and unrelaxedsGud shear moduli.7 Experimental values ofGr

andGu are tabulated using analytical formulassnote the de-
generacy for small sheard and experimentally measuredC11,
C12, andC44. Good agreements are found.

We then perform large affine shear, both relaxed and un-

relaxed, ins11̄0dk111l, s21̄1̄dk111l, and s32̄1̄dk111l for Mo

and ins111dk112̄l for Al and Cu. In Table II, the ideal shear
strains and stresses obtained, defined by the point of maxi-
mum in the stress-strain response,6 are shown. The results for
Mo are in good agreement with the first-principles results of
Krenn et al.33 The three slip systems of Mo are nearly de-
generate in their ideal strains and stresses.

III. DENSITY FUNCTIONAL THEORY RESULTS

Having probed theg`sxd of s21̄1̄dk111l and others, we

now study in detail thegtsld pathway ons21̄1̄dk111l. First,
we determine the asymptotic behavior ofgtsld whenl→`,
i.e., when the twin is very thick and the two twin boundaries
are well separated. We expect a steady-state oscillating pat-
tern

gtsld → 2gTBF + gTB`sld, asl → `, s1d

in which gTBF is interpreted as the twin boundary formation
energysunrelaxedd, andgTB`sld the steady-state twin bound-
ary migration energy profile, which is a periodic function in
l with period 1 and withgTB`sl=0d=0. We then define
gTBM ;maxlgTB`sld as the twin boundary migration energy.

TABLE I. Equilibrium lattice constantssa0d, relaxedsGrd, and unrelaxedsGud shear moduli, and bulk
modulussBd of bcc Mo and fcc Al and Cu.

a0 fÅg Gr fGPag Gu fGPag B fGPag

Mo s11̄0dk111l sPresent workd 3.15 126.5 134.5 244.0

fExpt. sRef. 28d, Oth. Calc.sRef. 29dg s3.14, 3.10d s138.7, 129.4d s142.8, 139.0d s264, 287d

Mo s21̄1̄dk111l sPresent workd 126.8 134.1

fExpt. sRef. 28d, Oth. Calc.sRef. 29dg s138.7, 129.4d s142.8, 139.0d

Mo s21̄1̄dk111l sPresent workd 126.8 134.1

fExpt. sRef. 28d, Oth. Calc.sRef. 29dg s138.7, 129.4d s142.8, 139.0d

Al s111dk112̄l sPresent workd 4.04 25.4 25.4 72.4

fExpt. sRef. 28d, Oth. Calc.sRefs. 30 and 31dg s4.03, 4.04d s27.4, 22.0ad s27.6, 27.0ad s79.3, 74.4d

Cu s111dk112̄l sPresent workd 3.64 31.0 40.9 140.0

fExpt. sRef. 28d, Oth. Calc.sRef. 32dg s3.62, 3.64d s33.3, 39.7d s44.4, 52.0d s142, 149d
aLDA.

TABLE II. Relaxedsg m
r d and unrelaxedsg m

u d ideal shear strains and relaxedss m
r d and unrelaxedss m

r d
ideal shear stresses of bcc Mo and fcc Al and Cu.

Material

Relaxed Unrelaxed

g m
r s m

r fGPag s m
r /Gr g m

u s m
u fGPag s m

u /Gu

Mo s11̄0dk111l 0.190 15.18 0.120 0.192 16.52 0.123

Mo s21̄1̄dk111l 0.175 14.84 0.117 0.177 15.99 0.119

Mo s32̄1̄dk111l 0.176 14.87 0.117 0.175 15.93 0.119

Al s111dk112̄l 0.200 2.84 0.110 0.210 3.73 0.147

Cu s111dk112̄l 0.137 2.16 0.070 0.157 3.45 0.084
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It is the energy barrier per area for a very thick twin to
extend one of its boundaries by one layerl→l+1. In real-
ity, this is accomplished by an additional twin partial dislo-
cation with Burgers vectorbp sweeping a face of the twin.
According to the Peierls-Nabarro model,34–36 the gTB`sld
profile controls the width and mobility of the twin partial
dislocation. Also, to a large degree,gTBF controls the total
energy of a “mature” twin and thus the coarse activation
energy landscape of twin nucleation. Therefore, it is impor-
tant to obtain the asymptotic characteristics ofgtsld.

A. bcc molybdenum

To study the behavior of a single twin boundary in bcc
Mo, we introduce a slab model with 24 layers of Mos6e3
supercell, 2e3 of which is vacuumd, and with 3332131
k-point sampling. No vertical or in-plane relaxation of the
atoms in addition to the designated displacements is allowed.
The energy of the slab without any twin is evaluated first as
a reference. Then, we introduce a configuration whereby lay-
ers 1–12 are twinned with respect to layers 13–24. The en-
ergy change with respect to the reference is 607 mJ/m2,
which we designate asgTBF. It is assumed that a 12-layer or
2e3 separation from the surface will reduce surface-twin
boundary coupling sufficiently. This point will be confirmed
independently later in this paper.

We then slide layers 13–24 as a rigid block alongbp, such
that the final configuration has layers 1–13 twinned. The en-
ergy profile along this path is plotted in Fig. 2, with the
energy at the origin set to be zero. No vertical or in-plane
relaxation has been allowed.gTBM can be estimated from this
plot to be 40 mJ/m2. If vertical relaxation is allowed,gTBM
can be expected to be further reduced, althogh not signifi-
cantly.

An interesting feature of Fig. 2 is that the slope at 0 is not
exactly zero. This suggests there is minute in-plane force on
layer 13 adjacent to the sharp twin boundary, indicating a
slight tendency of the boundary to broaden. This was first

suggested by Mrovecet al.37 To explore the extent of this
effect, we then allow all 24 layers to freely relax in the
in-plane directions, until the energy change between two
consecutive ionic steps is less than 1 meV. The unrelaxed
and relaxed displacements of layers 8–17 are shown in Fig.
3, respectively. We see there is a small relaxation effect, but
overall the twin boundary remains very sharp and is a locally
stable energy minimum. This partially relaxed twin boundary
has an energy of 580 mJ/m2.

With the large-l asymptotic behavior ofgtsld estimated,
we computegtsld at smallerl using a different setup. Pre-
viously, the 24 layers form a twinned-untwinned bicrystal in
the supercell. Now, the 24 layers form an untwinned-
twinned-untwinned sandwich, with the twinned regions at
the center and as far from the surface as possible. Unrelaxed,
rigid-block sliding is carried out for each episode ofnøl
øn+1, that enables the deformation twin to grow by one
layer. And then sliding is initiated again in the next layer.
The same 3332131 k-point sampling is used, which is
found to give converged results. The energy profile is plotted
in Fig. 4, with n up to 7, representing a seven-layer twin
sandwiched between two untwinned crystals.

We see from Fig. 4 that unlike fcc metalsssee Figs. 7 and
8d, l=1 in bcc Mo is not a metastable state but is unstable.
This means there is no metastable one-layer stacking fault in

FIG. 2. Energy landscape of twin migration in Mo. Initially a
twin boundary is introduced at the center of the 24-layer slab
model, and then the boundary position is shifted 1 layer by rigid
sliding of the layers on top. The twin boundary migration energy is
estimated at 40 mJ/m2. The twin boundary formation energy, given
by the energy difference between the perfect crystal and twinned
bicrystal, is estimated to be 607 mJ/m2.

FIG. 3. Difference of layer displacements between adjacent lay-
ersDxi −Dxi−1 near the ideal and relaxed twin boundary.

FIG. 4. sColor onlined The s21̄1̄dk111l twinning energy pathway
of bcc Mo for sliding of layers from 1 to 7 layers in the 24-layer
sandwich slab model.
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bcc Mo, so a full dislocation cannot split into partial dislo-
cations with extended one-layer stacking fault between them.
However, Fig. 4 shows that thel=2 state is metastable. A
magnified view is given in Fig. 5. This suggests that the
smallest possible twin embryo in bcc Mo consists of two
atomic layers. This assertion contradicts with the result ob-
tained using a pair potential,4 which states that at least three
atomic layers are necessary to form a metastable twin. How-
ever, it agrees with calculations38,39 using the many-body

Finnis-Sinclair empirical potential.40 To verify that l=2 is
indeed metastable, we again allow arbitrary in-plane relax-
ations for all 24 layers inVASP, until the energy change be-
tween two consecutive ionic steps is less than 1 meV. The
unrelaxed versus relaxed shear displacements of layers 8–17
are shown in Fig. 6sad. We see that aside from slight broad-
ening, thel=2 configuration is indeed stable.

Interestingly, the twin that is one layer thicker than the
l=2 embryo is again unstable. This is seen in Fig. 5. To
confirm it, we allow in-plane relaxations with thel=3 initial
configuration. The initial and final shear displacements are
shown in Fig. 6sbd. We see that thel=3 twin spontaneously
relaxes back to thel=2 configuration.

The one next,l=4, is a borderline case. From Fig. 5, we
see there is a small potential energy well atl=4. But it is too
weak to be trustworthy. Indeed, when we allow in-plane re-
laxations for all 24 layers inVASP, the l=4 twin spontane-
ously relaxes back to thel=2 configuration as shown in Fig.
6scd.

Finally, based on Fig. 5, we believe that starting froml
ù5, every integer-l state is locally stable. The potential en-
ergy wells forlù5 appear to be too strong to be destabilized
by relaxations, small applied stresses, and numerical error
such as surface effects in the calculation. To verify this, the
unrelaxed versus relaxed shear displacements of layers 8–17
for l=5 are shown in Fig. 6sdd.

The practical significance of the above results is the fol-
lowing. Unlike in fcc metals,14 a twin embryo can only be

FIG. 5. sColor onlined The s21̄1̄dk111l twinning energy pathway
of bcc Mo up to seven-layer slidingszoomedd. The curve on the
right end is Fig. 2 shifted by 2gTBF=1214 mJ/m2.

FIG. 6. Difference of shear displacements between adjacent layersDxi −Dxi−1 normalized bybp near the idealsinitial unrelaxedd and
relaxed twin embryo configurations.sad l=2, sbd l=3, scd l=4, sdd l=5. They clearly show that two- and five-layer twin embryos are
metastable, while three- and four-layer twin embryos are unstable, which fall back to the two-layer twin embryo configuration spontaneously
upon relaxation.
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nucleated in bcc Mo lattice bysimultaneousemission of two
tightly bound partial dislocations. This two-layer twin
embryo is however far from mature. The next step is to
have an additional group of three tightly bound partial dislo-
cations simultaneously emitted. The Peierls-Rice-Tadmor
framework14,41 with crack-tip shielding may still be appli-
cable. Now one needs to group the first two partial disloca-
tions as A, and the next three partial dislocations as B, and
take into account the “core” shapes of and interactions be-
tween A and B, and the detailedgtsld response. The math-
ematics will certainly be different from the fcc case. If one
wants to make an analogy with the fcc theory,14 then the
effective “gUT” should be taken to be<1350−1150
=200 mJ/m2, which is the energy barrier between thel=2
and thel=5 energy minimassee Fig. 5d.

The potential energy profile of Fig. 5 is a manifestation of
long-range mechanical coupling in bcc Mo. A valid question
is: if two twin boundaries can couple to each other across
five layers, will surface-twin boundary coupling also be
long-ranged and thereby contaminate the 24-layer slab cal-
culations, specificallygTBF andgTBM values? While there is
no guarantee, we have evidence suggesting that the effect
may be small. On the right edge of Fig. 5, we plotgTB`sld
obtained from the bicrystal calculation, shifted by 2gTBF

=1214 mJ/m2. We see that the two calculationssbicrystal
and sandwichd seem to give consistent results for the
asymptotic behavior. We also perform a few calculations us-
ing a 30-layer setup, and the results do not change apprecia-
bly from the 24-layer results. Thus, we believe our calcula-
tions have converged.

B. fcc aluminum and copper

To study the behavior of an isolated twin boundary in fcc
Al and Cu, we introduce the bicrystal slab model with 24
layers of Al s10e3 supercell, 2e3 of which is vacuum, 18
32532 k-point samplingd and 15 layers of Cus6e3 super-
cell, 1e3 of which is vacuum, 1231732 k-point samplingd.
We compute the energy profilegTB`sld of twin boundary
migration for Al fFig. 7sadg and Cu fFig. 8sadg using the
same method as for Mo, and obtaingTBF=60 mJ/m2,
gTBM =97 mJ/m2 for Al, and gTBF=21 mJ/m2, gTBM
=168 mJ/m2 for Cu.

We then set up a sandwich slab model with 24 layers for
Al s10e3 supercell, 2e3 of which is vacuum, 1832532
k-point samplingd and 15 layers of Cus6e3 supercell, 1e3 of
which is vacuum, 1231732 k-point samplingd for Cu, and
computegtsld of Al fFig. 7sbdg and Cu fFig. 8sbdg in the
same way as for Mo. For comparison,gTB`sld shown in
Figs. 7sad and 8sad is reproduced at the right end of Figs. 7sbd
and 8sbd, respectively. We see that the large-l asymptotic
behavior of the sandwich model has converged with the bi-
crystal model. It is worth noting that in order to keep the
relative error due to free surface-twin boundary interaction to
less than 5% for up to five-layer sliding, we need to use at
least 24- and 15-layer models.

For Cu we see a complete convergence ofgtsld to
gTB`sld at second layer sliding. However, for Al a slight
variation of the energy up to third layer sliding is seen. This
indicates that Al has slightly longer ranged layer-to-layer me-
chanical coupling than Cu, but both are much shorter ranged
than Mo. These characteristics will be discussed in Sec. VI.

IV. TWIN PARTIAL DISLOCATION ON THE BOUNDARY
OF A THICK TWIN

From Figs. 5, 7, and 8, we see that starting froml=5 for
Mo andl=2 for Al and Cu, the twin should be able to grow
in a layer-by-layer fashion. An interesting question is what is
the core width of an isolated twin partial dislocation on a
very thick twin, when Eq.s1d is applicable. According to the
Peierls theory,36 the total energy of the partial dislocation can
be expressed as

Etotflsxdg = −E E Kubpu2

4p
dlsxddlsx8dlnux − x8u

+E gTB`flsxdgdx+ const, s2d

under the constraint thatls−`d=0, ls`d=1, in whichK is an
effective modulussK takes the value ofm for screw disloca-
tion in isotropic mediumd. Figure 2 shows thatgTB`sld may
be well-approximated by

FIG. 7. sColor onlined sad Energy landscape of twin boundary
migration in Al using the 24-layer model. The twin boundary mi-

gration energy is estimated as 97 mJ/m2. sbd The s111dk112̄l twin-
ning energy pathway of fcc Al up to five-layer sliding using the
24-layer model. The curve on the right end ofsbd is just sad shifted
by 2gTBF=120 mJ/m2.
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gTB`sld =
gTBM

2
s1 − cos 2pld. s3d

The above problem has the classic solution

lsxd =
1

2
+

tan−1sx/jd
p

, s4d

with

j =
Kubpu2

4p2gTBM
. s5d

When we plug inK<140 GPa andgTBM <40 mJ/m2 of Mo,
we obtainj<7.3 Å, which is very large since the full width
at half maximumsFWHMd of the Burgers vector density
scored distribution

rsxd ; ubpul8sxd =
ubpuj

psj2 + x2d
s6d

is 2j. This means twin partial dislocations in Mo on thick
twins have very wide cores, and very small lattice friction,
since the Peierls stress decays exponentially with core
width.34,35 If we plug in K<28 GPa andgTBM <97 mJ/m2

of Al and K<44 GPa andgTBM <168 mJ/m2 of Cu, we ob-

tain j<2.0 Å for Al andj<1.5 Å for Cu, which are almost
four times smaller that that for Mo.

To estimate the Peierls stress that is needed to move a
twin partial dislocation athermally, we replace the second
term of Eq. s2d by a discrete lattice sampling following
Nabarro,35

E gTB`flsxdgdx→ Ediscrete; ri o
k=−`

`

gTB`flss+ kridg,

s7d

wherek labels the atomic rows on thes21̄1̄d plane for bcc
Mo and s111d plane for fcc Al and Cu, separated by row
spacingri sri = uei u /2 for fcc andueiu for bcc, i =1 for edge
and 2 for screwd, and s labels the centroid of the rigidly-
translating core profile. Plugging in Eq.s4d into Eq. s3d, the
above sum can be carried out analytically,

Ediscretessd =
pgTBMj sinhs2pj/rid

coshs2pj/rid − coss2ps/rid
s8d

which can be well approximated by

Ediscretessd < pgTBMj f1 + 2e−2pj/ri coss2ps/ridg s9d

in the limit of large 2pj /ri shere, 2pj /r1=16.9, 2pj /r2
=10.3 for bcc Mo, 2pj /r1=5.0, 2pj /r2=8.7 for fcc Al, and
2pj /r1=4.1, 2pj /r2=7.1 for fcc Cud. This energy barrier
against centroid translation can be overcome if the applied
stress

t . tP ;
maxsuEdiscrete8 ssdu

ubpu
<

4p2gTBMje−2pj/ri

riubpu
. s10d

Plugging in the numbers, we findtP for Mo is only ,2 kPa
for the edge partial and,0.9 MPa for the screw partial. Al-
though the above calculation is nonvariational,36 i.e., it as-
sumes rigid core profile translation, we believe thattP’s in
reality are very small. Thus, unless other resistance mecha-
nisms are operating, a twin partial on a thick twin, once
nucleated in bcc Mo, will move very easily and approach the
sound speed quickly. We note that the Peierls theory should
work better and better in the limit of wide cores, for which
this seems to be case.

The smallgTBM also means that it is relatively easy to
nucleate a twin partial on the boundary of a thick twin. The
stress for athermalsspontaneousd nucleation of a twin bound-
ary dislocation loop on a thick twin is only

tmax=
maxlugTB`8 sldu

ubpu
=

pgTBM

ubpu
< 1.4 GPa s11d

which is rather small, considering the low-temperature mac-
roscopic critical resolved shear stresssCRSSd of bcc Mo is
750 MPa.42 In real materials, there are many local stress con-
centrators such as voids and interstitial clusters. Thus, once a
thick enough deformation twin is formed, it should be quite
easy to grow in thickness.43–45

On the other hand, we calculatetP for Al as ,120 MPa
for the twin edge and,5 MPa for the twin screw, and for Cu
as,490 MPa for the twin edge and,42 MPa for the twin

FIG. 8. sColor onlined sad Energy landscape of twin boundary
migration in Cu using the 15-layer model. The twin boundary mi-

gration energy is estimated as 168 mJ/m2. sbd Thes111dk112̄l twin-
ning energy pathway of fcc Cu up to five-layer sliding using the
15-layer model. The curve on the right end ofsbd is just sad shifted
by 2gTBF=42 mJ/m2.
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screw. Also we estimatetmax as ,1.9 GPa for Al and
,3.6 GPa for Cu. If we take into account the respective
shear moduli, these numbers are considerably larger than
those of Mo in the relative sense.

V. ENERGY LANDSCAPE OF NUCLEATING A RUNAWAY
TWIN BAND FROM CRACK TIP

In Sec. III, we compute the elementary energetics in-

volved in thes21̄1̄dk111l deformation twinning of bcc Mo

and thes111dk112̄l deformation twinning of fcc Al and Cu.
In Sec. IV, we apply these results to estimate the core width,
mobility and athermal nucleation stress of twin partial dislo-
cation on the boundary of a thick enough twinslù6 for Mo,
lù3 for Al, andlù2 for Cud. Here, we propose to examine
the conditions for a “thick enough” twin to be nucleated on
the basis of simple defect mechanics.

We begin with the recognition that homogeneous nucle-
ation of deformation twin from defect-free perfect crystal
requires a very large activation energy, unless the local stress
level approaches the ideal strength of the material,7 as in
some nanoindentation experiments.46,47 Thus, heterogeneous
nucleation near existing defects such as cracks, voids, and
phase or grain boundaries is necessary. While this may occur
in dynamical processes in which inertia plays a role, such as
in dynamical fracture or shock loading, here we limit our
analysis only to inertia-free, thermally activated nucleation.

Twin nucleation is fundamentally different from nucle-
ation of full dislocations, in the sense that a full dislocation,
once nucleated and with large enough radius of curvatureR,
is a runaway defect, since it does not drag a stacking fault
behind. In contrast, for a deformation twin to reach its run-
away condition, it needs not only to have a large enough
radius in-plane to overcome line tension, but also a critical
thickness.13 To see this we analyze the canonical model of
nucleating a deformation twin band from an atomically
shape crack tip.10 Consider first the more familiar case of fcc
Al. We take thegtsld pathway in steady-state oscillating pat-
tern starting from the second layer, and use 2gTBF
=120 mJ/m2. While a nucleated full edge dislocationstwo
partials in one planed in the fcc lattice is a runaway defect,
the two-layer twin, because of the finite twin boundary ener-
gies 2gTBF, will be arrested when the local stress at the lead-
ing edge of the twin band drops below

tn ;
2gTBF

nubpu
. s12d

For n=2, we gett2=360 MPa. This suggests that the two-
layer twin band cannot get very far from the crack tip after
nucleation. Assuming the crack tip stress field falls off as
r−1/2, as in the case of sharp cracks commonly used in these
studies,10,14 we estimate the length of the arrested two-layer
twin band to be

ln , S tideal

tn
D2

a0, s13d

in which tideal is the ideal shear strength of the material and
a0 is the lattice constant. The rationale behind this crude

estimate is that one needs to apply aK field that generates
large local enough stress, approaching the level of ideal shear
strength, on the first bond in front of a sharp crack10 in order
to have thermally activated nucleation at reasonable kinetic
rates. Plugging intideal<3 GPa,6 we getl2<27 nm, the dis-
tance that a two-layer twin band can move away from the
crack tip before it is immobilized by 2gTBF.

Next, assume an additional partial dislocation is nucleated
on top of the two-layer twin. Withn=3, we get t3
=240 MPa andl3=61 nm. So the three-layer twin band will
extend to 61 nm from the crack tip, but is then again immo-
bilized. Similarly, forn=5, t5=150 MPa andl5=170 nm; for
n=10,t10=73 MPa, andl10=680 nm, and so on. The thicker
the twin, the further it can move away from the crack tip.
Eventually, the deformation twin becomes a runaway defect
when tn drops below the level of the uniformbackground
stress applied. Then, the twin no longer needs the crack-tip
stress field to balance out the 2gTBF attraction and can propa-
gate on its own. If we take the background stress to be on the
same order as the yield stressY for aluminum, around
100 MPa, then the maximum CRSS=Y/2=50MPa. This
converts to a runaway condition ofn=15, for which t15
=49 MPa. At that point, the 15-layer twin isl15=1.5-mm
long.

The purpose of the above crude calculation is to demon-
strate that there is a coarse energy landscape for the nucle-
ation of a “thick enough” twin in front of a crack that is able
to run away, in addition to the finer energetic features in-
volved in the nucleation of each partial. It appears that one
needs to add up all the activation energies fromn=1 to 15 in
order to obtain the nucleation barrier of a runaway twin de-
fect, if we assume that the twin embryo is thermalized after
each partial dislocation nucleation. In contrast, the nucleation
barrier of a runaway full dislocation is much simpler, involv-
ing separate nucleations of just two partials within the same
plane.

In the above estimate, we ignore the fact that the twin
partials would interact with each other to form a lens shape
rather than a unform band, which is what is assumed in Eq.
s12d. A full calculation seems quite difficult unless numerical
schemes such as the phase-field method1 can be imple-
mented. On a separate note, we think that it is possible that
the sum of activation energies fromn=1 to 20 is a fast de-
caying sum, such that the strength of then=2 term indicates
the comparative magnitude of the sum.

With the fcc case in mind, we now analyze what will
happen for bcc Mo. It is more complicated than fcc due to
the intricategtsld pathway shown in Fig. 5, which does not
manifest steady oscillation untiln=6. Also,n=1,3,4 are not
metastable minima. Son=1,2 aregrouped into A, andn
=3,4,5 aregrouped into B in the sum, representing the first
two steps of nucleation, followed by layer-by-layer growth.
Using the same formulass12d and s13d, but with 2gTBF
=1214 mJ/m2 and tideal<15 GPassee Table IId, we obtain
t2=6.7 GPa, andl2<1.6 nm for n=2. So the first step of
nucleation would give an exceedingly small embryo A ex-
truding from the crack, if that is actually thermodynamically
favorable. It would then have to wait for the next step, upon
which three new partials are simultaneously nucleated on top
of A. This would allow the twin to grow tot5=2.7 GPa and
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l5<10 nm. Still, n=5 is far from the runaway condition. If
we plug in CRSS=750 MPasRef. 42d as the background
stress, we get the runaway condition to ben=18, with tn
=740 MPa andln<130 nm.

Note that in the above we assumeln at runaway is less
than the grain size. For nanocrystals12 this assumption may
not be true, and then the behavior again could be quite dif-
ferent. For instance, in Al, if the grain size is around 20 nm,
then it is possible for the leading edge of the two-layer twin
band to be arrested at the opposite grain boundary. Continu-
ous layer-by-layer twinning of this particular grain in front of
the crack can then proceed without having to reach the run-
away length first. In the case of bcc Mo, it is not possible to
arrest the two-layer twin embryo at the grain boundary be-
cause it is too small. However, it is possible that in the next
step, the five-layer embryo may be arrested by the opposite
grain boundary. And then layer-by-layer deformation twin-
ning of bcc Mo can proceed in this particular nanograin.

VI. ELECTRONIC-STRUCTURE FEATURES

As explained in the Introduction and discussed above, the
GSF sRefs. 2–5d and MGSFsRefs. 6–8d corresponding to
localized planar shearing modes illustrated in Fig. 1 are the
most important elementary energetics controlling the plastic-
ity of metals. It is therefore worthwhile to perform
electronic-structure analysis that pertains specifically to these
planar shearing modes. One may draw analogy with the Frie-
del oscillations near a free surface if we consider a surface to
be a special kind of planar interface, to which the twin
boundary also belongs. Here, the issue is the range of inter-
action between two twin boundaries. One may consider the
differencegtsld−gTB`sld as quantifying this effect, which is
the influence of one twin boundary’s presence on the migra-
tory behavior of another. From Figs. 5, 7sbd, and 8sbd, it is
clear that this twin-boundary–twin-boundary coupling is
slightly longer ranged in Al than in Cu, but by far the longest
ranged in bcc Mo. The question is: why is this and what
electronic-structure features can corroborate this mechanical-
response feature?

We hypothesize that the strength of mechanical coupling
between two twin boundaries is related tosad the magnitude
of charge perturbation near one twin boundary in reference
to the perfect crystalseither one of the two crystal variants,
depending on which side of the twin boundary we are doing
the comparisond and sbd the potency of dielectric screening
of the intervening layers between the two twin boundaries.
We may further hypothesize that thes111d planes of fcc met-

als provide better screening than thes21̄1̄d planes of bcc
metals, since the former are close packed.

We quantify the above considerations by the following
measure:

Drszd ;
E dxdyuDrsx,y,zdu

E dxdy

, s14d

where

Drsx,y,zd ; rsx,y,zd − rxtalsx,y,zd. s15d

rsx,y,zd is the valence charge density of the bicrystal slab.
z=0 marks the location of the twin boundary, central in the
slab. rxtalsx,y,zd is the valence charge density of a slab of
perfect crystal, with the same thickness as the bicrystal slab.
Depending onz.0 or ,0, we userxtalsx,y,zd of the appro-
priate crystal variant, which are mirror symmetric to each
other. Therefore,Drszd is a symmetric function.

Drszd for Mo and Al, Cu are plotted in Fig. 9. The static
dielectric response of metalsssuch as estimated using the
Lindhard functiond due to sharp spatial featuresssuch as
surface/interfaced always decays algebraically in real space,
so the absolute magnitude ofDrszd is important. To make the
comparison fair, we normalizeDrszd by the number of va-
lence electrons per atoms6 for Mo, 3 for Al, 11 for Cud. It is
seen that Mo has by far the largest charge deviations associ-
ated with the twin boundary atz<0, which persists up toz
<3. Al is second, with significant charge alteration up toz
<2. Cu, on the other hand, has very little charge alteration
near the twin boundary beyondz<0.5.

These data can be used to rationalize the mechanical-
response features of Figs. 5, 7sbd, and 8sbd in the following
way. We may consider doing perturbation theory on the total
energy of the perfect crystal sandwiched between two twin
boundaries, whereDr’s induced by either boundaries are
considered as perturbations. Then, the coupling energy be-
tween the two twin boundaries can be written as

DE =E dxdydz
ksx,y,zd

2
Dr1sx,y,zdDr2sx,y,zd + OsDr3d,

s16d

in a second-order expansion around the electronic equilib-
rium, whereDr1 is charge alteration caused by the first twin
boundary,Dr2 is charge alteration caused by the second twin

FIG. 9. sColor onlined Distribution of valence charge density
deviationswith and without twin boundaryd for Mo, Al, and Cu.z is
distance from twin boundary, normalized by the interlayer distance
in e3 direction. The charge density is averaged over the plane nor-
mal toe3, then normalized by number of valence electronsNv used
in the pseudopotential for each type of atom.
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boundary, andksx,y,zd is the functional expansion coeffi-
cientsthe first-order term vanishes because we are perturbing
around the electronic equilibriumd. For simplicity we have
assumed the total energy is a local functional of the total
charge density

ksx,y,zd ;
d2Efrsx,y,zdg

drsx,y,zd2 , s17d

and perturbations to the charge density caused by ionic de-
fects are additive. When the two twin boundaries are sepa-
rated byl, in a very crude way Eq.s16d may be approxi-
mately bounded by

DEsld ~E dzDrszdDrsl − zd. s18d

This then can explain why twin-boundary–twin-boundary
coupling is so strong in Mo from Fig. 9 comparison, since
the coupling strength is reallyDr “squared.” It further ex-
plains the interaction range: the coupling energy function
DEsld is a convolution of twoDrszd’s, and do not decay to
zero unlessl is outsidetwice the range ofz where Drszd
decays to zero. Therefore from Fig. 9, we may say that the
coupling strength dies off precipitously after 233=6 layers
in Mo, 232=4 layers in Al, and 230.5=1 layer in Cu,
which is seen from the direct calculations shown in Figs. 5,
7sbd, and 8sbd.

VII. DISCUSSION

The nature of bonding in condensed matter is often char-
acterized by “interaction range” and “bond directionality.”
They are quite distinct concepts. From our previous DFT
studies,7 we think Al, Cu, and Si have short interaction range
samong them Al has relatively longer ranged, and Mosmaybe
also W and Fed and ionic solids have long interaction ranges.
Si has strong directional bonding, and Mo and Al also. Cu
and ionic solids have very weak directionality in bonding.

The interaction range, among other things, controls the
size of metastable defect embryos such as deformation twins
and martensites. So while it is well-known that the smallest
fcc twin is two-layers, this is not the case in bcc Mo. This
may be partially due to the crystal structure. In fcc metals,
the slip planes have larger interplanar spacing and very dense
packing in-plane to provide good screening. In contrast, the
bcc slip planes are closer in distance, and each slip plane has
relatively large “holes,” which causes poor screening.

Yet long-ranged interlayer mechanical coupling may also
be partially due to bond directionality. Here we take bond
directionality to mean sensitivity to the nearest-neighbor
bond angles. For instance near the intrinsic stacking fault of
fcc metals, the coordination number of atoms remains the
same as in perfect crystal, yet the bond angles are “wrong”
compared to fcc bulk. Thus, we may take the much larger
intrinsic stacking fault energy of Al compared to Cu as evi-
dence that metallic bonding in Al is bond-angle sensitive,
whereas it is not in Cu.6,48 Microscopically, bond direction-
ality may manifest as largeDrszd nearz=0, as the charge
density reacts strongly to unfavorable bond angles, such as

near a twin boundary. Therefore at the charge-density level,
it seems plausible to takeDrsz<0d as a measure of bond
directionality, and the rate of decay ofDrszd with z to mea-
sure screening. bcc Mo has strong bond directionality and
weak screening, which leads to long-ranged interlayer cou-
pling. Cu has weak bond directionality and strong screening,
which leads to very short interlayer coupling range. Al has
strong bond directionality but relatively strong screening,
which leads to short interlayer interaction range. Si has
strong bond directionality, but its valence electrons are
bound charges, thereforeDrszd is short ranged and so is the
interlayer coupling.

Clearly, both the range and directionality of bonding in a
given material are valuable information for developing em-
pirical interatoimic potentials.48,49The simplest kind of inter-
atomic potentials for metals is isotropic and short-ranged
similar to the Finnis-Sinclair potential.40 However, very
short-ranged potentials are clearly incapable of describing
long-ranged interlayer mechanical coupling such as Fig. 4.
On a similar note, comparing the one-layer GSFg1sxd with
the affine strain energy densityg`sxd in DFT provides valu-
able information about bond directionality,6 and many poten-
tials for Al fail in this aspect.48 Methodical analysis based on
MGSF characterization6 and Drszd provide clues on how
these potentials may be improved. If the main purpose of an
interatoimic potential is to study the mechanical behaviors of
a material involving dislocations and deformation twins, then
this exercise is especially necessary.

VIII. CONCLUSIONS

Because we have touched upon a range of issues in this
work, it may be appropriate to conclude with a concise sum-
mary of the specific results presented here in a manner that
reinforces the statements made in the abstract. We take note
first of some baseline results as a way of introducing our
first-principles method of calculating energy, stress, and de-
formation. Table I shows the prediction of lattice parameter
and elastic moduli tested against experimental data. The den-
sities of the three metals are seen to be within one percent of
the measurements, while the moduli are within 10%. Such
accuracy is comparable to similar calculations in the litera-
ture. Table II gives the maximum strain that each metal can
sustain under affine shear before elastic instability.46 While
there are yet no measurements of these results which char-
acterize the system far from equilibrium, this information
gives insight into the nature of chemical bonding at large
strain.6 As discussed elsewhere,7 knowing this maximum
shear strain allows one to formulate a counterpart to the uni-
versal binding energy curve, a widely used description of
large-strain deformation in tension.

Our studies of deformation twinning are presented in
three types of figures. Energy landscape of twin boundary
migration gTB`sld gives the energy variation between two
specific system configurationsssee Fig. 2d. The first configu-
ration is a thick stack of twinned region atl=0, the initial
state. The other is the same system with the twinned region
now expanded by exactly one more layer of atoms, the final
state atl=1. The energy variation from initial to final states
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goes through a maximum which defines the twin boundary
migration energy. For the three metals the predicted values
are 40 mJ/m2 sMo, Fig. 2d, 97 mJ/m2 fAl, Fig. 7sadg, and
168 mJ/m2 fCu, Fig. 8sadg.

Regarding the issue of stability of twin embryos, we have
used the concept of twinning energy pathwaygtsld ssee Fig.
4d. This gives the energy variation with slidingssheard dis-
placement, with integer values ofl corresponding to the
shearing of an entire plane. Thusl=7 would mean the twin-
ning of a seven-layer stack. One can see from these results
that in Mo sFig. 4d one does not reach convergence until the
twinning stack has reached five layers or more, whereas in Al
fFig. 7sbdg and CufFig. 8sbdg convergence is achieved with a
stack of only two layers.

These energy landscape results constitute the basis for the
statements made in the abstract. In addition, we have exam-
ined layer displacement differenceDxi / ubpu ssee Figs. 3 and
6d as a measure of stability the twin embryo. A small differ-
ence between ideal and relaxed layer displacements would

mean stable embryo, whereas a large difference indicates that
the embryo, even if created, is not stable. Thus Fig. 6 shows
that the embryo atl=2, a two-layer embryo, is stable, but
the three- and four-layer embryos are not. Then stability re-
turns for a five-layer embryo. Finally, Fig. 9 portrays the
difference between bcc Mo and fcc Al and Cu in their va-
lence charge density distributions. It is information of this
type that we feel would be needed to gain a fundamental
understanding of materials behavior far from their equilib-
rium states.
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