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Kinetic Monte Carlo simulations of crystal growth in ferroelectric alloys
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The growth rates and chemical ordering of ferroelectric alloys are studied with kinetic Monte(KiH®)
simulations using an electrostatic model with long-range Coulomb interactions, as a function of temperature,
chemical composition, and substrate orientation. Crystal growth is characterized by thermodynamic processes
involving adsorption and evaporation, with solid-on-solid restrictions and excluding diffusion. A KMC algo-
rithm is formulated to simulate this model efficiently in the presence of long-range interactions. Simulations
were carried out on Bdgq,;3Nb,5)O3 (BMN)-type materials. Compared to the simple rocksalt ordered struc-
tures, ordered BMN grows only at very low temperatures and only under finely tuned conditions. For materials
with tetravalent compositions, such &s—x)Ba(Mg;,sNby3)O3+XxBazZrO; (BMN-BZ), the model does not
incorporate tetravalent ions at low temperature, exhibiting a phase-separated ground state instead. At higher
temperatures, tetravalent ions can be incorporated, but the resulting crystals show no chemical ordering in the
absence of diffusive mechanisms.

DOI: 10.1103/PhysRevB.71.224101 PACS nun®er77.84.Dy, 81.10.Aj, 81.36:t, 05.10.Ln

I. INTRODUCTION order. On the other hand, for Pb-based systems, €lg.,
—X) PO(Mgy/3Tay;3)O3+x PbZrQ; (PMT-P2), [111];., order

Ferroelectric crystals are known for their important tech-is not observed at=0: instead, annealing between 1325 and

nological applications, such as high-permitivity dielectrics,1350 °C results ifi111];., order all the way down ta=056
piezoelectric sensors, transducers, and mechanical actﬂjatora.th Pb-based 11 kit y(m Nb O
Recently, single-crystal relaxor perovskites such aS(PMeNr) 78 di-s;}z(; simﬁg:g\-lsittlae; der?r;g', 91/aNb2/2) O3
I(Dl\ﬁ(znlﬁbNb:)%)o.gF);E)i&Q‘(PMN-(E%NWZPe S n?hn:sized F;?]d Since their discovery, growing large single crystals has

91/3MND213)J3- : ) y : . been a major research goal, but this effort has been largely
found to exhibit ultrahigh stain and very large piezoelectric

constant€ The structure of alloys like PMN-PT can be unsupported by theory, because of the difficulty in modeling

viewed as a perovskitABO, framework(a cubic lattice for and simulating the nonequilibrium processes occurring in

. . . X ) nucleation and crystal growth in such complex materials. In
the ideal perovskite crystalwith Pb ions on thé site and a : L2 : :
solid solution of(Mg*2, Nb*S, Ti*%) ions on theB sites, with this paper, we use kinetic Monte Catlsimulations of a

average +4B-site ionic charge. Of course this is an idealized simple effective Hamiltonian to model the growth process of
picture, neglecting vacancies. impurities, local structural dis-thES(-a ferroele_ctr_lc crystals. . o
! ; o . ’ . Given the ionic character of these materials, it is not sur-
tort|on§, Iand.partlﬁl Cher}"c%l o_rder!ng on tBES'teS]; fprising that the inclusion of Coulomb interactions has been
thepﬁirgr?-;:zlgeelgc?r%cs%ligrs(ce)lr:ﬂi%rl; av\(/:ﬁﬁgnﬁgﬂ dc%?tt;lijtf % found to be crucia_l in describ_ing their properties. A simple,
2T n isoelect ; lid solutions Iikepurely electrostatic model introduced by Bellaiche and
ordering s observed In_1Soelectronic solid : . Vanderbilt(BV)1° has had considerable success in explaining
PU(Zr,Ti,)O3 (PZT), nonisoelectroni@-site solid solutions 0" e ryeq equilibriunB-site chemical ordering in many

A(BB,BH)Q%* with B-s.it.e cations from group I, IV’, and V, perovskite alloys. The BV model only considers Coulomb
often exhibit compositionally dependeBtsite chemical or-  niaractions between point charge2, +5, +4, etc., repre-

dering. At 1640 °C, when the tetravalent compositiois senting the different atomic specjethat reside on theB
increased in (1-x) Ba(Mgy/aNbg)O3+x BaZrO; (BMN- gjtas \which are constrained to lie on an ideal cubic sublat-
BZ), the following sequence d8-site ordering is observed: jce.

[111], order for x<5%; then[111];,; order for 5%<x This electrostatic model is the starting point of our growth
<25%; and finally disorder for largec® The[111];, nota-  gimulations. Simplified models based on Ising-like effective
tion refers to x-ray observation of alternati®@8s’ [111]  HamiltoniansH.¢ have been used to model growth in sim-
stacking ofB sites, whergg and s’ denote average scattering pler systemd!2 These models often have only short-range
sites. For example, in BMN-BZ witk=0, one canidentify3  interactions. To adapt the electrostatic model of BV to study
with Nb and 8’ with Mg. The [111];,; notation refers to  crystal growth, we consider a slab geometry with periodic
x-ray observation of rocksaltlike alternatif§’ [111] stack-  poundary conditions in two dimensions only. The slab is
ing of B cations. In this case, the assignment of ghend8’  viewed as being embedded in a liquid-phase melt, which is
sites has been debated, as discussed below in connectigarametrized by a chemical potential difference with the
with the space-charge and random-site mo#efSther  solid bulk phase. In our simulations, a solid-on-sqf8D9
Ba-based perovskites, e.g.,(1-x) BaMgy3Ta3)03  restriction is imposed, which requires that adsorption only
+x BazrO, (BMT-BZ2),3 (1-x) Ba(Mgy;3Nby3) O3  occur onto empty lattice sites directly above an occupied
+xBazrO; (BMN-BZ),* display a similar sequence 8fsite  site, so void formation is neglected. In keeping with the sim-
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plicity of the model, diffusion in the bulk and at the surface A. The electrostatic model

is also neglected. _ ~ The BV model is derived by considering the total electro-
The nonequilibrium dynamics of the growth process isstatic energy for am\(BB'B")O; compound,
modeled using the kinetic Monte Carl&MC) method!®
QQyr

The KMC algorithm introduced by Bortz, Kalos, and Leb- _

owitz (BKL)? has been quite successful in simulating crystal EO= X R, — Ry’ 2

growth in Ising-like models with short-range interactions be- (s 2T T

tween adatoms. We generalize the algorithm to efficientlywhere R,, is the position of the ion on siter

handle the long-range interactions in the BV model. (=A,B,0,,0,,05) in cell I, and € is the dielectric constant.
In this paper, we study the properties of this minimal For a given Bravais lattices sets the energy scale. We con-

paradigm of the growth process to determine if it can yieldsider the perovskite structure with group A-site atoms

insights into the physics of the observBesite chemical or-  (e.g., Ba,Ph so the charges on theeand O sites have fixed

dering. Section Il presents our theoretical approach. Thgalues of +2 and -2, respectively. Since the averaBesite

model of BV is reviewed, and our adaptation of it for the charge is +4, it is convenient to express the charges on the

growth modeling is discussed, including the special handlings sites,Q g, as

of electrostatic interactions during the growth process. Our

generalization and modification of the KMC algorithm are Qe=4e+q. 3)

then described, which allows efficient treatment of the long-yp to a constant, the configurationally averaged electrostatic

range Coulomb interactions. Section Il presents the resultgnergy depends only on tiBesite charges, since the configu-
of our gl’OWth simulations fOIA(BB,)Og and A(BB,BH)Og rational average qu is zero,

crystals. To help understand our growth results for the latter

systems, where géypically smal) fraction of tetravalenB” Eq(C) = 1 s aq @)
ions are mixed in, we also carry out total energy calculations B e =’

to study their stability. Finally, in Sec. IV we further discuss ’

our results and prospects for the model. In the Appendix, wavhere we have for simplicity restricted ourselves in E4).
include some technical details on the treatment of the longto a cubic Bravais lattice with lattice parametgrand Rg
range interactions in our simulations. A preliminary account=la. In this model, each cellis therefore reduced to a single

of part of this work has already appearéd. lattice site with charge, and the energy of the compound is
given by the intersite Coulomb interaction.
Il. THEORETICAL APPROACH The long-range Coulomb interaction must be treated with

At each stage of the simulation, the crystal is modeled a§are in a bulk simulation to ensure proper convergence. For
a slab of finite thickness. However, it is convenient to index2D and 3D simulations with periodic boundary conditions,

the allowedB sites as in an infinite three-dimensional crystalthe method of Ewald is often used, in which periodic images
lattice, of the charges and neutralizing background charges are

. introduced®° so that the bare Coulomb form [L+1’| is
I =iay +ja; + kag. (1) replaced with a reduced fora(l-1"). For our growth simu-
Two-dimensional(2D) periodic boundary condition€?BC)  lations, we are dealing with a slab geometry with PBC only
are employed along the, and a, directions, which define in two dimensions(x-y). Some modifications are required
the x-y Cartesian plane, using dna; X L,a,=A; XA, 2D before the Ewald method can be applied.
supercell. Growth proceeds along thelirection. The simu- In the simulations, we will need to calculate the energy
lation is initialized as a slab of uniform thicknesigas, with ~ change from Eq(4) due to the evaporation of a charged ion
a predefined-atom configuration. A given simulation is ter- ¢ at the surface of the crystgsee Eq.(21) below]. The
minated when either the maximum slab thickness or thdlistribution of point charges tha§, “sees” can be described
maximum number of Monte CarldMC) time steps is by the charge density
reached. We use the notatiarx L X H,,,4« to label a particu-
lar simulation, whereH ., is the number of layers for maxi- p(r) = ; % qdr-1-R), (5)
mum slab thicknes&he initial substrate included
The solid-on-solid SOS restriction that we impose does wherel runs through the position vectors of the atoms within
not allow the formation of voids. The crystal configuration, the simulation cell, andR is a 2D Bravais supercell lattice
C, is specified at each stage of the simulation by the set ofector: R=n;A;+n,A,. Directly summing the Coulomb po-
occupied site$=(i,j,k) and their charges;. The BV elec- tentials of the individual point charge¥(r-I1-R)=q,/|r-I
trostatic model cannot be directly used in this slab geometry; R|, leads to an ill-defined and conditionally convergent re-
due to ill-defined electrical boundary conditions in thdi-  sult, as is well known. However, for three-dimensional peri-
rection and the lack of exact charge neutrality during theodic boundary conditions, a unique solution of Poisson’s
growth simulation. Section Il A describes how we handleequation exist¢for an electrically neutral systemand it is
these issues. Similarly, a direct application of the KMC al-conveniently calculated using Ewald’s method. Subject to
gorithm is inefficient due to the long-range Coulomb inter-some additional, physically motivated conditions, a unique
action. Section 1l B describes the KMC method and oursolution can also be found for finite thickness slabs that are
modifications to make it applicable to the model. infinite in extent along two spatial directions.
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Solutions of Poisson’s equatioW2V(r)=—4ap(r), in our
simulations are subject to 2D PB@r+R)=V(r), as is the
charge density(r). The 2D PBC imply thai(r) and p(r)
can be expanded as

p(r) =2 pe(2)€°™,
G

V(r) =2 Ve(2e® ™, (6)
G

whereG is a 2D supercell reciprocal-lattice vector angs
the x-y component of, r,=r—(r-2)z=ia, +ja,. Substitution
of Egs.(6) into Poisson’s equation yields

dZVG(Z)

e G*Vg(2) = - 4mpe(2), )

If there are any ill-defined contributions to the Coulomb

potential, they must arise from th&=0 solution in Eq.(7).
This is because only the=0 term of p(r) in Egs.(6) con-

tributes to the net slab charge. In addition, even if the slab
electrically neutral, there may still be a net dipole monient
which would lead to different asymptotic values of the Cou-
lomb potential az= +«. Again, D also depends only on the

G=0 term of p(r), where

D= foc Zp(2)dz, (8)
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of both the direct- and reciprocal-lattice sums. The integrated
charge ofp,(r) is zero by construction, as is its dipole mo-
mentD, so its contributionV,(r) to the Coulomb potential
can be obtained by a rapidly convergent direct-lattice sum,
given in the Appendix.

On the other hand, the procedure for calculating the Cou-
lomb potentialV,(r) due top,(r) requires special handling.
At each sitel” in the unit cell, the potentiaV,(1") is effec-
tively computed as arising from the tryg(r) plus an addi-
tional artificial density chosen to keep the slab neutral and
cancel its dipole moment. We implicitly construct this artifi-
cial density by introducing two approximations, described
below, into the usual Ewald methoW,(l’) is due to(i) the
I #1" Gaussian charge densities and their periodic images
g9(r-1-R), and(ii) the periodic images.g(r-1'-R). [As
in the 3D Ewald method, a spurious interaction of the point
chargeq;, with its own Gaussian density.g(r—1") is explic-
itly removed later] Alternatively, the contributiorii) above
due to thel’-sublattice Gaussian images can be replaced by

iéhe sum of Gaussian imagésa) —qg(r—I’—R). Note the

replacement ofg;, by —qg, on thel’ sublattice. These two
formulations are equivalent in a bulk crystal simulation with
3D PBC and a neutral simulation cell, since the integrated
total charge vanishes,

2 —q=q.

I#1"

(11

In the 2D slab geometry of our growth simulations, this

andp(z) =pg=0(2). As adatoms are adsorbed or atoms evapowji|| not be the case in general. Overall charge neutrality is
rate in the course of the growth simulations, the net chargetill satisfied in a statistical sense, however. Our procedure
will fluctuate so that the total charge in the simulation superfor calculating V,(r) consists of two approximations. The
cell will not be precisely zero at each stage of the simulationfirst approximation is to use formulatiofia) above. Re-
Similarly, a net dipoleD may form. However, in a real grouping the sums, the approadia) can alternatively be
growth process there are always compensating charges thgbwed as saying that the contribution of eagh(r) sublat-

will cancel any ill-defined long-range effects due to the lacktice to V,(I’) is to be calculated as the potential due to the
of charge neutrality or the presence of a dipole moment. Ipharge density.

our calculations, we simulate this by a construction that en-
sures thaipg-o(z) always represents a neutral charge distri-
bution with D=0. This leads to well-defined boundary con-
ditions limy,_,.. Vo(2)=0. ) ) BN .
As in tﬁe 3D Ewald method, a diffuse localized chargeSlnce t_he mtegrated .charg_epff )(r) is zero, the use of th|s.

densityg(r) is added and subtracted to each point charge t@PProximation effectively imposes overall charge neutrality
facilitate the decomposition of the potential into absolutelyat each stage of the grquth S|mulat|pn.. '

convergent direct- and reciprocal-lattice sums, The boundary conditions are still ill-defined however,

since the sum of sublattice potentials due to,i&’é,)(r) may
p(N =22 qlar-1-R) -g(r-1-R)]
I R

it (=02 [gr-1-R)-gr-1'"-R)]. (12
R

still have a dipole momerd. We therefore introduce a sec-
ond approximation: the Gaussian image densitigg(+—1’
—-R) are made coplanar with thgg(r—1-R) sublattice. In
other words, the Gaussian densitieggtr) are placed at
_ positions that are the projections of the image positions
= pa(1) * p2(1). ©) " onto the plane defined by thg sublattice. In place of Eq.
The diffuse charge density(r) is chosen to be a normalized (12), the contribution of eaclyg(r) sublattice is thus calcu-
spherically symmetric Gaussian, as in the 3D Ewald methodated as the potential due to the charge density,

o= () e, #0=aZlor-1-R o0 -T-R], (13

+$EQ|g(r‘|—R)
R

(10)

aw

where the value of the Ewald convergence parametés where 1" denotes the projection of the positidh onto
arbitrary, but is usually chosen to optimize the convergence¢he plane defined by thg, sublattice. The charge density
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"f)g"’)(r) has a rapidly convergent expansion in terms of 2D JP(C,t) _
plane waves given by E@6). Moreover, theG=0 contribu- at

tion of "ﬁ("'/)(r) vanishes, so the Coulomb potent\al(r) is
o2 : : : ; . (16)

readily found using the equations given in the Appendix.

These two approximations ensure overall average-chargehere the first term on the right describes the loss because of

neutrality and vanishing dipole momebt=0, resulting in a  transitions away fronC, while the second term describes the

well-defined Coulomb potential at each stage of the growtlgain because of transitions int@. In the equilibrium limit

simulation. Complete formulas for the potentidl’—I) are  (ast— ), the Boltzmann distribution

given in the Appendix. S i ~H(©0)
ear keT

— . is reached, wherkg is the Boltzmann constant. We require

_ The _k|net|c Mc_)nte CarlgKMC) method is one of several that detailed balance be satisfied,

simulation techniques commonly employed to model the re-

laxation processes of systems away from equilibrii@my., W(C—C') _PefC) H(C") = H(C)

growth processeslt has been applied successfully to crystal c -C = P_(C =ex kT

growth and surface/interface phenoméh#’, mostly in the WE' =0 PedC) 8

context of kinetic Ising models. Due to the long-range inter- We adopt the following choice of transition rategC

actions between ions in our electrostatic model, the usualC’):

implementation of KMC for Ising-like models is inefficient,

- > W(C — C)P(C,t) + >, w(C' — C)P(C' 1),

c’ c’

(17
B. Kinetic Monte Carlo method for long-range interactions

] . (18

with the acceptance rates of events becoming very low. We W, = exp(AulkgT) (19)
developed a modified sampling algorithm to make the simu-
lation practical for this model. Here we briefly outline the We = exfd— AEg(C)/KsT], (20)

g:?ccri:)h:%ﬁ“fnﬂ dﬁﬁg;ﬁg%ingnfgr tit]/((: Ifhl\g?;;?/t:notdi’ma']gr;heenr\]/vherewa andw, are the rates for adsorption and evaporation,
tation details 9 P respectively, of an adatom. It can be verified straightfor-

In the KMC simulation, the dynamics of the system is wardly that this choice indeed satisfies Efg). The ratew,

described as stochastic processes such as adsorption evafor_an adatom of chargg,, to evaporate from the surface
; e pr . ption, 88pends on the change in total potential energy in the crystal,
ration, and surface migration. We consider only the first two

in our simulation. As mentioned, the adatoms represent the qr

B-site ions in the single-crystal perovskite alloy. They are AEg(C) =Eg(C') - Eg(C) = ;2 qu(’=1). (21
characterized entirely by their charges and they interact with !

each other by the interaction described above. We emphasize that the choice of the transition rates is not

In the grand-canonical ensemble, the Hamiltonian thaynique and can affect the dynamics in the KMC simulation.
will be used in the growth simulations can then be expressegh the absence of additional knowledge, the choice outlined
in term of Eq.(4) as above is a reasonable approximation and is commonly used.

- It is important, however, to keep in mind the somewhat arti-

H(C) =Bg(C) + AuN, (14) ficial nature of the dynamics in KMC. This is also related to
whereN is the total number of adsorbed adatoms. The electhe issue of “time” in KMC, which we comment on at the
trostatic energy term in the Hamiltonian is responsible forend of this section.
evaporation, while the second term, which depends on the For kinetic Ising models, the algorithm of BRlallows an
chemical potential difference between the solid and the gasfficient stochastic realization of the kinetic process under
phases, controls the rate in which adatoms stick on the suthe choice in Eqg19) and(20). In this algorithm, a sitéi, j)
face. The growth simulation is then characterized by competis selected randomly in each step at the surface of the grown
ing adsorption and desorption events. The SOS restrictionrystal. An event is then selected by Monte Carlo sampting
imposed in the simulation prevents the formation of vacanfrom the list of three possible eventgdsorption, evapora-

cies and allows us to writel as tion, nothing. The interaction in Ising-type models is limited
to near neighbors, and the energy differedég(C) is com-
H(C) =Eg(C) + A by, (15  pletely determined by thiecal environment at sitéi, j). The

g global maximum ofw, i.e., the minimum possible energy
whereh; is the number of layers in the present crystal con-change, AE™=min[AEg(C)], can be obtained straightfor-
figuration at the horizontal positiom, +jas. wardly by considering all possible local configurations. This

In KMC, the time evolution of the system is simulated gives a corresponding global maximum of the evaporation
through a Markov chain of configurations. Let us definerates: wy®=exp(—~AE™"/kgT), which defines a normaliza-
P(C,t) as a time-dependent distribution of configurations.tion factor,
The transition rate fron€ to C’, a crystal configuration re- _ ax
lated toC by a single time step, is de%oted M/Cg—> C’). We W= wy + wg'™. (22)
then have the usual master equatidn, The relative probabilities for the three events are therefore
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W, W, !
{Pazv—c‘,PeEﬁ,Pnsl—Pa—Pe}. (23 .
With the electrostatic model, however, the energy change o1 f Q,:
in Eq. (20) depends on thentire configurationC. It is there- 7y f e—oxT=005
fore difficult to determine the global minimunE™". In- S 2 I S
deed, even ifAE™" could be identified, the energy change i B b T = 10
AEg(C), which can vary greatly witfC and the simulation -30r + ook T=14
cell size, would be much greater thaE™" for most con- . Bt eT=24
figurations. This would cause the evaporation and adsorption B i
probabilities P, and P, to be small, withP,, approaching = ¢
unity. As a result, the acceptance rate of events becomes -2.5 -L5 ;0-5 05 L5
1

small, and the algorithm becomes ineffective.

To overcome this difficulty, we modify the standard algo-
rithm so that allN=L; X L, surface sites are considersd
multaneouslyinstead of sweeping through the surface sitesSlab.

An event list is created which includes every possible event

for every possible surface site. This increases the algorithrstochastically, by rescalingty,c with a MC sampling from
complexity, because of the need to store and update an array exponential distribution which is determined by the nor-
of surface potentials, calculate the event list, and sample amalization factolW in each step.

event from this list. The advantage is that an event is guar-

anteed to take place in each step of the algorithm and that the

need for determiningAE™" is eliminated. Evaporation/ IIl. RESULTS

adsorption rates for all possible sites are normalized. The ] ]

sum of the probabilities for an adsorption or evaporation to We now present the results from our simulations for
occur at a surface site is unity. Specifically, the modifiedA(BB’)O3 andA(BB'B")O; crystals. Growth simulations are
algorithm consists of the following steps: presented in Sec. lll A. Growth rates are studied, and charge-

(i) Generate a listg, of all possible events per time step. charge correlation functions are calculated to measure the
There are R possible events: an evaporation or an adsorpdegree of growth order. The effects of varying the crystallo-
tion could happen on each of ti=L, X L, surface sites. graphic orientation of the slabs were explored, with the slabs

(i) Calculate the rategw) of adsorption and evaporation labeled according to the slab perpendicu@rdirection. In
for each site on the surface. Denote the total ratesvbyv ~ A(BB'B”)O; systems, a fraction of tetravaleBt' ions are
:E?Nwi. mixed in. In our growth simulations, these tetravalent ions do

(iii) Normalize these If rates byW, giving probabilities, ~not appear to mix at low temperatures, choosing instead to
P,, for adsorption and evaporation on site2, ..., N. phase-separate from the pure crystal. To further study this,

(iv) Generate a random numbee [0,1) and choose the Sec. lll B presents results of static total energy and free-
first events; which satisfie€£]_,P,=r. An event will always ~€nergy calculations for fixed slab configurations.

FIG. 1. Rocksalt growth rate vs chemical potential fo081]

be chosen.
(v) Generate the new configurati@i based on the cho- A. Crystal growth
sen event,.
(vi) Assign a “real time” incremenAt,,=-In(r’)/W to The growth process is a function of temperatliyehemi-

this MC step, where’ is another random number ¢, 1). cal potential differenceAu, and the Coulomb interaction.
The last step is a result of our considering the global evenThese parameters are fixed throughout a given simulation. As
list and forcing an event to occur in every step. The issue ofliscussed in Sec. Il A and in the Appendix, we tabulate
real “time” in a KMC simulation is a subtle one. Often the v(I'—I), and we will use reduced units in our simulations
Monte Carlo timetyc, is used as some measure of the realbelow. The energie§Au and Eg(C)] are scaled by¢
time. In the standard algorithm, the global normalization fac-=1/ea. There is only one free parameter betweeand the
tor W (defined byw[™) controls the overall rate of events temperaturgT, which sets the energy scale of the problem.
and sets a “time scale.” In our approacW/ is time- Below, we will give the temperaturksT in reduced units.
dependent, and an event is forced to happen in each stémr example, fora~8 a.u. ande~10 (typical values of
regardless of the total raM for the configuration at hand. BMN solid solutiong in Eq. (4), 1350 °C corresponds to
WhenW is low, an evaporation or adsorption is less likely to ksT=0.41 in the simulation.
happen but one is selected anyway. Conversely, Wives As an overview, Figs. 1 and 2 present a comparison of
high, an evaporation or adsorption is more likely to happersimulations of the simple 1j},V4, rocksalt alloy and a
but still only one is selected. This introduces a bias whichll 1,3V 5/3 heterovalent alloy such as BMNAII substrates in
should vanish in the limit of large system size but whichour simulations have neutral surface layeW¥e measure the
should be corrected for at finite. Based on the rate equa- growth rate of the crystal based on the KMC dynamicdf
tion, we assume an exponential relation between timevdnd adatoms are gained im MC steps(each defined as one
A step in whichW is high corresponds to a short time, and attempt at the procedure outlined in Sec. )| Bhe growth
vice versa. Stevi) is a way to account for this time scale rate is defined as
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0.5 z z

FIG. 2. BMN growth rate vs chemical potential for[411]
slab.

Ng

r=——(7F——". 24
W, Atyeafi) 2

Note that as defined, the growth rdtés renormalized by the 57
‘ #g> substrate
2

absorption rate. The growth rate is plotted as a function of 7
the chemical potential for a range of temperatures. The rock- i/
salt structure has layers of positive and negative charges al- F
ternating along th¢111] direction. It typifies the crystal or-
dering of a wide variety of materials, including some of the
perovskite alloys. Heterovalent binaries, described by
”1/2V| 1/2 (qB:iZ) or “|1/2V1/2 (qB:il), exhibit rocksalt
B-site chemical order. By contrast, in thg,4V,,;3 heterova- (@) b)
lent binary BMN, the equilibrium state shows11];., order-

ing of two layers of metal group Mg=+1) alternating with FIG. 3. Visualizations of grown BMN crystals. Shown are 6
one layer of the group (4 =-2) atom. Both the rocksalt and x 6 supercells witi{a) growth direction along001], ksT=0.1, and
BMN simulations were initialized with a 20-layer-thick slab, Ax=-1.0; (b) growth direction alond111], kgT=0.1, andAu=
with perfect[111],., and[111],., ordering, respectively. The -1.1.

rocksalt simulation used a 2D ¥212 supercell, while the

BMN simulations were done mostly with>66 supercells,  the location or ionic adversity is, and the growth rate will be
although some simulations with ¥212 and 15<15 were  high. Alternatively, if the temperature becomes too high, the
carried out to verify that the finite-size effects were small.crysta| will evaporate and result in negative growth.

The rocksalt structure simulations ran for 1080C steps, To examine the degree of ordering, we computed the
up to a maximum thickness of 100 layers. For BMN, charge-charge correlation function. The Fourier transform of
10 000.% MC steps were used, because for a given temperanis correlation function, which we will denote by(k),
ture andAu, growth was significantly slower. In Fig. 3, we gives the structure factor

show visualizations of the grown BMN crystals to illustrate

the simulation environment and the 1:2 order at low tempera- 7(K) = @, G exp(—ik -17), (25)
tures with slow growth. W

The two sets of curves in Figs. 1 and 2 are qualitatively . o )
similar. What is not evident from the figures, however, is the?Vherea is the normalization factor, arkdis the wave vector

degree of order in each simulation. For a given temperaturd” the Brillouin zone of the unit cell. The magnitude gfk)

as Au increases, the adsorption rate in E9) increases, ~characterizes thé-site order, e.g., a large value of at k

and adatoms are more likely to stick. For fixag, asksT ~ =(27/a@) (3.3.3) indicates a stronf111],; order while one
decreases, the adsorption rate will increase, but more impoat k=(27/a) (%,%,%) indicates a stron111],., order.

tantly, the “selectiveness” of evaporation will increase. A The growth ratd” and the charge-charge structure factor
lower kgT will, in effect, increase the energy differences be- n are plotted in Figs. 4—7. In each figure, the displayed range
tween competing configurations. The direct result, as growttof A was chosen to coincide with the range where the order
is concerned, will be that adatoms will increasingly prefer toparametern decreases from nearly unitperfect order to
have more instead of fewer neighbors with correct chargessentially zerddisordej. As Au increases, the adsorption
ordering (layer-by-layer growth versus rough growtrand rate increases, but the growth is disordered and there is
adatoms with the same charge will seem more repulsive. Fa@reater surface roughness. Indeed, there is only a limited
very highAu, adatoms will stick anywhere, no matter what range where ordered growth occurs. The grown crystal struc-

I>bsubstrate
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FIG. 4. Rocksalt growth rat€ of Eq. (24) (top panel and 1:1 FIG. 6. BMN growth rate and 1:2 order parameter vs chemical
order parameter] k=(27/a)(%,3,3)] (bottom panelvs chemical ~ potential. The temperature IgT=0.1. Other parameters are the

potential. The temperature kgT=0.1 and the growth direction is same as in Fig. 5.
[001]. A 12X 12 supercell is used, with 1000 MC time steps.

tral chargeq,=0, so sites occupied by Zr have zero interac-

tures are consistent with the observed ground-state configle~ - : ;
. ) i ion energy. As in the simulations of pure BMN systems, the
ration of rocksalt(Fig. 4) and BMN (Figs. 5-3. The most chemical composition determines the probabilities with

striking difference between the growth behaviors of roCks"“'(/vhich different charge species are adsorbed at the surface. In

SVNBMN IS th; tent%rr?o?s:[hreducﬂonltof tthetgrow_m rated.Ofthe initial substrate, tetravalent ions with the corresponding
compared 1o that of thé rocksalt structure. Three QiS4 ,caniration were incorporated, using random miximext

tinct regions can be seen in the figures. The first region hagectior). With a 1:2-ordered substrate, we studied concentra-
7~1, and the growth rate increases monotonically with in-. <" 1604 with temperatures df 'T~O 110 02 and

. . s . y B . Ly
creasingAu. The next is the transitional region whese varying the chemical potential, ~—-1.0 to —0.5. Very little

?ncorporation of the tetravalent ions occurred. We found

increases as a function dfu, while the BMN growth rate is similar results with an initially 1:1-ordered substrate

relatively constant. Also note that ag starts to decrease, (random-site model: see belpvwhere a wider range of

ther_e_ is an initial d_ecrease in the_ growth rate, likely du_e Qyas explored. Again, the order of the substrate was not suf-
additional evaporation of energetically unfavorable configu+isiens 16 jnduce the incorporation of tetravalent ions in the

rations. In rocksalt, S_UCh lonic adversity is I.ess pronouncgdgrowth phase. Instead, the system seemed to favor evaporat-
and consequently Fig. 4 shows only a slight hint of this

. . ] ing the adsorbed tetravalent ions more than the charged par-
change inl". In the last regiony~ 0. As Au increases, there 9 gedp

is a sudden onset of largérl, but the resulting crystals are ticles, to grow pure BMN.
disordered. :
We next attempted to model the growth of BMN-BZ B. Energy calculations
-X) (MgqsNby) +x Zr solid solutions. In the electrostatic ~ To further study the inability to incorporate tetravalent
Hamiltonian in Eq.(4), tetravalent Zr corresponds to a neu- ions at low temperatures, we examined the total energy per
particle gy of fixed slab configurations oB-site order. A

0.0010 phase-separated model, in which all the tetravalent adatoms
[~ 0.0005 BMN k,T =0.025 i 0.010
[ BMNk,T =02
) ; =
0.0000 . ~ 0005
1.0 i"ii_ig
: 0.000
= 05 % i 10 —7 %
0.0 i = 05 E
-10 038 06 04 kN
A kY
-1.25 -L15 -1.05 095
FIG. 5. BMN growth ratel’ of Eq. (24) (top panel and 1:2 Ap

order parameter] k=(27/a)(3,%,%)] (bottom panelvs chemical

potential. The temperature kgT=0.025 and the growth substrate  F|G. 7. BMN growth rate and 1:2 order parameter vs chemical
direction is[111]. A 6 X 6 supercell is used, with 300 000 MC time potential. The temperature iT=0.2. Other parameters are the
steps. same as in Fig. 5.
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291 : -0.5
4 -—-4 1:1 order Phase Separation model
2.9 & ——1# ]:] order Random Mixing model
: it LU — 1:2 order Random Mixing model
o0 1:2 order Phase Separation model
293 15 L PRSP
G? 204 wZ q;-a-{;éﬁ;;_;~=l=——f'l=—f—+— <ol
- -20 e
295
25 e
@
296 o
0.00 0.01 0.02 0.03 0.04 30
1/H 0 10 20 30
% x
FIG. 8. Total energy per particle f@-site[111];., ordering as a ) .
function of slab thickness H and slab crystallographic orientation. FIG. 9. TO_tél_l energy per particle vs tetravalent concentration
Each set has three barely distinguishable curves, corresponding f@r random-mixing and phase-separation models. Results are shown
three lattice sizes: 1212, 15x 15, and 18< 18. for [111];.,; and[111];., ordered 1% 12[001] slabs(H=200).

were situated in the outermost surface layers, was compard€ [111h» ordering, while random mixing is favored by
with various structural models that incorporated tetravalent111:.1 ordering. _ _ _

ions. In each model, the calculations were performed for two Figure 9 illustrates why the growth simulations failed to
different configurationaB-site orderings of the +2 and +5 mcorperate tetravalent ions at low temperature. In the elec-
ions (q=-2, +1, respectively These configurations were trostatic model, the 1:2 ordered state is the ground state and

the 1:1 and 1:2 layering alor{g11] directions, i.e.[111];, IS optimally ordered. The potential energy between any
and[111],., order, respectively. charge and all other charges in the system is negative. For
The [11'1]1:2 ordering corresponds to the=0 order of example, with an 1818 slab, this potential energy is

BMN, with a layer ofq=-2 alternating with two layers of ~=5.92 for a =2 cherge ane-1.48 for a +1 charge. Thus,
charge q=+1 along the[111] direction. We chose the replacing a chargéeither —2 or +] by a neutral tetravalent

[111],., ordering to correspond to the random-site maodel, ion in this state raises_the tqtal energy of the system, while a
which is observed in the BMN-BZ equilibrium simulations phase-separated configuration in which the tetravalent ion is
for x>0.051022 |n the random-site model, there af11] placed away from th_e ord_ered slab keeps the total energy
layers ofq,=+1 alternating with a mixed layer of charges unchanged. TB examine this more closely, we calculated the
q=-2,+1,0. Therandom-site model is meant to representfree'enerng_SN_TS)' wheresS is the mixing entropy due

the presence of short-randesite order from experimental to the incorporated tetravalent ions. Figure 10 plots the free

observations. No long-range ordering has been observe§Nergy as a fqnction of temperature for four concentrations
Nevertheless, in our simple model here we will fix the or- of tetravalent ions. The free energy of the phase-separated

deredq=+1 layers and choose the mixed layers to be a _,,
random mixture of(=2) 231 (+1)1/3)(1-20(0) 2x-

We first examine finite-size effects in Fig. 8, which plots
ey as a function of slab thickness for various 2D supercells , ~
containing no tetravalent ions, fpt11];., ordering. Results -24
for [001] and[111] slabs are shown, both of which corre- -28 1
spond to neutral surface layers. ABl— o, 8N~sﬁ
+constH, as expected, where the constaﬁtrepresents the
average bulk value and is the slab thickness. We have also
studied the size effects when tetravalent ions are mixed in (a) (b)
randomly, and found similar behaviors.

Figure 9 plotsey as a function of tetravalent concentra-
tion x for random-mixing and phase-separation models,
showing results fo{111],.; and [111];., ordered 1212
[001] slabs(H=200. For the phase-separation model, the =
total number of ions includes the outermost layers of tetrava-
lent ions. Atx=0, the 1:2 ordered crystal has a lower energy
than the 1:1 ordered crystal, which is consistent with our 25705 70 15 20 25 30 200 05 10 15 20 25 30

=32 -32
00 05 10 15 20 25 30 00 05 10 15 20 25 30
k,T kT

results from the growth simulation and with the observed kT kT
ground-state configuration of pure BMN. For random mix- (c) (d)

ing, ey increases linearly witl for [111];., ordering while it

is essentially independent affor [111],., ordering. In the FIG. 10. Free energy of BMN crystal f¢s) 10%, (b) 15%, (c)

phase-separation model, increases linearly for both order- 20%, and(d) 25% tetravalent concentrations. Symbols have the
ings. These results show that phase separation is favored feame meaning as in Fig. 9.

224101-8



KINETIC MONTE CARLO SIMULATIONS OF CRYSTAL.. PHYSICAL REVIEW B 71, 224101(2005

1:2 ordered slabs is constant in our model, because it is pehavior, hypothesized that the 1:1 ordered regions arose from
fectly ordered and has vanishing entropy. The free energy o rocksalt ordering of the -2 and +1 B-site charges, implying
the phase-separated 1:1 ordered slabs decreases with increeldarge-imbalanced 1:1 domains. The apparently limited size
ing temperature, despite the perfectly ordered outmost laye@f these domains could be explained by the rapidly increas-
of tetravalent ions, due to the mixing entropy of the randoming energy of larger domains due to Coulomb repulsion.
layers with =2, +1, and 0 charges. In all cases in Fig. 10, th&Vith careful annealing at much higher temperatures than had
phase-separated 1:2 ordered slabs have the lowest free difgviously been tried, however, some fully 1:1 ordered crys-

ergy at low temperatures, where ordered crystal growth oci&lS were synthesizet. Our calculations show that long-
curs in our simulations, but at temperatures betwigh range ionic interactions favor the growth of disordered crys-
' -)g_als, and ordering occurs only after annealing. Moreover,

ionic interactions appear to favor the 1:2 ordering. However,
entropic contributions to the free energy and short-range co-
valent interactions tend to favor 1:1 ordering. Covalent bond-
IV. DISCUSSION ing is negligible for Ba ions but very important for Pb ions.

There are striking differences between the growth behav--rhus there is a delicate competition between 1:2 and 1:1

ior of the Ill,,Vy, rocksalt ordered structure and the ordering for doping with small concentrations of the tetrava-

lent ions in(1-x) BMN-xBZ and (1-x) PMN-x PT. In (1
I11,5V13 BMN structure. The ordered rocksalt structure —x) BMN-XBZ, there is a crossover from 1:2 to 1:1 ordering

forms over a wide range afu (absorption ratgsas shown — aqy increases to about 5%. While it -x) PMN-x PT, the

in Fig. 4. By contrast, ordering of the 1:2 structure in BMN- gonger short-range covalent bonding of Pb favors 1:1 or-
type crystals is more difficult to achieve experimentafy’ dering at all concentrations.

When thes_e materials are initially synthesized, they _crystal- For pure systems, our minimal paradigm for growth simu-
lize in a disordered structure. With extended annealing, thgytions captures the differences in growth rate and ordering
1:2 structure is approachédAs discussed by Daviest peqween rocksalt-type and BMN-type crystal growth. This
al.? the initial synthesis and processing are controlled byingicates that the simple ionic model is a reasonable starting
irreversible kinetic processes rather than by thermodynamigoint for describing the growth of perovskite solid solutions.
factors, and a more correct description of the formation ofyiore direct and quantitative comparisons with experiment
the 1:2 ordered structures is in terms of the nucleation ang; require additional ingredients such as short-range inter-
growth of small ordered domains with increasing annealingyctions and the inclusion of diffusive processes.
time and temperature. Eventually large 100 nm 1:2 or- For systems with tetravalent ions, our results show that
dered domains are observ&d The need for long annealing the ground state is a phase-separated state of tetravalent ions
times is consistent with our simulations. FigureS 5-7 ShOV\énd 1:2 ordered BMN over a wide range of tetravalent com-
that the range ofAx where ordered 1:2 growth occurs nar- positions. On the other hand, equilibrium simulations of the
rows as the temperature increases fikgfi=0.025t0 0.2. In  jonjc modet®22 suggest that for>0.05, the 1:1 ordering is
this range, the growth rate is approximately constant as greferred, with no phase separation. Several factors distin-
function of Au. Moreover, when ordered crystal growth oc- guish these calculations, which likely have to do with the
curs, the BMN growth rate is much smaller than that of theapparent contradiction in their observations. The first is the
rocksalt structure at the same temperature. Highly ordereglifference in the nature of the simulations. In our growth
growth was possible in the BMN simulations but requiredsjmulation, tetravalent ions are allowed to evaporate from the
low temperatures and a delicate balance with the chemicarystal, which facilitates phase separation. The equilibrium
potential. Neither of these requirements is likely to be mefca|culations were done in the canonical ensemble with the
under experimental synthesis conditions. At temperaturegetravalent ions mixed in, where it is more difficult to detect
corresponding to the actual sintering temperature of BMNphase separation without large simulation cell sizes. Our
(kgT~0.5), large growth rates can be achieved, as shown ijmuylations were at lower temperatures where ordered
Fig. 2, but the growth is highly disordered. The long annealgrowth could be induced by tuning the chemical potential
ing times allow the slow formation of the 1:2 ordered re- Au (absorption rate At these temperatures, the system is
gions. In our KMC simulations, diffusion processes are ex-essentially in the ground state, as Fig. 3 shows. Incorporation
cluded so there can be no annealing. We also note that th§f tetravalent ions could be induced at larges, which is
growth rate was sensitive to the slab orientation. For exexpected as adsorption dominates evaporation, but in this
ample, we found that the growth rate along fié1] direc- case random growth occurs. Secondly, since [duirl]; .
tion was almost an order of magnitude larger than that alongtructure is an artificial model aandom mixingof -2, +1,
[001], while growth with charged surfaces aloftll] was and neutral charges in one layer and perfectly ordered +1 in
extremely slow. another, its energy must be higher than the actual 1:1 struc-
Our results are also qualitatively consistent with the longture achieved in the equilibrium simulations. This means that
experimental history of failed attempts to coarsen the 1:1he actual crossover of the random-mixirigL1],.; structure
ordered nanoscale domains in PMN-type crystals. Prior tovill occur at lower temperatures. Indeed, thgT~0.25
the experiments of Akbas and Daviésthe 1:1 ordered re- equilibrium calculations shoyl11];.; ordering for concen-
gions were apparently limited to nanoscale size and reprerationsx greater than about 0.05. Thus the absence of phase
sented only a small volume fraction of the crystal. Theseparation in the equilibrium calculations might be due to a
space-charge model, which was invoked to explain this belower free energy than our estimate in Fig. 10 from the arti-

ing models start to be favored.
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ficial random-site structure. Our results combined with thedevelop at the higher temperatures characteristic of realistic

equilibrium calculations therefore suggest the following pic-alloy synthesis.

ture of the equilibrium state of the ionic model. In the ground

state, phase separation takes placexfor0. Beyond some

x-dependent critical temperature, tetravalent ions are incor-

porated, most likely in a structure that favors 1:1 order. Support  from  ONR (N000149710049  and
To determine if the new phagphase separatigrat low ~ N000140110365 NSF(DMR-973404), and Research Cor-

temperatures that we have found is realistic for these alloysyoration are gratefully acknowledged. We would like to

the ionic model must be improved. One possibility is first-thank C. Tahan, T. J. Walls, and P. Larsen for enjoyable and

principles-basedHg, which have shown great promise in productive collaborations and for their contributions in the

describing ferroelectrics and simple solid solutiéhd.ike  early stages of this work.

the Ising model, thesk . project out what are considered to

be the most important ionic degrees of freedom. In addition

to the long-range Coulomb interaction, short-range interac-

tions are also included. The. parameters are fitted to the  ysjng the Ewald methotf1° the Coulomb potential is

results of a set of first-principles density-functional calcula-gptained in terms of a direct lattice sum and a 2D reciprocal-
tions, so there is effectively no experimental ingekcept [attice sum. As shown below using our Ewald construction,
sometimes the average crystal volymighe simplified form  the reciprocal-lattice surfsee Eq.(6)] will contain only G

of He for ferroelectrics and ferroelectric alloys has permit- -2 o contributions, and these are conveniently expressed in
ted simulations of equilibrium properties on thousands ofterms of the Green’s functiog for Eq. (7),

atoms as a function of temperature and applied external elec- .

tric field. A main difficulty in applying these in a growth , N
simulation is computatioyraal cops?,ywﬁich has typigally re- VG(Z):_47Tf_w G(z-2)pe(z)dz'.
quired fixed distributions of B-site ions even in equilibrium

simulations of solid solutions. In our kinetic Monte Carlo Physically meaningful results require that @Be 0 solutions
model, another possibly important factor that is not includedsatisfy lim,_...Vs(2)=0, which leads to the following unique
is surface diffusion. Coupled with the solid-on-solid restric- definition of theG+ 0 Green'’s function:

tion, the simulation is severely limited in its ability to “heal” NG ) -2
disorder, and these approximations may have contributed to G(z-7) = - [Hz-2Z)e +9(Z' - 2)¢ ]

low ordered growth rates and raised the critical temperature 2G '

for phase separation. Removal of these restrictions would (A2)
improve the model and increase its applicability.
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APPENDIX A: COULOMB POTENTIAL

(A1)

whereG=|G|. For any reasonably localized charge distribu-
tion pg(2), Egs.(Al) and(A2) result in well-behaved, expo-
V. SUMMARY nentially decaying solutions dfs(2) as|z| — .
We now describe our Ewald construction in more detail.
The growth of the technologically important BMN-type The potential is given as the sum of three terms,

perovskite alloys was studied by kinetic Monte Carlo simu-
lations using an ionic model. An enhanced KMC algorithm v(I" =D =vy(I" =D +va(I" = D) +ug(l"), (A3)
was formulated to treat Iong—rgr!ge Coulomb interactions efWhereul andu, are due top(r) and p,(r), respectively, in
f|C|entIy._V\_/e found _that this minimal paradigm was capabIeEq. (9), and v, is the correction for the interaction of the
of describing ordering features of the growth of pure BMN- L . . T
and PMN-type single crystals. The largest growth rates werB°INt charged; with its own Gaussian density.g(r -1") in

observed along thgl11] direction, but best ordered growth pall).

: bstantiallv | than th f rocksalt. Hiahl To calculatev,(l'-1), we place, for consistency, tH&
rates are substantially 1ess than those of rocksail. Highly orz, 0) g images at their vertical projections onto the plane of
dered growth was possible, but required very low temperafhe sublattice;(I' -1) is then given b
tures and a delicate balance with the chemical potential. For G V1 9 y

mixed systems such as BMN-BZ, we found that the0 erfo(\x’;“’ -1-R|)
ground state of the model was one in which tetravalent ions vl == q|2 I —I-R
phase separate from a 1:2 ordered pure system. As a result, R | |

little incorporation of tetravalent ions occurs in the growth erfo( @“, 7o R|)
process at low temperatures. At higher temperatures, tetrava- -q ! — .
lent ions can be incorporated, but the resulting crystals show R#0 II"=1"-R]

no chemical ordering. The tendency of the purely ionic . . L ) )
model to favor phase separation was further studied usin he mathematical form of this COI’ltrIbL_ItIOI’I is identical to its
free-energy calculations determined frofe 0 total energy =D counterpart, except that the sum is over 2D rather than
calculations and including a mixing entropy. This indicated3P direct-lattice vectorg. )

that, if diffusive mechanisms were included, chemical order- The 2D plane-wave expansion 5@" )(r) in Eqg. (13 is
ings consistent with those found in equilibrium studies couldgiven by

(A4)
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~1) e — o ) —a(z-1,)2
r)= € z
P2 (r) QI<7TA2

2 . . ’ .
2 e—G Ma[e"e'lap _ e—|G-Iap]e|G-rp,
G#0

(A5)

where we have used the fact tﬁ@tlz. Note that theG=0
term vanishes. Substituting into Eg\1) and using Eq(A2)
yields

vl =)= 2

7 —f(- iG-(l51p) —
e;&oAG[f(G) f(-G)Je™ P - 1],

(A6)

where

PHYSICAL REVIEW B 71, 224101(2005

2a||;—|z|+x>
col, 7 AT X
AN

Finally, the correction for the interaction of the point
chargeql’ with its own Gaussian density is given by

f(x) = e’z erfc( (A7)

erf(\Vall’ =1'|)
=T

As verified by direct calculation, the sum of these three
terms is independent of the parameter For efficiency,
v(l'-1) is stored as a look-up table.

vs(l") = (A8)
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