
Kinetic Monte Carlo simulations of crystal growth in ferroelectric alloys

Malliga Suewattana, Henry Krakauer, and Shiwei Zhang
Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA

sReceived 13 September 2004; revised manuscript received 21 January 2005; published 8 June 2005d

The growth rates and chemical ordering of ferroelectric alloys are studied with kinetic Monte CarlosKMCd
simulations using an electrostatic model with long-range Coulomb interactions, as a function of temperature,
chemical composition, and substrate orientation. Crystal growth is characterized by thermodynamic processes
involving adsorption and evaporation, with solid-on-solid restrictions and excluding diffusion. A KMC algo-
rithm is formulated to simulate this model efficiently in the presence of long-range interactions. Simulations
were carried out on BasMg1/3Nb2/3dO3 sBMNd-type materials. Compared to the simple rocksalt ordered struc-
tures, ordered BMN grows only at very low temperatures and only under finely tuned conditions. For materials
with tetravalent compositions, such ass1−xdBasMg1/3Nb2/3dO3+xBaZrO3 sBMN-BZd, the model does not
incorporate tetravalent ions at low temperature, exhibiting a phase-separated ground state instead. At higher
temperatures, tetravalent ions can be incorporated, but the resulting crystals show no chemical ordering in the
absence of diffusive mechanisms.
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I. INTRODUCTION

Ferroelectric crystals are known for their important tech-
nological applications, such as high-permitivity dielectrics,
piezoelectric sensors, transducers, and mechanical actuators.1

Recently, single-crystal relaxor perovskites such as
PbsZn1/3Nb2/3dO3-PbTiO3 sPZN-PTd and Pb
sMg1/3Nb2/3dO3-PbTiO3 sPMN-PTd were synthesized and
found to exhibit ultrahigh stain and very large piezoelectric
constants.2 The structure of alloys like PMN-PT can be
viewed as a perovskiteABO3 frameworksa cubic lattice for
the ideal perovskite crystald, with Pb ions on theA site and a
solid solution ofsMg+2,Nb+5,Ti+4d ions on theB sites, with
average +4B-site ionic charge. Of course this is an idealized
picture, neglecting vacancies, impurities, local structural dis-
tortions, and partial chemical ordering on theB sites.

Partial B-site chemical ordering is a common feature of
the high-piezoelectric solid solutions. While randomB-site
ordering is observed in isoelectronic solid solutions like
PbsZr1−xTixdO3 sPZTd, nonisoelectronicB-site solid solutions
AsBB8B9dO3, with B-site cations from group II, IV, and V,
often exhibit compositionally dependentB-site chemical or-
dering. At 1640 °C, when the tetravalent compositionx is
increased in s1−xd BasMg1/3Nb2/3dO3+x BaZrO3 sBMN-
BZd, the following sequence ofB-site ordering is observed:
f111g1:2 order for x,5%; then f111g1:1 order for 5%,x
,25%; and finally disorder for largerx.3 The f111g1:2 nota-
tion refers to x-ray observation of alternatingbbb8 f111g
stacking ofB sites, whereb andb8 denote average scattering
sites. For example, in BMN-BZ withx=0, one can identifyb
with Nb and b8 with Mg. The f111g1:1 notation refers to
x-ray observation of rocksaltlike alternatingbb8 f111g stack-
ing of B cations. In this case, the assignment of theb andb8
sites has been debated, as discussed below in connection
with the space-charge and random-site models.3 Other
Ba-based perovskites, e.g., s1−xd BasMg1/3Ta2/3dO3

+x BaZrO3 sBMT-BZd,3 s1−xd BasMg1/3Nb2/3dO3

+xBaZrO3 sBMN-BZd,4 display a similar sequence ofB-site

order. On the other hand, for Pb-based systems, e.g.,s1
−xd PbsMg1/3Ta2/3dO3+x PbZrO3 sPMT-PZd, f111g1:2 order
is not observed atx=0; instead, annealing between 1325 and
1350 °C results inf111g1:1 order all the way down tox=0.5,6

Other Pb-based perovskites, e.g., PbsMg1/3Nb2/3dO3

sPMNd,7,8 display similarB-site ordering.
Since their discovery, growing large single crystals has

been a major research goal, but this effort has been largely
unsupported by theory, because of the difficulty in modeling
and simulating the nonequilibrium processes occurring in
nucleation and crystal growth in such complex materials. In
this paper, we use kinetic Monte Carlo9 simulations of a
simple effective Hamiltonian to model the growth process of
these ferroelectric crystals.

Given the ionic character of these materials, it is not sur-
prising that the inclusion of Coulomb interactions has been
found to be crucial in describing their properties. A simple,
purely electrostatic model introduced by Bellaiche and
VanderbiltsBVd10 has had considerable success in explaining
the observed equilibriumB-site chemical ordering in many
perovskite alloys. The BV model only considers Coulomb
interactions between point chargess+2, +5, +4, etc., repre-
senting the different atomic speciesd that reside on theB
sites, which are constrained to lie on an ideal cubic sublat-
tice.

This electrostatic model is the starting point of our growth
simulations. Simplified models based on Ising-like effective
HamiltoniansHeff have been used to model growth in sim-
pler systems.11,12 These models often have only short-range
interactions. To adapt the electrostatic model of BV to study
crystal growth, we consider a slab geometry with periodic
boundary conditions in two dimensions only. The slab is
viewed as being embedded in a liquid-phase melt, which is
parametrized by a chemical potential difference with the
solid bulk phase. In our simulations, a solid-on-solidsSOSd
restriction is imposed, which requires that adsorption only
occur onto empty lattice sites directly above an occupied
site, so void formation is neglected. In keeping with the sim-
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plicity of the model, diffusion in the bulk and at the surface
is also neglected.

The nonequilibrium dynamics of the growth process is
modeled using the kinetic Monte CarlosKMCd method.13

The KMC algorithm introduced by Bortz, Kalos, and Leb-
owitz sBKL d9 has been quite successful in simulating crystal
growth in Ising-like models with short-range interactions be-
tween adatoms. We generalize the algorithm to efficiently
handle the long-range interactions in the BV model.

In this paper, we study the properties of this minimal
paradigm of the growth process to determine if it can yield
insights into the physics of the observedB-site chemical or-
dering. Section II presents our theoretical approach. The
model of BV is reviewed, and our adaptation of it for the
growth modeling is discussed, including the special handling
of electrostatic interactions during the growth process. Our
generalization and modification of the KMC algorithm are
then described, which allows efficient treatment of the long-
range Coulomb interactions. Section III presents the results
of our growth simulations forAsBB8dO3 and AsBB8B9dO3

crystals. To help understand our growth results for the latter
systems, where astypically smalld fraction of tetravalentB9
ions are mixed in, we also carry out total energy calculations
to study their stability. Finally, in Sec. IV we further discuss
our results and prospects for the model. In the Appendix, we
include some technical details on the treatment of the long-
range interactions in our simulations. A preliminary account
of part of this work has already appeared.14

II. THEORETICAL APPROACH

At each stage of the simulation, the crystal is modeled as
a slab of finite thickness. However, it is convenient to index
the allowedB sites as in an infinite three-dimensional crystal
lattice,

l = ia1 + ja2 + ka3. s1d

Two-dimensionals2Dd periodic boundary conditionssPBCd
are employed along thea1 and a2 directions, which define
the x-y Cartesian plane, using anL1a13L2a2=A13A2 2D
supercell. Growth proceeds along thez direction. The simu-
lation is initialized as a slab of uniform thicknessH0a3, with
a predefinedB-atom configuration. A given simulation is ter-
minated when either the maximum slab thickness or the
maximum number of Monte CarlosMCd time steps is
reached. We use the notationL3L3Hmax to label a particu-
lar simulation, whereHmax is the number of layers for maxi-
mum slab thicknesssthe initial substrate includedd.

The solid-on-solidsSOSd restriction that we impose does
not allow the formation of voids. The crystal configuration,
C, is specified at each stage of the simulation by the set of
occupied sitesl =si , j ,kd and their chargesql. The BV elec-
trostatic model cannot be directly used in this slab geometry,
due to ill-defined electrical boundary conditions in thez di-
rection and the lack of exact charge neutrality during the
growth simulation. Section II A describes how we handle
these issues. Similarly, a direct application of the KMC al-
gorithm is inefficient due to the long-range Coulomb inter-
action. Section II B describes the KMC method and our
modifications to make it applicable to the model.

A. The electrostatic model

The BV model is derived by considering the total electro-
static energy for anAsBB8B9dO3 compound,

EsCd = o
slt,l8t8d

QltQl8t8

euRlt − Rl8t8u
, s2d

where Rlt is the position of the ion on sitet
s=A,B,O1,O2,O3d in cell l, ande is the dielectric constant.
For a given Bravais lattice,e sets the energy scale. We con-
sider the perovskite structure with group IIA-site atoms
se.g., Ba,Pbd, so the charges on theA and O sites have fixed
values of +2e and −2e, respectively. Since the averageB-site
charge is +4e, it is convenient to express the charges on the
B sites,Ql,B, as

Ql,B = 4e+ ql . s3d

Up to a constant, the configurationally averaged electrostatic
energy depends only on theB-site charges, since the configu-
rational average ofql is zero,

EBsCd =
1

ea
o
sl,l8d

qlql8

ul − l8u
, s4d

where we have for simplicity restricted ourselves in Eq.s4d
to a cubic Bravais lattice with lattice parametera, and RlB
= la. In this model, each celll is therefore reduced to a single
lattice site with chargeql, and the energy of the compound is
given by the intersite Coulomb interaction.

The long-range Coulomb interaction must be treated with
care in a bulk simulation to ensure proper convergence. For
2D and 3D simulations with periodic boundary conditions,
the method of Ewald is often used, in which periodic images
of the charges and neutralizing background charges are
introduced15–19 so that the bare Coulomb form 1/ul − l8u is
replaced with a reduced formvsl − l8d. For our growth simu-
lations, we are dealing with a slab geometry with PBC only
in two dimensionssx-yd. Some modifications are required
before the Ewald method can be applied.

In the simulations, we will need to calculate the energy
change from Eq.s4d due to the evaporation of a charged ion
ql8 at the surface of the crystalfsee Eq.s21d belowg. The
distribution of point charges thatql8 “sees” can be described
by the charge density

rsrd = o
l

o
R

qldsr − l − Rd, s5d

wherel runs through the position vectors of the atoms within
the simulation cell, andR is a 2D Bravais supercell lattice
vector: R=n1A1+n2A2. Directly summing the Coulomb po-
tentials of the individual point charges,Vsr − l −Rd=ql / ur − l
−Ru, leads to an ill-defined and conditionally convergent re-
sult, as is well known. However, for three-dimensional peri-
odic boundary conditions, a unique solution of Poisson’s
equation existssfor an electrically neutral systemd, and it is
conveniently calculated using Ewald’s method. Subject to
some additional, physically motivated conditions, a unique
solution can also be found for finite thickness slabs that are
infinite in extent along two spatial directions.
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Solutions of Poisson’s equation,¹2Vsrd=−4prsrd, in our
simulations are subject to 2D PBCVsr +Rd=Vsrd, as is the
charge densityrsrd. The 2D PBC imply thatVsrd and rsrd
can be expanded as

rsrd = o
G

rGszdeiG·rp,

Vsrd = o
G

VGszdeiG·rp, s6d

whereG is a 2D supercell reciprocal-lattice vector andrp is
the x-y component ofr, rp=r −sr ·ẑdẑ= ia1+ ja2. Substitution
of Eqs.s6d into Poisson’s equation yields

d2VGszd
dz2 − G2VGszd = − 4prGszd, s7d

If there are any ill-defined contributions to the Coulomb
potential, they must arise from theG=0 solution in Eq.s7d.
This is because only theG=0 term of rsrd in Eqs.s6d con-
tributes to the net slab charge. In addition, even if the slab is
electrically neutral, there may still be a net dipole momentD,
which would lead to different asymptotic values of the Cou-
lomb potential atz= ±`. Again, D also depends only on the
G=0 term of rsrd, where

D ; E
−`

`

zr̄szddz, s8d

and r̄szd=rG=0szd. As adatoms are adsorbed or atoms evapo-
rate in the course of the growth simulations, the net charge
will fluctuate so that the total charge in the simulation super-
cell will not be precisely zero at each stage of the simulation.
Similarly, a net dipoleD may form. However, in a real
growth process there are always compensating charges that
will cancel any ill-defined long-range effects due to the lack
of charge neutrality or the presence of a dipole moment. In
our calculations, we simulate this by a construction that en-
sures thatrG=0szd always represents a neutral charge distri-
bution with D=0. This leads to well-defined boundary con-
ditions limuzu→` V0szd=0.

As in the 3D Ewald method, a diffuse localized charge
densitygsrd is added and subtracted to each point charge to
facilitate the decomposition of the potential into absolutely
convergent direct- and reciprocal-lattice sums,

rsrd = o
l

o
R

qlfdsr − l − Rd − gsr − l − Rdg

+ o
l

o
R

qlgsr − l − Rd

; r1srd + r2srd. s9d

The diffuse charge densitygsrd is chosen to be a normalized
spherically symmetric Gaussian, as in the 3D Ewald method,

gsrd ; Sa

p
D3/2

e−ar2
, s10d

where the value of the Ewald convergence parametera is
arbitrary, but is usually chosen to optimize the convergence

of both the direct- and reciprocal-lattice sums. The integrated
charge ofr1srd is zero by construction, as is its dipole mo-
ment D, so its contributionV1srd to the Coulomb potential
can be obtained by a rapidly convergent direct-lattice sum,
given in the Appendix.

On the other hand, the procedure for calculating the Cou-
lomb potentialV2srd due tor2srd requires special handling.
At each sitel8 in the unit cell, the potentialV2sl8d is effec-
tively computed as arising from the truer2srd plus an addi-
tional artificial density chosen to keep the slab neutral and
cancel its dipole moment. We implicitly construct this artifi-
cial density by introducing two approximations, described
below, into the usual Ewald method.V2sl8d is due tosid the
l Þ l8 Gaussian charge densities and their periodic images
qlgsr − l −Rd, andsii d the periodic imagesql8gsr − l8−Rd. fAs
in the 3D Ewald method, a spurious interaction of the point
chargeql8 with its own Gaussian densityql8gsr − l8d is explic-
itly removed later.g Alternatively, the contributionsii d above
due to thel8-sublattice Gaussian images can be replaced by
the sum of Gaussian imagessiiad −qlgsr − l8−Rd. Note the
replacement ofql8 by −ql on the l8 sublattice. These two
formulations are equivalent in a bulk crystal simulation with
3D PBC and a neutral simulation cell, since the integrated
total charge vanishes,

o
lÞl8

− ql = ql8. s11d

In the 2D slab geometry of our growth simulations, this
will not be the case in general. Overall charge neutrality is
still satisfied in a statistical sense, however. Our procedure
for calculating V2srd consists of two approximations. The
first approximation is to use formulationsiiad above. Re-
grouping the sums, the approachsiiad can alternatively be
viewed as saying that the contribution of eachqlgsrd sublat-
tice to V2sl8d is to be calculated as the potential due to the
charge density,

r2
sl,l8dsrd = qlo

R
fgsr − l − Rd − gsr − l8 − Rdg. s12d

Since the integrated charge ofr2
sl,l8dsrd is zero, the use of this

approximation effectively imposes overall charge neutrality
at each stage of the growth simulation.

The boundary conditions are still ill-defined however,

since the sum of sublattice potentials due to ther2
sl,l8dsrd may

still have a dipole momentD. We therefore introduce a sec-
ond approximation: the Gaussian image densities −qlgsr − l8
−Rd are made coplanar with theqlgsr − l −Rd sublattice. In
other words, the Gaussian densities −qlgsrd are placed at
positions that are the projections of theql8 image positions
onto the plane defined by theql sublattice. In place of Eq.
s12d, the contribution of eachqlgsrd sublattice is thus calcu-
lated as the potential due to the charge density,

r̃2
sl,l8dsrd = qlo

R
fgsr − l − Rd − gsr − l̃8 − Rdg, s13d

where l̃8 denotes the projection of the positionl8 onto
the plane defined by theql sublattice. The charge density
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r̃2
sl,l8dsrd has a rapidly convergent expansion in terms of 2D

plane waves given by Eq.s6d. Moreover, theG=0 contribu-

tion of r̃2
sl,l8dsrd vanishes, so the Coulomb potentialV2srd is

readily found using the equations given in the Appendix.
These two approximations ensure overall average-charge
neutrality and vanishing dipole momentD=0, resulting in a
well-defined Coulomb potential at each stage of the growth
simulation. Complete formulas for the potentialvsl8− ld are
given in the Appendix.

B. Kinetic Monte Carlo method for long-range interactions

The kinetic Monte CarlosKMCd method is one of several
simulation techniques commonly employed to model the re-
laxation processes of systems away from equilibriumse.g.,
growth processesd. It has been applied successfully to crystal
growth and surface/interface phenomena,13,20 mostly in the
context of kinetic Ising models. Due to the long-range inter-
actions between ions in our electrostatic model, the usual
implementation of KMC for Ising-like models is inefficient,
with the acceptance rates of events becoming very low. We
developed a modified sampling algorithm to make the simu-
lation practical for this model. Here we briefly outline the
basic theoretical background for the KMC method, and then
describe our modifications and give the relevant implemen-
tation details.

In the KMC simulation, the dynamics of the system is
described as stochastic processes such as adsorption, evapo-
ration, and surface migration. We consider only the first two
in our simulation. As mentioned, the adatoms represent the
B-site ions in the single-crystal perovskite alloy. They are
characterized entirely by their charges and they interact with
each other by the interaction described above.

In the grand-canonical ensemble, the Hamiltonian that
will be used in the growth simulations can then be expressed
in term of Eq.s4d as

HsCd = EBsCd + DmN, s14d

whereN is the total number of adsorbed adatoms. The elec-
trostatic energy term in the Hamiltonian is responsible for
evaporation, while the second term, which depends on the
chemical potential difference between the solid and the gas
phases, controls the rate in which adatoms stick on the sur-
face. The growth simulation is then characterized by compet-
ing adsorption and desorption events. The SOS restriction
imposed in the simulation prevents the formation of vacan-
cies and allows us to writeH as

HsCd = EBsCd + Dmo
i,j

hij , s15d

wherehij is the number of layers in the present crystal con-
figuration at the horizontal positionia1+ ja2.

In KMC, the time evolution of the system is simulated
through a Markov chain of configurations. Let us define
PsC,td as a time-dependent distribution of configurations.
The transition rate fromC to C8, a crystal configuration re-
lated toC by a single time step, is denoted bywsC→C8d. We
then have the usual master equation,20

]PsC,td
]t

= − o
C8

wsC → C8dPsC,td + o
C8

wsC8 → CdPsC8,td,

s16d

where the first term on the right describes the loss because of
transitions away fromC, while the second term describes the
gain because of transitions intoC. In the equilibrium limit
sas t→`d, the Boltzmann distribution

Peq= Z−1 expF− HsCd
kBT

G s17d

is reached, wherekB is the Boltzmann constant. We require
that detailed balance be satisfied,

wsC → C8d
wsC8 → Cd

=
PeqsC8d
PeqsCd

= expFHsC8d − HsCd
kBT

G . s18d

We adopt the following choice of transition rateswsC
→C8d:

wa = expsDm/kBTd s19d

we = expf− DEBsCd/kBTg, s20d

wherewa andwe are the rates for adsorption and evaporation,
respectively, of an adatom. It can be verified straightfor-
wardly that this choice indeed satisfies Eq.s18d. The ratewe
for an adatom of chargeqt8 to evaporate from the surface
depends on the change in total potential energy in the crystal,

DEBsCd = EBsC8d − EBsCd =
ql8

ea
o

l
qlvsl8 − ld. s21d

We emphasize that the choice of the transition rates is not
unique and can affect the dynamics in the KMC simulation.
In the absence of additional knowledge, the choice outlined
above is a reasonable approximation and is commonly used.
It is important, however, to keep in mind the somewhat arti-
ficial nature of the dynamics in KMC. This is also related to
the issue of “time” in KMC, which we comment on at the
end of this section.

For kinetic Ising models, the algorithm of BKL9 allows an
efficient stochastic realization of the kinetic process under
the choice in Eqs.s19d ands20d. In this algorithm, a sitesi , jd
is selected randomly in each step at the surface of the grown
crystal. An event is then selected by Monte Carlo sampling21

from the list of three possible events,hadsorption, evapora-
tion, nothingj. The interaction in Ising-type models is limited
to near neighbors, and the energy differenceDEBsCd is com-
pletely determined by thelocal environment at sitesi , jd. The
global maximum ofwe, i.e., the minimum possible energy
change,DEmin=minfDEBsCdg, can be obtained straightfor-
wardly by considering all possible local configurations. This
gives a corresponding global maximum of the evaporation
rates: we

max=exps−DEmin/kBTd, which defines a normaliza-
tion factor,

W; wa + we
max. s22d

The relative probabilities for the three events are therefore
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HPa ;
wa

W
,Pe ;

we

W
,Pn ; 1 − Pa − PeJ . s23d

With the electrostatic model, however, the energy change
in Eq. s20d depends on theentireconfigurationC. It is there-
fore difficult to determine the global minimum,DEmin. In-
deed, even ifDEmin could be identified, the energy change
DEBsCd, which can vary greatly withC and the simulation
cell size, would be much greater thanDEmin for most con-
figurations. This would cause the evaporation and adsorption
probabilities Pa and Pe to be small, withPn approaching
unity. As a result, the acceptance rate of events becomes
small, and the algorithm becomes ineffective.

To overcome this difficulty, we modify the standard algo-
rithm so that allN=L13L2 surface sites are consideredsi-
multaneously, instead of sweeping through the surface sites.
An event list is created which includes every possible event
for every possible surface site. This increases the algorithm
complexity, because of the need to store and update an array
of surface potentials, calculate the event list, and sample an
event from this list. The advantage is that an event is guar-
anteed to take place in each step of the algorithm and that the
need for determiningDEmin is eliminated. Evaporation/
adsorption rates for all possible sites are normalized. The
sum of the probabilities for an adsorption or evaporation to
occur at a surface site is unity. Specifically, the modified
algorithm consists of the following steps:

sid Generate a list,E, of all possible events per time step.
There are 2N possible events: an evaporation or an adsorp-
tion could happen on each of theN=L13L2 surface sites.

sii d Calculate the ratesswd of adsorption and evaporation
for each site on the surface. Denote the total rates byW: W
=oi

2Nwi.
siii d Normalize these 2N rates byW, giving probabilities,

Pi, for adsorption and evaporation on sites1,2, . . . ,2N.
sivd Generate a random numberr P f0,1d and choose the

first eventEi which satisfiesok=1
i Pkù r. An event will always

be chosen.
svd Generate the new configurationC8 based on the cho-

sen eventEi.
svid Assign a “real time” incrementDtreal=−lnsr8d /W to

this MC step, wherer8 is another random number onf0, 1d.
The last step is a result of our considering the global event

list and forcing an event to occur in every step. The issue of
real “time” in a KMC simulation is a subtle one. Often the
Monte Carlo time,tMC, is used as some measure of the real
time. In the standard algorithm, the global normalization fac-
tor W sdefined bywe

maxd controls the overall rate of events
and sets a “time scale.” In our approach,W is time-
dependent, and an event is forced to happen in each step
regardless of the total rateW for the configuration at hand.
WhenW is low, an evaporation or adsorption is less likely to
happen but one is selected anyway. Conversely, whenW is
high, an evaporation or adsorption is more likely to happen
but still only one is selected. This introduces a bias which
should vanish in the limit of large system size but which
should be corrected for at finiteL. Based on the rate equa-
tion, we assume an exponential relation between time andW.
A step in whichW is high corresponds to a short time, and
vice versa. Stepsvid is a way to account for this time scale

stochastically, by rescalingDtMC with a MC sampling from
an exponential distribution which is determined by the nor-
malization factorW in each step.

III. RESULTS

We now present the results from our simulations for
AsBB8dO3 andAsBB8B9dO3 crystals. Growth simulations are
presented in Sec. III A. Growth rates are studied, and charge-
charge correlation functions are calculated to measure the
degree of growth order. The effects of varying the crystallo-
graphic orientation of the slabs were explored, with the slabs
labeled according to the slab perpendicularszd direction. In
AsBB8B9dO3 systems, a fraction of tetravalentB9 ions are
mixed in. In our growth simulations, these tetravalent ions do
not appear to mix at low temperatures, choosing instead to
phase-separate from the pure crystal. To further study this,
Sec. III B presents results of static total energy and free-
energy calculations for fixed slab configurations.

A. Crystal growth

The growth process is a function of temperatureT, chemi-
cal potential differenceDm, and the Coulomb interaction.
These parameters are fixed throughout a given simulation. As
discussed in Sec. II A and in the Appendix, we tabulate
vsl8− ld, and we will use reduced units in our simulations
below. The energiesfDm and EBsCdg are scaled byj
;1/ea. There is only one free parameter betweenj and the
temperaturekBT, which sets the energy scale of the problem.
Below, we will give the temperaturekBT in reduced units.
For example, fora,8 a.u. ande,10 stypical values of
BMN solid solutionsd in Eq. s4d, 1350 °C corresponds to
kBT=0.41 in the simulation.

As an overview, Figs. 1 and 2 present a comparison of
simulations of the simple III1/2V1/2 rocksalt alloy and a
II 1/3V2/3 heterovalent alloy such as BMN.sAll substrates in
our simulations have neutral surface layers.d We measure the
growth rate of the crystal based on the KMC dynamics. IfNG
adatoms are gained inm MC steps seach defined as one
attempt at the procedure outlined in Sec. II Bd, the growth
rate is defined as

FIG. 1. Rocksalt growth rate vs chemical potential for af001g
slab.
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G =
NG

waoi=1

m
Dtrealsid

. s24d

Note that as defined, the growth rateG is renormalized by the
absorption rate. The growth rate is plotted as a function of
the chemical potential for a range of temperatures. The rock-
salt structure has layers of positive and negative charges al-
ternating along thef111g direction. It typifies the crystal or-
dering of a wide variety of materials, including some of the
perovskite alloys. Heterovalent binaries, described by
II 1/2VI1/2 sqB= ±2d or III 1/2V1/2 sqB= ±1d, exhibit rocksalt
B-site chemical order. By contrast, in the II1/3V2/3 heterova-
lent binary BMN, the equilibrium state showsf111g1:2 order-
ing of two layers of metal group VsqB= +1d alternating with
one layer of the group IIsqB=−2d atom. Both the rocksalt and
BMN simulations were initialized with a 20-layer-thick slab,
with perfectf111g1:1 andf111g1:2 ordering, respectively. The
rocksalt simulation used a 2D 12312 supercell, while the
BMN simulations were done mostly with 636 supercells,
although some simulations with 12312 and 15315 were
carried out to verify that the finite-size effects were small.
The rocksalt structure simulations ran for 1000L2 MC steps,
up to a maximum thickness of 100 layers. For BMN,
10 000L2 MC steps were used, because for a given tempera-
ture andDm, growth was significantly slower. In Fig. 3, we
show visualizations of the grown BMN crystals to illustrate
the simulation environment and the 1:2 order at low tempera-
tures with slow growth.

The two sets of curves in Figs. 1 and 2 are qualitatively
similar. What is not evident from the figures, however, is the
degree of order in each simulation. For a given temperature,
as Dm increases, the adsorption rate in Eq.s19d increases,
and adatoms are more likely to stick. For fixedDm, askBT
decreases, the adsorption rate will increase, but more impor-
tantly, the “selectiveness” of evaporation will increase. A
lower kBT will, in effect, increase the energy differences be-
tween competing configurations. The direct result, as growth
is concerned, will be that adatoms will increasingly prefer to
have more instead of fewer neighbors with correct charge
ordering slayer-by-layer growth versus rough growthd, and
adatoms with the same charge will seem more repulsive. For
very highDm, adatoms will stick anywhere, no matter what

the location or ionic adversity is, and the growth rate will be
high. Alternatively, if the temperature becomes too high, the
crystal will evaporate and result in negative growth.

To examine the degree of ordering, we computed the
charge-charge correlation function. The Fourier transform of
this correlation function, which we will denote byhskd,
gives the structure factor

hskd = ao
l l8

qlql+l8 exps− ik · l8d, s25d

wherea is the normalization factor, andk is the wave vector
in the Brillouin zone of the unit cell. The magnitude ofhskd
characterizes theB-site order, e.g., a large value ofh at k
=s2p /ad s 1

2 , 1
2 , 1

2
d indicates a strongf111g1:1 order while one

at k=s2p /ad s 1
3 , 1

3 , 1
3

d indicates a strongf111g1:2 order.
The growth rateG and the charge-charge structure factor

h are plotted in Figs. 4–7. In each figure, the displayed range
of Dm was chosen to coincide with the range where the order
parameterh decreases from nearly unitysperfect orderd to
essentially zerosdisorderd. As Dm increases, the adsorption
rate increases, but the growth is disordered and there is
greater surface roughness. Indeed, there is only a limited
range where ordered growth occurs. The grown crystal struc-

FIG. 2. BMN growth rate vs chemical potential for af111g
slab.

FIG. 3. Visualizations of grown BMN crystals. Shown are 6
36 supercells withsad growth direction alongf001g, kBT=0.1, and
Dm=−1.0; sbd growth direction alongf111g, kBT=0.1, andDm=
−1.1.
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tures are consistent with the observed ground-state configu-
ration of rocksaltsFig. 4d and BMN sFigs. 5–7d. The most
striking difference between the growth behaviors of rocksalt
and BMN is the enormous reduction of the growth rate of
BMN compared to that of the rocksalt structure. Three dis-
tinct regions can be seen in the figures. The first region has
h,1, and the growth rate increases monotonically with in-
creasingDm. The next is the transitional region whereh
decreases rapidly. In this region, the rocksalt growth rate
increases as a function ofDm, while the BMN growth rate is
relatively constant. Also note that ash starts to decrease,
there is an initial decrease in the growth rate, likely due to
additional evaporation of energetically unfavorable configu-
rations. In rocksalt, such ionic adversity is less pronounced,
and consequently Fig. 4 shows only a slight hint of this
change inG. In the last region,h,0. As Dm increases, there
is a sudden onset of largerG, but the resulting crystals are
disordered.

We next attempted to model the growth of BMN-BZs1
−xd sMg1/3Nb2/3d+x Zr solid solutions. In the electrostatic
Hamiltonian in Eq.s4d, tetravalent Zr corresponds to a neu-

tral chargeql =0, so sites occupied by Zr have zero interac-
tion energy. As in the simulations of pure BMN systems, the
chemical composition determines the probabilities with
which different charge species are adsorbed at the surface. In
the initial substrate, tetravalent ions with the corresponding
concentration were incorporated, using random mixingsnext
sectiond. With a 1:2-ordered substrate, we studied concentra-
tions x,10%, with temperatures ofkBT,0.1 to 0.2, and
varying the chemical potentialDm,−1.0 to −0.5. Very little
incorporation of the tetravalent ions occurred. We found
similar results with an initially 1:1-ordered substrate
srandom-site model; see belowd, where a wider range ofx
was explored. Again, the order of the substrate was not suf-
ficient to induce the incorporation of tetravalent ions in the
growth phase. Instead, the system seemed to favor evaporat-
ing the adsorbed tetravalent ions more than the charged par-
ticles, to grow pure BMN.

B. Energy calculations

To further study the inability to incorporate tetravalent
ions at low temperatures, we examined the total energy per
particle «N of fixed slab configurations ofB-site order. A
phase-separated model, in which all the tetravalent adatoms

FIG. 5. BMN growth rateG of Eq. s24d stop paneld and 1:2
order parameterhfk=s2p /ads 1

3 , 1
3 , 1

3
dg sbottom paneld vs chemical

potential. The temperature iskBT=0.025 and the growth substrate

direction isf1̄1̄1g. A 636 supercell is used, with 300 000 MC time
steps.

FIG. 6. BMN growth rate and 1:2 order parameter vs chemical
potential. The temperature iskBT=0.1. Other parameters are the
same as in Fig. 5.

FIG. 7. BMN growth rate and 1:2 order parameter vs chemical
potential. The temperature iskBT=0.2. Other parameters are the
same as in Fig. 5.

FIG. 4. Rocksalt growth rateG of Eq. s24d stop paneld and 1:1
order parameterhfk=s2p /ads 1

2 , 1
2 , 1

2
dg sbottom paneld vs chemical

potential. The temperature iskBT=0.1 and the growth direction is
f001g. A 12312 supercell is used, with 1000 MC time steps.
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were situated in the outermost surface layers, was compared
with various structural models that incorporated tetravalent
ions. In each model, the calculations were performed for two
different configurationalB-site orderings of the +2 and +5
ions sql =−2, +1, respectivelyd. These configurations were
the 1:1 and 1:2 layering alongf111g directions, i.e.,f111g1:1

and f111g1:2 order, respectively.
The f111g1:2 ordering corresponds to thex=0 order of

BMN, with a layer ofql =−2 alternating with two layers of
charge ql = +1 along the f111g direction. We chose the
f111g1:1 ordering to correspond to the random-site model,3

which is observed in the BMN-BZ equilibrium simulations
for x.0.05.10,22 In the random-site model, there aref111g
layers ofql = +1 alternating with a mixed layer of charges
ql =−2, +1,0. Therandom-site model is meant to represent
the presence of short-rangeB-site order from experimental
observations. No long-range ordering has been observed.
Nevertheless, in our simple model here we will fix the or-
deredql = +1 layers and choose the mixed layers to be a
random mixture ofs−2ds2/3ds1−xds+1ds1/3ds1−4xds0d2x.

We first examine finite-size effects in Fig. 8, which plots
«N as a function of slab thickness for various 2D supercells
containing no tetravalent ions, forf111g1:2 ordering. Results

for f001g and f1̄1̄1g slabs are shown, both of which corre-
spond to neutral surface layers. AsH→`, «N,«N

B

+const/H, as expected, where the constant«N
B represents the

average bulk value andH is the slab thickness. We have also
studied the size effects when tetravalent ions are mixed in
randomly, and found similar behaviors.

Figure 9 plots«N as a function of tetravalent concentra-
tion x for random-mixing and phase-separation models,
showing results forf111g1:1 and f111g1:2 ordered 12312
f001g slabs sH=200d. For the phase-separation model, the
total number of ions includes the outermost layers of tetrava-
lent ions. Atx=0, the 1:2 ordered crystal has a lower energy
than the 1:1 ordered crystal, which is consistent with our
results from the growth simulation and with the observed
ground-state configuration of pure BMN. For random mix-
ing, «N increases linearly withx for f111g1:2 ordering while it
is essentially independent ofx for f111g1:1 ordering. In the
phase-separation model,«N increases linearly for both order-
ings. These results show that phase separation is favored for

the f111g1:2 ordering, while random mixing is favored by
f111g1:1 ordering.

Figure 9 illustrates why the growth simulations failed to
incorporate tetravalent ions at low temperature. In the elec-
trostatic model, the 1:2 ordered state is the ground state and
is optimally ordered. The potential energy between any
charge and all other charges in the system is negative. For
example, with an 18318 slab, this potential energy is
,−5.92 for a −2 charge and,−1.48 for a +1 charge. Thus,
replacing a chargeseither −2 or +1d by a neutral tetravalent
ion in this state raises the total energy of the system, while a
phase-separated configuration in which the tetravalent ion is
placed away from the ordered slab keeps the total energy
unchanged. To examine this more closely, we calculated the
free-energysF=«N−TSd, whereS is the mixing entropy due
to the incorporated tetravalent ions. Figure 10 plots the free
energy as a function of temperature for four concentrations
of tetravalent ions. The free energy of the phase-separated

FIG. 8. Total energy per particle forB-sitef111g1:2 ordering as a
function of slab thickness 1/H and slab crystallographic orientation.
Each set has three barely distinguishable curves, corresponding to
three lattice sizes: 12312, 15315, and 18318.

FIG. 9. Total energy per particle vs tetravalent concentrationx
for random-mixing and phase-separation models. Results are shown
for f111g1:1 and f111g1:2 ordered 12312 f001g slabssH=200d.

FIG. 10. Free energy of BMN crystal forsad 10%, sbd 15%, scd
20%, andsdd 25% tetravalent concentrations. Symbols have the
same meaning as in Fig. 9.
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1:2 ordered slabs is constant in our model, because it is per-
fectly ordered and has vanishing entropy. The free energy of
the phase-separated 1:1 ordered slabs decreases with increas-
ing temperature, despite the perfectly ordered outmost layers
of tetravalent ions, due to the mixing entropy of the random
layers with −2, +1, and 0 charges. In all cases in Fig. 10, the
phase-separated 1:2 ordered slabs have the lowest free en-
ergy at low temperatures, where ordered crystal growth oc-
curs in our simulations, but at temperatures betweenkBT
,1 and 2, the 1:2 ordered and the 1:1 ordered random mix-
ing models start to be favored.

IV. DISCUSSION

There are striking differences between the growth behav-
ior of the III1/2V1/2 rocksalt ordered structure and the
II 1/3V1/3 BMN structure. The ordered rocksalt structure
forms over a wide range ofDm sabsorption ratesd as shown
in Fig. 4. By contrast, ordering of the 1:2 structure in BMN-
type crystals is more difficult to achieve experimentally.23,24

When these materials are initially synthesized, they crystal-
lize in a disordered structure. With extended annealing, the
1:2 structure is approached.23 As discussed by Davieset
al.,23 the initial synthesis and processing are controlled by
irreversible kinetic processes rather than by thermodynamic
factors, and a more correct description of the formation of
the 1:2 ordered structures is in terms of the nucleation and
growth of small ordered domains with increasing annealing
time and temperature. Eventually larges.100 nmd 1:2 or-
dered domains are observed.23,24The need for long annealing
times is consistent with our simulations. Figures 5–7 show
that the range ofDm where ordered 1:2 growth occurs nar-
rows as the temperature increases fromkBT=0.025 to 0.2. In
this range, the growth rate is approximately constant as a
function of Dm. Moreover, when ordered crystal growth oc-
curs, the BMN growth rate is much smaller than that of the
rocksalt structure at the same temperature. Highly ordered
growth was possible in the BMN simulations but required
low temperatures and a delicate balance with the chemical
potential. Neither of these requirements is likely to be met
under experimental synthesis conditions. At temperatures
corresponding to the actual sintering temperature of BMN
skBT,0.5d, large growth rates can be achieved, as shown in
Fig. 2, but the growth is highly disordered. The long anneal-
ing times allow the slow formation of the 1:2 ordered re-
gions. In our KMC simulations, diffusion processes are ex-
cluded so there can be no annealing. We also note that the
growth rate was sensitive to the slab orientation. For ex-

ample, we found that the growth rate along thef1̄1̄1g direc-
tion was almost an order of magnitude larger than that along
f001g, while growth with charged surfaces alongf111g was
extremely slow.

Our results are also qualitatively consistent with the long
experimental history of failed attempts to coarsen the 1:1
ordered nanoscale domains in PMN-type crystals. Prior to
the experiments of Akbas and Davies,24 the 1:1 ordered re-
gions were apparently limited to nanoscale size and repre-
sented only a small volume fraction of the crystal. The
space-charge model, which was invoked to explain this be-

havior, hypothesized that the 1:1 ordered regions arose from
a rocksalt ordering of the −2 and +1 B-site charges, implying
charge-imbalanced 1:1 domains. The apparently limited size
of these domains could be explained by the rapidly increas-
ing energy of larger domains due to Coulomb repulsion.
With careful annealing at much higher temperatures than had
previously been tried, however, some fully 1:1 ordered crys-
tals were synthesized.24 Our calculations show that long-
range ionic interactions favor the growth of disordered crys-
tals, and ordering occurs only after annealing. Moreover,
ionic interactions appear to favor the 1:2 ordering. However,
entropic contributions to the free energy and short-range co-
valent interactions tend to favor 1:1 ordering. Covalent bond-
ing is negligible for Ba ions but very important for Pb ions.
Thus there is a delicate competition between 1:2 and 1:1
ordering for doping with small concentrations of the tetrava-
lent ions in s1−xd BMN-xBZ and s1−xd PMN-x PT. In s1
−xd BMN-xBZ, there is a crossover from 1:2 to 1:1 ordering
asx increases to about 5%. While ins1−xd PMN-x PT, the
stronger short-range covalent bonding of Pb favors 1:1 or-
dering at all concentrations.

For pure systems, our minimal paradigm for growth simu-
lations captures the differences in growth rate and ordering
between rocksalt-type and BMN-type crystal growth. This
indicates that the simple ionic model is a reasonable starting
point for describing the growth of perovskite solid solutions.
More direct and quantitative comparisons with experiment
will require additional ingredients such as short-range inter-
actions and the inclusion of diffusive processes.

For systems with tetravalent ions, our results show that
the ground state is a phase-separated state of tetravalent ions
and 1:2 ordered BMN over a wide range of tetravalent com-
positions. On the other hand, equilibrium simulations of the
ionic model10,22 suggest that forx.0.05, the 1:1 ordering is
preferred, with no phase separation. Several factors distin-
guish these calculations, which likely have to do with the
apparent contradiction in their observations. The first is the
difference in the nature of the simulations. In our growth
simulation, tetravalent ions are allowed to evaporate from the
crystal, which facilitates phase separation. The equilibrium
calculations were done in the canonical ensemble with the
tetravalent ions mixed in, where it is more difficult to detect
phase separation without large simulation cell sizes. Our
simulations were at lower temperatures where ordered
growth could be induced by tuning the chemical potential
Dm sabsorption rated. At these temperatures, the system is
essentially in the ground state, as Fig. 3 shows. Incorporation
of tetravalent ions could be induced at largerDm, which is
expected as adsorption dominates evaporation, but in this
case random growth occurs. Secondly, since ourf111g1:1

structure is an artificial model ofrandom mixingof −2, +1,
and neutral charges in one layer and perfectly ordered +1 in
another, its energy must be higher than the actual 1:1 struc-
ture achieved in the equilibrium simulations. This means that
the actual crossover of the random-mixingf111g1:1 structure
will occur at lower temperatures. Indeed, thekBT,0.25
equilibrium calculations showf111g1:1 ordering for concen-
trationsx greater than about 0.05. Thus the absence of phase
separation in the equilibrium calculations might be due to a
lower free energy than our estimate in Fig. 10 from the arti-
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ficial random-site structure. Our results combined with the
equilibrium calculations therefore suggest the following pic-
ture of the equilibrium state of the ionic model. In the ground
state, phase separation takes place forx.0. Beyond some
x-dependent critical temperature, tetravalent ions are incor-
porated, most likely in a structure that favors 1:1 order.

To determine if the new phasesphase separationd at low
temperatures that we have found is realistic for these alloys,
the ionic model must be improved. One possibility is first-
principles-basedHeff, which have shown great promise in
describing ferroelectrics and simple solid solutions.25 Like
the Ising model, theseHeff project out what are considered to
be the most important ionic degrees of freedom. In addition
to the long-range Coulomb interaction, short-range interac-
tions are also included. TheHeff parameters are fitted to the
results of a set of first-principles density-functional calcula-
tions, so there is effectively no experimental inputsexcept
sometimes the average crystal volumed. The simplified form
of Heff for ferroelectrics and ferroelectric alloys has permit-
ted simulations of equilibrium properties on thousands of
atoms as a function of temperature and applied external elec-
tric field. A main difficulty in applying these in a growth
simulation is computational cost, which has typically re-
quired fixed distributions of B-site ions even in equilibrium
simulations of solid solutions. In our kinetic Monte Carlo
model, another possibly important factor that is not included
is surface diffusion. Coupled with the solid-on-solid restric-
tion, the simulation is severely limited in its ability to “heal”
disorder, and these approximations may have contributed to
low ordered growth rates and raised the critical temperature
for phase separation. Removal of these restrictions would
improve the model and increase its applicability.

V. SUMMARY

The growth of the technologically important BMN-type
perovskite alloys was studied by kinetic Monte Carlo simu-
lations using an ionic model. An enhanced KMC algorithm
was formulated to treat long-range Coulomb interactions ef-
ficiently. We found that this minimal paradigm was capable
of describing ordering features of the growth of pure BMN-
and PMN-type single crystals. The largest growth rates were

observed along thef1̄1̄1g direction, but best ordered growth
rates are substantially less than those of rocksalt. Highly or-
dered growth was possible, but required very low tempera-
tures and a delicate balance with the chemical potential. For
mixed systems such as BMN-BZ, we found that theT=0
ground state of the model was one in which tetravalent ions
phase separate from a 1:2 ordered pure system. As a result,
little incorporation of tetravalent ions occurs in the growth
process at low temperatures. At higher temperatures, tetrava-
lent ions can be incorporated, but the resulting crystals show
no chemical ordering. The tendency of the purely ionic
model to favor phase separation was further studied using
free-energy calculations determined fromT=0 total energy
calculations and including a mixing entropy. This indicated
that, if diffusive mechanisms were included, chemical order-
ings consistent with those found in equilibrium studies could

develop at the higher temperatures characteristic of realistic
alloy synthesis.
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APPENDIX A: COULOMB POTENTIAL

Using the Ewald method,15–19 the Coulomb potential is
obtained in terms of a direct lattice sum and a 2D reciprocal-
lattice sum. As shown below using our Ewald construction,
the reciprocal-lattice sumfsee Eq.s6dg will contain only G
Þ0 contributions, and these are conveniently expressed in
terms of the Green’s functionG for Eq. s7d,

VGszd = − 4pE
−`

`

Gsz− z8drGsz8ddz8. sA1d

Physically meaningful results require that theGÞ0 solutions
satisfy limuzu→`VGszd=0, which leads to the following unique
definition of theGÞ0 Green’s function:

Gsz− z8d ; −
fqsz− z8de−Gsz−z8d + qsz8 − zdeGsz−z8dg

2G
,

sA2d

whereG= uGu. For any reasonably localized charge distribu-
tion rGszd, Eqs.sA1d andsA2d result in well-behaved, expo-
nentially decaying solutions ofVGszd as uzu→`.

We now describe our Ewald construction in more detail.
The potential is given as the sum of three terms,

vsl8 − ld = v1sl8 − ld + v2sl8 − ld + vssl8d, sA3d

wherev1 and v2 are due tor1srd and r2srd, respectively, in
Eq. s9d, and vs is the correction for the interaction of the

point chargeql8 with its own Gaussian densityql8gsr − l̃8d in
r2srd.

To calculatev1sl8− ld, we place, for consistency, thesR
Þ0d ql8 images at their vertical projections onto the plane of
the ql sublattice.v1sl8− ld is then given by

v1sl8 − ld = qlo
R

erfcsÎaul8 − l − Rud
ul8 − l − Ru

− ql o
RÞ0

erfcsÎaul8 − l̃8 − Rud

ul8 − l̃8 − Ru
. sA4d

The mathematical form of this contribution is identical to its
3D counterpart, except that the sum is over 2D rather than
3D direct-lattice vectorsR.

The 2D plane-wave expansion ofr̃2
sl,l8dsrd in Eq. s13d is

given by
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r̃2
sl,l8dsrd = qlS a

pA2D1/2

e−asz − lzd
2

o
GÞ0

e−G2/4afe−iG·lap − e−iG·lap8 geiG·rp, sA5d

where we have used the fact thatl̃z8= lz. Note that theG=0
term vanishes. Substituting into Eq.sA1d and using Eq.sA2d
yields

v2sl8 − ld = o
GÞ0

p

AG
ffsGd − fs− GdgfeiG·slp8−lpd − 1g,

sA6d

where

fsxd ; exsl8z−lzd erfcS2aulz8 − lzu + x

2Îa
D . sA7d

Finally, the correction for the interaction of the point
chargeql8 with its own Gaussian density is given by

vssl8d =
erfsÎaul8 − l̃8ud

ul8 − l̃8u
. sA8d

As verified by direct calculation, the sum of these three
terms is independent of the parametera. For efficiency,
vsl8− ld is stored as a look-up table.
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