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The Kosterlitz-ThoulesssKTd transition is investigated for gauge glass models in two dimensions by means
of the nonequilibrium relaxationsNERd method. Two kinds of models, which have the same symmetry, are
analyzed. Using the scaling analysis of the NER function on a large lattice withL=1000, we confirm the KT
transition numerically for both models. This indicates the stability of the KT phase against a small disorder,
which was previously claimed by perturbation expansion and renormalization group arguments.
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The gauge glasssGGd model is a classical spin system
with quenched disorder and has attracted much attention. It
describes the thermodynamics of various systems such as
disordered magnets with random Dzyaloshinskii-Moriya
interaction,1 Josephson-junction arrays with positional disor-
der in a magnetic field,2 vortex glasses,3 and crystal systems
on disordered substrates.4 In three dimensions, the spin-glass
sSGd transition for a strongly disordered regime has been
confirmed in the GG systems theoretically,5,6 as well as
experimentally.7 In two dimensions, there is a controversy
about the existence of the SG-like phase in the strongly dis-
ordered regime. Some numerical simulations suggested the
quasi-long-range order,8,9 while experimental observation10

and other numerical simulations6,11–14deny it. Although the
long-range SG order is denied in two dimensions following
the Marmine-type argument,15 there is a possibility of a
phase in which the SG correlation decays in a power law.16

In weakly disordered regime, there has been another con-
troversy about the existence of the reentrant transition from
the Kosterlitz-ThoulesssKTd phase17 to the non-KT one.
Earlier works with real-space renormalization groupsRGd
analysis suggest reentrance.1,2,18,19 The analysis has been
modified and provides the absence of it.20–22 The same re-
sults are obtained by Monte Carlo simulations.4,6,9,13,23,24and
the RG analyses.20,25With all these studies, the instability of
the KT phase against a small disorder is pointed out by the
perturbation expansion and the RG analysis.26,27 However, it
is denied by numerical simulations4,6,9,13 and other RG
analyses.9,20–22Analytically, the gauge theory, which has pro-
vided several exact relations in Ising SG models, shows the
absence of reentrance if the KT phase appears in a finite
disordered regime.16 The same result is also derived from a
dynamical point of view obtained by the dynamical gauge
theory.28 While the results of gauge theory are plausible, it is
necessary to assume the stability of the KT phase. Investiga-
tion of the phase diagram of these randomXY models is still
at a primitive stage as compared to the case of the Ising
model.

In the present study, we apply the nonequilibrium relax-
ation sNERd analysis to the GG models in two dimensions in
order to clarify the stability of the KT phase against a small
disorder. The NER method has been an efficient numerical
technique for analyzing equilibrium phase transitions. It pro-

vides the critical temperature and critical exponents accu-
rately for second-order transition systems,29–31 and has been
used successfully to study various problems, including frus-
trated and/or random systems.32 It has also been extended
beyond second-order transitions; e.g., the KT transition31,33,34

and the first-order transition systems.35 In the NER analysis,
the equilibration step is not necessary. Simulation is made
only up to steps when the asymptotic behavior indicates the
equilibrium state. Thus, one can analyze large systems as
compared with equilibrium simulations. This advantage be-
comes more effective for slow-relaxation systems.

We consider two kinds of GG models, which have the
same symmetry, in two dimensions. The one that we call the
“cosine-type” is based on the plane rotator model with ran-
dom gauge variables

H = − Jo
ki j l

cossui − u j + Aijd, s1d

where J.0 and 0øui ø2p. The summationki j l is taken
over all nearest-neighboring sites on the square lattice. An
independent quenched random variable,Aij , obeys the distri-
bution function

PsAijd =
expsD cosAijd

2pI0sDd
, s2d

with 0øAij ø2p, whereI0sDd is the modified Bessel func-
tion. The functions2d is chosen so that the model satisfies the
gauge symmetry that derives various analytic properties.16,28

We consider that it behaves similarly to the Gaussian distri-
bution and the difference between them is irrelevantssee Fig.
1, for exampled, since the same properties are derived by the
gauge theory if one considers the other model, the “Villain-
type” GG model. It is defined by the local Boltzmann factor
based on the periodic Gaussian potential36

eVsui−u j+Aij d = o
n=−`

`

e−Ksui − u j + Aij − 2pnd2/2, s3d

instead of the Hamiltonians1d, whereK=J/kBT. The random
variable −̀ ,Aij ,` obeys the Gaussian distribution with
mean 0 and variance 1/D. Note that the thermodynamic be-
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havior for the Gaussian distribution is identical with that for
the periodic Gaussian one, Eq.s3d, with 0øAij ø2p. For
both types of models, the parameterD controls the random-
ness, and the KT phase is observed in the pure casesD=`d;
the transition temperature for the pure case has been esti-
mated numerically asTKT

0 ,0.894 for the cosine-type34 and
TKT

0 ,1.33 for the Villain-type.37 The temperature is mea-
sured in a unit ofJ/kB in the following.

The gauge theory16,28 suggests that if the KT transition
appears in the regime of finite disordersD, +`d, the line
K=D, which is called the Nishimori line, intersects the KT
transition line at the smallestD value in the KT phase, and
the phase boundary below this temperature is likely parallel
to theK axis ssee Fig. 2d. This point can be the multicritical
point if the quasi-long-range SG order appearssindicated as
the dashed lined. Therefore, we may consider the transition
only along the lineK=D in order to confirm the stability of
the KT phase against a small disorder.

In the NER analysis of the KT phase, we choose a com-
plete FM statesui =0 for all id as the initial state, and calcu-
late the relaxation of the FM order parametermstd
;oifkcosuistdlg /N, wherek¯l represents the dynamical av-
erage andf¯g is the average for disorder. We use the skew

boundary condition for the purpose of efficient calculations.
Furthermore, the spin space is discretized instead of the con-
tinuous one. That is the 1024-state clock model. For both
models, calculations are carried out on the 100131000 lat-
tice up to the observation time 105 Monte Carlo steps
sMCSd. About 320 independent runs are performed for aver-
aging. The result for the cosine-type is plotted in Fig. 3. The
size dependence is checked to be negligible, when we com-
pare the data with those for 150131500. This reveals that
the effect of the boundary condition on thermodynamic be-
haviors is negligible. The discretization of spin space is
found to be irrelevant by comparing the data with the 1536-
state model.

In Fig. 3, we observe quite slow relaxations ofmstd in the
low-temperature regime indicating the phase transition. For
all data points in Fig. 3sas well as Fig. 6d, the statistical

FIG. 1. Typical behaviors of distribution functions: the cosine-
type, Eq.s2d, with D=1.0 and 0.5, and the periodic Gaussian one,
Eq. s3d, with K=1.0 and 0.5, are shown.

FIG. 2. Schematic phase diagram in two dimensions suggested
by the gauge theory. The present analysis will be made along the
Nishimori line K=D sindicated by the arrowd.

FIG. 3. The relaxation of FM order parametermstd in double-
log plot for the cosine-type model in 0.33øTø0.50. With an in-
terval of DT=0.01, the corresponding temperature is increasing
from top to bottom.

FIG. 4. Scaling plot ofmstd for the cosine-type model fitted to
Eq. s4d with appropriately chosentsTd ssee Fig. 5d and lKT

=0.050. Curves for all the temperatures in 0.37øTø0.50 are
plotted.
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errors are less than the line thickness. Since it is always a
power law below the KT transition pointTKT, one cannot
evaluate the lower bound ofTKT numerically frommstd. To
estimate TKT definitely, we have proposed a scaling
relation31,34 for T.TKT,

mstd = t−lKTgst/td, s4d

wheret is the relaxation time depending on the temperature
andlKT is the dynamic exponentsconstant of temperatured.
Fitting the calculated curves to this relation, one obtainstsTd
for each temperature, and the exponentlKT. The resulting fit
for the data in 0.37øTø0.50 is shown in Fig. 4 withtsTd
plotted in Fig. 5 andlKT =0.050s3d. Note that we cannot use
the data for temperatures closer to the transition point, since
it shows almost a straight line in the observed time regime,
which is useless for the fitting. The error bar oflKT is esti-
mated by the range where the value ofx2 is less than twice
that of the minimum one. Then, we estimateTKT from the
estimatedtsTd. As T approachesTKT, the correlation length

diverges exponentially17 asj= ã expsb̃/ÎT−TKTd. We expect
that the relaxation time diverges in the same way,

tsTd = a expsb/ÎT − TKTd, s5d

instead of a power-law divergence in standard second-order
transitions. It is reasonable if one assumes the relationt
,jz with a definite value ofz. Using thex2 fitting with
parametersa, b, andTKT, we obtain the best fitting as shown
in Fig. 5 with TKT =0.325s6d.

The same analysis is applied to the Villain-type model.
The result ofmstd is plotted in Fig. 6. The scaling plot of the
data in 0.50øTø0.90 fitted to Eq.s4d with lKT =0.046s5d is
shown in Fig. 7. The estimated relaxation times are plotted in
Fig. 8. The fitting to Eq.s5d is also shown withTKT
=0.382s12d.

For both models, we have clearly observed the KT tran-
sition with TKT .0 on the Nishimori line indicating the sta-
bility of the phase against a small disorder. It is noted that,
since the transition temperatureTKT is estimated by the scal-
ing analysis, the reliability of it is less than those obtained by
the NER analysis for second-order transitions. Therefore, the

FIG. 5. Relaxation time for the cosine-type model in a unit oft
at T=0.50. The curve fitted to Eq.s5d with TKT =0.325 is shown.

FIG. 6. The relaxation of the FM order parametermstd in
double-log plot for the Villain-type model.

FIG. 7. Scaling plot ofmstd for the Villain-type model fitted to
Eq. s4d with appropriately chosentsTd ssee Fig. 8d and lKT

=0.046s5d. The curves for all the temperatures in 0.50øTø0.90
are plotted.

FIG. 8. Relaxation time for the Villain-type model in a unit oft
at T=0.9. The curve fitted to Eq.s5d with TKT =0.382 is shown.
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accuracy of the transition temperature is not so high. How-
ever, the increasing behavior of the relaxation time estimated
from a standard dynamic scalings4d, which is observed in-
dependently for both models, strongly supports the diver-
gence toward a definite temperature. Consequently, we have
numerically confirmed the stability of the KT phase against a
small disorder for the GG models in two dimensions, which
is consistent with other analyses.4,6,9,13,20–22With the result of
gauge theory,16,28 this provides the strong evidence for the
absence of reentrance.

Since the equilibration is not necessary in the NER analy-
sis, the results do not suffer the difficulty due to the slow
relaxation in frustrated systems. It is remarkable that the
present simulations are performed on a large lattice withL

=1000, which remove the finite-size effect and make it pos-
sible to observe thermodynamic behaviors. While the simu-
lated size is large enough to eliminate the finite-size effect,
the finite time observation cannot avoid the possibility of
crossover phenomena that could modify the physics. It is
necessary to proceed with further investigations for a longer
time behavior to confirm the physics more reliably.
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