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The Kosterlitz-Thoules§KT) transition is investigated for gauge glass models in two dimensions by means
of the nonequilibrium relaxatioiNER) method. Two kinds of models, which have the same symmetry, are
analyzed. Using the scaling analysis of the NER function on a large latticeLwiflD00, we confirm the KT
transition numerically for both models. This indicates the stability of the KT phase against a small disorder,
which was previously claimed by perturbation expansion and renormalization group arguments.
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The gauge glas§GG) model is a classical spin system vides the critical temperature and critical exponents accu-
with quenched disorder and has attracted much attention. tately for second-order transition systeffs’! and has been
describes the thermodynamics of various systems such aged successfully to study various problems, including frus-
disordered magnets with random Dzyaloshinskii-Moriyatrated and/or random systedfslt has also been extended
interaction% Josephson-junction arrays with positional disor- beyond second-order transitions; e.g., the KT transitidhs4
der in a magnetic field vortex glassed,and crystal systems and the first-order transition systedtdn the NER analysis,
on disordered substratésn three dimensions, the spin-glass the equilibration step is not necessary. Simulation is made
(SG transition for a strongly disordered regime has beeryny yp to steps when the asymptotic behavior indicates the
confirmed in the GG systems theoreticalfy.as well as oqilibrium state. Thus, one can analyze large systems as
experimentally. In two dimensions, there is a controversy compared with equilibrium simulations. This advantage be-

about the existence of the SG-like phase in the strongly d's(:omes more effective for slow-relaxation systems.

ordered regime. Some numerical simulations suggested thée We consider two kinds of GG models, which have the

quasi-long-range ordé&® while experimental observati¢h . . ;
and other numerical simulatioch®-14deny it. Although the = S8M€ symmetry, in two dimensions. The one that we call the
“cosine-type” is based on the plane rotator model with ran-

long-range SG order is denied in two dimensions following bl

the Marmine-type argumeft, there is a possibility of a dom gauge variables

phase in which the SG correlation decays in a power'faw. B
In weakly disordered regime, there has been another con- H= _J; cod 6 — 6 + Ay, (1)

troversy about the existence of the reentrant transition from D

the Kosterlitz-ThoulesgKT) phasé’ to the non-KT one. whereJ>0 and O< 6 <2s. The summation(ij) is taken

Earlier works with real-space renormalization grolRG)  over all nearest-neighboring sites on the square lattice. An

analysis suggest reentranice’®'® The analysis has been jhgependent quenched random varialdlg, obeys the distri-
modified and provides the absence of%t?? The same re- ption function

sults are obtained by Monte Carlo simulatidrfs’:1323.2%nd
the RG analyse€-?>With all these studies, the instability of
the KT phase against a small disorder is pointed out by the
perturbation expansion and the RG analyé&.However, it
is denied by numerical simulatior§®%13 and other RG With 0<A; <27, wherely(D) is the modified Bessel func-
analyse$:2-2?Analytically, the gauge theory, which has pro- tion. The function(2) is chosen so that the model satisfies the
vided several exact relations in Ising SG models, shows thgauge symmetry that derives various analytic propetfiés.
absence of reentrance if the KT phase appears in a finité/e consider that it behaves similarly to the Gaussian distri-
disordered regimé& The same result is also derived from a bution and the difference between them is irrelevaae Fig.
dynamical point of view obtained by the dynamical gaugel, for examplg, since the same properties are derived by the
theory?® While the results of gauge theory are plausible, it isgauge theory if one considers the other model, the “Villain-
necessary to assume the stability of the KT phase. Investigdype” GG model. It is defined by the local Boltzmann factor
tion of the phase diagram of these randXivimodels is still based on the periodic Gaussian poteffial
at a primitive stage as compared to the case of the Ising "
model. V(G-0+A;) — ~K(6 — 0, + Aj; — 2m)2/2

In the present study, we apply the nonequilibrium relax- SVITAD = 3, e AT AT A " )
ation (NER) analysis to the GG models in two dimensions in
order to clarify the stability of the KT phase against a smallinstead of the Hamiltonia(l), whereK=J/kgT. The random
disorder. The NER method has been an efficient numericalariable - <A;; <o obeys the Gaussian distribution with
technigue for analyzing equilibrium phase transitions. It pro-mean 0 and variance D/ Note that the thermodynamic be-

exp(D cosA;i)

P =1 D)

, (2)

n=—ow
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) ] o ) ] FIG. 3. The relaxation of FM order parameta(t) in double-
FIG. 1. Typical behaviors of distribution functions: the cosine- |oq piot for the cosine-type model in 0.83T<0.50. With an in-

type, Eq.(2), with D=1.0 and 0.5, and the periodic Gaussian one.eryal of AT=0.01, the corresponding temperature is increasing
Eq. (3), with K=1.0 and 0.5, are shown. from top to bottom.

havior for the Gaussian distribution is identical with that for boundary condition for the purpose of efficient calculations.
the periodic Gaussian one, E(), with O<A;<2m. For  pyrthermore, the spin space is discretized instead of the con-
both types of models, the paramet@rcontrols the random-  tinyous one. That is the 1024-state clock model. For both
ness, and the KT phase is observed in the pure @se°);  models, calculations are carried out on the 18AD00 lat-
the transition temperature for the pure case has been esfice up to the observation time %QMonte Carlo steps
rrz)ated numerically aSy,~0.894 for the cosine-tyféand  (MCS). About 320 independent runs are performed for aver-
Tyr~1.33 for the Villain-type’” The temperature is mea- aging. The result for the cosine-type is plotted in Fig. 3. The
sured in a unit of)/kg in the following. size dependence is checked to be negligible, when we com-
The gauge theoty*® suggests that if the KT transition pare the data with those for 15811500. This reveals that
appears in the regime of finite disorddd < +), the line  the effect of the boundary condition on thermodynamic be-
K=D, which is called the Nishimori line, intersects the KT haviors is negligible. The discretization of spin space is
transition line at the smalle® value in the KT phase, and found to be irrelevant by comparing the data with the 1536-
the phase boundary below this temperature is likely parallesiate model.
to theK axis (see Fig. 2 This point can be the multicritical In Fig. 3, we observe quite slow relaxationsroft) in the
point if the quasi-long-range SG order appe@anslicated as  |ow-temperature regime indicating the phase transition. For

the dashed line Therefore, we may consider the transition || data points in Fig. 3as well as Fig. § the statistical
only along the lineK=D in order to confirm the stability of

the KT phase against a small disorder. e nat
In the NER analysis of the KT phase, we choose a com- —_
plete FM statg 6,=0 for all i) as the initial state, and calcu- £ o1l |
late the relaxation of the FM order parameten(t) =
=2,[(cosa(t))]/N, where(- --) represents the dynamical av- :
erage and---] is the average for disorder. We use the skew Jé/
0
K=D
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FIG. 4. Scaling plot oim(t) for the cosine-type model fitted to
FIG. 2. Schematic phase diagram in two dimensions suggestelg. (4) with appropriately chosen{(T) (see Fig. % and A«
by the gauge theory. The present analysis will be made along the0.050. Curves for all the temperatures in 0s3V<0.50 are
Nishimori line K=D (indicated by the arroyv plotted.
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FIG. 5. Relaxation time for the cosine-type model in a unit-of

atT=0.50. The curve fitted to Eq5) with Ty7=0.325 is shown. FIG. 7. Scaling plot oim(t) for the Villain-type model fitted to

Eq. (4) with appropriately chosend(T) (see Fig. 8 and Akt
=0.0485). The curves for all the temperatures in 0s50<0.90
errors are less than the line thickness. Since it is always are plotted.
power law below the KT transition poinfxy, one cannot

evaluate the lower bound @fc; numerically fromm(t). To

estimate Tyt definitely, we have proposed a scaling
relatior?®-34 for T> Ty,

7(T) =aexpb/\T - Tyy), )

instead of a power-law divergence in standard second-order
transitions. It is reasonable if one assumes the relation

~ & with a definite value ofz. Using the x? fitting with

where is the relaxation time depending on the temperatureparametera, b, andTyr, we obtain the best fitting as shown
and gy is the dynamic exponeritonstant of temperature Fig. 5 with Ty;=0.3256).

Fitting the calculated curves to this relation, one obt.a(ﬁ's). The same analysis is applied to the Villain-type model.
;or eﬁCh temperature, ind the exEon)e,n,'t. The resulting fit g regylt ofm(t) is plotted in Fig. 6. The scaling plot of the
or the data in 0.3%=T<0.50 is shown in Fig. 4 With(T) 245 in 0.56<T<0.90 fitted to Eq(4) with Ay =0.0465) is

plotted in Fig. 5 and\r=0.0503). Note that we Ca””?‘ US€  shown in Fig. 7. The estimated relaxation times are plotted in
the data for temperatures closer to the transition point, SiNCRjy 8. The fitting to Eq.(5) is also shown withTyr

it shows almost a straight line in the observed time regime,__o_ssmz)_

which is useless for the fitting. The error bar Xty is esFi- For both models, we have clearly observed the KT tran-
mated by the range where the value)dfis less than twice g0 yith Ty« >0 on the Nishimori line indicating the sta-

tha_t of tI?je ;nin'iA\mL_er one. Tﬂeg_, wehestimeitfler _frorrll theh bility of the phase against a small disorder. It is noted that,
estimatedr(T). As T approachedcr, the correlation length g ce the transition temperatufgr is estimated by the scal-

diverges exponentially as é=a exp(b/\T—Tyr). We expect  ing analysis, the reliability of it is less than those obtained by

m(t) = 7 \Tg(t/7), (4)

that the relaxation time diverges in the same way, the NER analysis for second-order transitions. Therefore, the
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FIG. 6. The relaxation of the FM order parameta(t) in FIG. 8. Relaxation time for the Villain-type model in a unit of
double-log plot for the Villain-type model. at T=0.9. The curve fitted to Ed5) with Tx7=0.382 is shown.
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accuracy of the transition temperature is not so high. How=1000, which remove the finite-size effect and make it pos-
ever, the increasing behavior of the relaxation time estimatedible to observe thermodynamic behaviors. While the simu-
from a standard dynamic scalirig), which is observed in- lated size is large enough to eliminate the finite-size effect,
dependently for both models, strongly supports the diverthe finite time observation cannot avoid the possibility of
gence toward a definite temperature. Consequently, we havgossover phenomena that could modify the physics. It is

numerically confirmed the stability of the KT phase against anecessary to proceed with further investigations for a longer

is consistent with other analys&&213-20-23yjith the result of

gauge theory®28 this provides the strong evidence for the  This work is supported by a Grant-in-Aid for Scientific

absence of reentrance. Research PrograriGrant No. 14540354from the Ministry
Since the equilibration is not necessary in the NER analyef Education, Culture, Sports, Science and Technology of

sis, the results do not suffer the difficulty due to the slowJapan. The authors also thank the Supercomputer Center, In-

relaxation in frustrated systems. It is remarkable that thestitute for Solid State Physics, University of Tokyo for the

present simulations are performed on a large lattice Wwith

facilities and the use of the SGI 2800.
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