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Spin and spin-wave dynamics in Josephson junctions
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We extend the Keldysh formulation to quantum spin systems and derive exact equations of motion. This
allows us to explore the dynamics of single spins and of ferromagnets when these are inserted between
superconducting leads. Several new effects are reported. Chief amongst these are nutations $f sirjle
spins in Josephson junctions. These nutations are triggered by the superconducting pairing correlations in the
leads. Similarly, we find that on rather universal grounds, magnets display unconventional spin wave dynamics
when placed in Josephson junctions. These lead to modifications in the tunneling current.
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I. INTRODUCTION spin dynamics and illustrate how a quant@nl/2 spin is
, . ) ) affected by the Josephson current. As a consequence of the

There is a growing interest in a number of techniques tha§,senhson current, spins exhibit nonplanar precessions while
allow detection and manipulation of a single spin. A partialghiect to the external magnetic field. As is well known, a
list includes optical deteglon of electron spin resonancgingle quantum spin in a magnetic field exhibits circular Lar-
(ESZR) in a single moleculé,tunneling through a quantum o recession about the direction of the field. As we report
dot” and, more recently, the4ESR-scar_1n|ng tunneling MiCroSpere \when the spin is further embedded between two super-
copy (ESR-STM technique’* Interest in ESR-STM lies in conducting leads, quantum pairing correlations lead to new
therﬁréotentlal ©of detection and manipulation of a singley of plane longitudinal motion, much like that displayed
spirr*—an ability which is crucial to spintronics and quan- 5 ¢jassical mechanical top, will arise. We term this effect
tu_m information processing. Much work also ad_dressed couﬂ:e Josephson nutatiorSimilar effects occur when a ferro-
pling, feed-back effects, and decoherence in a coupleg,gnetic slab is placed between two superconducting leads.
e.Iectronlc-V|brat|onaI. systems, such as nanpmechampal O%ve outline how transport is, in turn, modulated by this rather
C|Ilaf[0rs and local V|brat|ongl modé_sln_parhcular, SPiN- ynusual spin dynamics. The coupling of the spin with the
tronic and quantum computing applications greatly intensi \sercurrent leads to an effective non-local in time interac-
fied Interest in Josephson junctions. Ina previous;gn of the spin with itself. Keldysh contour calculations il-
publication; four of us studied the effect of the supercurrent) sirate that a nonlocal-in-time single fermion action is also
on a macroscopic spin clustéof spin S>1) precessing in  ¢nq in situations wherein the single spin is replaced by an
the presence of a magnetic field when placed in a Josephsoy,yerson impurity? As is well known, in the limit of small
junction to find new spin dynamics. Ir_l the qurrent article, Wehopping amplitudes to and from an Anderson impurity, the
complemerit by studying the dynamics odingle quantum 5 ity attains a Kondo-like character much like that of the
S=1/2 spinsin Josephson junctions to find néw intriguing gjngle spin which is the focus of our attention. Here we con-
dynamical effects for which we provide quantitative expres-gjger the origin of this rather generic nonlocality in time
sions. The single spitS=1/2) dynamics which we study present in the dynamics of a Josephson junction. En route to
here differs S|.gn|f|can.tly f_rom the the large magneuc; C|U5terderiving this spin dynamics we illustrate that even in the
(S>1) dynamics studied in Ref. 8. In the current article, we hresence of nonlocal in time interactions, certain variants of
further examine spin wave dynamics in ferromagnets whemne classical equations of motion become trivially exact by
placed in Josephson junctions. virtue of compactness of the spin variables. An elaborate

The analysis of spins embedded in Josephson junctionsxtension of these ideas will be detailed elsewHere.
has a long and rich history. Early on, Kuliergued that spin

flip processes in tunnel barriers reduce the critical Josephson Il. OUTLINE OF THE ARTICLE
current as compared to the Ambegaokar-Baratoff Iifhit.
More than a decade later, Bulaevséiial ! conjectured that The main goal of the current publication is to report on

m-junctions may form if spin flip processes dominate. Thethe spin and spin wave dynami¢sf single spins and of
competition between the Kondo effect and the superconduanagnetic systems, respectivein Josephson junctions.

tivity was elucidated in Ref. 12. A nice review of experimen-  To achieve this aim, we will initiallin Secs. lll and I\

tal works on certain aspects of magnetic nanoparticles iextend the nonequilibrium Keldysh formalism to address
Josephson junctions is found in Ref. 13. Transport propertiethese problems. In Sec. lll, we illustrate that even in the
formed the central core of many pioneering works, whilepresence of effective nonlocal-in-time interactions of a spin
spin dynamics was relegated to relatively trivial secondarywith itself (such as those borne by the interaction of a single
role. In the current article, we report on exact nonstationanspin with a Josephson currgnthe equations of motion un-
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dergo a trivial modification. In Sec. IV, we rewrite these
equations within the standard Keldysh basis best suited for
nonequilibrium problems. Sections Il and IV may be seen as
independent extensions of basic facets of the nonequilibrium
Keldysh formalism for a spin system.

mt —

In Sec. V, we apply the rather general formalism devel- T T
oped in Secs. Il and IV to the specific problem of a single ]
S=1/2 spin in a Josephson junctiofwith a time- ' Ret
independent potential difference between the two supercon-
ducting leads We start, in Sec. V A, by writing down the T-i

relevant Hamiltonian of such a Josephson junction harboring
a single spin. In Sec. V B, we briefly highlight the natural
time scales in the problem, which will indeed come to the £ 1. The standard Keldysh contour. The tirfeand T’ are
forefront in the detailed solution which we will later expose. iaxen to be s and-s, respectively. The form of this contour will be
In the all-important Sec. V C, we highlight the origin of the peayily employed in our work when time ordering various spin
effective nonlocal-in-time interactions of the spin with itself. products.

Here, we integrate out the lead electrons to find the effective

spin-only action harboring such nonlocal-in-time interac- ) ) ) )

tions. These nontrivial interactions are the reason that we !N Appendix A, we briefly discuss several experimental

needed to develop and exte(®ecs. Il and IV the Keldysh ~ Manifestations of our effect and highlight a proposed experi
formalism to a very general spin system with such interacment that may verify our predictions.

tions. In Sec. V D, we invoke the results of Secs. Il and IV

to the resultant effective spin-only action of Sec. V C to

write down the equations of motion for the spin. In Sec. VE,  lll. EXACT SPIN-1/2 EQUATIONS OF MOTION ON

we solve these equations of motion to lowest order in the KELDYSH CONTOURS

spin-dependent tunneling amplitude. Detailed technical as- - . .
pects of the solution on which Sec. V E dutifully relies on We start by deriving the equations of motion for a very

have been relegated to Appendixes B and C. The perturbatiy@neral spin-1/2 system having tar more local and non-
solution to the equations of motion—the final equations oflocal spin-spin mterac_tl.on_s at different times. I_n thl_s work we
Sec. V E—form one of the main core results of the curren€MPloy the non-equilibrium Keldysh techniquéig. 1).
publication. In Sec. V F, we examine the physical meaningWVithin this framework, the spin operators on both up and
of this solution of the single spin problem to unearth severadown portions of theKeldysh contours of Fig. 1 are nor-
new predictions for thisS=1/2 system. In this subsection, malized and satisfig,(t),Sy(t")]=0. In what follows, we will

we aim to further arm the reader with an intuitive under-employ a path integral representation. Toward this end, our

standing for the physical origin of these new effects. Some ofyorking horses will be theCP, spin coherent variables
these predicted effectand our prediction of nutation in par- () 16.17herein the spins are represented by

ticular) are highlighted in Fig. 3. In Sec. VI, we examine the
behavior of the system f(_)r a single spin of magnltLBIe S= Szzlo»_abzb (1)
>1/2. In the largeS>> 1 limit, we recover our very different
semi-classical spilS— =) results of Ref. 8. (with S the spin magnitude Here and throughout, we set
Next, in Sec. VII, we discuss a variation of the single spinA=1. In Eqg.(1), a,b=1,] and we assume an implied sum-
problem wherein an ac voltage bias is applied across themation over repeated indices. The vectotg, are theab
Josephson junction. Our main result is the predictions of spezomponenets of the three Pauli matrices. The components
cific time-dependent spin dynamics displaying an infinitez,-, | code for a two component complex spinor subject to
number of harmonics and new dc lock-in effects. The prethe normalization constraintz,|+|z|?=1. By glancing at

dicted supercurrent in this system is also discussed. Eq. (1), we note that a knowledge & specifies the two

In Sec. VIil, we examine the problem of a ferromagnet in component spinoz only up to a global multiplicative phase.
a Josephson junction. In the spin-wave approximation, we As well appreciated, in a spin coherent basis, the Berry
find that each spin-wave mode displays some of the unusughases associated with the spin coherent states are the net
effects predicted in Secs. VE and VF for the single spingrea of the spherical triangle spanned by the spin as it moves
problem. The predicted spin wave dynamics and associategh the Bloch sphere. The latter may be expressed iiCfe
transport (curren) are furnished. In Sec. IX, we discuss pagis aSSBerry:ifthaZ;r?tZa-m’” For the benefit of readers
simple extensions of our results to other systems generatgghfimiliar with this formalism, we provide in Ref. 18 a quick
by a trivial change of geometry wherein at least one of theyerivation for this form of the Berry phase.

superconductors forming the Josephson junction is replaced e now assume the action contains the single spin term
by a planar superconductor. In Sec. X, we write down the_ fdtéd-ﬁdescribin a sinale spin in an external maanetic
S> 1 equations of motion for general magnets and antiferro- Ta 9 gie sp 9

magnetic chains. The nonuniform temporal evolution of eacfiield set byh. The parity»,=+1 is fixed by the direction of

of the spin-waves is highlighted in the resultant solution.the ~ contour—s,,=1, ~ Mdown=—1.  We
We conclude the main text, in Sec. XI, by highlighting our further include a nonlocal-in-time  spin  interaction
conclusions. namp ) dtfdt' K ,(t,t")S,(1) - Sy(t’). The kernelK,, encapsu-
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late nonlocal temporal dependence. The generalization tmnghand, in terms of real and imaginary componeunts,

higher order terms is straightforward and leads to no quali=(z.-iz}Zae—izi) and the measureDzDZ &(z?-1)

tative change. With the Berry phase included, the generatDz., Dz} DZ2 Dz, 8(zkd?+|zh2+| 2%+ |22 -1). Here

action and in what briefly follows we suppress a uniform Keldysh
contour index. The expectation valga') for each value of
S= 2i57;af dtzz, - SJ dtn.h, - 2,0z, the spin indexj=x,y,z, is an integral over bilinears inand
hence amounts to a sum of integrals of the type
2 55
2 2_ 92 s
Varying the action, * |22R€J * |Z'2m| 1)2“32,36 ' (@)

S i - Here, the indicese and B span the four possible values
0 Sta| 2i6Za(t) = - 7, 25)(1) (1Re,11m,2 Re,2Im An immediate consequence of the
v vanishing of the expectation valugS/ 6x) for any cyclic

+ AU K (1) Z (1) G ). t coordinatex is that all integrals of the form,.. ; vanish. An
o f a6 1) 20, ()73 525(L") - Ty Zayf )> inspection of(A') reveals that the contributions of all inte-

grals of the typd ,, cancel identically when=z (the only

= S 210Z5(1) = H() - 7,520V (3 place where integrals of the type-, appea). Similarly,
Here, (ATY=([6S/ 8z(1)]o'2)=0. The vanishing A'y=(A"y=0 im-
_ _ ply that their difference is
Kab(t:t,) = Kab(tyt,) + Kba(t,:t)u ) )
0= ® OJ(ro"ZaU, - *00-1;-0-"Ei ' (8)
0Z,4(1) 62,V ) [ ¢

H(t) = h+Sy, | dUK(tt)z (1)d,sz05t). (4
® ﬂaf ablt1)Z, (1) 20,(1) @ where the Keldysh contour indga) is reinstated.

Next, we explicitly insert Eq(3) into Eq. (8). As a con-

Next, we briefly generalize Ehrenfest’s theorem to situa- ) . .
tions such as the one of relevance here where a real nonloc%?quence of th&U(2) algebra OT the Pauli matrices, we find
at for each Keldysh contour index=top/bottom,

in time action is present. A full discussion of this theorem fort
general systems will be presented elsewhede. what fol- 53, o
lows, the expectation value of any quantidyevaluated with — /] ==(HX S)s. 9)
the actionSis denoted by r /s
1 Equation(9) is none Pther than the equation of motiorl for
(A)s= Ef DzDZ 8(|2* - 1).A€*, (50  precession of the spiiin the instantaneous field given by
of Eq. (4). We find that such classical equations of motion for
with Z=[DzDZ §(|z>-1)€S the associated partition func- @ nonlocal in time action are exact in the quantum arena.
tion. Similar definitions apply, with a trivial replacement of (For affectionados of parafermion methods, we briefly note
the measure when the action is a functional of one or mor@s an aside that although throughout we employed the
real fields{x,(t)}. In the current contextx, is code for the bosonic spin coherent path integral representation, a similar
real or imaginary parts of the Comp|ex Spinor Components result follows if the Spinorz were Grassmann Variabléa
Next, we note that for any cyclic coordinatethe expecta- Net even number of permutations of the spinor coordinates

tion value of the variational derivative, are involved in proving Eq(9)].) The bulk of the paper will
. be devoted to a solution of EQ) for different realizations
SS\ _ —_l[eis]xf(g -0 6) of a Josephson junction system.
SX S_ Z %t~ We will momentarily dispense with the Keldysh contour

In the above, by the compactness xfin integrating all indices. Due toﬁthe commutation relatiors< S:'S; al-
possible trajectories(t), the initial and final trajectories are though the fieldH contains a piece that is linear | the
equal:x(t)=x(t). This in turn leads to the vanishing expec- Planar components of Ed9) may be reduced for certain
tation value given in Eq(6) for all nonsingular actions. Problems to a linear equation in planar spin compon¢gjs
Analogously, this result follows by noting that for compact (i=X,y) which then must have the solution

coordinates, the transformatidr(t) — x(t) + x(t)], with any (S(H) = Uy (1(S(0)). (10)
&X(t), leads to no change to the value Bf-the range of

integration inZ=/Dxé&S is unchanged. This, in turn, man- We now invoke symmetry constraints. An external magnetic
dates that (8S/ox)s=01°> Next, we consider A" field h in the action[Eq. (2)] lifts the SU(2) spin rotational
=74'(6S/6Z) and explicitly illustrate that its expectation symmetry of the free spin leading in turn to a lowe(1)
value vanishes(.A'y=0. To this end, we write the spinors, symmetry of rotations about the external magnetic field axis.
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R4 6) rotating (S) by an angled about thez (or magnetic
field) axis. As a consequence, the evolution operak@y of
Eqg. (10) must commute withR(6). This, in turn, dictates that
if the solution is in the form of Eq(10), then the time evo-
lution operatorJ(t) must have the form

Such a symmetry is trivially encapsulated by the operator TB

FIG. 2. The magnetic spin coupled to two superconducting

p(t) q(t)
VO ={-qt pw |- 1D eags.

Similarly, due the azimuthal rotational symmetry encapsu-
lated byR¥(6), the expectation valuEs,(t)) must be indepen-

dent of(S,(0)) and(S,(0)). This form will indeed be borne 0
out for our full Keldysh problem.

d .o : ‘
d_t§(<‘u+ (hx Stw)k"'f dize[ S S(D]

IV. THE KELDYSH BASIS EQUATIONS OF MOTION
Kuu B Kud+ Kdu_ Kdd

Within the nonequilibrium Keldysh formalism it is often Kuu+ Kug + Koo+ Kag

advantageous to apply a simple linear transformation from e ! 2
the basis of up and down contour fields to the symmetric and X Kuu+ K= Kau=Kag  Kuu = Kug = Kau + Kag
antisymmetric linear combination of these fields, e.g., for the
spin 2 4

S=5(Sp* Stows Su= (Sip~ Stowd- (12 St

2

The utility of this basis has its roots in the natural form for ><< -I(t )) (14)
the various correlation functions—all simply related to the Squ 2

advanced, retarded, and “Keldysh” correlators. The sub- s

scripts ‘tl” and “gu’ of Eq. (12) coding for “classical” and An average over ex) is implicit in ( )s As emphasized

“quantum” suggest an intimate relation to classical and quan-_ . . .
tum Langevin like dynamics. We refer the uninitiated readerear“er’ these are not merely saddle point equations but are

to excellent texts such as Refs. 19 and 20, where the origiFlather exact. In t_he abave, although the time arguments were
of this link is explored in depth. In Eq12) we trivially not explicitly written down,K,; serves as a shorthand for

generalize this change of basis to quantum spin systems. Ilﬁaﬁ(t’tZ)'
this basis, when t{;\ken as operators ﬁn Etﬂ) [prior to a V. SINGLE SPIN DYNAMICS IN A JOSEPHSON
passage to a path integral representdtithe spins no longer JUNCTION
obey canonical commutations relatiofe.g., [S;,, Syl # 0)
and are no longer normalizé&,,+ Sy,wn May correspond to ) o . .
a spin-triplet,S=1, or to a spin singleS=0). Thus, we may . qu system is sketch(_ad in Fig. 2. It consists of two |d_en-
not directly employ theCP, representation in this basis. For fical ideal superconducting leads coupled each to a single
the current purposes, the equations of motion in this basi€Pin; the entire system is further subjected to a weak external
may be derived from Eq9) for the up and down contour magnetic field. In Fig. Z;ﬁL,R denote the chemical potentials
spins, of the left and right leadS is a weak external magnetic field
along thez axis, andS=(S,,S,,S) is the operator of the
q localized spin. The wave functions of our system are super-
0= agél +(h X sd)k+J dtye[S(DS,(1)] positions of_ the direct prpduct of states of the left contact, the
impurity spin, and the right contact,

A. The system

=2 fLsdlun) © |90 © |ym)). (15)
Kuu + Kud_ Kdu_ Kdd Kuu_ Kud - Kdu+ Kdd

2 4 A tunneling matrix couples these different states. The Hamil-
tonian of this system reads

Kuu + Kud+ Kdu+ Kdd Kuu_ Kud + Kdu B Kdd
4 8 H=Ho+Hr, Ho=HL+Hr~ uBS,

Hr= 2 €920 [Toduar + TiGaq - Sleipe + hoc.

X(il((t:))) ' (13) KB
ult2

(16)

S Here,’H, andHy are the Hamiltonians in the left and right
and superconducting leads, Whité,{(a (ci,) creategannihilate$
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an electron in the lead in the stakewith spin « in the  where the trace is over both the electron and the spin degrees
right/left lead for i=L/R, respectively. H g =Sp)-€p Of freedom andry denotes time ordering along the Keldysh

+ : .
X cﬁ(p)ﬂck@)’g + %Ek(p);o,v’[Aw'(k(p))CLp),,,C_k(_p),(,/ +h.c], contour. The labefy denotes integration along the Keldysh

where we denote the electron creatimnihilatior) opera contour as shown in Fig. 1. We first take a partial trac&in
: am . o the | fermionéthe bath to obtai ffecti i
tors in the left(L) lead bycL, (cy) While those in the right over the lead fermiongthe bath to obtain an effective spin

R) lead denoted be! h fitiesk action. The Josephson contribution to the resulting spin ac-
(R) eat aredr('an?he Foor ((ij(,). h'Ie quan I(IjeA (pl)((a)re tion reads 3§ dtdt’ (T H(S(1), ) H(S(t'),t')), much in
momenta anar is the spin index, whileip , andayo (k(p)) ¢ spirit of Refs. 22-24. For brevity, we sei,
are, respectively, the single particle energies of conductlonﬁz ¢ ¢, The tunneling Hamiltonian of a pha$edlt-
electrons, and the pair potential in the leads. In @6), the kpokowpals

- : . ~ _age biased junction
componentso,, are entries of the three Pauli matrices

(0%, 0 0%,). In the current publication we consider H1=[Tg0se + T1S+ Ty J(A o EXHi PI2)
s-wave symmetry pairing in the superconducting leads. Here, + )
w is the magnetic moment of the spin. With the spin embed- Ay EXP-1/2)). (18)

ded in the tunneling barrier, the conduction electron tunnel-m the presence of a dc voltage bigs=2eVt If 6 is treated

ing matrix becomes spin dependéit=[To1+T,S-acl. Here  giassically(i.e., ¢ is the same on the upper and the lower
To is & spin-independent tunneling matrix element & & pranches of the Keldysh contguthe contributior<T2 to 85
spin-dependent matrix element originating from the direcanishes. The mixed contributiorT,T; vanishes due to the
exchange coupling of the conduction electron spi, to the  singlet spin structure of thewave superconductor. The only
localized spinS. Henceforth, we will omit thec subscript.  surviving contribution reads

We take both tunneling matrix elemenf§, and T;) to be 2

momentum independent. ThIS'IS not a g:ru0|al assumption and _135 dt% dU[S(1) - o, [SH) - 5]

is merely introduced to simplify notations. Typically, from 2 ) Jk

the expansion of the work function for tunnelind;/T, , ,

~J/U, whereU is the height of a spin-independent tunnel- X [(TrAgs(DAs(t )OI 1 (A ¢ — AT - §)],
ing barrier? A weak external magnetic fielis,~ 100 Ga (19)
will not influence the superconductors and we may ignore its

effect on the leads. The opera®@f’? is the(single electron ~ Where we keep only the Josephdofi-diagona) terms. The
number operator. When the junction is linked to an externabpin structure simplifies for thewave case:

environment, the coupling between the junction and the en-

vironment induces fluctuations of the superconducting phase T% dtjg dt'Ts() - St D (t.t! 20
difference across the junctidm(t)]. e Tk [S® - SEHD A, (20

where  the kernel iD(t,t") is dictated by
A _ _ (TA (DA ()P0 HI24 (A AT —¢). The opera-

_ The Josephson junction with the spin has two time scalegprs A are bilinears in Fermi operators and thus the correlator
(i) The Larmor precession frequency of the spindg (T A (1A (t")) will amount to a sum of a product of two
=gueB=h, whereg, u5 are the gyromagnetic ratio and Bonr (o ms: 4 product of two normal Green's functiGhand a
magneton of the conduction electron, respectivély. The  o4,ct of two pair correlators. Thus, generalizing the
frequencyw;=2eV, with e the electronic charge, character- ,5wn effective tunneling action for a spin-less junc#oR?*

izes the Josephson effect when an external vollage ap- 1, the new spin-dependent arena, we obtain
plied across the junction. ’

B. Physical time scales

Swunnel= — 23g dtag dt’ a(t,t')[ T2
K K

Josephson junctions are necessarily embedded into exter- X . (1) — H(t)
+TiS) -s<t'>]cos(T)

C. The effective action

nal electrical circuits. This mandates that the dynamics ex-
plicitly depends on the superconducting phase difference

¢(t) across the junction. The evolution operator is given by ) N
the real-time path integral -2 Kdt Kdt B(t,)[Tg
_ S expi oz (O + ¢t
Z—fquDSeme). (17) _T2) - &t )]CO\:(%), (21)

The net action of Eq(17) is given by S=[Sgcil(®) where ia(t,t)=G(t,t)G(t',t) and ig(t,t)=F(tt)

+S5pin( S + Snnel @, S)]. The effective actionSy,nnel CONtri- X F(t,t"). Here, the Green functions

bution describes the junction itself. If all external fields are

the same on both forward and backward branches of the G(t,t') = =i X (TkCro(DCh, (1)), (22)
Keldysh contour(K), then Z=Tr Ty exd —ifxdtH(t)]=1, k
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F(tt')=- iE <TKCkT(t)C—kl(t/)>, (23 F>T(t,t’) - iz A —iEk(t—t’), (29)
k « 2By
N o— ’ i- i =4A? 62 ith the
Fiet) =—-i S (Tech (el (t). 24 where the quasi-particle enerdy= VA“+¢, with €
(®t) %< KCier (De5 (1)) 249 free-conduction-electron dispersion in the leads. Putting all

) } ) of the pieces together, we find that
We now express the spin action on Keldysh contour in the ,
A
ARt-t)=-6t-t)>

basis of coherent states .
sin (B, + Ep)(t—t)].
kp 2EE,

Sspin=~ jg dth- S+ Swznw (25) (30)
K

The second, Wess-Zumino-Novikov-WittdiVZNW), term The kerne.IﬁF.‘(t—t’) decays on(shor) time scales of order
in Eq. (25) depicts the Berry phase accumulated by the spir”(i/4). Similarly,

which we discussed earlier in the coherent spin representa- A2

tion wherein it amounts to a kinetic bilinear—the first term Bt-t)=- iz
of Eq. (2). In the calculations that follow we replace the spin kp 2EEp
measureDS by the coherent spin state measieDZ and Henceforth, we will often employ the shortha@®<(t,t’)
rely on our derived exgct equations of _m_otion. We now per-— BRK(t-t'). Looking at Eq.(31), we see that the Fourier
form the Keldysh rotation of Eq12), defining the values of transformgX(w) vanishes for frequencies<A. This is not

the spin and the phqse variqbles. For Fhe superconductins% for the retarded correlat@® due to the presence of the
phase, we introducwith notations following Refs. 22 and theta function. For now, we ignore the fluctuations in the

cog(Ec+Ep)(t—-t")]. (31

24) superconducting phase and séf(t) = dgowrdt) = H(t) = w;t
d= %(¢up+ Goowr)s X = bup— Pdown (26)  With w;=2eV (and thusy=0). In this, “classical,” limit
Within the Keldysh framework, the Josephson current is , N N e ar
given by Y " pRSon CHIEM B Syme= 4 f dt f dt T2BR(4,t)Su() - St (1)
2w/ 6S - -
<I(t)>=3o<%>, (27) +fdtfdt'T§/3K(t,t')squ(t) S,
with &4 the unit fluxon(with full units restored ®y=hc/e (32)

with ¢ the speed of light With these definitions in hand, the
tunneling part of the action reads

with j(t,t")=cod ¢(t)+ ¢(t')/2].

Stunnel= Sa+ S, (28) D. The equations of motion

where the normalquasi-particle tunneling partS,, is ex- With the action at our disposal, we now write down the
pressed via the Green functioa&= 6(t-t')(a” —a~) and  €Xxact equations of motions and give a solution, exact to order

(w)=a”+a~, where ia”(t,t')=G>(t,t')G<(t',t) and O(Ti)._Extracting, in the up-down contour basis, the coeffi-
ia<(t,t')=G=(t,t')G(t',t). Similarly the Josephson- cientsKgyt,t") of the §a(t)-§0(t’) terms in Eq.(32), con-
tunneling partS; is expressed via the off-diagonal Green’s structingK,(t,t") from Eq. (4), and invoking Eq(13), we
functions BR=6(t-t")(8"-p~) and BY(w)=p"+p~, find
where ig7(t,t")=F~(t,t")F™(t,t/) and iB8~(t,t") g
=F=(t,t')F™(t,t’). The pair correlator=(t,t’) are de- (8c ,nyd 2f it +1) AR+ (31
rived from F~(t,t') by the interchange of with t’. In the 0 <dtsd+ NS+ 4T | dtjEnF LK)
current article, we focus on the interaction between the su- . . .
percurrent and the spin. X Sy (t) + 2|T1|Zf dt'j(t,t") B(tt) Sut’) X Sy(b)

In Eq. (21), the normal-tunneling pa&,, is obtained from
Sz by the following substitution: gRK(t,t") — a(t,t'), _ . .
d(t')——g(t'), andy(t’) ——x(t"). The Keldysh termgthose + |T1|2f dt'j(£,t") BR(tt) Sut') X Syu®)
including B¢ and o), which normally give rise to random s
Langevin terms(see, e.g., Ref. 24are, in our case, sup- _ 2 . roa . > >
presgsed at temperatureg much lower than the supercor?duct- - <d_ts°' FhX St loa+lqua Iq“q“>s' (33)
ing gap(T<<A), due to the exponential suppression of the
correlators¥(w) and oX(w) at w<A.

To obtain8R we start from the Gor’kov Green functions

The final subscrips serves to remind us that this is the path
integral average computed with the acti®n The various
subscripts of the integrals denote the terms that they ori-

F(tt)=-i> A FEt). ginaate from [e.g., IC|_C|:4|T1|2fdt’j(t,t’),BR(t’,t)§b,(t’)
k 2Bk X S0 ]. In Appendixes B and C we outline, in detail, the
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evaluation of the various terms in E(33). We will now

A%(S(0)) (2w + ] = 3w wy)
solve Eq.(33) to orderO(T?).

2E,E (B + Ep)?

— T2
AwL—wJ - |Tl| E ’
kp
E. Spin dynamics in a Josephson junction: An exact solution
to O(T?)

With all of the ingredients in place, we may now solve
Eqg. (33) to determine the spin dynamics (’O(Tf). Hence-
forth, we will examine throughout the observable “classical’

component of the spirg,. To make the expressions more
appealing we will dispense with the classical “cl” subscript.
Similarly, the actiorS subscript in all expectation values will Al in all, to O(T$), the evolution of the planar spin com-
be omitted as no time-ordering subtleties appear below. Wgonents can be expressed in the format of Et@). and(11)
expand the spin as with

(S1)) = (S(t)) + (53()).

Here,é) is the solution to théLarmor) problem of a single s
free spin in an external magnetic field. We computed the y (20 + w7 + 3w w))Codw_+ wyt
integrals borne by these zeroth-order Larmor components in wf — (0 + wJ)Z

AXS,(0))(20] + ] + 3w w))
2E,E,(E + Ep)?

BwL+wJ = |T1|22
k.p

AXS,(0)(2w] + 0] = 3w w))
2B, Ep(Ey + Ep)?

By -0, = T12 (39)
k.p

AZ

(34) e —
2EE,(E+Ep)

p(t) = cose t + [T4%>
kp

Sec. XI C. Similarly,55(t) are the contributions borne by the

2 2
retarded and Keldysh correlations. These corrections will n (2“’L+“’J;3“’L“’J)C°5(2‘“L_“’J)t), (39)
lead to higher order contributions {h) which are irrelevant ol ~ (o~ wy)
to ourO(Tf) solution. We insert Eq(34) into the equations an(d
of motion[Egs.(33)] and retain all terms to orded(|T,/?). A2
This trivially leads to — i 2
qit) =sinwt+|T|2> —————
d : ' k,p 2EkEp(Ek+ Ep)2
d_t<58"> — w0 (85) +{19 =0, « ( (20f + ] + 3w wy)sin(w_+ wyt
WE — (. + wy)?

N (20? + 5 = 3w wy)siN(w, — w)t

d d
GO+ @(8S)+(1y) =0, (5)+(1=0. (35

) o

2
wp — (o~ wJ)2

Here, |-y, is the a direction component of<rc|_c|
+lq-o» computed in Appendix GEgs. (C3) and (C4)] to
order O(|T4/?). We see that the integralsplay the role of a
driving force. Integrating, we find that
AZ(I)L

(8S,(t)y = T2 - COSth)(E EELEAE)
Y p

k,p

+(S(0))>

kp

2
EvEp(Ex+ Ep)2> ' (36)

Differentiating the equation of motion fgisS,,) in Eq.
(35 and inserting the equation of motion f08S, ) we im-

mediately obtain the equation of motion of a driven har-

monic oscillator. A simple solution yields
(8S(t)) =c, cosm t+c,Sinw t
An Bn

+E( 5 COSwt+ — 2sinwnt)
oy \WL T Wy W~ Wy

(37)
with
AHS(0))(20? + 0% + 3w wy)
2E,E (B + Ep)?

AwL+wLJ = |T1|2kzp

This concludes our solution for the dynamics of a spin in
a Josephson junction. Our analysis throughout centered on
Josephson junctions composed sfvave superconductors
[see our starting point Eq20)]. Slightly different quantita-
tive results appear for other pairing symmetriallowing, in
theory, a determination of the pairing symmetry from obser-
vations of the spin/spin-wave dynamics and associated ef-
fect9. The deviations from simple Larmor precessions are
far stronger for triplefi.e., odd angular momentaupercon-
ductors.

F. Physical consequences: Josephson nutations and other
dynamical effects

We now discuss the physics behind our e>{aotO(T§)]
solution. Our solution provides testimoignd to newquan-
titative prediction$ for several, inter related, intriguing dy-
namical effects. We outline these below.

« Josephson nutationgn any system harboring a continu-
ous rotationalU(1) symmetry about a certain axig), the
orbital angular momenturh, is a constant of motion. Need-
less to say, the same trivially holds true for any spin system
in which [H,S,]=0 with H the system Hamiltonian. In the
presence of an external magnetic field aldogdefining the
z axis, as in the Larmor problem, the Hamiltonii=-hS,
commutes withS, and the longitudinal magnetizatidS,(t))
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is a constant of motion. In our system with nonlocal-in-time
interactions triggered by superconducting pair correlations,

such a conservation law no longer holds. Perusing(E§), 0 6,

we find that the spimutatesabove its average value. This
occurrence for th&=1/2 issimilar to that reported in Ref. 8 ( 0
for macroscopic spin cluster§>1. Here, however, the ?
quantum fluctuations are profound for t&e1/2 case and

lead to strong deformations of the nutation shape. The physi-

cal engine behind the nutations is the small time separation

between the two tunneling electrons forming the Cooper pair.

As the “first” electron tunnels through, it exerts a torque on
the spin. A certain time latdiof order#/A with dimensions

restoredl after the spinS has already revolved a small

amount, the opposite spin member of the Cooper pair tunnels

through and exerts a torque of an opposite sign on theSpin

Due to the small time lag between the two tunneling elec-

trons, the two opposite sign torques exertecédwy the two FIG. 3. The resulting spin motion on the unit sphere in the

opposite sign spins of the tunneling singlet do not cancel angeneral case. As in the motion of classical spinning top, the spin
lead to a net effect. This origin is made evident in the re-exhibits undulations along the polar direction. As a consequence of
tarded correlationgg® which further spark a nonvanishing entanglement with the tunneling electrons, the magnitude of the
driving force (I ) along thez axis. Mathematically, all of ~Spin is not constant—the spin further “breathes” in and out as it
this results as the tunneling portion of the action containg'utates.

terms that trivially do not consen,. In the aftermath, this . niraction [(SP2+(S)2+(S)2] < F=1/4. Any single spin

led to an effective time-dependent force actin Its ) o >
form may be seen by examirﬁ)ing the integfia) app?e;%rr:g in €xpectation value.W|th|n the Bloch sphefﬁMS ¢>.| <S'de-

) : - notes an expectation value computed in a multi-particle state
Eq. (%5). The latter is the component of the integraf$;_) ) which is entangled. In the case hégé spans the single
and(lq.¢) appearing in EqS(C3). [Needless to say, if both spin and the tunneling electrons. Such a time-dependent con-
members of the Cooper pair share the same polarizétisn traction in the norm oS relative to the Bloch radius is
in triplet superconductoysthen a far greater effect results. evident in our exact solution of Eq$10), (11), (39), (40),

A manifestation of the resulting dynamical effect as a con+{34), and(36).

sequence of these effective external forces in conventional < Nonuniform planar precessio notable facet of the
(s wave Josephson junctions is vividly seen in E§6). We  dynamics given by the effects discussed above are nonuni-
have derived similar expressions via an independent densifyprm planar precessions. We find that within the plane trans-
matrix approach® An exaggerated schematic of this effect is verse to the applied field direction, the azimuthal angle de-
provided in Fig. 3 which, qualitatively, is none other than thescribing the spin orientatiors(t) =tarr '[(S,(1))/(S(t))] is no
standard illustration for classical rigid body nutations. Welonger linear in time. This effect bears, once again, strong
find that such motions now appear in the quantum arena fosemblance to nutations in classical rigid body dynamics. In
a singleS=1/2 particle! The precise shape of our trajecto- the Larmor problem of a free spin in a magnetic fiejdf)

ries, however, is markedly different from that exhibited by =@.t. In our case, the precession about the applied field di-
classical rigid rotors. rection is no longer uniform. Its form is encapsulated in Egs.

- Spin contractions and effective longitudinal fields (37) and(38) or, alternatively, by Eqs(10), (1), (39), and

Glancing at Eq(C4), the reader will see that the effective (40)- Once again, mathematically, the origins of this effect

> . . ) are rooted in the effective plandxy) components of the

(lq-c) can be seen to dilate the sgithe uniform contribu- . ~ o .

) ) - ] effective force(l) appearing in Eq(35). The explicit form of
tion proportional ta(S(t)) in the second equality of E469)]  hjs effective force is given by the sum of the two integrals
and in unison to effectively emulate a time-dependent magdeyaluated in Eqs(C3) and (C4) and whose origin explicitly
netic field shyt; 8,08 ¢(t) along thez-axis in the spin equa- lies, once again, in the same nonlocal-in-time correlations

tion of motion, d(Sy/dt=---+(S) X shyrr. Both of these ef- POMe by the superconducting correlations.

. . In summary, all of the above qualitative findings for the
fech were noted in Ref. 26. In E@Q), we explicitly see problem a singleS=1/2 spin inserted in a Josephson junc-
their origin. The uniform contraction is triggered by an en-

. : tion are made vivid in out)(T3) exact solution. From Egs.
tanglement of the tunneling electrons with dsx1/2 par- (T2) d

; . : . (10), (12), (39), and(40) for the planar spin components and
ticle. We now very briefly elaborate on the physics of thiSt.,y Eqs.(34) and (36) for the longitudinal spin we clearly
statement for the benefit of general readers. The expectatialye how all of these effects come into play.

vaIues<§> amount to weighted sums over all possible states

) [see Eq(15)]. In any pure(i.e., unentangledstate of a VI. RETARDED CORRELATIONS IN GENERAL SPIN S
spin-1/2 problem, the surﬁ<S(>2+<Sy>2+<Sl>2]:1/4—the DYNAMICS IN A JOSEPHSON JUNCTION

spin expectation values lie on the Bloch sphere. Entangle- The equation of motion, Eq9), is valid for all spinsS.
ment in a spin-1/2 problem such as ours is marked by aMuch of our formalism follows with no change. We now
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examine the integralés in the general spis problem.

We find that for a spin of siz&, the integrakly, o) un-
dergoes no change relative to s 1/2 form—Eq. (C4) re-
mains the same. The associated physics fleshed out in t
second equality of Eq69), which was described in the pre-
vious sectior(spin contractions and the presence of an effec
tive longitudinal field, undergoes no change for the general
spin S case.

Next, we evaluatérc|_c|>. For large spinsS> 1, the prod-
uct(é(t) X §(t’)> is well approximated by the vector product
of average&é(t))x(é(t’)). Then, the approach of Ref. 8 is
well justified and we can obtain tREvsephson nutationsf a
big spin. For anyS andt’ >t we obtain

(Sult") X Sy(0)s= 3([{S0, SO} [cose (t' ~1) - 1]

—{S(), SOhsine (t' -1)]&
+[{S(1), S,(0}.[1 = cosw (1" = 1)]
—{S0),S(Ohsinw (t' -1)]g,
+(2S(1) + 25)(1)sin e (t' ~1)&),
(41)

where{: - -}, denotes an anticommutator. In tBe1/2 case,
the integral stemming from these vectorial product correla
tions is parallel to the axis, (Fcl_c,>||éz. For spins of sizes
>1/2, however, as we see from E@l), the planar(x,y)

components also come to the fore and lead to retarding cor-

relation(8R) effects in Eq(33). Furthermore, the magnitude
of the driving force(l ., along thez axis, much unlike the
S=1/2 case, is time dependent.

For general spins of siz8>1/2, both retardeds?) and
Keldysh(BX) are nonzero along any spin direction. All of the
effects discussed in Sec. V F are present.

It is noteworthy to discuss the scaling of all terms with the
spin sizeS. As evident from Eq.(41), the integral<rc|_c|>
spawned by retarded correlations scalesSasSimilarly, as
seen from Eq(C4), whose form holds for arbitrarg, the
effective driving force(quc|> generated by Keldysh correla-

tions (8¥) scales asS, i.e., (Iq,-)S. Thus, for large spins
S> 1, the retarded contributions overwhelm Keldysh contri-
butions. In the classical limits— o, only the retarded con-
tributions remair?.

VIl. SPIN TRIGGERED AC EFFECTS

Thus far our discussion centered on a Josephson junction

for a time-independent potential differendé (dc voltage

PHYSICAL REVIEW B 71, 214520(2005

junctions known to exhibit the famous Shapiro stéps.

The setup is given by Fig. 2 for a sp8¥ 1/2 particle yet
now with an ac voltage applied across the junction. In the
sections that follow, we will resume our central focus on the

nstant voltage drop casé(t) = w;t. Only in this short sec-
tion do we analyze an applied ac voltage bias.

The calculations for the ac voltage bias case parallel the
analysis of the previous sections. First, we express all terms
by pure harmonics. This is readily achieved by relying on the

identity

eiC sinx — E Jn(C)ei”", (42)

with {J,(C)} Bessel functions. The factqft,t’) of Eq. (32)
and thereafter now becomes

jtt)=2> Jn(é)Jm<A

> E)coiﬂ(nH mt')]. (43
The analog of Eq(CJ) for the ac voltage bias case is

: e 2al5)3)
lores=—[Tel%8.2 == 2 3ol = JIml =
<c| cI>S | 1| Z?p EkEan,r:n n 2 m 2
2mQ) inQ(n+mjt
wg Sin (2 m) (44
(Ek+Ep)

Further resonantdelta function terms make an appearance

for m>1.
Similarly, the analog of Eq(69) reads

A A
Jn( —)AZ

2l

2

fes= -T2 S —2L 20
<qu—cI>S | 1| 2 EkEp(Ek+Ep)2

n,mk,p
X[(2mOLS()sin(n + m)Qt = (S(t)) w
xcogn+mQ)g, + (2m(S,(t))sin(n + m)Qt
+(S(1)w_cogtn+mQb)g,
+2mQ(S,(0))sin(n + m)Qte,].

A

2

)

+ <Sz(0)>)

AZ
@S =Ty*> =— > I

To O(|T,4)?), the nutations are given by
k.p EkEpn+m;éO

(é
2
Zm ( (l)L

X 2
(Ek+ Ep) Ek+ Ep
« 1 -cosQ(n+ m)t
n+m '

(45)

Higher order effects further enhance this response. Equation

biag between the two superconducting leads for WhiCh(45) is the ac voltage bias analog of E6) for the dc

¢(t)=WJt with wJ=2 ev.

voltage bias case. The seminal feature of our results is the

We now briefly sketch matters for an ac voltage biasexistence of frequencies in the spin dynamics of all integer

wherein the potential drop is oscillatory in time and the cor-

responding phase difference ¢g€t) =A sinQt. To make the

multiples of the voltage bias driving ac frequen@Qy As the
spin alters(via back-action effecjsthe tunneling supercur-

physics more transparent, we omit any dc contributions taent, the supercurrent will exhibit oscillations at all frequen-

the voltage(and thus linear in time contributions to the

cies w,=r{) with r an integer. Extending the results of Ref.

phasg. This serves as a caricature of rf-driven Josephsor26 to this problem, the supercurrent
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feel an effective momentum-dependent magnetic field of
strengthhg=h+JJ(K)-J(0)] with J(k) the Fourier trans-
form of the two spin interactiod(r,1").

The solution proceeds much the same as for the single
spin problem. Henceforth, we discuss the qualitative physics
expected. Unlike the precise solutions presented till now,
what follows is a quick qualitative sketch by way of an anal-
ogy. An exact solution will be detailed elsewhéfe.

FIG. 4. A f tic slab i 1 tw tw - . . . .
.G erromagnetic slab inser eq between wo supercon Transforming from spin variables to bosonic operators
ducting leads. The entire system is subjected to a weak extern%(m at all lattice siteq” 28

magnetic fieldB. A schematic of the precessing spins is shown.
S'(7) = b'(MN\2S,

(1)) = sin (1) 272ep?A([Tof2 = 2[T4?) + 4e T12p?h(S1) ],

1 —
(46) S()= [b(F) - b (OBMB(D) (25,
wherep is the spin density of states within the leads, with the
spin given by Eqgs(34) and (45 with the Larmor(S,(t
i@g» y Eqs(34) and (45) (S S,=— S+b(Pb(P). 48)
Sans theO(|T,/?) tunneling part of the action, the action is

guadratic in the bosonic operators and is readily diagonalized
VIIl. FERROMAGNETS IN JOSEPHSON JUNCTIONS in g space. We find that the free part of the action

We now investigate what transpires when ferromagnets d .
S= -ff; dt f {S3(9) = I(0)] + hib’ (G)b(a),
K

(instead of a single spjrare immersed between twsawave (2m)°
superconductors with a dc bias voltage applied across the
junction[as illustrated in Fig. # As in the single spin prob- (49

lem, the full problem involves both the back-action of the . . . .
spin on the pﬁase of the superconduciagsored herpand with d the dimension of the inserted magn@s the problem

the spin dynamics sparked by the tunneling curevitich 'S ferromagnetic)(0) =ming{J(q)}.) Comparing this action to
we focus on below Further, for extended junctions, phasonstn€ 0ne appearing in the single spin problem, we find that to
naturally appear. In what follows, we assume that the phasegaussian order the spin-wave problem is identical to the dy-
of the two superconductors surrounding a single magnetifaMics of a single spin with the replacement
slap have a spatially uniform phase diffe_rera.w(.e). The tun-. h — her(d) = {SI(G) - I(0)] + h}. (50)
neling action amounts to a sum over individual tunneling
actions through each of the individual spins labeled by theiThe quadratic contribution of th@(|Ty|?) portion of the ac-
sitesr, tion involving nonlocal-in-time correlations has precisely the
same form for both the single spin problem and for each
- r AR+ 11V T2& (P 1) . & (F47Yi(t +/ moded of the spin-wave problem. Thus, for the quadratic in
Sunnel= 42 Jdtf AU AL TS - SR L) b, (9(|9I'1|2) corrgctions topthe spin dynamics a?e given by
Egs.(36) and(37) with the replacement of Eq50).

T f dtf dt’TiBK(t,t’)%u(F,t) -%u(ﬁt’)j(t,t’)- For instaqce, the above_analogy suggests that that_the net
ferromagnetic moment variation i8=1/2 ferromagnets is

For ferromagnetic spin chains/planes with arbitrary exchange SM
constants)(f,r’), and scaled external magnetic fidigl the V2 (51)
exact equation of motion reads
>, A’w
ds(m - 2 - - =T21—COSwt< _—t
0 T +hX S:I(F) + IcI—cI:r + Iqu—cl;r | l| ( J ) kzp EkEp(Ek+ Ep)3
M A2
P NS (F S (7 +VEEE(E+E)2)’ (52)
+ 2 IS0 X Sy(FY) ) (47) kp =K=pl=k ™ Ep
v S with V the volume of the magnet and its magnetization

It is hard not to notice a resemblance between the singlgans the supercurrent. Alternatively, the analysis may parallel
spin problem Eq. (33)] and the problem of the ferromagnet the derivation of the previous sections word for word while
[Eq. (47)]. Indeed, as we will shortly demonstrate, the spintaking the unperturbed solutidithe analog of the Larmor
wave dynamics in the ferromagnet within a Josephson juncsolution of Eq.(B4)] to be a spin wave and computing all
tion bears much in common with the single spin problemcorrections taO(T?).
with the proviso that the various ferromagnetic spin waves In the continuum limit,
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many instances (ﬁw in the equations of motion and onBR
related contributions in the tunneling action were consequen-
tial. Furthermore, as briefly alluded to earlier, in this limit,

with my=S/v (wherev is the volume per sije the magne- . 2N S
tization density of the ground state, apgdthe spin stiffness. the average of the vectorlaJ prody&(t’) X S() is equal to

This h— he(G) correspondence applies to any propertythe product of the averagéS(t')) X (S(t)). Correspondingly,
inherited by the single spin dynamics in the Josephson juncgny expectation value braces may be omitted. Thus, we may
tion. In particular, in Ref. 26 it was beautifully shown how replace any expectation valgel) by A itself.
spin dynamics may alter the supercurrent in the junction. The The advantage of this method is that it furnishes an el-
current may be computed by the likes of EB7). Extending  egant nonperturbative closed form solution for the spin dy-
these results to a ferromagnet inserted in a Josephson juneamics. We will not repeat the results for the single spin
tion by the correspondence of E&Q), we find that the new cluster (S>1) problem here and rather refer the reader to

p
heed(Q) = rr_:,qz +h, (53

spin wave dynamics leads to the supercurrent, Ref. 8. We now briefly comment on applications of this
o 3 method to other systems.
(1)) = sin (1) f q |:2772ep2A(|-|—0|2 _ _|-|-1|2) To O(|T4/%), the spin wave dynamics in ferromagnets may
(2m) 4 be attained via the substitution of E@0). Equivalently, the

spin wave equations of motion may also be determined di-
+4e|T1|2p2heff((j)(Sl(ci)>], (54)  rectly when applying the adiabatic approximation on Eq.
(47). We then find
with p the spin density of states within the leads. A matching .
of the Josephson and spin frequendi®sch as present here gy -~ = . S s
for variations in the low temperature magnetic momjesete gt XS+ 23S0 X Sy(Fit)
Egs.(36) and(52)]) leads to a dc signal; additional harmon- )

-

ics further appear. We emphasize that in the above we com- - dS
pared only the Gaussian portion in the Bose fields. Higher + kS X il wit=0 (55)
order(non-Gaussianterms originating from Eq(48) as well
as phasons alter the natural correspondence of( ). A \yith k=3, o(|ARIT,2 EE[(Ec+E,—eV) 2~ (E +E
full discussion of these issues will be detailed elsewfitre. | o\)-2] The apbl;opriate spin wave quation is P
IX. OTHER GEOMETRIES db(g) _. o
ek ilh+ SJ(G) - J(0)}|b(d) + xab(q,t)sin w;t.

If phason contributions are neglected, then, by a trivial
change of geometry, all of our results thus far will apply for (56)
other systems as well. For instance, by replacing one of the ) .
superconducting leads by a surface, the resulting system may'e solution to Eq(56) is
emulate a superconducting tip coupled to superconducting ,
surface through a single spin or a ferromagnet. Here, all of g 1) = (G, O)exp[— 2'(5{3(@’— J(Og} +h)

o)Vl -«

the results of Secs. V and VIII for the spin dynamics and
tunneling current hold.
X K [ k— tan(w,t/2)
Xqtan| — | -tan"| —F—— ,
V1-«? V1-#2

Similarly, by replacing both superconducting leads by sur-
faces and examining a magnetic layer inserted in between,

the resultant system looks much like a layered (57)
superconducting/magnetic system. In this system, the results
of Sec. VIII apply. which is quite different from the standard spin-wave evolu-
tion in a magnet outside a Josephson junction. The key fea-
X LARGE S ADIABATIC APPROXIMATIONS ture is a nonuniform evolution of each spin-wave. Similar to

the azimuthal precession of a single spin, the planar compo-

Thus far we studied the dynamics of single spins and ohents S, precess as the real and imaginary parts of
ferromagnets. In Ref. 8, the largglimit of the single spin  exdi¢e(t)] with a nonlineare(t). Thermodynamic quantities
problem was studied. In that work, several approximationgomputed via the corrected bosonic spin-wave dispersion ex-
were made: hibit corrections.

(i) The perturbative approach that we employed in the Similarly, we may examine the adiabatic laigequations
current article which allows an exact evaluation of all perti-of motion for an antiferromagnetic spin chain oriented along
nent integrals to low orders was replaced by an “adiabaticthe z axis in a Josephson junctidjust as in Fig. 4, yet now
approximation wherein the slow dynamics of the spisa  with a single antiferromagnetic spin chain replacing the fer-

vis electronic processes was explicitly incorporat&ft’) ~ romagnetic slab in ah=0 backgrounyl We then find that

z§(t)+(t’—t)(d§/dt). the staggered spirﬁz(—l)‘é (with the integeri the spin
(ii) The (“classical) large S limit allowed us to omit site location along the chainsatisfies
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0=0IS(D) + 33Su(t) X 2.54(0) + kaSy(Dsinwgt, (58 Magnetic atom desoow
where 0= (vg/g)[#—(1/v?)d]. Here,g=2/S and the spin :’}fec;l:zhn;k

wave velocityvs=2aJS with a the lattice constant. The role
of the supercurrent as an effective driving term is evident in
the last line of Eq(58).

Xl. CONCLUSIONS

) . FIG. 5. A SQUID-based detection scheme. The SQUID moni-
exfz?bi?[ggcg/sIgpr)]i,nguirnV\\I]cc))rske?)ﬂgro??jr?c?iiﬁsdygr?rrcl)z?é efr;e;:;;c})rs the magnetic field produced by the magnetic cluster in one of
- : ’ e junctions.
features(general and specifiavere found:
(1) We derived theexactequation of motion for spin sys- setup, withT,/ Ty~ 0.1, the typical critical Josephson current
tems on Keldysh contours. i 1910 uA. IAl=1 meV. andeV— 10-3IA find th
(2) TheS=1/2 spin dynamics of a single spin ina\]oseph-IS S IN N | |_. ?SG;S’ agleT; .| |, we find that
son junction was invesfigated and a perturbative solution wal1€ relative correction e € spin components or-
given. Spin1/2 Josephson nutations are predicted thogonal toB vary, to O(T3), with Fourier components at
(3) Spin dynamically triggered ac effects are predicted. frequencies|w *w,| (w =gugB), leading to a observable
(4) The spin wave dynamiosf a ferromagnet in between signal in the magnetic fiel@®+dB. For a fieldB~ 200 G,
two superconducting leadgas investigated. We predict non-  ~560 MHz, and a new side band will appear |af
trivial spin wave dynamics as well as new manifestations of-,,|, whose magnitude may be tuned to 10—100 MHz. This
thi?S?yLn;;n;%dg(gf; ;;gitgvaQr;hgl Ssgﬁsesrggrfrgmermmagneﬂ qmea?urable frequency is easily distinguished from the Lar-
_ _ _ ISse _ or frequencyw, .
slabs and antiferromagnetic spin chains in a Josephson junc- The efficiency of this detection scheme may be enhanced
tion. by embedding the spin in one of the Josephson junction arms
of the SQUID itself. Such a setup is illustrated in Fig. 5. The
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APPENDIX B: TIME ORDERING ALONG THE KELDYSH
APPENDIX A: DETECTION CONTOUR

The nontrivial spin-wave and associated supercurrent in In averaging within the path integral formalism, we im-

gzsgggﬁor?]ggc:fgj|§°Qéae'2'?r?;§r{ﬁ$aegg§§r;£l)sg}?s/ Thrgediately attai.n t_ime—ordered_ averages. Ip interchanging the

spin dvnamics mav be discerned by measuring the ma.ne order of the spingif necessaryin the vectorial product upon
pin dy y ) y Ing magnet,e ordering within the path integraCP, formulation a

zation of the ferromagnetic slab as a fgncgon of tifes change of sign is incurreth. We now go over, in some detail,

suggeste_d by Ed52)] as well as by monitoring the_ SUPEr™ ime ordering within the Keldysh framework. As the time

current[given by Eq.(54)]. Other techniques may involve ordering is performed along the Keldysh contour, we will

standard measurements of microwave radiation from th%enote it byT, as we have done in deriving the éffective

junction (and backaction effectsThe magnitudes of these action of subsKection Ve

effects will be'stud|ed'elsewhe?%. . . . Consider the third term in Eq33). Upon time ordering,

We now briefly review a detection scheme discussed Nve find that

Refs. 8 and 30 for the Josephson nutations forS&el limit

of the general spin S results of Sec. VI. This corresponds to

a single magnetic cluster.

As it moves, the spin cluster magnetic moment generates

(St X Sy®)s= (Tl Syut’) X SO

a time-dependent magnetic field,éé(r,t):(uolmr) :<TK{%[§up(t’) —éjown(t’)]
X {3 -m(t)]-r2m(t)}/rS. This small field is superimposed . . }>
against the constant external field backgrouéd. In the X [Sup®) + Ssour D157 (B1)

above,r is the position relative to the spin ami(t) is the

magnetic moment of the spin. A ferromagnetic cluster of spirbue to the form of the Keldysh contousee Fig. 1, irre-

S=100 generates a detectable magnetic filBd-10"°T at ¢ oqtive of the values dfandt’ S.(t) alwavs appears be-
a distance of a micron away from the spin. For a SQUID P + Supll) yS app

loop of micron dimensions located at that position, the ensu®"® Stowrt'). Similarly, fort>t', §,,(t) appears afteg,(t’)
ing flux variation & ~10'®, (with ®y=hc/e the flux  while Sy,{t) appears befor§y,,{(t'). With this information
guantum are within reach of modern SQUIDs. In such a at hand, Eq(B1) leads to
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(TSl X S0D (Taods= 4T, f dj (1.t ) X SuD)s
== o(t=t)[(St') X SO) +(S{t) X St'))]. (B2) A2 e
The expectation values on the right are the usual operator |T1|2é22 — f dt’ e(t—t’)COSwJT
expectation values. Here, we disposed of the up/down indi- p BEp
ces once we took care of time ordering. The up/down labels X sinw (t=t")sin(E,+ Ep)(t—t')]. (C1)
merely serve as mnemonics for this time ordering along the
Keldysh contour. Before evaluating Eq(C1) exactly, we illustrate what an-
Similarly, we find that swer is anticipated. The underlying observation of tu$a-
_ _ batic approach is that, as a consequencevpf<E,, the
(Tl Su(t') X S spin dynamics is far slower than that of electronic processes.
L - - . R Thus, in integrals involving both spin and electronic degrees
=5{0t" —D(St") X SO - S(t) X St')]) of freedom, we may regard the spin as nearly stationary and

N 2oary _ & > approximate S(t’)=S(t)+(t'—t)(dS/dt). This physically
+ o= LS X ) - S) X SO (B3 transparent approximation was invoked in Ref. 8. Employing
By the same toker(,TK[équ(t) X §qu(t’)]>:0. this approximation here we anticipate the(ﬂ*d_d)S

As will become clear shortly, in the solution of E483) =C,6,sinw t whereC; is, up to trivial prefactors, given by
to orderO(T ), we will need the spin-spin expectation values [5dx{x?8%(x)]. Such an anticipation is not far off the mark.
of the usual Larmor problerti.e., a single spin in a magnetic Next, we exactly evaluate E¢C1) by rewriting products
field sans any supercurrentiere, of trigonometric functions as sums and consequently em-

S = S(0)cosayt + S,O)sinwyt, ploying the identities

S/(t) =S(0)cosw t - S(O)sinwit, S[t) =S/(0), f . dxcosax=md(a),
(B4)
with the external magnetic field oriented along the positive o 1
axis andw,_ =|h| the Larmor frequency. f dxsinax=md(a) + a (C2
Next, we invoke this solution to compute the various ex- 0
pectation values within the Larmor problefne., to order In the integrals of interest assumes the role dt’-t).
O(T9)]. We find that As the applied magnetic field and voltage are far lower than
= - electronic energy scalesy_;<E,, we find that all reso-
(Suu(t') X Sult)s nances signaled by the delta functions are physically unac-
— s 41T 2t 2 cessible and our expressions undergo further simplifications.
== o=l Im{S(E) X SOy} Retaining the leading order terms @(wy 3/ (Ex+Ep)) we
= =00t =t ){(S())[1 + cosw (t' —1)] arrive at
+HS)sinoy (' -8, Moo,
+((S/(H)[L + cosw, (t' - )] —(S(B)sinw (t' —1)&, (loa)s= - Tl ezE > EE(E+ E))° sinwgt.  (C3)
+ 2(S(t))cosw (I’ —1)&,}. (B5)
L Thus, the form anticipated by the adiabatic approximation is
Similarly, for theS=1/2 problem, correct if C1=—|T1|2Ek,pA2w|_wJ/(EkEp(Ek+Ep)3)-
. D oA Similarly, by inserting Eqs(31) and (B5) into Eq. (33)
<Stl(t ) X S:I(t»s Re{(S(t ) X S(t)>} 2 SII’] wL(t t)ez- and invoking EqS(CZ), we find
(B6)
N
In Egs. (B5) and (B6), we vividly see that upon time MI>S |-|-l|22 A
ordering along the Keldysh contour, the nonvanishing spin 5 EEQ(Ex+ Ep)?

Cross products become simply related to the imaginary and

real parts ofS(t’) X S(1)). X [(S()w; sinwst = (S/(t))w cosw,t)&

+ (/1) w; sinwit +(S(1) w cosw;t)&,

APPENDIC C: EVALUATION OF INTEGRALS +(S(0))w; sin w,t&,]
We are now ready for the evaluation of the various inte- = Cz[w3<§(t)>sin P(t) + w cosp(t) (&, X <§(t)>)],
grals| that appear in Eq:33) to orderO(T3). (C4)
We start withl_. Inserting Eqs(B6) and (30) into Eg.
(33) we find upon invoking the relatiogh(t) = w;t with the constantC,=~|T|%S, |A|?/ (EE,(E+Ep)? and

214520-13



NUSSINOV et al. PHYSICAL REVIEW B 71, 214520(2005

¢(t)=wst the superconducting phase difference across then in Sec. V F. Our expressiofigs.(C3) and(C4)] above
junction. The last line of Eq(C4) has a very physically are exact to lowest order ifi and the ratiogw, ;/Eyp).
suggestive meaning regarding spin contractions and an effec- Finally, the IntegraKIqwqu) 0 identically by virtue of a
tive longitudinal magnetic field—items which we will expand vamshmg(Squ(t ) X §yu(t))s=0.
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While inserting complete coherent spin states at all times steps

we invoke J DzDZ 5(|Z|2 1)€|sza(t2) be(tz)Zc(tl)O'CdZd(tl)e'S

~ A 1/2

1+Q-0' .
@)= (—) e, .
2 - f DzDZ 5(|Z|2 - 1) eijkza,(tl)
0+6 i * i ;
=2 tan‘l(tar[(qs— s SAARES cod ,)]) X X 0y 2 (1) 24 (1) 0L g Ze (1) €.
cod 5(6-6]

wherey andy’ depend on gauge convention, wjh) and|Q’) This can be seen by making an identification of summation in-

spin coherent states at two different times. In the limit of small  dices,a’=c, b’ =d, ¢'=a, d’'=b, and invokingejj = —€j.
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