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We extend the Keldysh formulation to quantum spin systems and derive exact equations of motion. This
allows us to explore the dynamics of single spins and of ferromagnets when these are inserted between
superconducting leads. Several new effects are reported. Chief amongst these are nutations of singleS=1/2
spins in Josephson junctions. These nutations are triggered by the superconducting pairing correlations in the
leads. Similarly, we find that on rather universal grounds, magnets display unconventional spin wave dynamics
when placed in Josephson junctions. These lead to modifications in the tunneling current.
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I. INTRODUCTION

There is a growing interest in a number of techniques that
allow detection and manipulation of a single spin. A partial
list includes optical detection of electron spin resonance
sESRd in a single molecule,1 tunneling through a quantum
dot,2 and, more recently, the ESR-scanning tunneling micros-
copy sESR-STMd technique.3,4 Interest in ESR-STM lies in
the potential of detection and manipulation of a single
spin5,6—an ability which is crucial to spintronics and quan-
tum information processing. Much work also addressed cou-
pling, feed-back effects, and decoherence in a coupled
electronic-vibrational systems, such as nanomechanical os-
cillators and local vibrational modes.7 In particular, spin-
tronic and quantum computing applications greatly intensi-
fied interest in Josephson junctions. In a previous
publication,8 four of us studied the effect of the supercurrent
on a macroscopic spin clustersof spin S@1d precessing in
the presence of a magnetic field when placed in a Josephson
junction to find new spin dynamics. In the current article, we
complement8 by studying the dynamics ofsingle quantum
S=1/2 spins in Josephson junctions to find new intriguing
dynamical effects for which we provide quantitative expres-
sions. The single spinsS=1/2d dynamics which we study
here differs significantly from the the large magnetic cluster
sS@1d dynamics studied in Ref. 8. In the current article, we
further examine spin wave dynamics in ferromagnets when
placed in Josephson junctions.

The analysis of spins embedded in Josephson junctions
has a long and rich history. Early on, Kulik9 argued that spin
flip processes in tunnel barriers reduce the critical Josephson
current as compared to the Ambegaokar-Baratoff limit.10

More than a decade later, Bulaevskiiet al.11 conjectured that
p-junctions may form if spin flip processes dominate. The
competition between the Kondo effect and the superconduc-
tivity was elucidated in Ref. 12. A nice review of experimen-
tal works on certain aspects of magnetic nanoparticles in
Josephson junctions is found in Ref. 13. Transport properties
formed the central core of many pioneering works, while
spin dynamics was relegated to relatively trivial secondary
role. In the current article, we report on exact nonstationary

spin dynamics and illustrate how a quantumS=1/2 spin is
affected by the Josephson current. As a consequence of the
Josephson current, spins exhibit nonplanar precessions while
subject to the external magnetic field. As is well known, a
single quantum spin in a magnetic field exhibits circular Lar-
mor precession about the direction of the field. As we report
here, when the spin is further embedded between two super-
conducting leads, quantum pairing correlations lead to new
out-of-plane longitudinal motion, much like that displayed
by a classical mechanical top, will arise. We term this effect
the Josephson nutation. Similar effects occur when a ferro-
magnetic slab is placed between two superconducting leads.
We outline how transport is, in turn, modulated by this rather
unusual spin dynamics. The coupling of the spin with the
supercurrent leads to an effective non-local in time interac-
tion of the spin with itself. Keldysh contour calculations il-
lustrate that a nonlocal-in-time single fermion action is also
found in situations wherein the single spin is replaced by an
Anderson impurity.14 As is well known, in the limit of small
hopping amplitudes to and from an Anderson impurity, the
impurity attains a Kondo-like character much like that of the
single spin which is the focus of our attention. Here we con-
sider the origin of this rather generic nonlocality in time
present in the dynamics of a Josephson junction. En route to
deriving this spin dynamics we illustrate that even in the
presence of nonlocal in time interactions, certain variants of
the classical equations of motion become trivially exact by
virtue of compactness of the spin variables. An elaborate
extension of these ideas will be detailed elsewhere.15

II. OUTLINE OF THE ARTICLE

The main goal of the current publication is to report on
the spin and spin wave dynamicssof single spins and of
magnetic systems, respectivelyd in Josephson junctions.

To achieve this aim, we will initiallysin Secs. III and IVd
extend the nonequilibrium Keldysh formalism to address
these problems. In Sec. III, we illustrate that even in the
presence of effective nonlocal-in-time interactions of a spin
with itself ssuch as those borne by the interaction of a single
spin with a Josephson currentd, the equations of motion un-
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dergo a trivial modification. In Sec. IV, we rewrite these
equations within the standard Keldysh basis best suited for
nonequilibrium problems. Sections III and IV may be seen as
independent extensions of basic facets of the nonequilibrium
Keldysh formalism for a spin system.

In Sec. V, we apply the rather general formalism devel-
oped in Secs. III and IV to the specific problem of a single
S=1/2 spin in a Josephson junctionswith a time-
independent potential difference between the two supercon-
ducting leadsd. We start, in Sec. V A, by writing down the
relevant Hamiltonian of such a Josephson junction harboring
a single spin. In Sec. V B, we briefly highlight the natural
time scales in the problem, which will indeed come to the
forefront in the detailed solution which we will later expose.
In the all-important Sec. V C, we highlight the origin of the
effective nonlocal-in-time interactions of the spin with itself.
Here, we integrate out the lead electrons to find the effective
spin-only action harboring such nonlocal-in-time interac-
tions. These nontrivial interactions are the reason that we
needed to develop and extendsSecs. III and IVd the Keldysh
formalism to a very general spin system with such interac-
tions. In Sec. V D, we invoke the results of Secs. III and IV
to the resultant effective spin-only action of Sec. V C to
write down the equations of motion for the spin. In Sec. V E,
we solve these equations of motion to lowest order in the
spin-dependent tunneling amplitude. Detailed technical as-
pects of the solution on which Sec. V E dutifully relies on
have been relegated to Appendixes B and C. The perturbative
solution to the equations of motion—the final equations of
Sec. V E—form one of the main core results of the current
publication. In Sec. V F, we examine the physical meaning
of this solution of the single spin problem to unearth several
new predictions for thisS=1/2 system. In this subsection,
we aim to further arm the reader with an intuitive under-
standing for the physical origin of these new effects. Some of
these predicted effectssand our prediction of nutation in par-
ticulard are highlighted in Fig. 3. In Sec. VI, we examine the
behavior of the system for a single spin of magnitudeS
.1/2. In the largeS@1 limit, we recover our very different
semi-classical spinsS→`d results of Ref. 8.

Next, in Sec. VII, we discuss a variation of the single spin
problem wherein an ac voltage bias is applied across the
Josephson junction. Our main result is the predictions of spe-
cific time-dependent spin dynamics displaying an infinite
number of harmonics and new dc lock-in effects. The pre-
dicted supercurrent in this system is also discussed.

In Sec. VIII, we examine the problem of a ferromagnet in
a Josephson junction. In the spin-wave approximation, we
find that each spin-wave mode displays some of the unusual
effects predicted in Secs. V E and V F for the single spin
problem. The predicted spin wave dynamics and associated
transport scurrentd are furnished. In Sec. IX, we discuss
simple extensions of our results to other systems generated
by a trivial change of geometry wherein at least one of the
superconductors forming the Josephson junction is replaced
by a planar superconductor. In Sec. X, we write down the
S@1 equations of motion for general magnets and antiferro-
magnetic chains. The nonuniform temporal evolution of each
of the spin-waves is highlighted in the resultant solution.
We conclude the main text, in Sec. XI, by highlighting our
conclusions.

In Appendix A, we briefly discuss several experimental
manifestations of our effect and highlight a proposed experi-
ment that may verify our predictions.

III. EXACT SPIN-1/2 EQUATIONS OF MOTION ON
KELDYSH CONTOURS

We start by deriving the equations of motion for a very
general spin-1/2 system having twosor mored local and non-
local spin-spin interactions at different times. In this work we
employ the non-equilibrium Keldysh techniquesFig. 1d.
Within this framework, the spin operators on both up and
down portions of thesKeldyshd contours of Fig. 1 are nor-

malized and satisfyfSWustd ,SWdst8dg=0. In what follows, we will
employ a path integral representation. Toward this end, our
working horses will be theCP1 spin coherent variables
szd,16,17 wherein the spins are represented by

SW = Sza
*sW abzb s1d

swith S the spin magnituded. Here and throughout, we set
"=1. In Eq.s1d, a,b= ↑ ,↓ and we assume an implied sum-
mation over repeated indices. The vectorssW ab are theab
componenets of the three Pauli matrices. The components
za=↑,↓ code for a two component complex spinor subject to
the normalization constraint,uz↑u2+ uz↓u2=1. By glancing at

Eq. s1d, we note that a knowledge ofSW specifies the two
component spinorz only up to a global multiplicative phase.

As well appreciated, in a spin coherent basis, the Berry
phases associated with the spin coherent states are the net
area of the spherical triangle spanned by the spin as it moves
on the Bloch sphere. The latter may be expressed in theCP1
basis asSBerry= i edtoaza

*]tza.
16,17 For the benefit of readers

unfimiliar with this formalism, we provide in Ref. 18 a quick
derivation for this form of the Berry phase.

We now assume the action contains the single spin term

−haedtSWa·hW describing a single spin in an external magnetic

field set byhW. The parityha= ±1 is fixed by the direction of
the contour—hup=1, hdown=−1. We
further include a nonlocal-in-time spin interaction

hahbedtedt8K̄abst ,t8dSWastd ·SWbst8d. The kernelsK̄ab encapsu-

FIG. 1. The standard Keldysh contour. The timesT andT8 are
taken to be −̀ and`, respectively. The form of this contour will be
heavily employed in our work when time ordering various spin
products.
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late nonlocal temporal dependence. The generalization to
higher order terms is straightforward and leads to no quali-
tative change. With the Berry phase included, the general
action

S= 2iShaE dtza
*]tza − SE dthahWa ·za

*sWza

+ S2hahbE dtE dt8K̄abst,t8dza
*stdsWzastd ·zb

*st8dsWzbst8d.

s2d

Varying the action,

dS

dzan
* std

= ShaS2i]tzanstd − hW · sW ngzagstd

+ hbE dt8Kabst,t8dzbg
* st8dsW gdzbdst8d · sW ngzagstdD

; Shaf2i]tzanstd − HW std · sW ngzagstdg. s3d

Here,

Kabst,t8d ; K̄abst,t8d + K̄bast8,td,

HW std ; hW + ShaE dt8Kabst,t8dzbg
* st8dsW gdzbdst8d. s4d

Next, we briefly generalize Ehrenfest’s theorem to situa-
tions such as the one of relevance here where a real nonlocal
in time action is present. A full discussion of this theorem for
general systems will be presented elsewhere.15 In what fol-
lows, the expectation value of any quantityA evaluated with
the actionS is denoted by

kAlS;
1

Z
E DzDz*dsuzu2 − 1dAeiS, s5d

with Z=eDzDz*dsuzu2−1deiS the associated partition func-
tion. Similar definitions apply, with a trivial replacement of
the measure when the action is a functional of one or more
real fieldshxastdj. In the current context,xa is code for the
real or imaginary parts of the complex spinor componentsz.
Next, we note that for any cyclic coordinatex, the expecta-
tion value of the variational derivative,

K dS

dx
L

S
=

− i

Z
feiSgxistd

xfstd = 0. s6d

In the above, by the compactness ofx, in integrating all
possible trajectoriesxstd, the initial and final trajectories are
equal;xistd=xfstd. This in turn leads to the vanishing expec-
tation value given in Eq.s6d for all nonsingular actions.
Analogously, this result follows by noting that for compact
coordinates, the transformationfxstd→xstd+dxstdg, with any
dxstd, leads to no change to the value ofZ—the range of
integration inZ=eDxeiS is unchanged. This, in turn, man-
dates that kdS/dxlS=0.15 Next, we consider Ai

;z*sisdS/dz*d and explicitly illustrate that its expectation
value vanishes,kAil=0. To this end, we write the spinors,

longhand, in terms of real and imaginary components,z*

=szRe
1 − izIm

1 zRe
2 − izIm

2 d and the measureDzDz*dsuzu2−1d
=DzRe

1 DzIm
1 DzRe

2 DzIm
2 dsuzRe

1 u2+ uzIm
1 u2+ uzRe

2 u2+ uzIm
2 u2−1d. Here

and in what briefly follows we suppress a uniform Keldysh
contour index. The expectation valuekAil for each value of
the spin index,i =x,y,z, is an integral over bilinears inz and
hence amounts to a sum of integrals of the type

Iab ;E DzRe
1 DzIm

1 DzRe
2 DzIm

2 dsuzRe
1 u2 + uzIm

1 u2

+ uzRe
2 u2 + uzIm

2 u2 − 1dza

dS

dzb

eiS. s7d

Here, the indicesa and b span the four possible values
s1 Re,1 Im,2 Re,2 Imd. An immediate consequence of the
vanishing of the expectation valuekdS/dxl for any cyclic
coordinatex is that all integrals of the formIaÞb vanish. An
inspection ofkAil reveals that the contributions of all inte-
grals of the typeIaa cancel identically wheni =z sthe only
place where integrals of the typeIa=b appeard. Similarly,
kAi†l=kfdS/dzstdgsizl=0. The vanishingkAil=kAi†l=0 im-
ply that their difference is

0 =KS dS

dzasstd
sss8

j zas8 − zas
* sss8

j dS

dzas8
* stdDL

S

, s8d

where the Keldysh contour indexsad is reinstated.
Next, we explicitly insert Eq.s3d into Eq. s8d. As a con-

sequence of theSUs2d algebra of the Pauli matrices, we find
that for each Keldysh contour indexa=top/bottom,

K ]SWa

]t
L

S
= − kHW 3 SWalS. s9d

Equations9d is none other than the equation of motion for

precession of the spinSW in the instantaneous field given byHW

of Eq. s4d. We find that such classical equations of motion for
a nonlocal in time action are exact in the quantum arena.
(For affectionados of parafermion methods, we briefly note
as an aside that although throughout we employed the
bosonic spin coherent path integral representation, a similar
result follows if the spinorsz were Grassmann variablesfa
net even number of permutations of the spinor coordinates
are involved in proving Eq.s9dg.) The bulk of the paper will
be devoted to a solution of Eq.s9d for different realizations
of a Josephson junction system.

We will momentarily dispense with the Keldysh contour

indices. Due to the commutation relationsSW 3SW = iSW, al-

though the fieldHW contains a piece that is linear inSW, the
planar components of Eq.s9d may be reduced for certain
problems to a linear equation in planar spin componentskSil
si =x,yd which then must have the solution

kSistdl = UijstdkSjs0dl. s10d

We now invoke symmetry constraints. An external magnetic

field hW in the actionfEq. s2dg lifts the SUs2d spin rotational
symmetry of the free spin leading in turn to a lowerUs1d
symmetry of rotations about the external magnetic field axis.

SPIN AND SPIN-WAVE DYNAMICS IN JOSEPHSON… PHYSICAL REVIEW B 71, 214520s2005d

214520-3



Such a symmetry is trivially encapsulated by the operator
Rzsud rotating kSWl by an angleu about thez sor magnetic
fieldd axis. As a consequence, the evolution operatorUstd of
Eq. s10d must commute withRzsud. This, in turn, dictates that
if the solution is in the form of Eq.s10d, then the time evo-
lution operatorUstd must have the form

Ustd = S pstd qstd
− qstd pstd D . s11d

Similarly, due the azimuthal rotational symmetry encapsu-
lated byRzsud, the expectation valuekSzstdl must be indepen-
dent of kSxs0dl and kSys0dl. This form will indeed be borne
out for our full Keldysh problem.

IV. THE KELDYSH BASIS EQUATIONS OF MOTION

Within the nonequilibrium Keldysh formalism it is often
advantageous to apply a simple linear transformation from
the basis of up and down contour fields to the symmetric and
antisymmetric linear combination of these fields, e.g., for the
spin

SWcl ;
1
2sSWup + SWdownd, SWqu ; sSWup − SWdownd. s12d

The utility of this basis has its roots in the natural form for
the various correlation functions—all simply related to the
advanced, retarded, and “Keldysh” correlators. The sub-
scripts “cl” and “qu” of Eq. s12d coding for “classical” and
“quantum” suggest an intimate relation to classical and quan-
tum Langevin like dynamics. We refer the uninitiated reader
to excellent texts such as Refs. 19 and 20, where the origin
of this link is explored in depth. In Eq.s12d we trivially
generalize this change of basis to quantum spin systems. In
this basis, when taken as operators in Eq.s12d fprior to a
passage to a path integral representationg, the spins no longer

obey canonical commutations relationsse.g., fSWqu,SWclgÞ0d
and are no longer normalizedsSWup±SWdown may correspond to
a spin-triplet,S=1, or to a spin singlet,S=0d. Thus, we may
not directly employ theCP1 representation in this basis. For
the current purposes, the equations of motion in this basis
may be derived from Eq.s9d for the up and down contour
spins,

0 =7 d

dt
Scl

k + shW 3 SWcldk +E dt2ei jkfScl
j stdSqu

j stdg

31
Kuu + Kud − Kdu − Kdd

2

Kuu − Kud − Kdu + Kdd

4

Kuu + Kud + Kdu + Kdd

4

Kuu − Kud + Kdu − Kdd

8
2

3SScl
i st2d

Squ
i st2d

D8
S

, s13d

and

0 =7 d

dt
Squ

k + shW 3 SWqudk +E dt2ei jkfScl
j stdSqu

j stdg

31Kuu + Kud + Kdu + Kdd
Kuu − Kud + Kdu − Kdd

2

Kuu + Kud − Kdu − Kdd

2

Kuu − Kud − Kdu + Kdd

4
2

3SScl
i st2d

Squ
i st2d

D8
S

. s14d

An average over expsiSd is implicit in k lS. As emphasized
earlier, these are not merely saddle point equations but are
rather exact. In the above, although the time arguments were
not explicitly written down,Kab serves as a shorthand for
Kabst ,t2d.

V. SINGLE SPIN DYNAMICS IN A JOSEPHSON
JUNCTION

A. The system

Our system is sketched in Fig. 2. It consists of two iden-
tical ideal superconducting leads coupled each to a single
spin; the entire system is further subjected to a weak external
magnetic field. In Fig. 2,mL,R denote the chemical potentials

of the left and right leads,BW is a weak external magnetic field

along thez axis, andSW =sSx,Sy,Szd is the operator of the
localized spin. The wave functions of our system are super-
positions of the direct product of states of the left contact, the
impurity spin, and the right contact,

ucl = o fLSRsucLl ^ ucSl ^ ucRld. s15d

A tunneling matrix couples these different states. The Hamil-
tonian of this system reads

H = H0 + HT, H0 = HL + HR − mBzSz,

HT = o
kW,pW ,a,a8

eif/2cRkWa
† fT0daa8 + T1sW aa8 ·SWgcLpWa8 + h.c.

s16d

Here,HL andHR are the Hamiltonians in the left and right
superconducting leads, whilecika

† scikad createssannihilatesd

FIG. 2. The magnetic spin coupled to two superconducting
leads.
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an electron in the lead in the statekW with spin a in the
right/left lead for i =L /R, respectively.HLsRd=okspd;sekspd

3 ckspd,s
† ckspd,s + 1

2okspd;s,s8fDss8(kspd)ckspd,s
† c−ks−pd,s8

† + h.c.g,
where we denote the electron creationsannihilationd opera-
tors in the leftsLd lead bycks

† scksd while those in the right
sRd lead are denoted bycps

† scpsd. The quantitiesk spd are
momenta ands is the spin index, whileekspd,s andDss8(kspd)
are, respectively, the single particle energies of conduction
electrons, and the pair potential in the leads. In Eq.s16d, the
componentssW aa8 are entries of the three Pauli matrices
ssaa8

x ,saa8
y ,saa8

z d. In the current publication we consider
s-wave symmetry pairing in the superconducting leads. Here,
m is the magnetic moment of the spin. With the spin embed-
ded in the tunneling barrier, the conduction electron tunnel-

ing matrix becomes spin dependent,6 T̂=fT01̂+T1SW ·sW cg. Here
T0 is a spin-independent tunneling matrix element andT1 is a
spin-dependent matrix element originating from the direct
exchange couplingJ of the conduction electron spinsW c to the

localized spinSW. Henceforth, we will omit thec subscript.
We take both tunneling matrix elementssT0 and T1d to be
momentum independent. This is not a crucial assumption and
is merely introduced to simplify notations. Typically, from
the expansion of the work function for tunneling,T1/T0
,J/U, whereU is the height of a spin-independent tunnel-
ing barrier.21 A weak external magnetic fieldBz,100 Ga
will not influence the superconductors and we may ignore its
effect on the leads. The operatoreif/2 is thessingle electrond
number operator. When the junction is linked to an external
environment, the coupling between the junction and the en-
vironment induces fluctuations of the superconducting phase
difference across the junctionffstdg.

B. Physical time scales

The Josephson junction with the spin has two time scales:
sid The Larmor precession frequency of the spin isvL
=gmBB;h, whereg,mB are the gyromagnetic ratio and Bohr
magneton of the conduction electron, respectively.sii d The
frequencyvJ=2eV, with e the electronic charge, character-
izes the Josephson effect when an external voltageV is ap-
plied across the junction.

C. The effective action

Josephson junctions are necessarily embedded into exter-
nal electrical circuits. This mandates that the dynamics ex-
plicitly depends on the superconducting phase difference
fstd across the junction. The evolution operator is given by
the real-time path integral

Z =E DfDSW expsiSd. s17d

The net action of Eq.s17d is given by S=fScircuitsfd
+SspinsSWd+Stunnelsf ,SW dg. The effective actionStunnel contri-
bution describes the junction itself. If all external fields are
the same on both forward and backward branches of the
Keldysh contoursKd, then Z=Tr TK expf−irKdtHTstdg=1,

where the trace is over both the electron and the spin degrees
of freedom andTK denotes time ordering along the Keldysh
contour. The labelrK denotes integration along the Keldysh
contour as shown in Fig. 1. We first take a partial trace inZ
over the lead fermionssthe bathd to obtain an effective spin
action. The Josephson contribution to the resulting spin ac-
tion reads −12rKdtrKdt8kTKHTsSstd ,tdHTsSst8d ,t8dl, much in
the spirit of Refs. 22–24. For brevity, we setAs,s8
;ok,pcks

† cps8. The tunneling Hamiltonian of a phasesvolt-
aged biased junction

HT = fT0dss8 + T1S · sss8g„Ass8 expsif/2d

+ Ass8
† exps− if/2d…. s18d

In the presence of a dc voltage bias,f=2eVt. If f is treated
classicallysi.e., f is the same on the upper and the lower
branches of the Keldysh contourd, the contribution~T0

2 to dS
vanishes. The mixed contribution~T0T1 vanishes due to the
singlet spin structure of thes-wave superconductor. The only
surviving contribution reads

−
T1

2

2
R

K

dtR
K

dt8fSstd · sabgfSst8d · sdgg

3 fkTKAabstdAdgst8dleiffstd+fst8dg/2 + sA,f → A†,− fdg,

s19d

where we keep only the Josephsonsoff-diagonald terms. The
spin structure simplifies for thes-wave case:

T1
2R

K

dtR
K

dt8fSstd ·Sst8dgfiDst,t8dg, s20d

where the kernel iDst ,t8d is dictated by

kTKA↑↑stdA↓↓st8dleiffstd+fst8dg/2+sA,f→A†,−fd. The opera-
torsA are bilinears in Fermi operators and thus the correlator
kTKA↑↑stdA↓↓st8dl will amount to a sum of a product of two
terms: a product of two normal Green’s functionG and a
product of two pair correlatorsF. Thus, generalizing the
known effective tunneling action for a spin-less junction22–24

to the new spin-dependent arena, we obtain

Stunnel= − 2R
K

dtR
K

dt8ast,t8dfT0
2

+ T1
2Sstd ·SWst8dgcosSfstd − fst8d

2
D

− 2R
K

dtR
K

dt8bst,t8dfT0
2

− T1
2SWstd ·SWst8dgcosSfstd + fst8d

2
D , s21d

where iast ,t8d;Gst ,t8dGst8 ,td and ibst ,t8d;Fst ,t8d
3F†st ,t8d. Here, the Green functions

Gst,t8d ; − io
k

kTKcksstdcks
† st8dl, s22d

SPIN AND SPIN-WAVE DYNAMICS IN JOSEPHSON… PHYSICAL REVIEW B 71, 214520s2005d

214520-5



Fst,t8d ; − io
k

kTKck↑stdc−k↓st8dl, s23d

F†st,t8d ; − io
k

kTKck↑
† stdc−k↓

† st8dl. s24d

We now express the spin action on Keldysh contour in the
basis of coherent states

Sspin= −R
K

dthW ·SW + SWZNW. s25d

The second, Wess-Zumino-Novikov-WittensWZNWd, term
in Eq. s25d depicts the Berry phase accumulated by the spin
which we discussed earlier in the coherent spin representa-
tion wherein it amounts to a kinetic bilinear—the first term
of Eq. s2d. In the calculations that follow we replace the spin
measureDS by the coherent spin state measureDzDz* and
rely on our derived exact equations of motion. We now per-
form the Keldysh rotation of Eq.s12d, defining the values of
the spin and the phase variables. For the superconducting
phase, we introduceswith notations following Refs. 22 and
24d

f ; 1
2sfup + fdownd, x ; fup − fdown. s26d

Within the Keldysh framework, the Josephson current is
given by

kIstdl =
2p

F0
K dS

dxstdL , s27d

with F0 the unit fluxonswith full units restored,F0=hc/e
with c the speed of lightd. With these definitions in hand, the
tunneling part of the action reads

Stunnel= Sa + Sb, s28d

where the normalsquasi-particled tunneling partSa is ex-
pressed via the Green functionsaR;ust− t8dsa.−a,d and
aKsvd;a.+a,, where ia.st ,t8d;G.st ,t8dG,st8 ,td and
ia,st ,t8d;G,st ,t8dG.st8 ,td. Similarly the Josephson-
tunneling partSb is expressed via the off-diagonal Green’s
functions bR;ust− t8dsb.−b,d and bKsvd;b.+b,,
where ib.st ,t8d;F.st ,t8dF†.st ,t8d and ib,st ,t8d
;F,st ,t8dF†,st ,t8d. The pair correlatorsF,st ,t8d are de-
rived from F.st ,t8d by the interchange oft with t8. In the
current article, we focus on the interaction between the su-
percurrent and the spin.

In Eq. s21d, the normal-tunneling partSa is obtained from
Sb by the following substitution:bR/Kst ,t8d→aR/Kst ,t8d,
fst8d→−fst8d, andxst8d→−xst8d. The Keldysh termssthose
including bK and aKd, which normally give rise to random
Langevin termsssee, e.g., Ref. 24d are, in our case, sup-
pressed at temperatures much lower than the superconduct-
ing gap sT!Dd, due to the exponential suppression of the
correlatorsbKsvd andaKsvd at v,D.

To obtainbR we start from the Gor’kov Green functions

F.st,t8d = − io
k

D

2Ek
e−iEkst−t8d,

F.†st,t8d = io
k

D

2Ek
e−iEkst−t8d, s29d

where the quasi-particle energyEk;ÎD2+ek
2, with ek the

free-conduction-electron dispersion in the leads. Putting all
of the pieces together, we find that

bRst − t8d = − ust − t8do
k,p

D2

2EkEp
sinfsEk + Epdst − t8dg.

s30d

The kernelbRst− t8d decays onsshortd time scales of order
Os" /Dd. Similarly,

bKst − t8d = − io
k,p

D2

2EkEp
cosfsEk + Epdst − t8dg. s31d

Henceforth, we will often employ the shorthandbR/Kst ,t8d
;bR/Kst− t8d. Looking at Eq.s31d, we see that the Fourier
transformbKsvd vanishes for frequenciesv,D. This is not
so for the retarded correlatorbR due to the presence of the
theta function. For now, we ignore the fluctuations in the
superconducting phase and setfupstd=fdownstd=fstd=vJt
with vJ=2eV sand thusx=0d. In this, “classical,” limit

Stunnel. 4E dtE dt8T1
2bRst,t8dSWqustd ·SWclst8d jst,t8d

+E dtE dt8T1
2bKst,t8dSWqustd ·SWqust8d jst,t8d,

s32d

with jst ,t8d;cosffstd+fst8d /2g.

D. The equations of motion

With the action at our disposal, we now write down the
exact equations of motions and give a solution, exact to order
OsT1

2d. Extracting, in the up-down contour basis, the coeffi-

cients K̄abst ,t8d of the SWastd ·SWbst8d terms in Eq.s32d, con-
structingKabst ,t8d from Eq. s4d, and invoking Eq.s13d, we
find

0 =K d

dt
SWcl + hW 3 SWcl + 4uT1u2E dt8 jst,t8dbRst,t8dSWclst8d

3 SWclstd + 2uT1u2E dt8 jst,t8dbKst,t8dSWqust8d 3 SWclstd

+ uT1u2E dt8 jst,t8dbRst,t8dSWqust8d 3 SWqustdL
S

;K d

dt
SWcl + hW 3 SWcl + IWcl-cl + IWqu-cl + IWqu-quL

S
. s33d

The final subscriptS serves to remind us that this is the path
integral average computed with the actionS. The various
subscripts of the integralsI denote the terms that they ori-

ginate from fe.g., Icl−cl=4uT1u2edt8 jst ,t8dbRst8 ,tdSWclst8d
3SWclstdg. In Appendixes B and C we outline, in detail, the
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evaluation of the various terms in Eq.s33d. We will now
solve Eq.s33d to orderOsT1

2d.

E. Spin dynamics in a Josephson junction: An exact solution
to O„T1

2
…

With all of the ingredients in place, we may now solve
Eq. s33d to determine the spin dynamics toOsT1

2d. Hence-
forth, we will examine throughout the observable “classical”

component of the spinSWcl. To make the expressions more
appealing we will dispense with the classical “cl” subscript.
Similarly, the actionSsubscript in all expectation values will
be omitted as no time-ordering subtleties appear below. We
expand the spin as

kSWstdl = kSW0stdl + kdSWstdl. s34d

Here,SW0 is the solution to thesLarmord problem of a single
free spin in an external magnetic field. We computed the
integrals borne by these zeroth-order Larmor components in
Sec. XI C. Similarly,dSstd are the contributions borne by the
retarded and Keldysh correlations. These corrections will

lead to higher order contributions inkIWl which are irrelevant
to our OsT1

2d solution. We insert Eq.s34d into the equations
of motion fEqs.s33dg and retain all terms to orderOsuT1u2d.
This trivially leads to

d

dt
kdSxl − vLkdSyl + kIxl = 0,

d

dt
kdSyl + vLkdSxl + kIyl = 0,

d

dt
kdSzl + kIzl = 0. s35d

Here, Ia=x,y,z is the a direction component ofkIWcl−cl

+ IWqu−cll computed in Appendix CfEqs. sC3d and sC4dg to

orderOsuT1u2d. We see that the integralsIW play the role of a
driving force. Integrating, we find that

kdSzstdl = uT1u2s1 − cosvJtdSo
k,p

D2vL

EkEpsEk + Epd3

+ kSzs0dlo
k,p

D2

EkEpsEk + Epd2D . s36d

Differentiating the equation of motion forkdSx,yl in Eq.
s35d and inserting the equation of motion forkdSy,xl we im-
mediately obtain the equation of motion of a driven har-
monic oscillator. A simple solution yields

kdSxstdl = c1 cosvLt + c2 sinvLt

+ o
vn

S An

vL
2 − vn

2 cosvnt +
Bn

vL
2 − vn

2 sinvntD
s37d

with

AvL+vLJ
= uT1u2o

k,p

D2kSxs0dls2vL
2 + vJ

2 + 3vLvJd
2EkEpsEk + Epd2 ,

AvL−vJ
= uT1u2o

k,p

D2kSxs0dls2vL
2 + vJ

2 − 3vLvJd
2EkEpsEk + Epd2 ,

BvL+vJ
= uT1u2o

k,p

D2kSys0dls2vL
2 + vJ

2 + 3vLvJd
2EkEpsEk + Epd2 ,

BvL−vJ
= uT1u2o

k,p

D2kSys0dls2vL
2 + vJ

2 − 3vLvJd
2EkEpsEk + Epd2 . s38d

All in all, to OsT1
2d, the evolution of the planar spin com-

ponents can be expressed in the format of Eqs.s10d ands11d
with

pstd = cosvLt + uT1u2o
k,p

D2

2EkEpsEk + Epd2

3 S s2vL
2 + vJ

2 + 3vLvJdcossvL + vJdt
vL

2 − svL + vJd2

+
s2vL

2 + vJ
2 − 3vLvJdcossvL − vJdt
vL

2 − svL − vJd2 D , s39d

and

qstd = sinvLt + uT1u2o
k,p

D2

2EkEpsEk + Epd2

3 S s2vL
2 + vJ

2 + 3vLvJdsinsvL + vJdt
vL

2 − svL + vJd2

+
s2vL

2 + vJ
2 − 3vLvJdsinsvL − vJdt
vL

2 − svL − vJd2 D . s40d

This concludes our solution for the dynamics of a spin in
a Josephson junction. Our analysis throughout centered on
Josephson junctions composed ofs-wave superconductors
fsee our starting point Eq.s20dg. Slightly different quantita-
tive results appear for other pairing symmetriessallowing, in
theory, a determination of the pairing symmetry from obser-
vations of the spin/spin-wave dynamics and associated ef-
fectsd. The deviations from simple Larmor precessions are
far stronger for tripletsi.e., odd angular momentad supercon-
ductors.

F. Physical consequences: Josephson nutations and other
dynamical effects

We now discuss the physics behind our exactfto OsT1
2dg

solution. Our solution provides testimonysand to newquan-
titative predictionsd for several, inter related, intriguing dy-
namical effects. We outline these below.

• Josephson nutations: In any system harboring a continu-
ous rotationalUs1d symmetry about a certain axisszd, the
orbital angular momentumLz is a constant of motion. Need-
less to say, the same trivially holds true for any spin system
in which fH ,Szg=0 with H the system Hamiltonian. In the
presence of an external magnetic field alongsor definingd the
z axis, as in the Larmor problem, the HamiltonianH=−hSz
commutes withSz and the longitudinal magnetizationkSzstdl
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is a constant of motion. In our system with nonlocal-in-time
interactions triggered by superconducting pair correlations,
such a conservation law no longer holds. Perusing Eq.s36d,
we find that the spinnutatesabove its average value. This
occurrence for theS=1/2 issimilar to that reported in Ref. 8
for macroscopic spin clustersS@1. Here, however, the
quantum fluctuations are profound for theS=1/2 case and
lead to strong deformations of the nutation shape. The physi-
cal engine behind the nutations is the small time separation
between the two tunneling electrons forming the Cooper pair.
As the “first” electron tunnels through, it exerts a torque on
the spin. A certain time latersof order" /D with dimensions
restoredd after the spinSW has already revolved a small
amount, the opposite spin member of the Cooper pair tunnels
through and exerts a torque of an opposite sign on the spinSW.
Due to the small time lag between the two tunneling elec-
trons, the two opposite sign torques exerted onSW by the two
opposite sign spins of the tunneling singlet do not cancel and
lead to a net effect. This origin is made evident in the re-
tarded correlationsbR which further spark a nonvanishing
driving force kIcl−cll along thez axis. Mathematically, all of
this results as the tunneling portion of the action contains
terms that trivially do not conserveSz. In the aftermath, this
led to an effective time-dependent force acting onSz. Its
form may be seen by examining the integralkIzl appearing in

Eq. s35d. The latter is thez component of the integralskIWcl−cll
and kIWqu−cll appearing in Eqs.sC3d. fNeedless to say, if both
members of the Cooper pair share the same polarizationsas
in triplet superconductorsd, then a far greater effect results.g

A manifestation of the resulting dynamical effect as a con-
sequence of these effective external forces in conventional
ss waved Josephson junctions is vividly seen in Eq.s36d. We
have derived similar expressions via an independent density
matrix approach.25 An exaggerated schematic of this effect is
provided in Fig. 3 which, qualitatively, is none other than the
standard illustration for classical rigid body nutations. We
find that such motions now appear in the quantum arena for
a singleS=1/2 particle! The precise shape of our trajecto-
ries, however, is markedly different from that exhibited by
classical rigid rotors.

• Spin contractions and effective longitudinal fields:
Glancing at Eq.sC4d, the reader will see that the effective

kIWqu−cll can be seen to dilate the spinfthe uniform contribu-

tion proportional tokSWstdl in the second equality of Eq.s69dg
and in unison to effectively emulate a time-dependent mag-

netic fielddhWef f~ êzcosfstd along thez-axis in the spin equa-

tion of motion, dkSWl /dt=¯ +kSWl3dhWef f. Both of these ef-
fects were noted in Ref. 26. In Eq.s69d, we explicitly see
their origin. The uniform contraction is triggered by an en-
tanglement of the tunneling electrons with ourS=1/2 par-
ticle. We now very briefly elaborate on the physics of this
statement for the benefit of general readers. The expectation

valueskSWl amount to weighted sums over all possible states
ucl fsee Eq.s15dg. In any puresi.e., unentangledd state of a
spin-1/2 problem, the sumfkSxl2+kSyl2+kSzl2g=1/4—the
spin expectation values lie on the Bloch sphere. Entangle-
ment in a spin-1/2 problem such as ours is marked by a

contraction,fkSxl2+kSyl2+kSzl2g,S2=1/4. Any single spin

expectation value within the Bloch sphere,ukcuSW uclu,S, de-
notes an expectation value computed in a multi-particle state
ucl which is entangled. In the case hereucl spans the single
spin and the tunneling electrons. Such a time-dependent con-
traction in the norm ofkSWl relative to the Bloch radius is
evident in our exact solution of Eqs.s10d, s11d, s39d, s40d,
s34d, ands36d.

• Nonuniform planar precession: A notable facet of the
dynamics given by the effects discussed above are nonuni-
form planar precessions. We find that within the plane trans-
verse to the applied field direction, the azimuthal angle de-
scribing the spin orientation,wstd=tan−1fkSystdl / kSxstdlg is no
longer linear in time. This effect bears, once again, strong
semblance to nutations in classical rigid body dynamics. In
the Larmor problem of a free spin in a magnetic field,wstd
=vLt. In our case, the precession about the applied field di-
rection is no longer uniform. Its form is encapsulated in Eqs.
s37d and s38d or, alternatively, by Eqs.s10d, s11d, s39d, and
s40d. Once again, mathematically, the origins of this effect
are rooted in the effective planarsxyd components of the

effective forcekIWl appearing in Eq.s35d. The explicit form of
this effective force is given by the sum of the two integrals
evaluated in Eqs.sC3d and sC4d and whose origin explicitly
lies, once again, in the same nonlocal-in-time correlations
borne by the superconducting correlations.

In summary, all of the above qualitative findings for the
problem a singleS=1/2 spin inserted in a Josephson junc-
tion are made vivid in ourOsT1

2d exact solution. From Eqs.
s10d, s11d, s39d, ands40d for the planar spin components and
from Eqs.s34d and s36d for the longitudinal spin we clearly
see how all of these effects come into play.

VI. RETARDED CORRELATIONS IN GENERAL SPIN S
DYNAMICS IN A JOSEPHSON JUNCTION

The equation of motion, Eq.s9d, is valid for all spinsS.
Much of our formalism follows with no change. We now

FIG. 3. The resulting spin motion on the unit sphere in the
general case. As in the motion of classical spinning top, the spin
exhibits undulations along the polar direction. As a consequence of
entanglement with the tunneling electrons, the magnitude of the
spin is not constant—the spin further “breathes” in and out as it
nutates.
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examine the integralskIWl in the general spinS problem.

We find that for a spin of sizeS, the integralkIWqu−cll un-
dergoes no change relative to itsS=1/2 form—Eq. sC4d re-
mains the same. The associated physics fleshed out in the
second equality of Eq.s69d, which was described in the pre-
vious sectionsspin contractions and the presence of an effec-
tive longitudinal fieldd, undergoes no change for the general
spin S case.

Next, we evaluatekIWcl−cll. For large spins,S@1, the prod-

uct kSWstd3SWst8dl is well approximated by the vector product

of averageskSWstdl3 kSWst8dl. Then, the approach of Ref. 8 is
well justified and we can obtain theJosephson nutationsof a
big spin. For anyS and t8. t we obtain

kSWclst8d 3 SWclstdlS= 1
2kfhSystd,Szstdj+fcosvLst8 − td − 1g

− hSxstd,Szstdj+sinvLst8 − tdgêx

+ fhSxstd,Szstdj+f1 − cosvLst8 − tdg

− hSystd,Szstdj+sinvLst8 − tdgêy

+ s2Sx
2std + 2Sy

2stddsinvLst8 − tdêzl,

s41d

whereh¯j+ denotes an anticommutator. In theS=1/2 case,
the integral stemming from these vectorial product correla-

tions is parallel to thez axis, kIWcl−cll i êz. For spins of sizeS
.1/2, however, as we see from Eq.s41d, the planarsx,yd
components also come to the fore and lead to retarding cor-
relationsbRd effects in Eq.s33d. Furthermore, the magnitude
of the driving forcekIcl−cl;zl along thez axis, much unlike the
S=1/2 case, is time dependent.

For general spins of sizeS.1/2, both retardedsbRd and
KeldyshsbKd are nonzero along any spin direction. All of the
effects discussed in Sec. V F are present.

It is noteworthy to discuss the scaling of all terms with the

spin sizeS. As evident from Eq.s41d, the integralkIWcl−cll
spawned by retarded correlations scales asS2. Similarly, as
seen from Eq.sC4d, whose form holds for arbitraryS, the

effective driving forcekIWqu−cll generated by Keldysh correla-

tions sbKd scales asS, i.e., kIWqu−cll~S. Thus, for large spins
S@1, the retarded contributions overwhelm Keldysh contri-
butions. In the classical limit,S→`, only the retarded con-
tributions remain.8

VII. SPIN TRIGGERED AC EFFECTS

Thus far our discussion centered on a Josephson junction
for a time-independent potential differenceV sdc voltage
biasd between the two superconducting leads for which
fstd=vJt with vJ=2 eV.

We now briefly sketch matters for an ac voltage bias
wherein the potential drop is oscillatory in time and the cor-
responding phase difference isfstd=A sinVt. To make the
physics more transparent, we omit any dc contributions to
the voltagesand thus linear in time contributions to the
phased. This serves as a caricature of rf-driven Josephson

junctions known to exhibit the famous Shapiro steps.27

The setup is given by Fig. 2 for a spinS=1/2 particle yet
now with an ac voltage applied across the junction. In the
sections that follow, we will resume our central focus on the
constant voltage drop case,fstd=vJt. Only in this short sec-
tion do we analyze an applied ac voltage bias.

The calculations for the ac voltage bias case parallel the
analysis of the previous sections. First, we express all terms
by pure harmonics. This is readily achieved by relying on the
identity

eiC sin x = o
n

JnsCdeinx, s42d

with hJnsCdj Bessel functions. The factorjst ,t8d of Eq. s32d
and thereafter now becomes

jst,t8d = o
n,m

JnSA

2
DJmSA

2
DcosfVsnt + mt8dg. s43d

The analog of Eq.sC3d for the ac voltage bias case is

kIWcl-cllS= − uT1u2êzo
k,p

D2

EkEp
o
n,m

JnSA

2
DJmSA

2
D

3
2mVvL sinVsn + mdt

sEk + Epd3 . s44d

Further resonantsdelta functiond terms make an appearance
for m@1.

Similarly, the analog of Eq.s69d reads

kIWqu-cllS= − uT1u2 o
n,m,k,p

JnSA

2
DJmSA

2
DD2

EkEpsEk + Epd2

3fs2mVkSxstdlsinsn + mdVt − kSystdlvL

3cossn + mdVtdêx + s2mVkSystdlsinsn + mdVt

+ kSxstdlvL cossn + mdVtdêy

+ 2mVkSzs0dlsinsn + mdVtêzg.

To OsuT1u2d, the nutations are given by

kdSzstdl = uT1u2o
k,p

D2

EkEp
o

n+mÞ0
JnSA

2
DJmSA

2
D

3
2mV

sEk + Epd2S vL

Ek + Ep
+ kSzs0dlD

3
1 − cosVsn + mdt

n + m
. s45d

Higher order effects further enhance this response. Equation
s45d is the ac voltage bias analog of Eq.s36d for the dc
voltage bias case. The seminal feature of our results is the
existence of frequencies in the spin dynamics of all integer
multiples of the voltage bias driving ac frequencyV. As the
spin alterssvia back-action effectsd the tunneling supercur-
rent, the supercurrent will exhibit oscillations at all frequen-
ciesvr =rV with r an integer. Extending the results of Ref.
26 to this problem, the supercurrent
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kIstdl = sinfstdf2p2er2DsuT0u2 − 3
4uT1u2d + 4euT1u2r2hkSzstdlg ,

s46d

wherer is the spin density of states within the leads, with the
spin given by Eqs.s34d and s45d with the LarmorkSzstdl0

=kSzs0dl.

VIII. FERROMAGNETS IN JOSEPHSON JUNCTIONS

We now investigate what transpires when ferromagnets
sinstead of a single spind are immersed between twos-wave
superconductors with a dc bias voltage applied across the
junction fas illustrated in Fig. 4g. As in the single spin prob-
lem, the full problem involves both the back-action of the
spin on the phase of the superconductorssignored hered and
the spin dynamics sparked by the tunneling currentswhich
we focus on belowd. Further, for extended junctions, phasons
naturally appear. In what follows, we assume that the phases
of the two superconductors surrounding a single magnetic
slab have a spatially uniform phase differencefstd. The tun-
neling action amounts to a sum over individual tunneling
actions through each of the individual spins labeled by their
sitesrW,

Stunnel. 4o
rW
E dtE dt8bRst,t8dT1

2SWqusrW,td ·SWclsrW,t8d jst,t8d

+E dtE dt8T1
2bKst,t8dSWqusrW,td ·SWqusrW,t8d jst,t8d.

For ferromagnetic spin chains/planes with arbitrary exchange

constantsJsrW ,rW8d, and scaled external magnetic fieldhW, the
exact equation of motion reads

0 =K dSWclsrWd
dt

+ hW 3 SWclsrWd + IWcl-cl;r + IWqu-cl;r

+ o
rW8

JsrW,rW8dSWclsrW8,td 3 SWclsrW,tdL
S

. s47d

It is hard not to notice a resemblance between the single
spin problemfEq. s33dg and the problem of the ferromagnet
fEq. s47dg. Indeed, as we will shortly demonstrate, the spin
wave dynamics in the ferromagnet within a Josephson junc-
tion bears much in common with the single spin problem
with the proviso that the various ferromagnetic spin waves

feel an effective momentum-dependent magnetic field of
strengthhef f=h+SfJskWd−Js0dg with JskWd the Fourier trans-
form of the two spin interactionJsrW ,rW8d.

The solution proceeds much the same as for the single
spin problem. Henceforth, we discuss the qualitative physics
expected. Unlike the precise solutions presented till now,
what follows is a quick qualitative sketch by way of an anal-
ogy. An exact solution will be detailed elsewhere.29

Transforming from spin variables to bosonic operators
sbsrWdd at all lattice sitesrW,28

S+srWd = b†srWdÎ2S,

S−srWd = FbsrWd −
1

2S
b†srWdbsrWdbsrWdGÎ2S,

Sz = − S+ b†srWdbsrWd. s48d

Sans theOsuT1u2d tunneling part of the action, the action is
quadratic in the bosonic operators and is readily diagonalized
in qW space. We find that the free part of the action

S0 = −R
K

dtE ddq

s2pddhSfJsqWd − Js0dg + hjb*sqWdbsqWd,

s49d

with d the dimension of the inserted magnet.sAs the problem
is ferromagnetic,Js0d=minqWhJsqWdj.d Comparing this action to
the one appearing in the single spin problem, we find that to
Gaussian order the spin-wave problem is identical to the dy-
namics of a single spin with the replacement

h → hef fsqWd ; hSfJsqWd − Js0dg + hj. s50d

The quadratic contribution of theOsuT1u2d portion of the ac-
tion involving nonlocal-in-time correlations has precisely the
same form for both the single spin problem and for each
modeqW of the spin-wave problem. Thus, for the quadratic in
b, OsuT1u2d corrections to the spin dynamics are given by
Eqs.s36d and s37d with the replacement of Eq.s50d.

For instance, the above analogy suggests that that the net
ferromagnetic moment variation inS=1/2 ferromagnets is

dM

V
s51d

=uT1u2s1 − cosvJtdSo
k,p

D2vL

EkEpsEk + Epd3

+
M

V
o
k,p

D2

EkEpsEk + Epd2D , s52d

with V the volume of the magnet andM its magnetization
sans the supercurrent. Alternatively, the analysis may parallel
the derivation of the previous sections word for word while
taking the unperturbed solutionfthe analog of the Larmor
solution of Eq.sB4dg to be a spin wave and computing all
corrections toOsT1

2d.
In the continuum limit,

FIG. 4. A ferromagnetic slab inserted between two supercon-
ducting leads. The entire system is subjected to a weak external
magnetic fieldB. A schematic of the precessing spins is shown.
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hef fsqWd =
rs

m0
q2 + h, s53d

with m0;S/v swherev is the volume per sited, the magne-
tization density of the ground state, andrs the spin stiffness.

This h→hef fsqWd correspondence applies to any property
inherited by the single spin dynamics in the Josephson junc-
tion. In particular, in Ref. 26 it was beautifully shown how
spin dynamics may alter the supercurrent in the junction. The
current may be computed by the likes of Eq.s27d. Extending
these results to a ferromagnet inserted in a Josephson junc-
tion by the correspondence of Eq.s50d, we find that the new
spin wave dynamics leads to the supercurrent,

kIstdl = sinfstd E ddq

s2pddF2p2er2DSuT0u2 −
3

4
uT1u2D

+ 4euT1u2r2hef fsqWdkSzsqWdlG , s54d

with r the spin density of states within the leads. A matching
of the Josephson and spin frequencies(such as present here
for variations in the low temperature magnetic momentfsee
Eqs.s36d ands52dg) leads to a dc signal; additional harmon-
ics further appear. We emphasize that in the above we com-
pared only the Gaussian portion in the Bose fields. Higher
ordersnon-Gaussiand terms originating from Eq.s48d as well
as phasons alter the natural correspondence of Eq.s50d. A
full discussion of these issues will be detailed elsewhere.29

IX. OTHER GEOMETRIES

If phason contributions are neglected, then, by a trivial
change of geometry, all of our results thus far will apply for
other systems as well. For instance, by replacing one of the
superconducting leads by a surface, the resulting system may
emulate a superconducting tip coupled to superconducting
surface through a single spin or a ferromagnet. Here, all of
the results of Secs. V and VIII for the spin dynamics and
tunneling current hold.

Similarly, by replacing both superconducting leads by sur-
faces and examining a magnetic layer inserted in between,
the resultant system looks much like a layered
superconducting/magnetic system. In this system, the results
of Sec. VIII apply.

X. LARGE S ADIABATIC APPROXIMATIONS

Thus far we studied the dynamics of single spins and of
ferromagnets. In Ref. 8, the largeS limit of the single spin
problem was studied. In that work, several approximations
were made:

sid The perturbative approach that we employed in the
current article which allows an exact evaluation of all perti-
nent integrals to low orders was replaced by an “adiabatic”
approximation wherein the slow dynamics of the spinvis a

vis electronic processes was explicitly incorporated,SWst8d
.SWstd+st8− tdsdSW /dtd.

sii d The s“classical”d large S limit allowed us to omit

many instances ofSWqu in the equations of motion and onlybR

related contributions in the tunneling action were consequen-
tial. Furthermore, as briefly alluded to earlier, in this limit,

the average of the vectorial productkSWst8d3SWstdl is equal to

the product of the averageskSWst8dl3 kSWstdl. Correspondingly,
any expectation value braces may be omitted. Thus, we may
replace any expectation valuekAl by A itself.

The advantage of this method is that it furnishes an el-
egant nonperturbative closed form solution for the spin dy-
namics. We will not repeat the results for the single spin
cluster sS@1d problem here and rather refer the reader to
Ref. 8. We now briefly comment on applications of this
method to other systems.

To OsuT1u2d, the spin wave dynamics in ferromagnets may
be attained via the substitution of Eq.s50d. Equivalently, the
spin wave equations of motion may also be determined di-
rectly when applying the adiabatic approximation on Eq.
s47d. We then find

dSWclsrWid
dt

+ hW 3 SWclsrWid + o
j

JijSWclsrW j,td 3 SWclsrWi,td

+ kSWcl 3
dSWcl

dt
sinvJt = 0 s55d

with k;ok,psuDu2uT1u2/EkEpdfsEk+Ep−eVd−2−sEk+Ep

+eVd−2g. The appropriate spin wave equation is

dbsqWd
dt

= ifh + ShJsqWd − Js0djgbsqWd + k]tbsqW,tdsinvJt.

s56d

The solution to Eq.s56d is

bsqW,td = bsqW,0dexpF−
2isShJsqWd − Js0dj + hd

vJ
Î1 − k2

3 Htan−1S k

Î1 − k2D − tan−1Sk − tansvJt/2d
Î1 − k2 DJG ,

s57d

which is quite different from the standard spin-wave evolu-
tion in a magnet outside a Josephson junction. The key fea-
ture is a nonuniform evolution of each spin-wave. Similar to
the azimuthal precession of a single spin, the planar compo-
nents Sx,y precess as the real and imaginary parts of
expfiwstdg with a nonlinearwstd. Thermodynamic quantities
computed via the corrected bosonic spin-wave dispersion ex-
hibit corrections.

Similarly, we may examine the adiabatic largeSequations
of motion for an antiferromagnetic spin chain oriented along
thez axis in a Josephson junctionsjust as in Fig. 4d, yet now
with a single antiferromagnetic spin chain replacing the fer-
romagnetic slab in anh=0 backgroundd. We then find that

the staggered spin,S̃
W

i ;s−1diSW i swith the integeri the spin
site location along the chaind, satisfies
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0 = hS̃
W

clstd + 3]tS̃
W

clstd 3 ]zS̃
W

clstd + k]tS̃
W

clstdsinvJt, s58d

whereh;svs/gdf]z
2−s1/vs

2d]t
2g. Here,g=2/S and the spin

wave velocityvs=2aJS, with a the lattice constant. The role
of the supercurrent as an effective driving term is evident in
the last line of Eq.s58d.

XI. CONCLUSIONS

In conclusion, our work addresses new dynamical effects
exhibited by spins in Josephson junctions. En route, many
featuressgeneral and specificd were found:

s1d We derived theexactequation of motion for spin sys-
tems on Keldysh contours.

s2d TheS=1/2 spin dynamics of a single spin in a Joseph-
son junction was investigated and a perturbative solution was
given.Spin-1/2 Josephson nutations are predicted.

s3d Spin dynamically triggered ac effects are predicted.
s4d The spin wave dynamicsof a ferromagnet in between

two superconducting leadswas investigated. We predict non-
trivial spin wave dynamics as well as new manifestations of
this dynamicssmost notably in the supercurrentd.

s5d LargeS expressions were discussed for ferromagnetic
slabs and antiferromagnetic spin chains in a Josephson junc-
tion.
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APPENDIX A: DETECTION

The nontrivial spin-wave and associated supercurrent in
Josephson junctions containing ferromagnetssSec. VIIId may
be seen more readily seen than those of single spins. The
spin dynamics may be discerned by measuring the magneti-
zation of the ferromagnetic slab as a function of timefas
suggested by Eq.s52dg as well as by monitoring the super-
current fgiven by Eq.s54dg. Other techniques may involve
standard measurements of microwave radiation from the
junction sand backaction effectsd. The magnitudes of these
effects will be studied elsewhere.29

We now briefly review a detection scheme discussed in
Refs. 8 and 30 for the Josephson nutations for theS@1 limit
of the general spin S results of Sec. VI. This corresponds to
a single magnetic cluster.

As it moves, the spin cluster magnetic moment generates

a time-dependent magnetic field,dBW sr ,td=sm0/4pd
3h3rWfrW ·mW stdg−r2mW stdj / r5. This small field is superimposed

against the constant external field backgroundsBW d. In the
above,rW is the position relative to the spin andmW std is the
magnetic moment of the spin. A ferromagnetic cluster of spin
S=100 generates a detectable magnetic fielddB,10−10 T at
a distance of a micron away from the spin. For a SQUID
loop of micron dimensions located at that position, the ensu-
ing flux variation dF,10−7F0 swith F0=hc/e the flux
quantumd are within reach of modern SQUIDs. In such a

setup, withT1/T0,0.1, the typical critical Josephson current
is JS

s0d,10 mA, uDu=1 meV, andeV,10−3uDu, we find that
the relative correctionsdS/S,0.1. The spin components or-

thogonal toBW vary, to OsT1
2d, with Fourier components at

frequenciesuvL±vJu svL=gmBBd, leading to a observable

signal in the magnetic fieldBW +dBW . For a fieldB,200 G,
vL,560 MHz, and a new side band will appear atuvL
−vJu, whose magnitude may be tuned to 10–100 MHz. This
measurable frequency is easily distinguished from the Lar-
mor frequencyvL.

The efficiency of this detection scheme may be enhanced
by embedding the spin in one of the Josephson junction arms
of the SQUID itself. Such a setup is illustrated in Fig. 5. The
Josephson junction harboring the spin is employed in both
triggering the nutations and, along with the second junction
of the SQUID, in the detection of the resulting nutations.

APPENDIX B: TIME ORDERING ALONG THE KELDYSH
CONTOUR

In averaging within the path integral formalism, we im-
mediately attain time-ordered averages. In interchanging the
order of the spinssif necessaryd in the vectorial product upon
time ordering within the path integralCP1 formulation a
change of sign is incurred.31 We now go over, in some detail,
time ordering within the Keldysh framework. As the time
ordering is performed along the Keldysh contour, we will
denote it byTK as we have done in deriving the effective
action of subsection V C.

Consider the third term in Eq.s33d. Upon time ordering,
we find that

kSWqust8d 3 SWclstdlS= kTKfSWqust8d 3 SWclstdgl

= kTKh 1
2fSWupst8d − SWdownst8dg

3 fSWupstd + SWdownstdgjl . sB1d

Due to the form of the Keldysh contourssee Fig. 1d, irre-

spective of the values oft and t8, SWupstd always appears be-

fore SWdownst8d. Similarly, for t. t8, SWupstd appears afterSWupst8d
while SWdownstd appears beforeSWdownst8d. With this information
at hand, Eq.sB1d leads to

FIG. 5. A SQUID-based detection scheme. The SQUID moni-
tors the magnetic field produced by the magnetic cluster in one of
the junctions.
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kTKfSWqust8d 3 SWclstdgl

= − ust − t8dfkSWst8d 3 SWstdl + kSWstd 3 SWst8dlg. sB2d

The expectation values on the right are the usual operator
expectation values. Here, we disposed of the up/down indi-
ces once we took care of time ordering. The up/down labels
merely serve as mnemonics for this time ordering along the
Keldysh contour.

Similarly, we find that

kTKfSWclst8d 3 SWclstdgl

= 1
2hust8 − tdfkSWst8d 3 SWstd − SWstd 3 SWst8dgl

+ ust − t8dfkSWstd 3 SWst8d − SWst8d 3 SWstdglj. sB3d

By the same token,kTKfSWqustd3SWqust8dgl=0.
As will become clear shortly, in the solution of Eqs.s33d

to orderOsT1
2d, we will need the spin-spin expectation values

of the usual Larmor problemsi.e., a single spin in a magnetic
field sans any supercurrentd. Here,

Sxstd = Sxs0dcosvLt + Sys0dsinvLt,

Systd = Sys0dcosvLt − Sxs0dsinvLt, Szstd = Szs0d,

sB4d

with the external magnetic field oriented along the positivez

axis andvL= uhW u the Larmor frequency.
Next, we invoke this solution to compute the various ex-

pectation values within the Larmor problemfi.e., to order
OsT1

0dg. We find that

kSWqust8d 3 SWclstdlS

= − ust − t8dfi ImhkSWst8d 3 SWstdljg

= − iust − t8dˆ„kSxstdlf1 + cosvLst8 − tdg

+ kSystdlsinvLst8 − td…êx

+ „kSystdlf1 + cosvLst8 − tdg − kSxstdlsinvLst8 − td…êy

+ 2kSzstdlcosvLst8 − tdêz‰. sB5d

Similarly, for theS=1/2 problem,

kSWclst8d 3 SWclstdlS= RehkSWst8d 3 SWstdlj = 1
2 sinvLst8 − tdêz.

sB6d

In Eqs. sB5d and sB6d, we vividly see that upon time
ordering along the Keldysh contour, the nonvanishing spin
cross products become simply related to the imaginary and

real parts ofkSWst8d3SWstdl.

APPENDIC C: EVALUATION OF INTEGRALS

We are now ready for the evaluation of the various inte-
grals I that appear in Eq.s33d to orderOsT1

2d.
We start withIWcl−cl. Inserting Eqs.sB6d and s30d into Eq.

s33d we find upon invoking the relationfstd=vJt

kIWcl-cllS= 4uT1u2êzE dt8 jst,t8dbRst,t8dkSWclst8d 3 SWclstdlS

= − uT1u2êzo
k,p

D2

EkEp
E dt8ust − t8dcosvJ

t + t8

2

3 sinvLst − t8dsinfsEk + Epdst − t8dg. sC1d

Before evaluating Eq.sC1d exactly, we illustrate what an-
swer is anticipated. The underlying observation of thisadia-
batic approach is that, as a consequence ofvL,J!Ek,p, the
spin dynamics is far slower than that of electronic processes.
Thus, in integrals involving both spin and electronic degrees
of freedom, we may regard the spin as nearly stationary and

approximate SWst8d.SWstd+st8− tdsdSW /dtd. This physically
transparent approximation was invoked in Ref. 8. Employing

this approximation here we anticipate thatkIWcl−cllS

.C1êz sinvLt whereC1 is, up to trivial prefactors, given by
e0

`dxfx2bRsxdg. Such an anticipation is not far off the mark.
Next, we exactly evaluate Eq.sC1d by rewriting products

of trigonometric functions as sums and consequently em-
ploying the identities

E
0

`

dxcosax= pdsad,

E
0

`

dxsinax= pdsad +
1

a
. sC2d

In the integrals of interest,x assumes the role ofst8− td.
As the applied magnetic field and voltage are far lower than
electronic energy scales,vL,J!Ek,p, we find that all reso-
nances signaled by the delta functions are physically unac-
cessible and our expressions undergo further simplifications.
Retaining the leading order terms inO(vL,J/ sEk+Epd) we
arrive at

kIWcl-cllS= − uT1u2êzo
k,p

D2vLvJ

EkEpsEk + Epd3 sinvJt. sC3d

Thus, the form anticipated by the adiabatic approximation is
correct if C1=−uT1u2ok,pD2vLvJ/ sEkEpsEk+Epd3d.

Similarly, by inserting Eqs.s31d and sB5d into Eq. s33d
and invoking Eqs.sC2d, we find

kIWqu-cllS= − uT1u2o
k,p

uDu2

EkEpsEk + Epd2

3 fskSxstdlvJ sinvJt − kSystdlvL cosvJtdêx

+ skSystdlvJ sinvJt + kSxstdlvL cosvJtdêy

+ kSzs0dlvJ sinvJtêzg

= C2fvJkSWstdlsinfstd + vLcosfstd„êz 3 kSWstdl…g,

sC4d

with the constantC2;−uT1u2ok,puDu2/ sEkEpsEk+Epd2d and
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fstd=vJt the superconducting phase difference across the
junction. The last line of Eq.sC4d has a very physically
suggestive meaning regarding spin contractions and an effec-
tive longitudinal magnetic field–items which we will expand

on in Sec. V F. Our expressionsfEqs.sC3d andsC4dg above
are exact to lowest order inT1 and the ratiossvL,J/Ek,pd.

Finally, the integralkIWqu−qul=0 identically by virtue of a
vanishingkSWqust8d3SWqustdlS=0.
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