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The Josephson current through a one-dimensional quantum wire with Rashba spin-orbit and electron-
electron interactions is calculated. We show that the interplay of Rashba and Zeeman interactions gives rise to
an anomalous phase shift in the current-phase relation for the supercurrent. The electron dispersion asymmetry
induced by the Rashba interaction in a Luttinger-liquid wire plays a significant role when the electron-electron
interaction is not strong and for poorly transmitting junctions. It is shown that for a weak or moderate
electron-electron interaction the spectrum of plasmonic modes confined to the normal part of the junction
becomes quasi-random in the presence of dispersion asymmetry. The resonance effects which are significant
for transport properties of weakly interacting electrons in symmetric junctions survive in the presence of a
strong Rashba interaction only for special boundary conditions at normal metal/superconductor interfaces.
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I. INTRODUCTION

In recent years the concept of a Luttinger liquidsLL d as a
realistic model of interacting electrons in one-dimensional
s1Dd metallic structures has received experimental support
ssee, e.g., Refs. 1–5d. Quantum wiressQWsd in laterally con-
strained 2D electron gasess2DEGd and single wall carbon
nanotubessSWNTsd are the two best known structures where
LL behavior has been established both theoretically and ex-
perimentally.

In SWNTs, where the interaction effects have been shown
to be strong,3–5 interaction can strongly influence the charge
and spin transport through the nanotube. When a repulsively
interacting LL is coupled to metallic leadssMd of noninter-
acting electrons, two qualitatively different regimes of
charge transport may be realized depending on the quality of
the LL/M electrical contacts. For tunnel contacts charge
transport through the system is strongly suppressed at low
temperatures and low bias voltages6 by the repulsive
electron-electronse-ed interaction. In contrast, for adiabatic
contacts when electron backscattering is negligibly small, the
conductance is not renormalized by the interaction.7–9

These two types of charge transport behavior also charac-
terize the superconducting properties of a LL wire coupled to
superconductors. For adiabatic contacts only Andreev scat-
tering of electrons occurs at the boundaries between the LL
and the bulk superconductorssLL/ S boundariesd. This pro-
cess does not lead to a redistribution of charge density along
the wire and therefore the Coulomb interaction does not in-
fluence the supercurrent through a perfect LL. The above
statement was proved in Ref. 10 by a direct calculation of the
Josephson current through a longS/LL/ S junction L@j0 sL
is the junction length,j0="vF / uDu is the superconducting
coherence length,D is the superconducting order parameterd.
In the opposite case of a tunnelS/ I /LL/ I /S junction—where
“ I” denotes the insulating “layer”—the repulsivee-e interac-
tion results in a renormalization of the junction transparency

and the critical Josephson current is strongly suppressed.11

Here we study the influence of the spin-orbitsSOd inter-
action on the Josephson current through a longS/ I /LL/ I /S
junction. The Luttinger-liquid part of the junction is repre-
sented by a quantum wire in a laterally confined 2DEG
coupled to superconducting electrodes via tunnel barriers. It
has been known for a long time that the SO interaction is
strong in a 2DEG formed in a GaAS/AlGaAs inversion layer
sthe Rashba effect12d and that it can be controlled by a gate
voltage.13–15 So the Rashba effect could strongly affect the
superconducting properties of mesoscopic hybrid SN
structures.16

The influence of the Rashba effect on the electron spec-
trum and on the transport properties of quasi-1D quantum
wires has been studied theoretically in Refs. 17 and 18,
where it was shown that the SO interaction not only splits the
electron spectrum into “spin- up” and “spin- down” sub-
bands, but additionally breaks the left-right symmetry. This
implies that left- and right-moving electrons with the same
spin projection have different Fermi velocities. Since, due to
time invariance of the spin-orbit HamiltonianvR↑

sFd=vL↓
sFd

=v1F andvR↓
sFd=vL↑

sFd=v2F, the strength of the Rashba effect in
a single-channel QW can be characterized by a dispersion
asymmetry parameterla= uv1F−v2Fu / sv1F+v2Fd. In Refs. 17
and 18 it was assumed that in the presence of the Rashba
interaction the electron spins in a quasi-1D wire are aligned
as in the 2D casesas indicated by the solid arrows in Fig. 1d.
Although this assumption is not valid for a strong Rashba
coupling,19 the model considered in the cited referencesssee
also Ref. 20d is interesting in itself. It allows one to study the
effects of dispersion asymmetryslaÞ0d on the electron dy-
namics and in the limitla→0 it reproduces the standard
results for spin-1/2 electrons without the SO interaction.

Since the electron spin is not conserved in the presence of
SO interactions the classification of spin states assumed in
Refs. 17 and 18 is not evidently correct. Actually, as was
shown in Ref. 19, it can be justified only for a weak Rashba
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interaction. In the most interesting case of a strong Rashba
interaction, when the characteristic energy scale introduced
by the SO coupling is comparable with the energy spacing of
the 1D subbands, the average spin projections for electrons
with largesFermid momentum are different. The total energy
is minimized when all right-movingsRd electrons have par-
allel spins pointing in the opposite direction to the spins of
left-moving sLd electrons.19 In what follows we choose the
sign of the Rasha interaction so thatR electrons have their
spin “down” andL electrons theirs “up”sas indicated by the
dashed arrows in Fig. 1d. Notice that under conditions when
the Rashba effect is active the electron spin lies in as2Dd
plane and orthogonal to the electron momentumsin the 1D
case this direction is fixed and “up” and “down” spin projec-
tions are well definedd.

At first we consider the influence of electron dispersion
asymmetry on the superconducting properties of a
S/ I /LL/ I /S junction in the model elaborated in Refs. 17 and
18. In this model the spin projections of electrons in the
leads are the same as in the wire and we can treatS/LL
contacts as standard nonmagnetic scattering barriers. We cal-
culate the Josephson current perturbatively using the junction
transparencyD= utltru2 as expansion parametersutl,ru2!1 are
the transparencies of the tunnel barriers at the left and right
LL/S interfacesd and for arbitrary values of electron-electron
interaction strength, dispersion asymmetryla and Zeeman
splitting DZ=gmBB sg is theg factor,mB is the Bohr magne-
ton, andB is the magnetic fieldd. Two different geometries of
S/LL/ S junction are considered. In the first case an effec-
tively infinite LL is connected by the side electrodes to the
bulk superconductorss“side-coupled” LL, see Fig. 2d. In this
geometry11 one can use periodic boundary conditions for

plasmons in the LL and all calculations can be done analyti-
cally even in the presence of SO interaction. When the dis-
persion asymmetry is negligibly smallsla→0d we reproduce
the formula for the Josephson current derived in Ref. 11.

The interplay of electron dispersion asymmetry and the
Zeeman interaction results in the appearance of an anoma-
lous phase shift in the supercurrent, so that a supercurrent
persists even in the absence of any phase difference between
the two superconducting leads to which it is attached. The
existence of this anomalous Josephson current is related to
the breaking of chiral invariance in quasi-1D quantum
wires17,18and the effect manifests itself already for noninter-
acting particlesssee Ref. 23d.

A more realistic geometry for anS/LL/ S junction is a
finite LL wire sof length Ld coupled via tunnel barriers to
bulk superconductorss“end-coupled” LL, see Fig. 3d. We
assume that the barrier transparencies are unequal and small
snonsymmetric tunnel junctiond and evaluate the
w-dependent part of the ground-state energy by perturbation
theory using the junction transparencyD as expansion pa-
rameter. To first order in the junction transparency the prob-
lem is reduced to the evaluation of four-fermion correlation
functions for a two channel LL Hamiltonian with the bound-
ary conditions implying the absence of a particle current
through theS/LL interfaces atx=0, L. In the absence of the
spin-orbit interaction the problem of quantization of plasmon
modes in a finite LL with open ends was solved in Ref. 24.
Here, we generalize the quantization procedure proposed in
the cited paper to the case of spin-1/2 fermions with disper-
sion asymmetry. We show that the spectrum of plasmons in a
LL with open ends in the presence of dispersion asymmetry
is determined by a transcendental equation. In the general
case the spectrum forms a set of quasirandom energy levels.
The plasmonic energies can not be separated into two inde-
pendent set of levels—one for charge density excitations,
another for spin density excitations. For noninteracting elec-
trons, or when the energy dispersions are symmetricsv1F

=v2F=vFd, the spectrum is reduced to a set of equidistant
energy levels and the spin-charge separation is restored. In
the limit of strongly interacting particles the plasmon spec-
trum also becomes regular. We calculate the Josephson cur-
rent for the cases when the spectral equation can be solved
analytically.

We find that a dispersion asymmetry affects the supercur-
rent only if the electron-electron interaction is weak. For
noninteracting electrons the critical Josephson current
through a tunnelS/QW/S junction is enhanced by the pres-
ence of dispersion asymmetry. This behavior is specific for
quasi-1D electrons and the effect disappears in 2D
junctions.16

As has been already mentioned in this Introduction, the
electron spin projections in a quasi-1D quantum wire in the

FIG. 1. Schematic energy spectrum of 1D spin-1/2 electrons
with dispersion asymmetry. The subbands “1” and “2” are charac-
terized by their Fermi velocitiesv1FÞv2F. In the case of weak
Rashba interaction, the spin projections for a given momentum have
opposite directions in the two subbandsssolid arrowsd. For strong
Rashba interaction the spin projections are parallel for all particles
that move in the same direction irrespective of subband, but are
different for right- and left-moving particlessdashed arrowsd.

FIG. 2. S/LL/ S junction of lengthL formed by an effectively
infinite Luttinger liquid coupled to bulk superconductors by side
electrodes.

FIG. 3. A Luttinger-liquid wire of lengthL coupled to bulk
superconductors via tunnel barriers with transparenciesDlsrd.
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regime of strong Rashba effect are strongly correlated with
the direction of electron motion and all rightsleftd-moving
particles, irrespective of their Fermi velocities, have parallel
spins19 which are antiparallel to the spin polarization of
leftsrightd-moving electrons. So it is reasonable to expect that
in this case the magnetic field via the Zeeman interaction
will induce an anomalous phase shift even in the absence of
dispersion asymmetry. At first we calculate the Josephson
current in an adiabatic S/LL/S junction when both the
Rashba s-o interaction and the electrostatic confinement po-
tential are smoothly switched on in a 1D QW. The anoma-
lous Josephson current induced by a strong Zeeman interac-
tion is predicted to be of the order of the critical current in
adiabaticSNSjunctions. For tunnel contacts the supercurrent
is calculated in the limits of strong and weake-e interaction.
An anomalous phase shift of the Josephson current and an
anomalous influence of the Zeeman splitting on the critical
supercurrent is predicted. For noninteracting electrons we
studied the influence of a strong Rashba effect on the reso-
nant Josephson current through a symmetricS/ I /N/ I /S junc-
tion and showed that the resonance effects survive only for
special boundary conditions atNS interfaces.

The paper is organized as follows. Sections II–IV deal
with the influence of an electron dispersion asymmetry on
the proximity induced superconductivity in a LL wire. In
Sec. II we calculate the Josephson current through a “side-
coupled” LL wire. The spectrum of plasmonic modes in a LL
with open ends and electron dispersion asymmetry is evalu-
ated in Sec. III. In Sec. IV the Josephson current through an
“end-coupled” LL wire is analytically calculated in the limits
of weak and strong electron-electron interaction. In Sec. V
we consider the regime of strong Rashba interaction and ana-
lytically evaluate the Josephson current in the “end-coupled”
LL wire in the limits of strong and weake-e interaction. The
results obtained are summarized in Sec. VI.

II. PROXIMITY-INDUCED SUPERCONDUCTIVITY IN A
LUTTINGER LIQUID WIRE WITH ASYMMETRY

OF ELECTRON DISPERSIONS

It is physically evident that the Coulomb interaction in a
long S/ I /LL/ I /S junction suppresses the critical supercur-
rent due to a strong Kane-Fisher renormalization of the bare
tunneling matrix elements. The Josephson current through a
Luttinger liquid coupled to bulk superconductors via tunnel
contacts was first calculated by Fazioet al.11 who showed
that the critical supercurrent is multiplicatively renormalized
ssuppressedd by a repulsive electron-electron interaction. The
calculations were performed in linearsFig. 2d and ringlike
geometries. In both cases periodic boundary conditions for
the plasmonic modes can be imposed. Although from an ex-
perimental point of view the considered geometries of an
SNSjunction look rather artificial, they do allow one to sim-
plify the calculations.

For noninteracting electrons the critical supercurrents in
anSNSjunction formed by a longseffectively infinited quan-
tum wire connected to superconductors by side tunnel con-
tacts sseparated by a distanceLd and in anSNS junction
where a finite length QW bridges the gapsof the same length

Ld between two superconductors differ only by a numerical
factor. If the QW is treated as a Luttinger liquid this factor
becomes a function of the interaction strength and can be
evaluated analyticallyssee belowd. When both electron-
electron interactions and dispersion asymmetry are present
the calculations are more cumbersome. We start with the
case of a side-contacted QW where we are able to analyti-
cally evaluate the supercurrent for arbitrary interaction
strength and dispersion asymmetry parameter.

The HamiltonianH=HLL +Hb of a S/ I /LL/ I /S junction is
a sum of the LL HamiltonianHLL and the boundary Hamil-
tonianHb. The latter describes the effective boundary pairing
and scattering interactions produced by the superconducting
and normal scattering potentials at the pointsx=0 andx=L
ssee Ref. 27d. In the presence of an electron dispersion asym-
metry the corresponding spin-1/2 LL Hamiltonian expressed
in terms of charge densities of chiral fields takes the form

HLL = p"E dxHu1srR↑
2 + rL↓

2 d + u2srR↓
2 + rL↑

2 d +
V0

p"
srR↑rR↓

+ rL↑rL↓ + rR↑rL↑ + rR↓rL↓ + rR↑rL↓ + rR↓rL↑dJ , s1d

whererR/L,↑/↓ are the charge density operators of right/left-
moving electrons with up/down-spin projection,V0 is the
strength of electron-electron interactionsV0,e2d, and u1s2d
=v1s2dF+V0/2p". The Fermi velocitiesv1FÞv2F are differ-
ent due to an assumed electron dispersion asymmetryssee
Fig. 1d. We have neglected the magnetic field-induced cor-
rections to the Fermi velocities and assumed that the effec-
tive electron-electron interaction has no significant magnetic
field dependence. Both the neglected effects are of “1/«F”
order ssee, e.g., Ref. 28d and they are irrelevant for Zeeman
splittingsDZ! uDu!«F.

The Hamiltonians1d is equivalent to a two-channel LL
Hamiltonian and can be diagonalized by the canonical trans-
formation suggested in Ref. 25ssee Appendixd. The diago-
nalized Hamiltonian is

Hd = p"E dxhs1srR1
2 + rL1

2 d + s2srR2
2 + rL2

2 dj, s2d

where ss1,2d are the velocities of noninteracting bosonic
modesssee the Appendixd.

We assume strong normal backscattering at theS/N
boundariesstunnel junctionsd. In this limit the pairing Hamil-
tonian contains a small factor—the amplitude of Andreev
backscattering29,30

rA
sr,ld . Dr,lexpFiSp

2
+ wr,lDG , s3d

whereDrsld!1 is the transparency of the barrier at the right-
sleftd interface,wrsld is the phase of the superconducting order
parameter on the rightsleftd bank of the junction. The bound-
ary Hamiltonian for our two-channel system can be ex-
pressed in terms of the Andreev scattering amplitudes Eq.s3d
up to an overall numerical factorC, which will be specified
later
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Hb/C = "v1FfrA
* sldCR↑s0dCL↓s0d − rA

* srdCR↑sLdCL↓sLdg

+ "v2FfrA
* sldCR↓s0dCL↑s0d − rA

* srdCR↓sLdCL↑sLdg

+ H.c. s4d

To second order in the Andreev scattering amplitude the
phase dependent part of the ground-state energy takes the
form

dEs2dswd = o
j

uk j uHbu0lu2

E0 − Ej
=

1

"
E

0

`

dtk0uHb
†stdHbs0du0l,

s5d

whereHbstd is the boundary Hamiltonians4d in the imagi-
nary time Heisenberg representation. After substituting Eq.
s4d into Eq. s5d we get the following expression for
dEs2dswd expressed in terms of electron correlation functions:

dEs2dswd = − 4C"ReHrA
* sldrA

srdE
0

`

dtfv1F
2 kCR↑st,0dCL↓st,0d

3CL↓
† s0,LdCR↑

† s0,Ldl + v2F
2 k↑ ⇔ ↓lgJ . s6d

We will calculate the electron correlation functions in Eq.
s6d by making use of the bosonization technique. Notice that
the Zeeman splitting introduces an extrax-dependent phase
factor in the chiral components of the fermion fields. This
interaction can be taken into accountssee, e.g., Ref. 20d by
replacing the fermion operators in Eq.s6d by Cm,s

sZd , where

Cm,s
sZd = expsiKZxdCm,s, KZ =

DZ

4"vF

ms − la

1 − la
2 , s7d

Here vF=sv1F+v2Fd /2, m=sR,Ld;s1,−1d, s=s↑ , ↓ d;s1,
−1d, DZ is the Zeeman splitting, andla=sv1F−v2Fd / sv1F

+v2Fd is the parameter which characterizes the strength of
chiral symmetry breaking.

The standard bosonization formulae now read

CRsLd,↑sx,td =
exph± iÎ4pFRsLd,↑sx,tdj

Î2pa1s2d
,

CRsLd,↓sx,td =
exph± iÎ4pFRsLd,↓sx,tdj

Î2pa2s1d
, s8d

wherea1,2 are the cutoff parameters of the two-channel LL.
The chiral bosonic fields in Eq.s8d for a finite length LL are
represented as followsssee, e.g., Ref. 31d

FRsLd,↑sx,td =
1

2
ŵRsLd,↑ + P̂↑

x 7 v1s2dt

L1s2d
+ wRsLd,↑sx,td, s9d

FRsLd,↓sx,td =
1

2
ŵRsLd,↓ + P̂↓

x 7 v2s1dt

L2s1d
+ wRsLd,↓sx,td.

s10d

Here the zero mode operatorssŵRsLd,s, P̂s8d obey the com-

mutation relations fŵRsLd,s ,P̂s8g= 7 ids,s8 and the non-
topologicalsharmonicd componentswRsLd,jsx,td are

wRsLd,jsx,td = o
q

Î 1

2qLj
heiqs±x−v j tdb̂q + H.c.j, s11d

wherebqsbq
†d are the standard bosonic annihilationscreationd

operators. The effective quantization lengthsLj sj =1, 2d de-
pend on the boundary conditions and will be specified in the
next section.

As is well knownssee, e.g., Ref. 32d, the topological ex-
citations for an effectively infinite LL play no role and can be
omitted in Eqs.s9d and s10d. After straightforward transfor-
mations Eq.s6d is reduced to the following expression:

dEs2dswd = 4C"DHv1F
2 cosSw −

DZ

D1L
DE

0

`

dtP1std

+ v2F
2 cosSw +

DZ

D2L
DE

0

`

dtP2stdJ , s12d

where D=DlDr is the junction transparency,D1s2dL
="v1s2dF /L and

P1s2dstd =
1

s2pa1s2dd2exph2pfkkwsst,− Ldwsll

+ kkQrst,− LdQrll ± kkQrst,− Ldwsll

± kkwsst,− LdQrllgj. s13d

Here ws;wss0,0d, Qr;Qrs0,0d and double brackets de-
note the subtraction of the corresponding vacuum average at
the pointst, x=0. The chargesrd and spinssd bosonic fields
in Eq. s13d are related to the chiral fieldswRsLd,↑s↓d introduced
above by the simple linear equations

wssQrd =
1
Î2

swR,↑ ± wL,↑ 7 wR,↓ − wL,↓d s14d

sthe upper sign corresponds tows and the lower sign denotes
Urd. With the help of the canonical transformation Eq.sA1d
the chiral bosonic fields in Eq.s14d can be expressed in
terms of noninteracting plasmonic modeswR/L,j sj =1, 2d. For
an infinitely long LL the propagators of these fields aressee,
e.g., Ref. 32d

kkwR/L,jst,xdwR/L,kll = −
d jk

4p
ln

ak 7 x + iskt

ak
, s15d

where the velocitiessj are defined in the Appendixfsee Eqs.
sA4d and sA5dg. Finally, the expression for the Josephson
current through a side-coupled LL wiresFig. 2d takes the
form
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JsidsV0,la,DZ;wd

=
evF

L
D

C

2p2HSa1

L
D2sg1−1d v1F

2

s1vF
Bs1/2,g1 − 1/2d

3Fs1/2,g1s;g1;1 − ss2/s1d2d

3sinSw −
DZ

D1L
D + Sa2

L
D2sg2−1d

3
v2F

2

s1vF
Bs1/2,g2 − 1/2dF„1/2,g2c;g2;1 − ss2/s1d2

…

3sinSw +
DZ

D2L
DJ , s16d

where Bsx,yd=GsxdGsyd /Gsx+yd is the beta function,
Fsa ,b ;g ;zd is the hypergeometric functionssee, e.g., Ref.
26d, vF=sv1F+v2Fd /2, g j =g js+g jcs j =1,2d, and

g1s =
v2F

v1F

sin2c

g2
, g1c =

cos2c

g1
,

g2s = g1ss1 ↔ 2d, g2c = g1cs1 → 2d. s17d

Here gj =sj /v jF are the correlation parameters of a two-
channel LL ssee the Appendixd and angle parameterc is
defined by Eq.sA3d.

By using the properties of the hyper-geometric function it
is easy to show that for a given strength of the electron-
electron interaction the Josephson currentJsid satisfies the
equations

Jsids− la,DZ;wd = Jsidsla,− DZ;wd = − Jsidsla,DZ;− wd
s18d

which describe the symmetries of electric current with re-
spect to space and time reflections. In particular one can infer
from Eq. s18d that when both the dispersion asymmetrysla

Þ0d and the ZeemansDZÞ0d interaction are present the
supercurrent could be nonzero even atw=0. This anomalous
supercurrent exists already for noninteracting electronssV0

=0d and at first we analyze Eq.s16d in the limit of weake
-e interaction.

For noninteracting electronssV0=0, g1=g2=1d Eq. s16d is
much simplified to

J0
sidswd = Jc

s0d1

2
Hv1F

vF
sinSw −

DZ

D1L
D +

v2F

vF
sinSw +

DZ

D2L
DJ ,

s19d

where Jc
s0d=sDevF /4LdsC/pd is the critical Josephson cur-

rent. We see that in the absence of magnetic interaction
sDZ=0d the Rashba interaction in the considered geometry of
SNS junction does not affect Josephson current at allssee
also Ref. 16 where an analogous result was obtained for a
short 2DSNSjunction in the presence of Rashba spin-orbit
interactiond. The interplay of the Zeeman interaction and the
dispersion asymmetry in quantum wires results in the appear-
ance of an anomaloussat w=0d Josephson currentJa

sid

;J0
sidsw=0d which it is convenient to express in terms of the

asymmetry parameterla and the magnetic phasexB
=Dz/DLsDL="vF /Ld as

Ja
sidsla,xBd =

Jc
s0d

2
Hs1 − lad

3sinS xB

1 − la
D − s1 + ladsinS xB

1 + la
DJ .

s20d

As is evident from the above equation, the anomalous super-
currentJa appears only when both the dispersion asymmetry
and the Zeeman interaction are presentJasla=0,DZd
=Jasla,DZ=0d=0. In the limit of weak dispersion asymme-
try la!1 sa realistic case17 for quantum wires formed in
2DEGd the Josephson current as a function of Zeeman split-
ting demonstrates a simple harmonic21 behavior with a slow
periodically varying amplitudesbeatsd

J0
sid . Jc

s0dsinsw + dwadcosSDZ

DL
D, dwa = laSDZ

DL
− tan

DZ

DL
D .

s21d

This formula clearly demonstrates that the interplay of a
weak Rashba interaction and the Zeeman interaction results
in anomalous phase shiftdw in the supercurrent. In what
follows we will see that for a strong Rashba interaction the
analogous phase shift is determined mostly by Zeeman split-
tings and is finite even for symmetric electron dispersions.

Now we analyze Eq.s16d in the limit when dispersion
asymmetry is negligibly smallsla=0d. In this case the Jo-
sepson current through the LL wire takes the form

Jg
sid = Jc

sgdcosxBsinw, Jc
sgd = RsgcdJc

s0d, s22d

where the interaction-induced renormalization factorRsgcd
sheregc

−1=Î1+2V0/p"vF is the LL correlation parameter in
the charge sectord

Rsgcd =
gc

Îp

Gs1/2gcd
Gs1/2 + 1/2gcd

FS1

2
,
1

2
;

1

2gc
+

1

2
;1 − gc

2DSa

L
Dgc

−1−1

s23d

is equivalent to the one evaluated in Ref. 11sin the cited
paper this factor was presented in the integral formd. In the
limit of strong interactionV0/"vF@1 the renormalization
factor is small

Rsgc ! 1d .
p

2
S"vF

V0
D3/2Sa

L
DÎ2V0/p"vF

! 1 s24d

and the Josephson current through aS/ I /LL/ I /S junction is
strongly suppressed.11

When both the electron-electron interaction and the dis-
persion asymmetry are strong, only one of the two terms in
Eq. s16d dominates. The corresponding critical currentsfor
definiteness we assume thatv1F.vF /2@v2Fd
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Jc
sid = Jc

s0dpS"v1F

V0
D3/2Sa

L
D2ÎV0/p"v1F

s25d

is much smaller than the critical currentJc in the absence of
dispersion asymmetrysv1F=v2Fd. It means that dispersion
asymmetry in quantum wires could enhance the interaction-
induced suppression of the Josephson current. Notice, how-
ever, that the considered model of spin-orbit interaction in
quasi-1D wires17,18 is not valid when the Rashba effect is
strong. So in reality the enhancement induced by a weak
electron dispersion asymmetry is small.

III. DISPERSION ASYMMETRY AND QUASI-RANDOM
ENERGY SPECTRUM OF PLASMONS

In this section we evaluate the spectrum of topological
excitations and plasmonic modes in a LL wire of the lengthL
end-coupled to bulk superconductorsssee Fig. 3d. The elec-
tron normal backscattering at the N/S interfaces is assumed
to be strong. The Josephson current can be calculated to the
first order on junction transparency using Eq.s6d for the w
dependent part of the ground-state energy. For a finite length
LL the zero modes in Eqs.s9d and s10d contribute to the
energy and after some algebra we get fordEs2dswd an expres-
sion analogous to Eq.s12d where nowP1s2dstd is replaced by
the productP1s2dstdQ1s2dstd. The zero mode contributions
Q1s2dstd are sj =1, 2d

Qjstd = expH− 2pKF L

Lj
sP̂↑ − P̂↓d +

iv jt

Lj
sP̂↑ + P̂↓dG2LJ

3expS2pv jt

Lj
D . s26d

To zeroth order of perturbation theory in the barrier transpar-
encies the electrons are confined to the normal region. There-
fore the correlation functions in Eq.s12d have to be calcu-
lated with the appropriated boundary conditions. The natural
boundary condition for our problem is the requirement that
the particle current through the interfaces atx=0, L is zero

Js , RehiCs
†]xCsjx=0,L = 0, s = ↑,↓. s27d

Here the wave functionCs for the nonsymmetric electron
dispersion is represented as

C↑s↓d . eik1s2dFxCR1s2dsxd + e−ik2s1dFxCLs2d1sxd. s28d

Notice that Eqs.s27d and s28d determine more general
boundary conditions thanCssx=0,Ld=0 usually assumed in
the literaturessee, e.g., Ref. 22d. The last b.c. is the particular
case of so called “hard wall” b.c.’sCs jdsxbd=0 j =1,… ,2N
for a multichannelsNd spin-1/2 LL. They do not mix the
channels and allows one to reduce the multichannel problem
to calculations for a single channel situation with an addi-
tional summation of channel-dependent quantities over chan-
nel quantum numbers.22 In our case scattering at the bound-
aries changes the channel “index”s1↔2d and the correct
b.c. for “slow” fieldsCRsLd has to take this fact into account.
The decomposition Eq.s28d holds at distances much larger

thenlF. In a general case, the wave function at the boundary
is of a more complicatedsand unknownd form and one may
not putCs=0 in order to find the relations between the two
terms in Eq.s28d. In contrast, the requirement that the par-
ticle current through the boundary is zero is robust and its
consequences hold at any distance from the boundary due to
current conservation.

For the bare electron spectrum without dispersion asym-
metry sk1F=k2F=kFd the formulated requirement is equiva-
lent to the following boundary conditions for the chiralsR,Ld
fermionic fieldsssee also Ref. 24d:

CRs
† sxdCRssxdx=0,L = CLs

† sxdCLssxdx=0,L. s29d

The boundary conditions Eq.s29d correspond to a LL with
open ends24 and result in zero eigenvalues of the momentum-

like zero-mode operatorP̂s and in quantization of harmonic
modessplasmonsd on a ring with circumference 2L ssee Ref.
24d. In this case the spectrum of plasmons is equidistant and
the propagators take the formsj , k=1, 2d

kkwRsLd jst,xdwRsLdkll = −
d jk

4p
ln

1 − expfips±x − skt + iad/Lg
pa/L

.

s30d

Here a is the cutoff length ands1s2d are the velocities of
charge and spin excitationssfor noninteracting fermionss1
=s2=vFd.

Now we generalize the quantization procedure elaborated
in Ref. 24 to an electron spectrum with dispersion asymme-
try. We will assume that electron normal backscattering at
the boundaries is not accompany by spin-flip processes.
Therefore each backscattering for our spectrumsFig. 1d leads
to the change of the channel indexs‘‘ 1’’ ↔ ‘‘ 2’’ d and the
corresponding Fermi velocity.

It is worthwhile at first to consider the general case of
boundary scattering in a two-channel system of noninteract-
ing electrons confined to the intervalf0,Lg. The electron
backscattering at the boundaries is described by 232 unitary
symmetric matrix which is convenient to parametrize as fol-
lows:

Ŝ= eidS r i utu
i utu r* D , s31d

wherer = ur ueidr is the intrachannel backscattering amplitude
s1↔1, 2↔2d and t is the interchannel backscattering
s1↔2d amplitude ur u2+ utu2=1. By matching the electron
wave functions at the boundariesx=0 andx=L with the help
of the S-matrix Eq.s31d one easily finds the spectrum equa-
tion

cos2F«L

2
S 1

v1F
+

1

v2F
D + dG = ur u2cos2F«L

2
S 1

v1F
−

1

v2F
D + drG .

s32d

For purely intrachannel reflection,t=0, we get from Eq.s32d
two independent setssj =1, 2d of equidistant levels with
spacingD« j =p"v jF /L. In the opposite case of purely inter-
channel backscatteringsr =0d the spectrum is also equidistant
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«n =
2p"

L

v1Fv2F

v1F + v2F
Sn +

1

2
−

d

p
D, n = 1,2, . . . . s33d

In a general case the spectral equations32d yields a set of
quasirandom energy levels.

The bozonization technique is efficient only for the two
considered limiting cases:ur u=1 sthis was demonstrated in
Ref. 24d, andr =0 as we will show now. Let us start at first
with the case on noninteracting fermions. The boundary con-
dition Eq. s27d for v1FÞv2F results in the equations

v1FCR1
† sxdCR1sxdux=0,L = v2FCL2

† sxdCL2sxdux=0,L, s34d

RefCL2
† sxdCR1sxdeisk1F+k2Fdxgx=0,L = 0. s35d

These equations are satisfied if

a1

a2
=

L1

L2
=

v1F

v2F
,

1

L1
+

1

L2
=

1

L
, s36d

«n
F =

2p

L

v1Fv2F

v1F + v2F
n, n = 1,2,…, s37d

and

fFLssx,td + FRssx,tdgx=0,L =
Îp

2
ns, s = ↑,↓, s38d

wheren↑ andn↓ are integers. Eq.s38d in its turn is satisfied
for topological sector with quantum numberssŵRs

+ŵLsd /Îp=ns, P̂s=0 and the harmonic modeswRsLdssx,td
which obey the relations

wRssx,tdx=0,L = − wLssx,tdx=0,L. s39d

From Eqs.s11d, s36d, and s39d one easily gets the plasmon
spectrum

«n =
2p

L

s1s2

s1 + s2
n s40d

ss1,2 are the plasmon velocities, which coincide with the
Fermi velocities for noninteracting fermionsd and the desired
correlation functionssj , k=1, 2d

kkwRsLd jsx,tdwRsLdkll = −
d jk

4p
ln

1 − expfi2ps±x − skt + iakd/Lkg
2pak/Lk

,

s41d

where the effective quantization lengthsLj according to Eq.
s36d are

L1s2d =
v1F + v2F

v2s1dF
L. s42d

In the limit v1F=v2F Eqs. s40d–s42d reproduce the plasmon
spectrum and the correlation functions of a single channel
LL with open ends.24

Now we are ready to consider the effects of interaction.
For a single-mode LLsor for a multichannel LL, provided
the backscattering does not mix the channelsd the boundary
condition Eq.s39d for harmonic modes holds also for inter-

acting fermions as one can check using a Bogoliubov-like
transformation which diagonalizes the LL Hamiltonian.
Hence in the presence of interaction one can still use the
same correlation functions as for noninteracting fermions
with the only difference that the velocities are renormalized
by interaction.

This is not the case for our problem. With the help of
exact transformationsfsee the Appendix, Eq.sA1dg which
diagonalize the 2-channel LL Hamiltonian25 one can show
that if the chiral bosonic fields satisfy Eq.s39d, the diagonal-
ized onesw̃RsLd j are connected at the boundaries by the ef-

fective “scattering matrix”Ŝe

w̃Rjsx = 0,Ld = o
k=1

k=2

Sjk
e w̃Lksx = 0,Ld, Ŝe =

1

B
S− A 1

1 A
D ,

s43d

where the coefficientsA, B are

A = − fcos 2c − sinhsq1 − q3dsin 2cg−1fsinhsq1 − q2d

3coshsq1 − q3d + cos 2c coshsq1 − q2dsinhsq1 − q3d

+ sin 2c coshsq1 − q2dg, s44d

B = − fcos 2c − sinhsq1 − q3dsin 2cg−1fcoshsq1 − q2d

3coshsq1 − q3d + cos 2c sinhsq1 − q2dsinhsq1 − q3d

+ sin 2c sinhsq1 − q2dg s45d

and the “rotation angles”ql sl =1, …4d andc are defined in
the Appendixfsee Eqs.sA2d andsA3dg. One can check after
some algebra that the coefficientsA andB satisfy the simple
relation B2−A2=1, which makes theS matrix in Eq. s43d
unitary. This observation allows us to use the scattering ma-
trix formalism when evaluating the energy spectrum of plas-
mons. Notice that in the parametrization Eq.s31d we have
r = iA /B, utu=1/B, d=p /2.

For monochromatic bosonic fields with amplitudesbRsLd j

the scattering at the boundariesx=0 andx=L are determined
by the equations

x = 0:bRj = o
k=1

2

Sjk
e bLk, x = L:e−ia jbLj = o

k=1

2

Sjk
e eiakbRk,

s46d

where the phasesa j =«L /sj andsj are the plasmon velocities
fsee Eqs.sA4d andsA5dg. From the above set of linear equa-
tions one easily finds the spectrum equation for plasmons

sin2F«L

2
S 1

s1
+

1

s2
DG = Rsin2F«L

2
S 1

s1
−

1

s2
DG , s47d

whereR;sA/Bd2ø1 is the effective backscattering coeffi-
cient for plasmons. It depends both on the dimensionless
interaction strengthk=V0/p"sv1F+v2Fd and on the disper-
sion asymmetry parameterla. Notice that the spectral equa-
tion s47d is the special case of Eq.s32d for d=dr =p /2.

The derived spectral equation has simple exact analytic
solutions in two limiting cases:sid noninteracting fermions
and sii d when dispersion asymmetry is absent,v1F=v2F=vF.
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For noninteracting particlesfV0=0 in Eq. s1dg the “rotation
angles” arec=0, q1=q4=0 ssee the Appendixd and the ve-
locities s1=v1F, s2=v2F. ThenA=0, B=−1 and the effective
backscattering coefficientR=0. Eq. s47d in this limit repro-
duces the equidistant spectrum of “noninteracting” plasmons,
Eq. s33d. For interacting fermions in the absence of disper-
sion asymmetry the “rotation angles” areq1=q3, q2=q4,
cos 2c=0. In this limit s1=s, s2=vF and R=1. The corre-
sponding plasmon energies«n

s1d=psn/L, «n
s2d=pvFn/L, sn

=1, 2, …d represent the standard excitations in the charge
and spin sector of a finite lengthsLd Luttinger liquid with
open ends.24

For a general case Eq.s47d has to be solved numerically
and the plasmon spectrum represents a set of quasirandom
energy levels. Now the plasmonic energies cannot be sepa-
rated into independent sets of levels for charge and spin den-
sity excitations. It means that the considered boundary con-
ditions strongly mix the charge and spin excitations and the
phenomena of charge-spin separation, well known in a LL,
strictly speaking, disappears when both spin-orbit interaction
and finite size effects are present.

IV. JOSEPHSON CURRENT THROUGH
A FINITE-LENGTH LL WIRE WITH

DISPERSION ASYMMETRY

It is clear from a physical point of view that the effects of
a dispersion asymmetry in the bare electron spectrum have to
be most significant in the quantum dynamics of noninteract-
ing electrons. In this case the mismatch in Fermi velocities
when an electron is backscattered at the boundaries leads to
an intricate interference pattern. The more strongly particles
interact, the less important are the effects of dispersion asym-
metry. For instance, in the limiting case of a 1D Wigner
crystalsstrong repulsive long-range interactionsd it is hard to
imagine any interference produced by the quantum dynamics
of plasmons in two Wigner crystals pinned by structural im-
perfections at the boundaries. So in our problem it is reason-
able to expect the restoration of the regular plasmon spec-
trum and the spin-charge separation in the limit of strong
interaction.

For strongly interacting electronsk=V0/p"sv1F+v2Fd
@1 andv1F,v2F si.e., for a realistic case of week or mod-
erate dispersion asymmetryd the coefficientR sintrachannel
plasmon backscattering probabilityd in Eq. s47d takes the
form

R. 1 −
1

k3/2

la
2s4 − 3la

2d

2Î1 − la
2

. s48d

We see that whenk@1 the difference in the Fermi velocities
ceases to affect the plasmon spectrum and the spin-charge
separation and the equidistant character of plasmon spectra
are indeed restored. This observation could be of some inter-
est for the problems dealing with the plasmon spectra of a
multichannel s j =1,… ,Nd LL confined to a finite volume
swith the longitudinal lengthLd by strong scattering barriers
at xj =0, L. “Hard wall” boundary conditions for the electron
wave functionsC↑,↓

s jd sxj =0,Ld=0 are often postulated in the

literature ssee, e.g., Ref. 22d. This is equivalent to electron
backscattering at the boundaries without channel mixing. Al-
though it is a rather restrictive assumption for weakly inter-
acting electrons, it happens to be the general case for
strongly interacting particles according to the above consid-
erationsssee also Ref. 25d.

It is straightforward to evaluate the Josephson current us-
ing the exact plasmon spectrum forR=1 si.e., whenla=0d
and the propagators Eq.s30d. The result for zero Zeeman
splitting sDZ=0d is

Jsfdsgc;wd = Jc
s0dRfsgcdsinw, s49d

whereJc
s0d=sDevF /4LdsC/pd is the critical current through a

1D SNSjunction and the interaction-induced renormalization
factor Rfsgcd is

Rfsgcd =
2gc

2

2 − gc
2Fs2gc

−1,2gc
−1 − gc;2gc

−1 + 1;− 1dSpa

L
D2sgc

−1−1d

.

s50d

HereFsa ,b ;g ;zd is the hyper-geometric function andgc is
the LL correlation parameterfsee Eq.s22dg. For noninteract-
ing electronsRfsgc=1d=1 and our formula has to reproduce
the known expression for the Josepson current through a 1D
SNS junctionssee, e.g., Ref. 33d. From this comparison one
finds C=p.

The observation thatR→1 in the limit of strong interac-
tion sk@1d allows us to evaluate the correlation functions
and the Josephson current for strongly interacting electrons
with dispersion asymmetry. The Josephson current is de-
scribed by Eqs.s49d and s50d after the replacementgc
→k−1/2 and in the limit k@1. The renormalization factor
now takes the form

Rfsk @ 1d .
1

k
Spa

L
D2Îk

! 1. s51d

The formulass49d ands51d show that in the considered limit
the Josephson current does not depend on the parameterla
of dispersion asymmetry. This result is in agreement with the
above physical considerations. By comparing Eq.s51d and
Eq. s25d we see that the interaction suppresses the supercur-
rent more strongly in a long end-coupled quantum wire than
in a side-coupled one.

Dispersion asymmetry affects the supercurrent of weakly
interacting electrons. The influence, however, numerically is
not strong even for the most favorable case of noninteracting
particles. With the help of the correlation functionss41d it is
easy to calculate the Josephson current of noninteracting
electrons with dispersion asymmetry

Jsfdsla,DZ;wd = Jc
s0dRsladcosFDZ

2
S 1

DL1
+

1

DL2
DGsinw.

s52d

Here Jc
s0d is the critical current in the absence of dispersion

asymmetryfsee Eq.s49dg and Rslad is the renormalization
factor induced by the asymmetry of electron dispersion
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Rslad =
plas1 − la

2d
sinsplad

. H1 + sp2/6 − 1dla
2, la ! 1,

2, la → 1.
J
s53d

We see from Eq.s53d that the dispersion asymmetry always
slightly enhances the critical current. The analysis of the Jo-
sephson current in a 1D SQWS junction in the presence of
dispersion asymmetry was performed in Ref. 23 using the
Andreev level approach. It was shown that the observed en-
hancement of the Josephson current is due to less perfect
cancellationssdifferent Fermi velocitiesd of the partial super-
currents carried by adjacent Andreev levels. It is interesting
to notice here that the influence of spin-orbit interactions on
a persistent supercurrent and on a persistent current in a 1D
normal metal-ring are quite different. As we see from our
analysis, the Rashba interaction either enhances the critical
Josephson current or does not affect it at all depending on the
geometry of theSNSjunction. In contrast, spin-orbit effects
are known34 to suppress persistent currents in 1D normal
metal ringsssee also Ref. 35, and references thereind.

V. THE RASHBA EFFECT, CHIRAL ELECTRONS
IN 1D QUANTUM WIRES AND THE JOSEPHSON

CURRENT IN S/LL/S-JUNCTION

Now we consider the limit of strong Rashba interaction.
In this case the electrons in a quasi-1D quantum wire behave
like truly chiral particles, so that the spin polarization of an
electron irrespective of its subband index is determined by
the direction of electron motion along the wire—right-
moving and left-moving electrons have opposite spin
projections.19 We will assume for definitenesssit depends on
the sign of the Rashba couplingd that “R” electrons are
“down” polarized and “L” electrons are “up” polarizedsas
indicated by the dashed arrows in Fig. 1d. We have already
seen in Sec. II, that the left/right symmetry breaking in the
presence of the Zeeman interaction results in the appearance
of an anomalous phase shift in the Josephson current. Physi-
cally it means that when the spin projection is correlated
with the direction of motionsleft, rightd, the magnetic field,
via the Zeeman interaction, induces partial Josephson cur-
rentssfor each subband “1” and “2”d even if the supercon-
ducting phase difference in theSNSjunction is zero. For the
spin alignments assumed in Refs. 17,18sweak Rashba inter-
actiond the subbands contribute to the Josephson current with
opposite signs and therefore the anomalous supercurrent van-
ishes for symmetrical spectrumv1F=v2F. Hence the electron
dispersion asymmetry is an indispensable property for get-
ting an anomalous Josepson current in the regime of weak
Rashba interactions. In the limit of strong SO interactions
when all rightsleftd-moving particles have parallel spins, the
contributions of the two subbands have the same sign and the
existence of electron dispersion asymmetry ceases to be cru-
cial for the appearance of an anomaloussat w=0d Josephson
current.

What is more important are the spin-flip processes which
may take place in the transition regions between the 2Dsor
3Dd electron reservoirsssuperconducting leads in our cased
and the 1D quantum wire with a pronounced Rashba effect.

Electrons in the reservoirs have two possible spin states,
while deep inside the wire, where the SO interaction is
strong, the electron spins have to be aligned according to the
above discussed prescription. So particles with the “wrong”
spin projection should be either reflected or turn their spins
toward the “right” direction. Physically, the spin flips are
induced by the effective magnetic field each electron feels in
its rest frame in the presence of spin-orbit interactions.

Strong spin-orbit interaction can reverse the spin projec-
tion as a result of electron backscattering. In forward scatter-
ing, spin flips can be induced by magnetic impurities at the
N/S interfaces. In the absence of magnetic scatteringsthe
case considered in this paperd the particles with “wrong” spin
projection will be backscattered when entering a QW with
strong Rashba interaction.

One can imagine two different types of transitionslead-
wired regions. In the case when the SO interaction is changed
abruptly at the lead/wire interfaces, the spin-flips induced by
the Rashba interaction will be accompanied by backscatter-
ing of electrons with both “up” and “down” spin projections.
Such spin nonadiabatic contacts were studied in Ref. 19
when evaluating normal electron transport through a 1D
quantum wire with strong Rashba interaction. In this model
the transparency of the junction depends on the spin-orbit
coupling and due to strong scattering at the wire-lead inter-
faces the normal electric current is partially suppressed.

Another possibility is to have adiabatic contacts where
both the Rashba interaction and the electrical confinement
potential are switched on smoothly over a lengthlSO,llc
much larger than the Fermi wavelengthlF. Then only par-
ticles with “wrong” spin projection will be backscattered.
The accumulated magnetic moment and the charge of back-
scattered electrons for adiabatic contacts are distributed over
a lengthlSOsL@lSO@lFd and they can not induce back-
scattering of electrons with the “right” spin projection.

It is straightforward to calculate the Josephson current
through an adiabatic junction. In a junction with adiabatic
contacts and strong Rashba interaction right-moving spin-
“down” and left-moving spin-“up” electrons are perfectly
transmitted. This is exactly what one needs to form the maxi-
mum supercurrent. Electrons in the two subbandss“1” and
“2” d contribute to the Josephson current with their respective
Fermi velocities. At low temperatures the total critical cur-
rent expressed in terms of the average Fermi velocityvF is
identical to the one in a junction without s-o interaction. So
even a strong Rashba effect does not influence the Josephson
current through a perfectS/QW/S junction ssee also Ref.
16d. This is not the case when both the Zeeman and Rashba
interactions are present. Since the electron-electron interac-
tion does not renormalize the Josephson current through a
perfectly transmittingS/LL/ S junction,10 we can evaluate
the current using the model of noninteracting electrons with
the bare spectrum shown in Fig. 1. The corresponding An-
dreev bound states are described by twosj =1, 2d indepen-
dent sets of energy levels

Enj,h j

s jd = pDL
s jdSnj +

1

2
+ h j

w + x j

2p
D , s54d

where the integersnj =0, ±1, ±2, …, and h j = ±1 are the
standard quantum numbers of the Andreev-Kulik spectrum36
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DL
s jd="v jF /L characterize the spacings of Andreev levelsx j

=DZ/DL
s jd are the magnetic phase shifts induced by the Zee-

man interaction. The Josephson current for the spectrum Eq.
s54d at low temperatures takes the form

Jsw,DZd =
e

pL
o
j=1

2

v jFo
k=1

`

s− 1dk+1sinksw + x jd
k

. s55d

We see from Eq.s55d that the Zeeman interaction induces an
anomalous supercurrentsat w=0d which for large splittings
DZ,DL

s jd is of the order of the critical Josephson current in a
perfectly transmittingSNSjunction.

Now we consider the opposite limiting case, when an
abrupt changeson the scale of the Fermi wavelengthd both of
the Rashba interaction and the electrostatic potential forms
tunnel barriers for the charge and spin transport through the
N/S interfaces. In our previous calculationsssee Secs. II–IVd
we assumed that only spin-conserving normal electron scat-
tering occurs at theN/LL junction regions. We have to
modify this calculation procedure to take into account spin
flips which accompany electron backscattering at the barri-
ers. Spin-dependent scattering induced by the Rashba inter-
action results, generally speaking, in a dependence of the
junction transparency on the strength of the Rashba coupling
DeffsaRd. However, for poor contacts,D!1, this effect is not
significant because it cannot strongly modify the junction
transparencyfDeffsaRd,D by an order of magnitudeg. The
main new complication in comparison with the calculation
scheme of Secs. II–IV is that in the general situation we have
to account for two-channel normal electron backscattering at
the junction interfaces. The situation is simplified when the
electron-electron interaction is strong. As was shown in Sec.
IV, the interchannels‘‘ 1’’ ↔ ‘‘ 2’’ d plasmon backscattering at
the N/LL interfaces is suppressed in the limit of strong re-
pulsive interactions. In our case it means that only intra-
channels‘‘ 1’’ ↔ ‘‘ 1’’ , ‘‘ 2’’ ↔ ‘‘ 2’’ d electron backscattering
survives for strongly interacting electrons25 and we can use
in this limit a simple quantization procedure for plasmons
sLL with open ends24d to evaluate the correlation functions.
Notice that now in Eq.s12d the magnetic phasesDZ/D1s2d
appear with the same sign. It results in completely different
behavior of anS/ I /LL/ I /S junction in a magnetic field for a
weak and a strong Rashba effect. After straightforward cal-
culations the desired expression for the Josephson current
through a strongly interacting LL takes the form

JsRdswd . Jc
s0dRf sinFw +

DZ

2
S 1

DL1
+

1

DL2
DG

3cosFDZ

2
S 1

DL1
−

1

DL2
DG , s56d

where the interaction-induced renormalization coefficientRf
is determined by Eq.s51d. As was already evident from
physical considerations, the anomalous supercurrentJsRdsw
=0d in the limit of strong Rashba interaction is induced by a
magnetic fieldsDZÞ0d even in the absence of any electron
dispersion asymmetry. We see from Eq.s56d that the depen-
dence of the supercurrent on magnetic field is absolutely dif-

ferent for chiral and normal electrons. In particular the criti-
cal current for symmetric electron spectrumsv1F=v2Fd in the
case of chiral electrons does not at all depend on the Zeeman
splitting, while in the ordinary situation one gets a periodic
dependencefsee Eq.s21dg.

At the end of this section we consider the influence of the
strong Rashba interaction on the Josephson current in an
S/ I /N/ I /S junction for weakly interacting electrons. It is
known37 that when the electron-electron interaction is not
strong resonant electron transport through a double barrier
system may take place at certain conditionsssee also Ref.
38d. It results in a giant Josephson current in anS/ I /N/ I /S
symmetric junction.33 How does the Rashba effect influence
the resonant Josephson current? To answer this question we
evaluate the Josephson current for noninteracting electrons
through a symmetricS/ I /N/ I /S junction with strong barri-
ers. For simplicity we will neglect the effects of the Zeeman
interaction in what follows.

The normal spin-dependent scattering of electrons at junc-
tion interfaces can be phenomenologically described by a 4

34 Ŝmatrix. In the limit of a strong Rashba interaction each
electron backscattering is accompanied by a spin flip. In ad-
dition, due to the induced electron dispersion asymmetry the
backscattering in general case is a two-channel process.
Since the particles with the “wrong” spin projection can not
penetrate into QW with the strong Rashba interaction, the
corresponding scattering problem can be effectively de-

scribed by a 333 Ŝ matrix. It is convenient to parametrize
this matrix as follows:

S= eid1s11 s12 Îe

s12 s11 Îe

Îe Îe − s33
2 , s57d

where

s11 =
1

2
stÎ1 − 2e + Ît2 + 2er2d, s58d

s12 = −
1

2
stÎ1 − 2e + Ît2 + 2er2d + eidÎ1 − 2e, s59d

s33 = e−idÎ1 − 2e. s60d

Here the parameter 0øeø1/2 characterizes the barrier
transparencyse=0 corresponds to the limit of the infinite
barrierd, t andr are the intrachannelstd and interchannelsrd
backscatteringamplitudest2+r2=1 sfor simplicity we will
consider them as real quantitiesd and the phased
=arctansr /td.

Using the standard procedure it is straightforward with the
help of Eqs.s57d and s58d to calculate the spectrum of An-
dreev levels in anS/ I /N/ I /S junction. Since the results for
the general case are very cumbersome and lengthy, we con-
sider the limit of a weak tunnelingse!1d and will be inter-
ested only in the resonant electron transport. In this case the
critical Josephson current through the junction is known33

ssee also Ref. 39d to be proportional toe sthe nonresonant
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Josephson current is proportional toe2d. To the first order in
e the spectrum of Andreev bound states in a long junction
takes the formfwe assume thate!1 andesr /td2!1g

En
± = En

0 + 2e

3
cosb− − cosb+ ± Îsr/td2sin2b+ + t2sin2b−cos2sw/2d

t2b−8sinb− − b+8sinb+
,

s61d

where b±=b1±b2 and b j =L« /"v jF, sj =1, 2d. In Eq. s61d
b8;]b /]« and the energy in the dynamical phasesb±s«d
should be taken at«=En

0, where the energiesEn
0 are deter-

mined by the following dispersion equationfcompare with
Eq. s32dg:

cos2Sb+

2
D = t2cos2Sb−

2
D . s62d

According to Eqs.s61d and s62d the spectrum of Andreev
bound states in the general case is a set of quasirandom en-
ergy levels. Notice that the resonance spectrum, Eq.s61d,
holds whenk1F /k2F=k1/k2 wherek1,2 are the integers and the
length L of the junction satisfies the resonance condition
sk1F+k2FdL=psk1+k2d.

Let us consider the limitr→0 when the Josephson cur-
rent through the junction can be analytically evaluated. This
case physically corresponds to the situation when back-
scattering at the boundaries does not mix the channels. It is
realized for the “hard wall” boundary conditionsssee the
discussion in Sec. IIId. The partial Josephson currents atT
=0s Jn,±

s jd =se/"ds]En
± /]wd in this limit are

Jn,±
s jd = ± e

ev jF

4L

sin w

ucossw/2du
; j = 1,2; n = 0,− 1,− 2,….

s63d

These currents exactly coincide with the resonant currents
found in Ref. 33. For each quantum numbern,0 and given
channel indexj the J± partial currents contribute to the total
current with opposite signs and therefore cancel each other.
The only surviving currentsJ0,+

s jd correspond to the levels
E0

−,0 which have no filled partner statessE0
+.0d. Therefore

at low temperaturesT!Tr
s jd=es"v jF /Ld and for the ”hard-

wall” b.c.’s the Josephson current through the symmetric
junction with a strong Rashba interaction is resonant. It takes
the form

Jr = e
e

L

v1F + v2F

4

sinw

ucossw/2du
. s64d

Note that the analogous resonant persistent current was pre-
dicted in Ref. 40 for a normal metal-ring with a double bar-
rier structure. It is also useful to notice that in the considered
limiting case all transverse channels in a multichannelsN'd
quantum wire contribute coherently to the Josephson current
resulting in a giant supercurrent forN'@1.

The giant Josephson current is washed out by thermal
smearing even at relatively small temperaturesT
,maxsTr

s jdd. The resonance effect is also absent in the pres-

ence of a normal electron backscattering with a sufficiently
strong channel mixingr.e. In this case a gap in the spec-
trum Eq. s61d is opened at the Fermi energysfor r,t this
gap is of the order of"vF /Ld and the resonant Josephson
current disappears even atT→0. Since there are no physical
reasons for the conditionr!e!1 to be generally valid, the
presence of the strong Rashba interaction should lead to a
suppression of the resonance effects in the supercurrent even
for symmetric junctions and weakly interacting electrons.

VI. CONCLUSION

The problem we have studied allows one to consider the
interplay of proximity-induced superconductivity and the
Rashba, Zeeman, and Coulomb interactions on the transport
properties of quasi-1D quantum wires. We have shown that
the interplay of Rashba and Zeeman effects strongly influ-
ences the supercurrent. The Rashba effect in quantum wires
results in a strong correlation between electron spin polariza-
tion and the direction of electron motion.17,19 In other words
a strong Rashba interaction creates chiral particles in the 1D
electron system. The influence of a magnetic field via the
Zeeman interaction on chiral particles leads to the appear-
ance of a net electric current in the wire. When the leads that
the quantum wire is attached to are superconducting, a su-
percurrent is induced even for zero phase difference across
the junction. The effect exists already for noninteracting par-
ticles. It is strongly sensitive to any electron dispersion
asymmetry and the induced Josephson current is small for
weak Rashba coupling. On the contrary, in the regime of a
strong Rashba interaction the anomalous phase shift in the
current-phase relation can be large for large Zeeman split-
tings. An induced anomalous Josephson current appears even
in the absence of any electron dispersion asymmetry and is
of the order of the critical current.

It is well known10,27 that the Josephson current in a per-
fectly transmitting junctionsi.e., without normal electron
backscatteringd is not influenced by the Coulomb interaction.
In contrast, any potential barrier inside the normal region
which induces electron backscattering is renormalizedsup-
wardsd by the repulsive interactionsthe Kane-Fisher effect6d
and therefore strongly suppresses the supercurrent through a
spoorly transmittingd S/ I /LL/ I /S junction.10,11,22,27We have
shown that the electron dispersion asymmetry, which is in-
duced by the Rashba interaction in quasi-1D quantum
wires,17,18 is significant for the superconducting properties of
an LL junction only for weak or moderate Coulomb interac-
tions. In this case the interplay of interaction and dispersion
asymmetry leads to an intricate interference pattern in the
plasmon quantum dynamics in a finite length two-channel
LL and makes the plasmon spectrum quasirandom. Even for
noninteracting electrons the electron dispersion asymmetry
induced by the Rashba interaction leads to a multichannel
character of electron backscattering atNS interfaces. It re-
sults in quasirandom character of Andreev bound states in a
long S/ I /N/ I /S junction. We showed that the resonance ef-
fects, which are significant for the transport properties of
symmetric junctions, survive in the presence of strong
Rashba interaction only for specials“hard wall”d boundary
conditions atNS interfaces.
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A strong Coulomb interaction suppresses this kind of
quantum behavior and restores a regularsequidistantd plas-
mon spectrum. Notice that the tendency of strong Coulomb
interactions to suppress quantum interference can be traced
in different 1D electronic systems, for instance, in a LL
double barriersabsence of resonant tunneling for a strong
repulsive interaction37d or in mesoscopic coupled ringssor-
dering effect of Coulomb interaction on persistent current
oscillations41d.
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APPENDIX

The canonical pseudo-orthogonal transformations, which
diagonalize the Luttinger-liquid Hamiltonians1d are25

1
rR↑
rL↓
rR↓
rL↑
2 =1

coshq1cosc sinhq1cosc − coshq2sinc − sinhq2sinc

sinhq1cosc coshq1cosc − sinhq2sinc − coshq2sinc

coshq3sinc sinhq3sinc coshq4cosc sinhq4cosc

sinhq3sinc coshq3sinc sinhq4cosc coshq4cosc
21

rR1

rL1

rR2

rL2

2 , sA1d

where the “rotation angles”q j andc are expressed in terms
of the Fermi velocitiesv1F, v2F and the interaction strength
V0 by the following equations:

q1 =
1

2
ln g1, q2 =

1

2
lnSv1F

v2F
g2D ,

q3 =
1

2
lnSv2F

v1F
g1D, q4 =

1

2
ln g2, sA2d

tan 2c =
2V0

Îv1Fv2F

sv1F − v2FdfV0 + p"sv1F + v2Fdg
. sA3d

Here gj =v jF /sjs j =1,2d are the correlation parameters of a
2-channel LL and the plasmon velocities are

s1 = v1FHcos2c + Sv2F

v1F
D2

sin2c

+
V0

p"v1F
Scosc +Îv2F

v1F
sincD2J1/2

, sA4d

s2 = s1sc ↔ − c,v1F ↔ v2Fd. sA5d

For noninteracting electrons,V0=0, the correlation param-
eters areg1=g2=1 and, according to Eqs.sA2d and sA3d
q1=q4=0, c=0. In the limit v1F=v2F=vF Eqs. sA2d–sA5d
reproduce the well-known expressions for the correlation pa-
rameters of a spin-1/2 LL

q1 = q3 =
1

2
ln gc, q2 = q4 = 0, gc = S1 +

2V0

p"vF
D−1/2

.

sA6d
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