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Influence of the Rashba effect on the Josephson current through a superconductor/Luttinger
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The Josephson current through a one-dimensional quantum wire with Rashba spin-orbit and electron-
electron interactions is calculated. We show that the interplay of Rashba and Zeeman interactions gives rise to
an anomalous phase shift in the current-phase relation for the supercurrent. The electron dispersion asymmetry
induced by the Rashba interaction in a Luttinger-liquid wire plays a significant role when the electron-electron
interaction is not strong and for poorly transmitting junctions. It is shown that for a weak or moderate
electron-electron interaction the spectrum of plasmonic modes confined to the normal part of the junction
becomes quasi-random in the presence of dispersion asymmetry. The resonance effects which are significant
for transport properties of weakly interacting electrons in symmetric junctions survive in the presence of a
strong Rashba interaction only for special boundary conditions at normal metal/superconductor interfaces.
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I. INTRODUCTION and the critical Josephson current is strongly suppreSsed.
Here we study the influence of the spin-or#O) inter-

In recent years the concept of a Luttinger liqéid-) as a  action on the Josephson current through a ISAGLL/1/S
realistic model of interacting electrons in one-dimensionalunction. The Luttinger-liquid part of the junction is repre-
(1D) metallic structures has received experimental supporéented by a quantum wire in a laterally confined 2DEG
(see, e.g., Refs. 13x5Quantum wiresQWSs) in laterally con-  coupled to superconducting electrodes via tunnel barriers. It
strained 2D electron gas€é2DEG) and single wall carbon has been known for a long time that the SO interaction is
nanotubegSWNTS are the two best known structures where strong in a 2DEG formed in a GaAS/AlGaAs inversion layer
LL behavior has been established both theoretically and exthe Rashba effetd) and that it can be controlled by a gate
perimentally. voltage®~1% So the Rashba effect could strongly affect the

In SWNTs, where the interaction effects have been showsuperconducting properties of mesoscopic hybrid SN
to be strong;® interaction can strongly influence the charge structures®
and spin transport through the nanotube. When a repulsively The influence of the Rashba effect on the electron spec-
interacting LL is coupled to metallic lead#1) of noninter-  trum and on the transport properties of quasi-1D quantum
acting electrons, two qualitatively different regimes of wires has been studied theoretically in Refs. 17 and 18,
Charge transport may be realized depending on the qua]ity (yﬁhere it was shown that the SO interaction not onIy Sp"tS the
the LL/M electrical contacts. For tunnel contacts chargeelectron spectrum into “spin- up” and “spin- down” sub-
transport through the system is strongly suppressed at loRands, but additionally breaks the left-right symmetry. This
temperatures and low bias Vo|ta§eby the repu|sive lmplles that left- and I’Ight moving electrons with the same
electron-electror(e-e) interaction. In contrast, for adiabatic SPin projection have different Fermi velocities. Since, due to
contacts when electron backscattering is negligibly small, théime mvanance of the spin-orbit Hamlltonlao(RT)—vf_Fl)
conductance is not renormalized by the interactidn. =UqE andle =y )—U2|:, the strength of the Rashba effect in

These two types of charge transport behavior also chara@ single- channe? QW can be characterized by a dispersion
terize the superconducting properties of a LL wire coupled teasymmetry parameten,=|vir—voe|/ (v1g+voe). In Refs. 17
superconductors. For adiabatic contacts only Andreev scagnd 18 it was assumed that in the presence of the Rashba
tering of electrons occurs at the boundaries between the Linteraction the electron spins in a quasi-1D wire are aligned
and the bulk superconducto(sL/ S boundaries This pro- as in the 2D caséas indicated by the solid arrows in Fig. 1
cess does not lead to a redistribution of charge density alonglthough this assumption is not valid for a strong Rashba
the wire and therefore the Coulomb interaction does not ineoupling}® the model considered in the cited referentsse
fluence the supercurrent through a perfect LL. The abovealso Ref. 2Qis interesting in itself. It allows one to study the
statement was proved in Ref. 10 by a direct calculation of theffects of dispersion asymmetty,# 0) on the electron dy-
Josephson current through a lo8(-L/ SjunctionL> &; (L namics and in the limiin,— 0 it reproduces the standard
is the junction length&=Ave/|A| is the superconducting results for spin-1/2 electrons without the SO interaction.
coherence length) is the superconducting order paramgter Since the electron spin is not conserved in the presence of
In the opposite case of a tunr@®ll/LL/1/Sjunction—where SO interactions the classification of spin states assumed in
“1” denotes the insulating “layer"—the repulsieee interac-  Refs. 17 and 18 is not evidently correct. Actually, as was
tion results in a renormalization of the junction transparencyshown in Ref. 19, it can be justified only for a weak Rashba
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plasmons in the LL and all calculations can be done analyti-

FIG. 1. Schematic energy spectrum of 1D spin-1/2 electronsca"y_ even in the presence (_)f SO interaction. When the dis-
with dispersion asymmetry. The subbands “1” and “2” are characP€rS!On asymmetry is negligibly Smﬂa_’o)_ we reproduce
terized by their Fermi velocities;r #v,e. In the case of weak the formula for the Josephson current derived in Ref. 11.
Rashba interaction, the spin projections for a given momentum have 1€ interplay of electron dispersion asymmetry and the
opposite directions in the two subban@slid arrows. For strong ~ 2€€man interaction results in the appearance of an anoma-

Rashba interaction the spin projections are parallel for all particle;J,OUS_phaSe Shiﬁ in the supercurrent, so thgt a supercurrent
that move in the same direction irrespective of subband, but ar@€rsists even in the absence of any phase difference between

different for right- and left-moving particle@ashed arrows the two superconducting leads to which it is attached. The
existence of this anomalous Josephson current is related to

interaction. In the most interesting case of a strong Rashb#e breaking of chiral invariance in quasi-1D quantum
interaction, when the characteristic energy scale introducewires'’*®and the effect manifests itself already for noninter-
by the SO coupling is comparable with the energy spacing oficting particlegsee Ref. 2B
the 1D subbands, the average spin projections for electrons A more realistic geometry for a8/LL/ S junction is a
with large (Ferm) momentum are different. The total energy finite LL wire (of length L) coupled via tunnel barriers to
is minimized when all right-movingR) electrons have par- bulk superconductor¢‘end-coupled” LL, see Fig. 3 We
allel spins pointing in the opposite direction to the spins ofassume that Fhe barrier transparencies are unequal and small
left-moving (L) electrons'® In what follows we choose the (nonsymmetric  tunnel junction and evaluate the
sign of the Rasha interaction so tHRtelectrons have their ¢-dependent part of the ground-state energy by perturbation
spin “down” andL electrons theirs “uplas indicated by the theory using the junction transparenByas expansion pa-
dashed arrows in Fig.)1Notice that under conditions when rameter. To first order in the junction transparency the prob-
the Rashba effect is active the electron spin lies i(2R) lem is reduced to the evaluation of_four-ferm_lon correlation
plane and orthogonal to the electron momentimthe 1D functlons'f.or a t\_No channel LL Hamiltonian with t.he bound-
case this direction is fixed and “up” and “down” spin projec- &Y conditions |r_nply|ng the absence of a particle current
tions are well defined thr_ough _th_eS/LL |r_1terfaces ax=0, L. In the_ ab_sence of the

At first we consider the influence of electron dispersionSPin-orbitinteraction the problem of quantization of plasmon
asymmetry on the superconducting properties of 4gnodes in a finite !_L with open.enQS was solved in Ref. 24._
S/1/LL/1/Sjunction in the model elaborated in Refs. 17 andHere, we generalize the quantization procedure proposed in
18. In this model the spin projections of electrons in thethe cited paper to the case of spin-1/2 fermions with disper-
leads are the same as in the wire and we can ®hBL sion asymmetry. We show that the spectrum of plasmons in a
contacts as standard nonmagnetic scattering barriers. We c&l- With open ends in the presence of dispersion asymmetry
culate the Josephson current perturbatively using the junctiol§ determined by a transcendental equation. In the general
transparencyD =tt,|2 as expansion parametét; [><1 are ~ ¢ase the spectrum forms a set of quasirandom energy I(_evels.
the transparencies of the tunnel barriers at the left and righthe plasmonic energies can not be separated into two inde-
LL/S interfaces and for arbitrary values of electron-electron Pendent set of levels—one for charge density excitations,
interaction strength, dispersion asymmelry and Zeeman another for spin density exmtqtlons._For noninteracting elec-
splitting A,=gugB (g is theg factor, ug is the Bohr magne- trons, or when the energy dispersions are symmeét_rig
ton, andB is the magnetic field Two different geometries of =V2r=vf), the spectrum is reduced to a set of equidistant
S/LL/ S junction are considered. In the first case an effec€nergy levels and the spin-charge separation is restored. In
tively infinite LL is connected by the side electrodes to thethe limit of strongly interacting particles the plasmon spec-
bulk superconductor&side-coupled” LL, see Fig.2In this  trum also becomes regular. We calculate the Josephson cur-
geometry! one can use periodic boundary conditions forrent for the cases when the spectral equation can be solved

analytically.
3 L | We find that a dispersion asymmetry affects the supercur-
Di . Dr rent only if the electron-electron interaction is weak. For
LL noninteracting electrons the critical Josephson current

through a tunnes/ QW/S junction is enhanced by the pres-
ence of dispersion asymmetry. This behavior is specific for
quasi-1D electrons and the effect disappears in 2D
FIG. 2. S/LL/ Sjunction of lengthL formed by an effectively junctions.le
infinite Luttinger liquid coupled to bulk superconductors by side As has been already mentioned in this Introduction, the
electrodes. electron spin projections in a quasi-1D quantum wire in the
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regime of strong Rashba effect are strongly correlated with.) between two superconductors differ only by a numerical
the direction of electron motion and all riglgft)-moving  factor. If the QW is treated as a Luttinger liquid this factor
particles, irrespective of their Fermi velocities, have parallebecomes a function of the interaction strength and can be
sping® which are antiparallel to the spin polarization of evaluated analyticallysee below. When both electron-
left(right)-moving electrons. So it is reasonable to expect thaklectron interactions and dispersion asymmetry are present
in this case the magnetic field via the Zeeman interactiorthe calculations are more cumbersome. We start with the
will induce an anomalous phase shift even in the absence afase of a side-contacted QW where we are able to analyti-
dispersion asymmetry. At first we calculate the Josephsonally evaluate the supercurrent for arbitrary interaction
current in an adiabatic S/LL/S junction when both thestrength and dispersion asymmetry parameter.
Rashba s-o interaction and the electrostatic confinement po- The HamiltoniarH=H, +H, of aS/I/LL/I/Sjunction is
tential are smoothly switched on in a 1D QW. The anoma-a sum of the LL HamiltoniaH,;, and the boundary Hamil-
lous Josephson current induced by a strong Zeeman interatmnianH,. The latter describes the effective boundary pairing
tion is predicted to be of the order of the critical current inand scattering interactions produced by the superconducting
adiabaticSNSjunctions. For tunnel contacts the supercurrentand normal scattering potentials at the poxt) andx=L
is calculated in the limits of strong and weele interaction.  (see Ref. 2F. In the presence of an electron dispersion asym-
An anomalous phase shift of the Josephson current and anetry the corresponding spin-1/2 LL Hamiltonian expressed
anomalous influence of the Zeeman splitting on the criticain terms of charge densities of chiral fields takes the form
supercurrent is predicted. For noninteracting electrons we v
studied the influence of a strong Rashba effect on the reso _ 2 2 2 2y, Yo
nant Josephson current through a symmeHdN/I/Sjunc- Hy =k f dx{ Ui(pry + pLy) + Uz(pRy + pLy) + m‘i(pmpm
tion and showed that the resonance effects survive only for
special boundary conditions BIS interfaces. _ +pLipL t PriPL T PRIPLL T PRIPLL T pRlpLT)}, (1)

The paper is organized as follows. Sections II-IV deal

with the _inf_Iue.nce of an electron dispgrsi_on asymmetry OQNherepR,L,T,l are the charge density operators of right/left-
the proximity induced superconductivity in a LL wire. In moving electrons with up/down-spin projectiow, is the
Sec. |l \Q/e cal_culate the Josephson current through_a S'des'trength of electron-electron interactiovy~ €9), and s,
coupled” LL wire. The spectrum of plasmonic modes in a LL:vl(z)F+Vo/2ﬂ'ﬁ- The Fermi velocities - # v, are differ-

with open ends and electron dispersion asymmetry is evalu- d d el di .
ated in Sec. lll. In Sec. IV the Josephson current through al nt 1uevt/0 ?]n assumle edecrt1ron |sper_su;_n lgs_yr;rmetﬁw
“end-coupled” LL wire is analytically calculated in the limits F19: 1. We have neglected the magnetic field-induced cor-

of weak and strong electron-electron interaction. In Sec y/ections to the Fermi velocities and assumed that the effec-
we consider the regime of strong Rashba interaction and én%ye electron-electron interaction has no significant magnetic
lytically evaluate the Josephson current in the “end-coupled 'e(;d dependencg E’Otga”:je rr]leglecte_d elffects ?rezostll

LL wire in the limits of strong and weake interaction, The ~°rder(see, e.g., Ref. 3&nd they are irrelevant for Zeeman

results obtained are summarized in Sec. VI. spllttmgsAZ§ |A|.<8F' . .
The Hamiltonian(l) is equivalent to a two-channel LL

Hamiltonian and can be diagonalized by the canonical trans-

Il. PROXIMITY-INDUCED SUPERCONDUCTIVITY IN A formation suggested in Ref. 25ee Appendix The diago-
LUTTINGER LIQUID WIRE WITH ASYMMETRY nalized Hamiltonian is
OF ELECTRON DISPERSIONS
— 2 2 2 2
It is physically evident that the Coulomb interaction in a Hy=mh f dx{si(prs + pi1) + SR+ P2} (2)

long S/I/LL/1/S junction suppresses the critical supercur-

rent due to a strong Kane-Fisher renormalization of the barehere s, , are the velocities of noninteracting bosonic

tunneling matrix elements. The Josephson current through @odes(see the Appendix

Luttinger liquid coupled to bulk superconductors via tunnel \We assume strong normal backscattering at Si&

contacts was first calculated by Fazb al!' who showed boundariegtunnel junctions In this limit the pairing Hamil-

that the critical supercurrent is multiplicatively renormalizedtonian contains a small factor—the amplitude of Andreev

(suppressedoy a repulsive electron-electron interaction. The backscatteringy-3°

calculations were performed in lineéFig. 2) and ringlike

geometries. In both cases periodic boundary conditions for r) — D ex i(7—7+ ) &)

the plasmonic modes can be imposed. Although from an ex- A rl eif |

perimental point of view the considered geometries of an ] ) )

SNSjunction look rather artificial, they do allow one to sim- WhereDy, <1 is the transparency of the barrier at the right-

plify the calculations. (left) interface,¢; () is the phase of the superconducting order
For noninteracting electrons the critical supercurrents irparameter on the rigtieft) bank of the junction. The bound-

an SNSjunction formed by a longeffectively infinite quan-  ary Hamiltonian for our two-channel system can be ex-

tum wire connected to superconductors by side tunnel corpressed in terms of the Andreev scattering amplitude$3q.

tacts (separated by a distand® and in anSNSjunction  up to an overall numerical fact&, which will be specified

where a finite length QW bridges the géagd the same length later
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Hy/C= ﬁUlF[r*A(l)‘PRT(O)‘PLl(O) - r;<r)\PRT(L)‘I'Ll(L)] 1. ~ X+ vyt
*(1) *(r) (DR(L),l(X!t) = E@R(L),l + Hl L + @R(L),L(X!t) .
+ e[ " Wr (0)W1(0) -1y "W (L)W (L)] 2(1)
+H.c. (4) (10

. . . Here the zero mode operato(é ,11,.) obey the com-
To second order in the Andreev scattering amplitude the ) peratd@ru) o, o) y

phase dependent part of the ground-state energy takes tRdUtation relations[¢g) ., I1,/]1= *id,, and the non-

form topological(harmoni¢ componentspg ) j(X,t) are
. 1. R
H, 0> 1~ (x.t) = —= featEx-ujt)
50(g) =3 DL 2 [ om0, eru 060 = 2 g ey rHe), (1D
j 0~ Ej 0

(5) Wherebq(b:;) are the standard bosonic annihilati@neation
operators. The effective quantization lengthgj=1, 2) de-

whereH,(7) is the boundary Hamiltoniat4) in the imagi- pend on the boundary conditions and will be specified in the
next section.

nary time Heisenberg representation. After substituting Eq. AS | I Kk Ref h loqical
(4) into Eq. (5) we get the following expression for . S IS we nown(_see, €.9., Rel. J2the topological ex-
citations for an effectively infinite LL play no role and can be

SE@ () expressed in terms of electron correlation functions:' "+ ) .
(¢) exp omitted in Egs.(9) and (10). After straightforward transfor-
mations Eq.(6) is reduced to the following expression:

A o0
6E(2)(q>) = 4CﬁD{v§FCOS<<p - —Z>f drll4(7)

A1L 0

XU LW (O.L) + 03] ~=>l>]}. ®) A [
+U§FCOS(@+A_>J dTHZ(T) , (12)

2L/ J0

SE@(¢) = - 4CﬁRe{r*A<'>r§{> f dv (Vg (1,00¥ (7,0)
0

We will calculate the electron correlation functions in Eq.
(6) by making use of the bosonization technique. Notice thatvhere D=D\D, is the junction transparencyAy,
the Zeeman splitting introduces an exk@ependent phase =hvype/L and
factor in the chiral components of the fermion fields. This

interaction can be taken into accousee, e.g., Ref. 2ty 1
replacing the fermion operators in E@) by \Iffzr where Iyp(7) = (Zwal(z))zeXp{ZW[«‘p”(T’_ L)eo)
AZ Ma-_ )\a + <<®p(7-1_ L)®p>> * <<®p(7-1_ L)(PO'>>

\Iffzf = exp(iK X)W Kz

el

“dhwr 120 £ (go(r- IO M. (13)

Here ¢,=¢,(0,0), ®,=0,0,0) and double brackets de-
Here ve=(v1p+u2e) /2, u=(R,L)=(1,-1), 0=(1,1)=(1,  note the subtraction of the corresponding vacuum average at
-1), Az is the Zeeman splitting, and,=(vir—v2r)/(Lar  the pointsr, x=0. The chargép) and spin(a) bosonic fields
+uvop) Is the parameter which characterizes the strength ofy Eq. (13) are related to the chiral fieldsy) ;) introduced

chiral symmetry breaking. above by the simple linear equations
The standard bosonization formulae now read

1
— == + + -
expiVAmdre) (%0} ®,(0,) \’,Z(QDR,T oL+ er L) (14)
Ve, (1) = / : . _
V2may ) (the upper sign corresponds¢g and the lower sign denotes
©,). With the help of the canonical transformation E41)
— the chiral bosonic fields in Eq4) can be expressed in
explxivamdg) (X,1)} terms of noninteracting plasmonic modeg, ; (j=1, 2. For
Wro, (1) = oma ®) an infinitely long LL the propagators of these fields ésee,
Ve e.g., Ref. 32
wherea, , are the cutoff parameters of the two-channel LL. _ Sk, T X+ist
The chiral bosonic fields in E8) for a finite length LL are orL (X prLK) =~ i a (19

represented as followsee, e.g., Ref. 31
where the velocities; are defined in the Appendpsee Egs.
1 . XT vyt (A4) and (A5)]. Fine_tlly, the expressio_n fpr the Josephson
Dry (X0 = EGA"R(L),T +HTL— + oru) (XD, (9) ;:urrent through a side-coupled LL wirgig. 2) takes the
1(2) orm
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JD(VoNa Az @) asymmetry parametein, and the magnetic phasag
evg C a 2(y,-1) vz :AZ/AL(AL:hUF/L) as
= —Fp— (—) —EB(1/2,9,-1/2)
L 27| \L S1UF . JO
) IWNaxe) =1 (1 -1

XF(1/2,715 7151 = (S2/S1)%) 2

, Az 32)2(72_1) ( XB ) ( XB )

-2z 2 X -1+ .

XSIn((p A1L> +<L sin = ( 2)Sin W

2 (20

X EB(112,y, — U2F (112,726, 721 - (/)%
S1VF As is evident from the above equation, the anomalous super-
_ A, currentJ, appears only when both the dispersion asymmetry

XSI”((P‘* A_> , (16)  and the Zeeman interaction are preseij(A\,=0,A,)

2 =J,(\,,A;=0)=0. In the limit of weak dispersion asymme-
where B(x,y)=I'(x)I'(y)/I'(x+y) is the beta function, try \,<1 (a realistic cas€ for quantum wires formed in
F(a,B;7v;2) is the hypergeometric functiofsee, e.g., Ref. 2DEG) the Josephson current as a function of Zeeman split-
26), ve=(v1p+v2r) /2, ¥=¥js* %c(j=1,2), and ting demonstrates a simple harmddibehavior with a slow
periodically varying amplitudébeats

Vo SINP cogy
Yis= v Yie™ )
- A A A
v1F O 9 IV = 3Osin(¢ + &pa)cos(A—f), 50y = Aa(A_ﬁ - tanA—f) :
Yos= V1s(1 = 2), Vo= v1(1— 2). (17) (22)

Here g;=sj/vjz are the correlation parameters of a two- _ .

channel LL (see the Appendixand angle parametep is This formula clearly demonstrates that the interplay of a

defined by Eq(A3). weak Rashba interaction and the Zeeman interaction results
By using the properties of the hyper-geometric function itih @anomalous phase shifip in the supercurrent. In what

is easy to show that for a given strength of the electronfollows we will see that for a strong Rashba interaction the

electron interaction the Josephson currdfit satisfies the ~analogous phase shift is determined mostly by Zeeman split-

equations tings and is finite even for symmetric electron dispersions.
_ _ ' Now we analyze Eq(16) in the limit when dispersion
IN=Na Az 0) =3V(Na = Az @) = = IV(N5 Az @) asymmetry is negligibly smallx,=0). In this case the Jo-

(18) sepson current through the LL wire takes the form

which describe the .symmetrie_s of electri_c current with re- Jg) — J(CQ)COSXBSin ®, Jf:g) = R(gy) szo), (22)
spect to space and time reflections. In particular one can infer
from Eq. (18) that when both the dispersion asymmetky  where the interaction-induced renormalization fadRgg,)

#0) and the ZeemariA,# 0) interaction are present the (hereg =\1+2V,/whve is the LL correlation parameter in

supercurrent could be nonzero everpatO. This anomalous  the charge sectpr
supercurrent exists already for noninteracting electr@fs

=0) ?nd ?t first we analyze E@16) in the limit of weake R 9. I(1/29,) (1 1 1 . 1 L gz><a>ggl_1
-e interaction. R ey o R LIS Tt ¢ 2 |
For noninteracting electror¥,=0, g;,=g,=1) Eq. (16) is Vel (L2 +1/2,) \2°2 72, 2 L
much simplified to (23
: 1)v A v A i i i i
()(,.) = 102 VIF . _B2z ), Uer. +_z> is equivalent to the one evaluated in Ref. @4 the cited
Jo'(@) = Je { Vg SIn("D 1L> Vg sm(:,o L } paper this factor was presented in the integral forim the
(19) limit of strong interactionVy/Avg>1 the renormalization
factor is small
where Jf:o)=(DevF/4L)(C/77) is the critical Josephson cur- “
rent. We see that in the absence of magnetic interaction _w( fwg ¥ @) 2ol
(A2=0) the Rashba interaction in the considered geometry of Rg.<1) = 2\ v, L <1 (24)

SNSjunction does not affect Josephson current at(sdle

also Ref. 16 where an analogous result was obtained for and the Josephson current througB/&/LL/ |/S junction is
short 2DSNSjunction in the presence of Rashba spin-orbitstrongly suppressed.

interaction). The interplay of the Zeeman interaction and the \When both the electron-electron interaction and the dis-
dispersion asymmetry in quantum wires results in the appeapersion asymmetry are strong, only one of the two terms in
ance of an anomalousat ¢=0) Josephson currenﬂg) Eq. (16) dominates. The corresponding critical curréfur
EJg)(cp:O) which it is convenient to express in terms of the definiteness we assume thgk=vg/2>v)
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L (25) is of a more complicatetand unknowi form and one may

not put¥_ =0 in order to find the relations between the two

is much smaller than the critical currefitin the absence of terms in Eq.(28). In contrast, the requirement that the par-
dispersion asymmetryv,;r=v,¢). It means that dispersion ticle current through the boundary is zero is robust and its
asymmetry in quantum wires could enhance the interactionconsequences hold at any distance from the boundary due to
induced suppression of the Josephson current. Notice, hovgurrent conservation.

ever, that the considered model of spin-orbit interaction in For the bare electron spectrum without dispersion asym-
quasi-1D wire§18 is not valid when the Rashba effect is metry (k;r=kz=kg) the formulated requirement is equiva-
strong. So in reality the enhancement induced by a wealent to the following boundary conditions for the chiiRJL)

— (ﬁvlF)3/2< a)z\vo/ﬂ'ﬁvlF then\g. In a general case, the wave function at the boundary
X =3 m —— -

electron dispersion asymmetry is small. fermionic fields(see also Ref. 24
VR () Wre(Xxcor = W ,0W (X0 (29)
IIl. DISPERSION ASYMMETRY AND QUASI-RANDOM The boundary conditions Eq29) correspond to a LL with
ENERGY SPECTRUM OF PLASMONS open end® and result in zero eigenvalues of the momentum-

In this section we evaluate the spectrum of topologicalike zero-mode operatdi,, and in quantization of harmonic
excitations and plasmonic modes in a LL wire of the lerigth  modes(plasmongon a ring with circumferencel2(see Ref.
end-coupled to bulk superconductdsee Fig. 3 The elec- 24). In this case the spectrum of plasmons is equidistant and
tron normal backscattering at the N/S interfaces is assumeiie propagators take the for(n k=1, 2)
to be strong. The Josephson current can be calculated to the

first order on junction transparency using E) for the ¢ {pru)(t X PRI = = éjﬁml —exflim(Ex - s+ ia)/L].
dependent part of the ground-state energy. For a finite length 4w mal/L
LL the zero modes in Eqg9) and (10) contribute to the (30)

energy and after some algebra we getdBf(¢) an expres- . N
sion analogous to E412) where nowll,,(7) is replaced by ~Here a is the cutoff length ands, are the velocities of
the productll;,(r)Qyz (7). The zero mode contributions charge and spin excitatior(for noninteracting fermions;

. :SZZUF)_
Qi (7) are(j=1, 2 Now we generalize the quantization procedure elaborated
L -~ N ivir ~ o~ |2 in Ref. 24 to an electron spectrum with dispersion asymme-
Qi(n) = exp{— 27T<{E(HT -1+ —C—(HT +H¢)} >} try. We will assume that electron normal backscattering at
J J the boundaries is not accompany by spin-flip processes.
><exp< 27Tv-7'> (26) Therefore each backscattering for our specttéig. 1) leads
L : to the change of the channel indéx1” < 2") and the

) ) ) corresponding Fermi velocity.
To zeroth order of perturbation theory in the barrier transpar- |; is worthwhile at first to consider the general case of

encies the electr_ons are c_onfin_ed to the normal region. Ther%bundary scattering in a two-channel system of noninteract-
fore the correlation functions in Eq12) have to be calcu- ihg electrons confined to the intervéd,L]. The electron
lated with the appropriated boundary conditions. The ”atur%ackscattering at the boundaries is described By 2initary

boundary condition for our problem is the requirement thalsy mmetric matrix which is convenient to parametrize as fol-
the particle current through the interfacexatO, L is zero lows:

Jo~ReiV! oW} 0 =0, o=1,]. (27)

- roijt
. . =é. |*| : (31
Here the wave functionW, for the nonsymmetric electron it r

dispersion is represented as s ) ) )
wherer =|r|é' is the intrachannel backscattering amplitude

V() = €K0P W o (X) + €KY 51(x).  (28) (11, 2-2) and t is the interchannel backscattering
(1<2) amplitude [r[>+|t|?=1. By matching the electron
wave functions at the boundarigs 0 andx=L with the help

of the Smatrix Eq.(31) one easily finds the spectrum equa-
tion

Notice that Egs.(27) and (28) determine more general
boundary conditions thawr,(x=0,L)=0 usually assumed in
the literature(see, e.g., Ref. 22The last b.c. is the particular
case of so called “hard wall” b.c.¥W(x,)=0j=1,...,2N
for a multichannel(N) spin-1/2 LL. They do not mix the 2 el 1 1 = rPeog el 1 1
channels and allows one to reduce the multichannel problerfi®®| & v1r * Vor +6|=lrfeo Slp )7 o |-
to calculations for a single channel situation with an addi- 32
tional summation of channel-dependent quantities over chan-

nel quantum number&.In our case Scattering at the bound- For pure|y intrachannel reflectiots 0, we get from Eq(32)
aries changes the channel “indefd—2) and the correct two independent set§j=1, 2 of equidistant levels with
b.c. for “slow” fields Vg ) has to take this fact into account. spacingAe;=mfivie/L. In the opposite case of purely inter-
The decomposition Eq28) holds at distances much larger channel backscatteririg=0) the spectrum is also equidistant

Uir  U2F
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2 T

&= =1,2,. .. .(33  transformation which diagonalizes the LL Hamiltonian.
Hence in the presence of interaction one can still use the

In a general case the spectral equat{88) yields a set of same correlation functions as for noninteracting fermions

quasirandom energy levels. with the only difference that the velocities are renormalized

The bozonization technique is efficient only for the two by interaction.

considered limiting casesr|=1 (this was demonstrated in This is not the case for our problem. With the help of

Ref. 24, andr=0 as we will show now. Let us start at first exact transformationfsee the Appendix, EqA1)] which

with the case on noninteracting fermions. The boundary condiagonalize the 2-channel LL Hamilton#&none can show

dition Eq. (27) for v # v, results in the equations that if the chiral bosonic fields satisfy E(9), the diagonal-
ized onespg ) are connected at the boundaries by the ef-
V1FP T (VR (O eo = V2V 0P (K)o, (34) R Y

_2mh vipUge ( +l 5) . acting fermions as one can check using a Bogoliubov-like

L viptosr

fective “scattering matrix’s®

RV, (X)Wry(x)€artior ] o =0. (35 5 k=2 _ - 1(-A 1
Pri(x=0,L)= > Sipu(x=0,L), S== :
k=1

These equations are satisfied if B\1 A
43
a_Live 1,11 o ) 3
& Ly vy Ly Ly L where the coefficients, B are
A=—-[cos 2/ - sini(9; — F3)sin 2] sin( S, — I,)
F_ 2T _DIFUoF n, n=1,2 (37) ;
&n = L U1F + UoF ’ TS XCOS}'(’&]_ - 193) + COS ZACOS}’(TS]_ - 1?2)5”“'{’31 - 193)
and + sin 2 cosh( ¥, — 9,)], (44)
[ B =—[cos 2/ - sinh(d; — I3)sin 2] [cosk I, - &
[(I)L(T(X!t) + (I)RO'(Xlt)]X=O,L = Enm o= T!l! (38) [ 27[/ r( ' 3) . l’b] [ r( ’ 2)
2 X cosh(9; — ¥3) + cos 2y sinh(P; — &,)sinh(9; — I3)
wheren, andn, are integers. E38) in its turn is satisfied +sin 2 sinh(9; — 9,)] (45)

for topological sector with quantum numberéeg, ) i ,
S and the “rotation angles®, (I=1, ...4) and are defined in

+‘P,LU)/V’7T:n<f’ HUZO_ and the harmonic modesy)s(X, ) the Appendixsee Eqs(A2) and(A3)]. One can check after
which obey the relations some algebra that the coefficietsandB satisfy the simple
. 2 A7 . >
Oro (X, Do = = 0Lo (X Dyeor (39) relf'itlon B _ Ac=1, wh_|ch makes theS matrix in Eq. (43)
_ unitary. This observation allows us to use the scattering ma-
From Egs.(11), (36), and (39) one easily gets the plasmon trix formalism when evaluating the energy spectrum of plas-

spectrum mons. Notice that in the parametrization E§1) we have
o s r=iA/B, |t|=1/B, 6=m/2.
en= i (40) For monochromatic bosonic fields with amplitudesg, ;
Lsi+s, the scattering at the boundaries0 andx=L are determined
(s1, are the plasmon velocities, which coincide with the by the equations
Fermi velocities for noninteracting fermionand the desired 2 2
correlation functiongj, k=1, 2 X = 0bg; = kzl %ekbu« x=Lie b = kzl %eke'akbRk,
Sy 1—exdi2m(xx— st +ia /L] - -
(%t =-—Ln ,
{erw)i XD erL? o 2madly (46)

(41) where the phases;=¢L/s; ands; are the plasmon velocities
. o _ [see Egs(A4) and(A5)]. From the above set of linear equa-
where the effective quantization lengthsaccording to Eq.  tions one easily finds the spectrum equation for plasmons

(36) are L/1 1 L/f1 1
o —rsirgl (=2 =
L= w) 5'”2{7(3‘1*;)}‘“”?{2@1 szﬂ “n

whereR=(A/B)?<1 is the effective backscattering coeffi-
In the limit v;=v,e EQs.(40)—(42) reproduce the plasmon cient for plasmons. It depends both on the dimensionless
spectrum and the correlation functions of a single channehteraction strengthc=V,/ 7fi(v{+v,e) and on the disper-
LL with open endg* sion asymmetry paramet&y. Notice that the spectral equa-
Now we are ready to consider the effects of interactiontion (47) is the special case of E¢B2) for §=6,=m/2.

For a single-mode LLor for a multichannel LL, provided The derived spectral equation has simple exact analytic
the backscattering does not mix the channéie boundary solutions in two limiting cases(i) noninteracting fermions
condition Eq.(39) for harmonic modes holds also for inter- and (i) when dispersion asymmetry is absant;=v,r=ve.

214516-7
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For noninteracting particle/y,=0 in Eq. (1)] the “rotation literature (see, e.g., Ref. 22 This is equivalent to electron
angles” arey/=0, 9,=9,=0 (see the Appendixand the ve- backscattering at the boundaries without channel mixing. Al-
locities s;=v1g, S,=voe. ThenA=0, B=-1 and the effective though it is a rather restrictive assumption for weakly inter-
backscattering coefficielR=0. Eq.(47) in this limit repro-  acting electrons, it happens to be the general case for
duces the equidistant spectrum of “noninteracting” plasmonsstrongly interacting particles according to the above consid-
Eq. (33). For interacting fermions in the absence of disper-erations(see also Ref. 25

sion asymmetry the “rotation angles” afh =13, U,=1U,, It is straightforward to evaluate the Josephson current us-
cos 24=0. In this limit s,=s, s,=vg and R=1. The corre- ing the exact plasmon spectrum fB~1 (i.e., when\,=0)
sponding plasmon energieﬁl):q-rsn/L, sf):van/L, (n  and the propagators E@30). The result for zero Zeeman
=1, 2, ...) represent the standard excitations in the chargeplitting (Az=0) is

and spin sector of a finite len Luttinger liquid with

open enda* git) Lutdnger g 10(gei ) = IORi(gsing, (49

For a general case E(i7) has to be solved numerically WhereJ((:O)=(DeU;:/4L)(C/7T) is the critical current through a

and the plasmon spectrum represents a set of quasirando : . . C N
energy levels. Now the plasmonic energies cannot be sep%tipsjén)cﬁ'son and the interaction-induced renormalization
d flYc

rated into independent sets of levels for charge and spin de

sity excitations. It means that the considered boundary con- 2 2\ 265D
ditions strongly mix the charge and spin excitations and theRf(gC) = gczp(zggl,zggl_ 9c§2951+ 1:- 1)(7T—>
phenomena of charge-spin separation, well known in a LL, 2-0¢ L

strictly speaking, disappears when both spin-orbit interaction (50)

and finite size effects are present.
Here F(«,B;v;2) is the hyper-geometric function arg{ is
the LL correlation parametésee Eq(22)]. For noninteract-
ing electronsR;(g.=1)=1 and our formula has to reproduce
the known expression for the Josepson current through a 1D
SNS junction(see, e.g., Ref. 33From this comparison one

It is clear from a physical point of view that the effects of finds C=.
a dispersion asymmetry in the bare electron spectrum have to The observation thaR—1 in the limit of strong interac-
be most significant in the quantum dynamics of noninteracttion («>1) allows us to evaluate the correlation functions
ing electrons. In this case the mismatch in Fermi velocitiefand the Josephson current for strongly interacting electrons
when an electron is backscattered at the boundaries leads dth dispersion asymmetry. The Josephson current is de-
an intricate interference pattern. The more strongly particlescribed by Egs.(49) and (50) after the replacemeng
interact, the less important are the effects of dispersion asym=«"Y? and in the limit k>1. The renormalization factor
metry. For instance, in the limiting case of a 1D Wigner now takes the form
crystal(strong repulsive long-range interactigiitsis hard to i
imagine any interference produced by the quantum dynamics Ri(xk> 1) = l(ﬁ‘) <1 (51)
of plasmons in two Wigner crystals pinned by structural im-

perfections at the boundaries. So in our problem it is reason- ) ) o
able to expect the restoration of the regular plasmon spec-n€ formulag(49) and(51) show that in the considered limit

trum and the spin-charge separation in the limit of strongN€ Josephson current does not depend on the paramgeter

interaction. of dispersion asymmetry. This result is in agreement with the
For strongly interacting electrong=Vy/ m(v e +v ) above physical considerations. By comparing Esl) and

>1 andvyr ~ v, (i.€., for a realistic case of week or mod- Eq. (25 we see that the interaction suppresses the supercur-

erate dispersion asymmelrthe coefficientR (intrachannel ~ént more strongly in a long end-coupled quantum wire than

lasmon backscattering probabilityn Eq. (47) takes the N @ side-coupled one.
P ap in Eq. (47) Dispersion asymmetry affects the supercurrent of weakly

IV. JOSEPHSON CURRENT THROUGH
A FINITE-LENGTH LL WIRE WITH
DISPERSION ASYMMETRY

form
interacting electrons. The influence, however, numerically is
1 \3(4-3\) not strong even for the most favorable case of noninteracting
R=1- 32 z\r 32 (48) particles. With the help of the correlation functiof@) it is
a

easy to calculate the Josephson current of noninteracting
We see that wher> 1 the difference in the Fermi velocities electrons with dispersion asymmetry
ceases to affect the plasmon spectrum and the spin-charge
separation and the equidistant character of plasmon spectra i, A - ):J(O)R(xa)COS[A_z(iJri)]sm
are indeed restored. This observation could be of some inter- 28228 =% 2\A; AL @
est for the problems dealing with the plasmon spectra of a (52)
multichannel (j=1,...,N) LL confined to a finite volume
(with the longitudinal lengthL) by strong scattering barriers HereJ(CO) is the critical current in the absence of dispersion
atx;=0, L. “Hard wall” boundary conditions for the electron asymmetry[see Eq.(49)] and R(\,) is the renormalization
wave functionS\If(T")l(xj=O,L)=0 are often postulated in the factor induced by the asymmetry of electron dispersion
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mMa(1-0\2) [ 1+(76-D\2, N\ <1, Electrons in the reservoirs have two possible spin states,
RN)=———" = while deep inside the wire, where the SO interaction is
sin(mh,) 2, Aa— 1. strong, the electron spins have to be aligned according to the
(53)  above discussed prescription. So particles with the “wrong”
. . spin projection should be either reflected or turn their spins
We see from Eq(53) that the dispersion asymmetry always tgwaﬁj tlhe “right” direction. Physically, the spin flips a?re
slightly enhances the critical current. The analysis of the JOjqced by the effective magnetic field each electron feels in
sephson current in a 1D SQWS junction in the presence Gis rest frame in the presence of spin-orbit interactions.
dispersion asymmetry was performed in Ref. 23 using the girong spin-orbit interaction can reverse the spin projec-
Andreev level approach. It was shown that the observed enjon as a result of electron backscattering. In forward scatter-
hancement of the Josephson current is due to less perfegly, spin flips can be induced by magnetic impurities at the
cancellationgdifferent Fermi velocitiegof the partial super- N/S interfaces. In the absence of magnetic scattefihg
currents carried by adjacent Andreev levels. It is interestingase considered in this papéne particles with “wrong” spin
to notice here that the influence of spin-orbit interactions orprojection will be backscattered when entering a QW with
a persistent supercurrent and on a persistent current in a 18rong Rashba interaction.
normal metal-ring are quite different. As we see from our One can imagine two different types of transitiiead-
analysis, the Rashba interaction either enhances the criticalire) regions. In the case when the SO interaction is changed
Josephson current or does not affect it at all depending on th@bruptly at the lead/wire interfaces, the spin-flips induced by
geometry of theSNSjunction. In contrast, spin-orbit effects the Rashba interaction will be accompanied by backscatter-

are knowr* to suppress persistent currents in 1D normaling of electrons with both “up” and “down” spin projections.
metal rings(see also Ref. 35, and references therein Such spin nonadiabatic contacts were studied in Ref. 19

when evaluating normal electron transport through a 1D

quantum wire with strong Rashba interaction. In this model

V. THE RASHBA EFFECT, CHIRAL ELECTRONS the transparency of the junction depends on the spin-orbit

IN 1D QUANTUM WIRES AND THE JOSEPHSON coupling and due to strong scattering at the wire-lead inter-
CURRENT IN S/LL/S-JUNCTION faces the normal electric current is partially suppressed.

Now we consider the limit of strong Rashba interaction. Another possibility is to have adiabatic contacts where

In this case the electrons in a quasi-1D quantum wire behayRoth the Rashba interaction and the electrical confinement
like truly chiral particles, so that the spin polarization of an POtential are switched on smoothly over a lengtb~\ic
electron irrespective of its subband index is determined b)EnUCh larger than the Fermi wavelength. Then only par-
the direction of electron motion along the wire—right-

moving and left-moving electrons have opposite spin

icles with “wrong” spin projection will be backscattered.
The accumulated magnetic moment and the charge of back-
projectionst? We will assume for definitenesit depends on scattered electrons for adiabatic contacts are distributed over

the sign of the Rashba couplinghat ‘R’ electrons are & 1€NgthAsdL>Aso>Xg) and they can not induce back-
“down” polarized and L” electrons are “up” polarizedas  Scattering of electrons with the “right” spin projection.
indicated by the dashed arrows in Fig. We have already It is straightforward to calculate the Josephson current
seen in Sec. I, that the left/right symmetry breaking in thethrough an adiabatic junction. In a junction with a_d|abat|.c
presence of the Zeeman interaction results in the appearan€@Ntacts and strong Rashba interaction right-moving spin-
of an anomalous phase shift in the Josephson current. Physfdown” and left-moving spin-“up” electrons are perfectly
cally it means that when the spin projection is correlatedransmitted. This is exactly th_it one needs to for‘m the maxi-
with the direction of motior(left, right), the magnetic field, Mum supercurrent. Electrons in the two subbafids and
via the Zeeman interaction, induces partial Josephson curZ ) contribute to the Josephson current with their respective
rents (for each subband “1” and “2’even if the supercon- Fermi velocities. At low temperatures the total critical cur-
ducting phase difference in tf@NSjunction is zero. For the €Nt éxpressed in terms of the average Fermi velagitys

spin alignments assumed in Refs. 17(M@ak Rashba inter- identical to the one in a junction without s-o interaction. So
action the subbands contribute to the Josephson current witRV€n @ strong Rashba effect does not influence the Josephson
opposite signs and therefore the anomalous supercurrent vaghrent through a perfecd QW/S junction (see also Ref.
ishes for symmetrical spectrumg=v,r. Hence the electron 16)- This is not the case when both the Zeeman and Rashba
dispersion asymmetry is an indispensable property for gefnteractions are present. Since the electron-electron interac-
ting an anomalous Josepson current in the regime of weallon does not renormalize the Josep?oson current through a
Rashba interactions. In the limit of strong SO interactionsPerfectly transmittingS/LL/ S junction;™ we can evaluate
when all rightleft)-moving particles have parallel spins, the the current using the mode_l of noninteracting eIectrops with
contributions of the two subbands have the same sign and tH{8€ bare spectrum shown in Fig. 1. The corresponding An-
existence of electron dispersion asymmetry ceases to be crfflev bound states are described by j1, 2) indepen-

cial for the appearance of an anomaldate=0) Josephson dent sets of energy levels

current. _ _ 1 @+ xi

What is more important are the spin-flip processes which Egj),nj = WA(L”(”;‘ PR —1277 ; (54)
may take place in the transition regions between the@D
3D) electron reservoir¢superconducting leads in our case where the integers;=0, 1, +2, ..., and 7=+1 are the

and the 1D quantum wire with a pronounced Rashba effecstandard quantum numbers of the Andreev-Kulik spectfum
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A(Lj):hv.F/L characterize the spacings of Andreev levgls ferent for chiral and normal electrons. In particular the criti-
=A,/ A(I_'J) are the magnetic phase shifts induced by the Zeecal current for symmetric electron spectrimg=vy¢) in the
man interaction. The Josephson current for the spectrum Egase of chiral electrons does not at all depend on the Zeeman
(54) at low temperatures takes the form splitting, while in the ordinary situation one gets a periodic
B dependencgsee Eq(21)].
e sink(e + x; At the end of this section we consider the influence of the
J(‘P'Az):EE vje 2 (- 1) (;f X)- (35 strong Rashba interaction on the Josephson current in an
= S/I/N/1/S junction for weakly interacting electrons. It is

We see from Eq(55) that the Zeeman interaction induces an knowr?’ that when the electron-electron interaction is not
anomalous supercurrefat ¢=0) which for large splittings ~strong resonant electron transport through a double barrier

A,~AY is of the order of the critical Josephson current in aSyStem may take place at certain conditidese also Ref.
perfectly transmittingSNSjunction. 38). It results in a giant Josephson current in&h/N/1/S

abrupt changéon the scale of the Fermi wavelengtioth of the resonant Josephson current? To answer thi; guestion we
the Rashba interaction and the electrostatic potential formg@valuate the Josephson current for noninteracting electrons
tunnel barriers for the charge and spin transport through through a symmetri/1/N/1/S junction with strong barri-
N/Sinterfaces. In our previous calculatiofsee Secs. II-ly ~ €rs. For simplicity we will neglect the effects of the Zeeman
we assumed that only spin-conserving normal electron scatdteraction in what follows. _ _
tering occurs at theN/LL junction regions. We have to The normal spin-dependent scattering of electr_ons at junc-
modify this calculation procedure to take into account spinfion interfaces can be phenomenologically described by a 4
flips which accompany electron backscattering at the barrix 4 Smatrix. In the limit of a strong Rashba interaction each
ers. Spin-dependent scattering induced by the Rashba integlectron backscattering is accompanied by a spin flip. In ad-
action results, generally speaking, in a dependence of thdition, due to the induced electron dispersion asymmetry the
junction transparency on the strength of the Rashba couplingackscattering in general case is a two-channel process.
Deii(ar). However, for poor contactf) <1, this effect is not ~ Since the particles with the “wrong” spin projection can not
significant because it cannot strongly modify the junctionpenetrate into QW with the strong Rashba interaction, the
transparencyDgi(ag) ~D by an order of magnitudeThe  corresponding scia\ttering problem can be effectively de-
main new complication in comparison with the calculationscribed by a & 3 S matrix. It is convenient to parametrize
scheme of Secs. II-1V is that in the general situation we havenhis matrix as follows:

2

to account for two-channel normal electron backscattering at -

the junction interfaces. The situation is simplified when the Si1 S12 Ve

electron-electron m:[‘er:':,\ctlo“n is strong. As was shown in Sec. S=e? s, s Ve |, (57)
IV, the interchanne{* 1" < * 2" ) plasmon backscattering at —~

f ~ _
the N/LL interfaces is suppressed in the limit of strong re- Ve Ve ~Ss3

pulsive interactions. In our case it means that only intrayyhere
channel(* 1”7 <" 1", “ 2" <" 2") electron backscattering
survives for strongly interacting electrdAsand we can use

in this limit a simple quantization procedure for plasmons

(LL with open end%’) to evaluate the correlation functions.

Notice that now in Eq(12) the magnetic phasesz/A ) 1 .
appear with the same sign. It results in completely different Sip=-— E(r\f“l —2e+ 7+ 2ep?) + €1 -2¢, (59)
behavior of ar5/1/LL/I/Sjunction in a magnetic field for a

weak and a strong Rashba effect. After straightforward cal- o

culations the desired expression for the Josephson current S33=€%V1 - 2e. (60)
through a strongly interacting LL takes the form

1 / /
S = 5(7‘\’1 - 2e+ 7+ 2€p?), (58)

Here the parameter ©e<1/2 characterizes the barrier
1 1 transparency(e=0 corresponds to the limit of the infinite
( ) barrien, r andp are the intrachannék) and interchanndlp)

A
IR(p) = JOR Sil’l{(p + ?Z

Au A backscatteringamplitudes?+p?=1 (for simplicity we will
A1 1 consider them as real quantitiesand the phased
X0 \x T Ta) | (56) =arctarip/ 7).
L1 L2

Using the standard procedure it is straightforward with the

where the interaction-induced renormalization coefficBnt help of Eqgs.(57) and (58) to calculate the spectrum of An-

is determined by Eq(51). As was already evident from dreev levels in ar§/I1/N/1/S junction. Since the results for
physical considerations, the anomalous supercudéty  the general case are very cumbersome and lengthy, we con-
=0) in the limit of strong Rashba interaction is induced by asider the limit of a weak tunnelinge<1) and will be inter-
magnetic field(A, # 0) even in the absence of any electron ested only in the resonant electron transport. In this case the
dispersion asymmetry. We see from E§6) that the depen- critical Josephson current through the junction is kn®wn
dence of the supercurrent on magnetic field is absolutely dif¢see also Ref. 39%o be proportional tce (the nonresonant
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Josephson current is proportionald®. To the first order in  ence of a normal electron backscattering with a sufficiently
e the spectrum of Andreev bound states in a long junctiorstrong channel mixing > e. In this case a gap in the spec-
takes the fornfwe assume that<1 ande(p/ 7)?<1] trum Eq.(61) is opened at the Fermi enerdfor p~ 7 this
gap is of the order ofivg/L) and the resonant Josephson

En=Ep+2e current disappears evenBt- 0. Since there are no physical
cosB. - cosB, + \(pl7)2SirB, + 7sirtB_co(¢/2) reasons for the conditiop<e<1 to be generally valid, the
T T , presence of the strong Rashba interaction should lead to a
7pBLsin B = B.sin . suppression of the resonance effects in the supercurrent even
(61  for symmetric junctions and weakly interacting electrons.
where B.=6,+ B, and Bj=Le/fvje, (j=1, 2. In Eq. (61) VI. CONCLUSION

B’ '=dpBlde and the energy in the dynamical phasgse) ) )
should be taken azt:Eﬂ, where the energieEﬂ are deter- The problem we have studied allows one to consider the

mined by the following dispersion equatijpompare with INterplay of proximity-induced superconductivity and the
Eq. (32 Rashba}, Zeeman, _and Coulomb m_teractlons on the transport
properties of quasi-1D quantum wires. We have shown that
Bs B the interplay of Rashba and Zeeman effects strongly influ-
0052(?) = 720052(?)- (62)  ences the supercurrent. The Rashba effect in quantum wires
results in a strong correlation between electron spin polariza-
According to Egs.(61) and (62) the spectrum of Andreev tion and the direction of electron motidA°In other words
bound states in the general case is a set of quasirandom efistrong Rashba interaction creates chiral particles in the 1D
ergy levels. Notice that the resonance spectrum, (Bf),  electron system. The influence of a magnetic field via the
holds wherk;e/kyr=k;/k, wherek, , are the integers and the Zeeman interaction on chiral particles leads to the appear-
length L of the junction satisfies the resonance conditionance of a net electric current in the wire. When the leads that
(Kap+kop)L=m(ky +ko). the quantum wire is attached to are superconducting, a su-
Let us consider the limipb— 0 when the Josephson cur- percurrent is induced even for zero phase difference across
rent through the junction can be analytically evaluated. Thighe junction. The effect exists already for noninteracting par-
case physically corresponds to the situation when backticles. It is strongly sensitive to any electron dispersion
scattering at the boundaries does not mix the channels. It issymmetry and the induced Josephson current is small for
realized for the “hard wall” boundary conditior(see the weak Rashba coupling. On the contrary, in the regime of a
discussion in Sec. Il The partial Josephson currentsTat  strong Rashba interaction the anomalous phase shift in the

=0( Jﬂl:(e/ﬁ)(aEﬁ/ago) in this limit are current-phase relation can be large for large Zeeman split-
; ) tings. An induced anomalous Josephson current appears even
30 = 4 e%f Sing {=1,2:n=0,-1,-2 in the absence of any electron dispersion asymmetry and is
" T 4L |coq¢l2)|’ o o of the order of the critical current.
63) It is well knownt%2” that the Josephson current in a per-

fectly transmitting junction(i.e., without normal electron
These currents exactly coincide with the resonant currentbackscatteringis not influenced by the Coulomb interaction.
found in Ref. 33. For each quantum numiper O and given In contrast, any potential barrier inside the normal region
channel index the J, partial currents contribute to the total which induces electron backscattering is renormaliagut
current with opposite signs and therefore cancel each othewards by the repulsive interactiofthe Kane-Fisher effe®t
The only surviving currents]g)+ correspond to the levels and therefore strongly suppresses the supercurrent through a
E; < 0 which have no filled partner statés; > 0). Therefore  (poorly transmitting S/I/LL/1/S junction!11-222/\We have
at low temperatured < T?):e(fij/L) and for the "hard- shown that the electron d'lspersu.)n asymmetry, which is in-
wall’ b.c.’s the Josephson current through the symmetricduced by the Rashba interaction in quasi-1D quantum

junction with a strong Rashba interaction is resonant. It takegvires,l?'lsis_significant for the superconducting properties of
the form an LL junction only for weak or moderate Coulomb interac-

tions. In this case the interplay of interaction and dispersion
_ evptuy Sing asymmetry leads to an intricate interference pattern in the
‘]f_E[ 4 |cog¢l2)| (64) plasmon quantum dynamics in a finite length two-channel
LL and makes the plasmon spectrum quasirandom. Even for
Note that the analogous resonant persistent current was preoninteracting electrons the electron dispersion asymmetry
dicted in Ref. 40 for a normal metal-ring with a double bar-induced by the Rashba interaction leads to a multichannel
rier structure. It is also useful to notice that in the consideredtharacter of electron backscatteringN® interfaces. It re-
limiting case all transverse channels in a multicharihel)  sults in quasirandom character of Andreev bound states in a
quantum wire contribute coherently to the Josephson currendng S/1/N/1/S junction. We showed that the resonance ef-
resulting in a giant supercurrent for, >1. fects, which are significant for the transport properties of
The giant Josephson current is washed out by thermaymmetric junctions, survive in the presence of strong
smearing even at relatively small temperaturés Rashba interaction only for speciéhard wall’) boundary
~ma>(T£”). The resonance effect is also absent in the preseonditions atNSinterfaces.
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APPENDIX

PR} coshdcosy sinhdycosy —coshd,sing —sinhd,sing \ [ pry
pLy | _| sinhdicosy coshdicosyy —sinhd,sings — coshdysing PL1 (AD)
PR| B coshidssinygs  sinhdssing  coshd,cosy  sinhd,cosy pro |
pL sinhdssinyg  coshdssings  sinhd,cosyy  coshd,cosy PL2
[
where the “rotation anglesd; and ¢ are expressed in terms vor\2
of the Fermi velocities 4, vor and the interaction strength S;=vgE) COSY+ o Sinys
V, by the following equations: 1F
Y/ v 21172
1 1 (v +—2—| cosy+ \/ZFsiny . (A4
9 =Ing;, 9= —In(igz) , mhu e ViF
2 2 (%)=
=81 = Y1 < V). (A5)
_1 (v 1 For noninteracting electron§/y=0, the correlation param-
¥s= zln(Ungl)’ s = 2In 92, (A2)  oters areg,=g,=1 and, according to EqgA2) and (A3)
191:’34:0, zﬁZO In the limit UV1E=Uor=UEg Eqs (AZ)—(AS)
. reproduce the well-known expressions for the correlation pa-
2Vo\ in-
tan 2= 0VU1FV2F (A3) rameters of a spin-1/2 LL

(viF = v2p)[Vo + 7hi(vie +vop)]

1 VO -1/2
191:193:_“19(:, 192:194:0, gC:<1+ ) .
Here gj=vje/si(j=1,2) are the correlation parameters of a 2 mhug

2-channel LL and the plasmon velocities are

(A6)
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