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The phase diagram and critical properties of theN-component London superconductor are studied both
analytically and through large-scale Monte Carlo simulations ind=2+1 dimensionsscomponents here refer to
different replicas of the complex scalar fieldd. Examples are given of physical systems to which this model is
applicable. The model with different bare phase stiffnesses for each component is a model of superconductiv-
ity, which should arise out of metallic phases of light atoms under extreme pressure. A projected mixture of
electronic and protonic condensates in liquid metallic hydrogen under extreme pressure is the simplest ex-
ample, corresponding toN=2. These are such that Josephson coupling between different matter field compo-
nentsis precisely zero on symmetry grounds. TheN-component London model is dualized to a theory involving
N vortex fields with highly nontrivial interactions. We compute critical exponentsa and n for N=2 andN
=3. Direct and dual gauge field correlators for generalN are given and theN=2 case is studied in detail. The
model withN=2 shows two anomalies in the specific heat when the bare phase stiffnesses of each matter field
species are different. One anomaly corresponds to aninverted3Dxy fixed point, while the other corresponds to
a 3Dxy fixed point. Correspondingly, forN=3, we demonstrate the existence of two neutral 3Dxy fixed points
and one inverted charged 3Dxy fixed point. For the general case, there areN fixed points, namely one charged
inverted 3Dxy fixed point, andN−1 neutral 3Dxy fixed points. We explicitly identify one charged vortex mode
and N−1 neutral vortex modes. The model forN=2 and equal bare phase stiffnesses corresponds to a field
theoretical description of an easy-plane quantum antiferromagnet. In this case, the critical exponents are
computed and found to be non-3Dxy values. TheN-component London superconductor model in an external
magnetic field, with no interspecies Josephson coupling, will be shown to have a different feature, namelyN−1
superfluid phases arising out ofN charged condensates. In particular, forN=2 we point out the possibility of
two different types of field-induced phase transitions in ordered quantum fluids:sid A phase transition from a
superconductor to a superfluid or vice versa, driven by tuning an external magnetic field.This sets the super-
conducting phase of liquid metallic hydrogen apart from other known quantum fluids. sii d A phase transition
corresponding to a quantum fluid analogue of sublattice melting, where a composite field-induced Abrikosov
vortex lattice is decomposed and disorders the phases of the constituent condensate with lowest bare phase
stiffness. Both transitions belong to the 3Dxy universality class. ForNù3, there is a feature not present in the
casesN=1 andN=2, namely a partial decomposition of composite field-induced vortices driven by thermal
fluctuations. A “color electric charge” concept, useful for establishing the character of these phase transitions,
is introduced.
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I. INTRODUCTION

Ginzburg-LandausGLd theories with several complex
scalar matter fields minimally coupled to one gauge field are
of interest in a wide variety of condensed matter systems and
beyond. This includes such apparently disparate systems as
the two-Higgs doublet model,1 superconducting low tem-
perature phases of light atoms such as hydrogen2,3 under
extreme enough pressures to produce liquid metallic
states, and effective theories for easy-plane quantum
antiferromagnets.4–6 Well-known cases of multicomponent
systems are represented by multiband superconductors7 like
MgB2 where there are two order parameters corresponding to
Cooper pairs made up of electrons living on different sheets
of Fermi surface. In that case however condensates are not
independently conserved and theUs1d3Us1d symmetry is
broken toUs1d, so the main results of this paper do not apply
to multiband superconductors. In contrast, in the projected

liquid metallic state of hydrogen,2,3 which appears being
close to a realization in high pressure experiments,8,9 the
scalar fields represent Cooper pairs of electrons and protons.
This excludes, on symmetry grounds, the possibility of inter-
flavor pair tunneling, i.e., there is no intrinsic Josephson cou-
pling between different species of the condensate. This sets it
apart from systems with multiflavorelectroniccondensates
arising out of superconducting order parameters originating
on multiple-sheet Fermi surfaces, such as is the case in
MgB2. For the latter system, Josephson coupling in internal
order parameter spacecannot be ruled out on symmetry
grounds, and must therefore be included in the description.
This is so because the Josephson coupling represents a sin-
gular perturbation and can never be ignored on sufficiently
long length scales. This is otherwise well known from stud-
ies of extremely layered superconductors,10 where the critical
sector is that of the 2Dxy model in the absence of Josephson
coupling, while any amount of interlayer phase-couplingsin
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an extended systemd produces a critical sector belonging to
the 3Dxy universality class.It is precisely the lack of Joseph-
son coupling in certain, but by no means all systems with
multiple flavor order parameters, that opens up the possibil-
ity of novel and interesting critical phenomena.However,
even in interband Josephson-coupled condensates, interest-
ing physics arises at finite length scales.11,12

A two-component action with no Josephson coupling in
s2+1d dimensions, with matter fields originating in a bosonic
representation of spin operators, is also claimed to be the
critical sector of a field theory separating a Néel state and a
paramagnetic svalence bond orderedd state of a two-
dimensional quantum antiferromagnet at zero temperature
with easy-plane anisotropy.4,6 This happens because, al-
though the effective description of the antiferromagnet in-
volves ana priori compact gauge field, it must be supple-
mented by Berry-phase terms in order to properly describe
S=1/2 spin systems.13,14 Berry-phase terms in turn cancel
the effects of monopoles at the critical point.4,6 Hence, an
effective description in terms of two complex scalar matter
fields coupled to onenoncompactgauge field suffices to de-
scribe the nontrivial quantum critical point separating a state
with broken internal SUs2d symmetryand a paramagnetic
SUs2d-symmetric state with brokenexternal symmetryslat-
tice translational invarianced. The latter state is the valence-
bond ordered state. Critical behavior separating states differ-
ing in this manner is not captured by the Landau-Wilson-
Ginzburg paradigm,4,15 and requires a description of a phase
transition without a local order parameter. An example of
such a description is the well known Kosterlitz-Thouless
phase transition taking place in the 2Dxy model.16 The dif-
ference from the Kosterlitz-Thouless case and the quantum
critical behavior described above is that while the low tem-
perature phase of the 2Dxy model is a Gaussian fixed line,
this is not so for either side of the quantum critical point of
the easy-plane quantum antiferromagnet.4–6,15We also men-
tion that another example of a multicomponent system with
no intercomponent Josephson effect are spin-triplet super-
conductors which are well known to allow a variety of topo-
logical defects and phase transitions.17 Some of the topics we
discuss below are related to the models of spin-triplet paired
electrons.18

Since the condensates described above in the context of
light atoms and easy-plane quantum antiferromagnets are
gauge-charged condensates, the order parameter flavors are
all coupled to each other via a noncompact gauge field. This
coupling is vastly different from the Josephson coupling in
the sense that while anN-flavor order parameter condensate
with no coupling between different species in general will
have N phase transitions, a Josephson coupling between a
pair of order parameter species will collapse the two inde-
pendent phase transitions they undergo with no coupling,
down to one. Josephson coupling between all pairs of order
parameter species will collapse allN phase transitions down
to a single one, namely an inverted 3Dxy transition. On the
other hand,N order parameter species coupled to one and the
same gauge field will still undergo in generalN phase tran-
sitions, namely oneinverted3Dxy transition where a Higgs
phenomenon takes place, followed byN−1 3Dxy transitions
as the coupling constants are increased beyond the Higgs or
3Dxy critical point.6,19

A special feature is presented by the important caseN
=2. Here, it turns out that thedual description of the theory
is isomorphic to the starting point.5,6,19 Normally, in d=2
+1, a gauge theory dualizes into a global theory and vice
versa. In contrast aUs1d3Us1d gauge theory dualizes into
anotherUs1d3Us1d gauge theory, i.e., the theories areself-
dual. In general the theory has two separate critical points,
one inverted 3Dxy and one 3Dxy critical point.19 For the
special case where the bare phase stiffnesses of the two mat-
ter fields are equal, as they naturally are in the case of easy-
plane quantum antiferromagnets in the absence of an exter-
nal magnetic field,5,6 another interesting feature appears. In
this case, there is only one critical point separating two
phases described byself-dual field theories. This cannot be
either an inverted 3Dxy or a 3Dxy fixed point. Self-duality
also precludes the possibility of aZs2d universality class al-
though the exponentn that we find for this case appears to be
close to the Ising valueswhile a is notd. This phase transition
therefore defines a new universality class, namely that of the
d=2+1 Us1d3Us1d self-dual gauge theory.

What happens to such multicomponent charged conden-
sates in three dimensions in the absence of Josephson cou-
pling between the order parameter components, but in the
presence of an external magnetic field, has been recently
studied in Refs. 20 and 21 for the caseN=2, with particular
emphasis on applications to liquid metallic hydrogen. In this
paper, we extend on this and consider in detail the effects of
tuning the external magnetic field and temperature when also
Nù3. New features appear compared to theN=2 case, be-
cause composite vortices consisting of nontrivial windings in
all order parameter components can now undergo partial de-
compositions by tearing vortices of individual order param-
eter components off the composite vortices, one after the
other. We provide a dual picture of these processes:sid as a
vortex loop proliferation in the background of a composite
vortex lattice andsii d as a metal-insulator transition in a sys-
tem consisting of several “colors of electric charges” in a
multicolor dielectric background. The new concept of “color
charge” will be introduced and explained in detail in this
paper.It allows us to determine the universality class, and
the partially broken symmetries of the partial decomposition
transitions taking place in multiflavor superconductors in an
external magnetic field.We also show that the number of
colors Ncolor of dual charges exceeds the number of field
componentssflavorsd for N.3.

The outline of the paper is as follows. The first six sec-
tions of the paper deal with results in zero external magnetic
field. In Secs. VII and VIII we present results in finite mag-
netic field. Readers who wish to consult results on finite
magnetic field may proceed directly to Sec. VII.

In Sec. II, we introduce the model and the main approxi-
mation we will use to study the model, as well as the duality
transform that will be used extensively, along with the ex-
plicit vortex representation of the model. In Sec. III, we ex-
plicitly transform the action for theN=2 case into an action
consisting of two parts:sid one charged vortex mode with
vortex interactions mediated by a massive vector field and
sii d one neutral vortex mode with vortex interactions medi-
ated by a gauge field. In Sec. IV, we compute gauge field
correlators and dual gauge field correlators in terms of vortex
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correlators.This explicitly identifies the mechanism by which
a thermally driven vortex loop proliferation destroys the
Higgs phase (Meissner effect) and dual Higgs phase.19,22

Gauge field correlators are useful in characterizing the
charged fixed point of theN-flavor London model,19,22while
dual gauge field correlators are also useful in characterizing
the N−1 neutral fixed points.19 In Sec. V, we present large-
scale Monte CarlosMCd simulations for the caseN=2, com-
puting critical exponents at the neutral and charged fixed
points, as well as the mass of the gauge field as a function of
temperature. The neutral fixed point is found to be in the
3Dxy universality class, while the charged fixed point is
shown to be in the inverted 3Dxy universality class. We also
consider in detail the case when the two bare phase stiff-
nesses of the model are identical, showing that the resulting
one fixed point is in a new universality class distinct from the
3Dxy and inverted 3Dxy universality classes. In Sec. VI, we
present corresponding results for the caseN=3. In Sec. VII,
we outline the phases to expect for the caseN=2 when an
external magnetic field is applied. We also present results
from large-scale MC simulations revealing a novel phase
transition in the 3Dxy universality class inside the Abrikosov
vortex lattice phase at low magnetic fields when temperature
is increased. In Sec. VIII, we do the same whenN.2, em-
phasizing the qualitatively new features compared to the case
N=2. We also introduce a useful “color charge” picture of
the various partial decomposition transitions of the compos-
ite vortex lattice that we encounter for the case whenNù3.
In Sec. X, we summarize our results. In Appendix A, we
identify charged an neutral vortex modes for generalN. In
Appendix B, we derive the vortex representation for the
general-N case. In Appendices C and D, we derive expres-
sions for gauge field correlators and dual gauge field correla-
tors, respectively. In Appendix E we generalize our dual rep-
resentation for arbitraryN to also include inter-flavor
Josephson coupling. In Appendix F, we consider Kosterlitz-
Thouless transitions for the general-N case in two spatial
dimensions at finite temperature.

II. MODEL AND DUAL ACTION

For an analysis of the possible phase transitions in a GL
model of N individually conserved bosonic matter fields,
each coupled to one and the sameUs1d noncompact gauge
field, we study a version of theN-flavor GL theory in 2+1
dimensionswith no Josephson coupling termsbetween order
parameter components. Moreover, we ignore mixed gradient
terms, such that there is no Andreev-Bashkin effect.23 The
model is defined byN complex scalar fieldshC0

sadsr d ua
=1, . . . ,Nj coupled through the chargee to a fluctuating
gauge fieldAsr d, with the action

S=E d3rFo
a=1

N uf¹− ieAsr dgC0
sadsr du2

2Msad + V„hC0
sadsr dj…

+
1

2
f¹ 3 Asr dg2G , s1d

whereMsad is the mass of the condensate speciesa. When

the individual condensates are conserved, the potential
V(hC0

sadsr dj) must be function ofuC0
sadsr du2 only. In this pa-

per, we focus on the critical phenomena and phase diagram
of Eq. s1d in zero as well as finite external magnetic field,
and for these purposes the model in Eq.s1d will be studied in
the phase-only approximationC0

sadsr d= uC0
saduexpfiusadsr dg

whereuC0
sadu is a constant, i.e., we freeze out amplitude fluc-

tuations ofeach individual matter field. The model we study
is therefore the generalization to arbitraryN of the frozen-
amplitude one gap lattice superconductor model also known
as the London superconductor model.24

One may well ask what confidence one should put in the
phase only approximation for all fields when the bare phase
stiffness of each individual condensate is very different, such
as is the case in LMH. The answer is that one can be quite
confident that this is a useful and reasonable approximation.
Consider first the caseN=2. We use the phase only approxi-
mation with confidence for considering the criticality here. It
certainly works at the lowest critical temperature. After that
point, we are left with a one-component superconductor.
What the field with the lowest phase stiffness does above the
lowest critical temperature is not of interest, it is only the
remaining field with criticality at higher temperature that
matters. Hence, significantly above the lowest critical tem-
perature, we may still apply the phase only approximation
for the remaining one-component case if it is of type-II. For
this field, we may use the phase only approximation up to the
highest critical temperature with the same confidence as we
can use the phase only approximation for the field with the
lowest phase stiffness up to and slightly above the lowest
critical temperature. The same argument can be repeated for
arbitraryN: We can use the phase only approximation for the
fields up to and slightly above their respective critical tem-
peratures. After that it is immaterial what they do, it is only
the remaining components that matter.

A. Basic properties of the model

Varying Eq.s1d with respect toA, we obtain the equation
for the supercurrent

J = o
a=1

N
ie

2Msad hC0
sad* ¹ C0

sad − C0
sad ¹ C0

sad*j − 2e2S uC0
sadu2

Msad DA .

s2d

Vortex excitations in such anN-flavor GL model carry frac-
tional flux. Consider a vortex where the phaseushdsr d has a
2p winding around a vortex core, while other phases do not
have nontrivial windings. ExpressingA from Eq. s2d, and
integrating along a path around the vortex core at a distance
larger than the magnetic penetration length, we obtain an
expression for the magnetic flux encompassed by the path
given by

Fshd = R Adl = F0
uC0

shdu2

Mshd Fo
a=1

N uC0
sadu2

Msad G−1

, s3d

whereF0=2.07310−15 T m2 is the flux quantum. As it will
be clear from a discussion following Eq.s13d fsee Eq.s12dg,
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such a vortex has a logarithmically divergent energy.12,19

Only a compositevortex where all phasesusad have 2pn
winding around the core carries integer flux and has finite
energy. As detailed below, the composite vortices are respon-
sible for the magnetic properties of the system at low tem-
peratures while thermal excitations in the form of loops of
individual fractional-flux vortices are responsible for the
critical properties of the system in the absence of an external
field.

Note that since each individual amplitude is frozen, this
model will be different from the case where only the sums of
the squares of the amplitudes are frozen.25 The latter is usu-
ally referred to as the N-component scalar QED
sNSQEDd,26,27or the CPN−1 model.28 sAs far as critical prop-
erties are concerned, the NSQED model and the CPN−1

model have been shown to belong to the same universality
class.28d We strongly emphasize that we must distinguish our
model from NSQED and CPsN−1d, and will consequently be
referring to it as theN-flavor London superconductorsNLSd
model. The NLS is in fact the natural model to consider for
the physical systems mentioned in the introduction, in par-
ticular pertaining to the superconducting mixtures of metallic
phases of light atoms. As we shall see, the NLS model has
physics which sets it distinctly apart from the NSQED and
the CPN−1 models, and it does not have critical properties in
the same universality class as they do. This becomes particu-
larly apparent in the large-N limit, as we shall see in Sec.
II D.

B. Separation of variables

Before we proceed further, it is useful to give another
form of the action. For brevity we introduce the bare phase
stiffness of the matter field with flavor indexa defined as
ucsadu2= uC0

sadu2/Msad. Then Eq.s1d may be rewritten in terms
of onecharged andN−1 neutral modes as followssdetails of
this are found in Appendix Ad. We haveS=ed3r L, with

L =
1

2C2So
a=1

N

ucsadu2 ¹ usad − eC2AD2

+
1

2
s¹ 3 Ad2

+
1

4C2 o
a,b=1

N

ucsadu2ucsbdu2„¹susad − usbdd…2, s4d

where

C2 ; o
a=1

N

ucsadu2. s5d

The first term in Eq.s4d represents the charged mode cou-
pling to the gauge fieldA, and the remaining terms are the
N−1 neutral modes which do not couple toA. This means
that they have gauge charge equal to zero. We will come
back to this in Sec. III. This form Eq.s4d will be useful later
when we discuss finite field effects in Sec. VIII. We also
stress thatC in the above expression should not be confused
with C0

sad defined in Eq.s1d.
Counting degrees of freedom in Eq.s4d requires care. The

caseN=1 yields the well known answer that a phase variable

swhich is not a gauge invariant quantityd is higgsed into a
massive vector field by coupling to the vector potential. In
the caseN=2, the situation is different in the sense that one
can form a gauge invariant quantity by subtracting phase
gradients. Thus theUs1d3Us1d system may be viewed as
possessingsid a localUs1d gauge symmetry associated with
the phase sum which is coupled to the vector potential and
thus yields a massive vector field, andsii d a global Us1d
symmetry which is associated with a phase difference where
there is no coupling to the vector potential. These charged
and neutral modes are naturally described by the first and
third terms in Eq.s4d, respectively. ForN=3, the situation is
principally different from both theN=1 andN=2 cases. That
is, in Eq. s4d for N=3, we find one term describing the
charged modesthe first termd and three terms describing
gauge-invariant neutral phase combinations.

The two neutral modes in Eq.s4d, in theN=3 case, cannot
be properly described by only two terms, for topological rea-
sons. A vortex excitation produces a zero in the order param-
eter space, thus making the superconductor multiply con-
nected. A vortex with a nontrivial phase winding in any of
the three components would result in nontrivial contributions
to two of three phase-difference terms in Eq.s4d. Hence, for
N=3 an elementary vortex, i.e., with nontrivial winding only
in one of the phases excites two neutral modes. In general,
when all ucsadu differ, the bare phase stiffnesses of two neu-
tral modes excited by each of the three possible elementary
vortices, are different. Thus, the neutral modes in the system
are described by three phase-difference terms in Eq.s4d.
These three terms are not independent when the condition of
single-valuedness of each of the N order parameter compo-
nents is enforced, namely that individual phases may change
only by integer multiples of 2p around zeroes of the order
parameters.

Using Eq.s4d as opposed to Eq.s1d, has advantages, be-
cause the neutral and charged modes are explicitly identified.
This facilitates a discussion of the critical properties of the
N-flavor system. Moreover, Eq.s4d will allow us to identify
various states ofpartially broken symmetry which emerge if
an N-flavor system is subjected to external magnetic field.20

We will come back to these points in detail in Secs. VII and
VIII.

C. The Villain approximation

The theory Eq.s1d is discretized on ad=3 dimensional
cubic lattice with spacinga=1 and sizeL3, and in the phase
only approximation the action reads

S= o
r
F− bo

a=1

N

ucsadu2o
m=1

3

cos„Dmusadsr d − eAmsr d…

+
b

2
f¹ 3 Asr dg2G . s6d

Here, we have included the inverse temperature couplingb
=1/T. The symbolDm denotes the lattice difference operator
in direction m in Euclidean space and the position vectorr
runs over all points on the lattice. The partition function in
the Villain approximation is
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Z =E
−`

`

DAp
g=1

N E
−p

p

Dusgdp
h=1

N

o
nshd

exps− Sd,

S= o
r
Fo

a=1

N
bucsadu2

2
sDusad − eA + 2pnsadd2 +

b

2
sD 3 Ad2G ,

s7d

wherensadsr d are integer vector fields ensuring 2p periodic-
ity, and the lattice position index vectorr is suppressed.
Here, we stress the importance of keeping track of the2p
periodicity of the individual phases. For N=1 it has been
shown that thermal fluctuations in this model excite topo-
logical defects in form of closed vortex loops. At the critical
temperature the system undergoes a vortex loop proliferation
phase transition.29–31

D. Vortex representation

In the following, we transform the model Eq.s7d into a
theory of interacting vortex loops of different flavors. The
procedure is described in detail in Appendix B. The kinetic
energy terms are linearized by introducingN auxiliary fields
vsadsr d. Applying the Poisson summation formula and inte-
grating overnsadsr d constrains the fieldsvsadsr d to take only
integer valuesv̂sadsr d. Integration over allusadsr d produces
the local constraintsD ·v̂sadsr d=0, which are fulfilled by re-

placing v̂sadsr d with D3 ĥsadsr d where ĥsadsr d are integer-
valued fields. By applying the Poisson summation once more

and summing over allĥsadsr d, the fieldsĥsadsr d take continu-
ous valueshsadsr d and the integer-valued vortex fields
msadsr d are introduced. We recognizehsadsr d as the dual
gauge fields of the theory. To preserve the gauge symmetry
of hsadsr d each vortex field of flavor indexa is constrained
by the condition

D ·msadsr d = 0. s8d

Hence the vortex fields form closed loops. At this stage, the
action reads

S= o
r
Fo

a=1

N
sD 3 hsadd2

2bucsadu2
− ieA ·So

a=1

N

D 3 hsadD
+ 2pio

a=1

N

msad ·hsad +
b

2
sD 3 Ad2G , s9d

where the vortex fieldsmsadsr d are constrained by Eq.s8d.
We integrate out the gauge fieldAsr d and get a theory in the
dual gauge fieldshsadsr d and the vortex fieldsmsadsr d,19

S= o
r
F2pio

a=1

N

msad ·hsad + o
a=1

N
sD 3 hsadd2

2bucsadu2

+
e2

2b
So

a=1

N

hsadD2G . s10d

This generalizes to arbitraryN the results of Peskin,32 and

Thomas and Stone.33 In Appendix E we generalize this result
even further by including interflavor Josephson coupling.

When Nù2 there is an important difference from the
N=1 case, which gives rise to entirely different physics.
Note how it is thealgebraic sumof the dual photon fields in
Eq. s10d that is massive. This differs from the caseN=1,
wheree produces one massive dual photon with bare mass
e2/2, and the model describes a vortex fieldmsr d interacting
through a massive dual vector field hsr d. However,
when Nù2, since D ·msadsr d=0, a gauge transformation

hsadsr d→ h̃sadsr d=hsadsr d+Dgsadsr d for aP f1, . . . ,Ng leaves
the action in Eq.s10d invariant if one of the gauge fields, say

h̃shdsr d compensates the sum in the last term in the action
with Dgshdsr d=−ogÞhDgsgdsr d. Thus, even in the presence of
a gauge chargee, such that the direct model is a gauge
theory, the dual description is such that the individual dual
photon fields are also gauge fields.

Integrating out the dual gauge fields we get a generalized
theory of vortex fields ofN flavors interacting through the
potentialDsa,hdsr d

Z = p
a=1

N

o
msgd

dD·msgd,0e
−SV,

SV = p2o
r ,r8

o
a,h

msadsr dDsa,hdsr − r 8dmshdsr 8d, s11d

where dx,y is the Kronecker delta, and the discrete Fourier

transform of the vortex interaction potential isD̃sa,hdsqd,
given by19

D̃sa,hdsqd
2bucsadu2

=
lshd

uQqu2 + m0
2 +

da,h − lshd

uQqu2
, s12d

wherelsad;ucsadu2/C2, andC2 is given by Eq.s5d. Here, the
bare massm0 is the inverse bare screening length given by
m0

2=e2C2, and uQqu2=om=1
3 f2 sinsqm /2dg2 is the Fourier rep-

resentation of the lattice Laplace operator, whereqm

=2pnm /L with nmP f1, . . . ,Lg. Note that oalsad=1. Note
also that whene2=0, the interaction matrix reduces to

D̃sa,hdsqd = 2bucsadu2
da,h

uQqu2
. s13d

This means that when there is no charge coupling the matter
fields to afluctuatinggauge field, there is no interaction be-
tween vortices of different flavors. This simple case corre-
sponds to Eq.s1d representing a system ofN decoupled 3Dxy
models. Also note that for vortices of different flavors,h
Þa, wheneÞ0, the interaction matrix tends to vanish when
the intervortex distance is much smaller then the effective
penetration lengthl=1/m0. It follows from the fact that
when the intervortex distance is much smaller thanl, the
vortices interact as ifA does not screen, i.e., as ifA does not
fluctuate. In this case, it is clear that the action we describe is
simply that of N decoupled 3Dxy models, i.e., interflavor
interactions vanish, cf. Eq.s13d. For instance, for the case
N=2, there will be no interactions between vortices of con-
densateC0

s1d and vortices of the condensateC0
s2d unless we
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allow the gauge field to fluctuate. In the extreme type-II limit
where l→` only intraflavor interactions between vortices
will exist ssee also Ref. 34d.

The first term of the vortex interaction potential Eq.s12d
is a Yukawa screened potential,while the second term medi-
ates long range Coulomb interactions between vortex fields.
If N=1 the latter cancels out exactly and we are left with the
well studied vortex theory of the GL model which has a
charged fixed point foreÞ0.22,35 For Nù2 we find a theory
of vortex loops ofN flavors interacting through long range
Coulomb with an additive screened part. If the number of
speciesN grows to infinity andC2→`, the vortex interac-
tion receives the dominant contribution from a diagonal un-
screenedN3N Coulomb matrix. But there are physical situ-
ations where off-diagonal interactions play an important role
even in the large-N limit sto be discussed belowd. One can
also observe from Eq.s3d that in theN→` limit when all
components have similar stiffness the magnetic flux enclosed
by elementary vortices also tends to zero. Thus, forN→`
the physics of the model is governed by neutral modes only.

The energy density of one straight vortex line of flavora
in a distancer larger than the effective penetration depthl is
found by integrating along the line using the last term in the
potential Eq.s12d only.36 This produces an energy term of the
form Dsr d, lnsur ud, and shows that such a vortex has loga-
rithmically divergent energy.

The large-N limit of the NLS serves to illustrate how dif-
ferent the physics is from the large-N limit of the NSQED
model and the CP model.27,28 In the large-N expansion of the
NSQED model, only one charged fixed point is foundswhich
is infrared stable provided 2N.365d, with critical exponent
1/n=1+48/N+¯ in D=3.27 This is consistent with the re-
sults found in the large-N limit of the CPsN−1d model.28 The
origin of the difference between these results and the results
we find for the NLS model is easily traced to the following
fact. The treatment of the NSQED model in Ref. 27 is
strictly speaking correct only in the case of type-I supercon-
ductivity, since they find that for physical values ofN, only a
first order phase transition from a superconductor to a normal
metal takes placesno infrared stablefixed pointis found for
physical values ofNd. This is correct only for values of the
Ginzburg-Landau parameterk,0.8/Î2, as has been shown
in recent large-scale MC simulations37 and in earlier analyti-
cal treatments.29 The transitions discussed below where neu-
tral modes appear do not significantly depend on whether the
system is type-I or type-II. Our results are therefore best
thought of as generalizations to arbitraryN of the problem
studied many years ago by Dasgupta and Halperin on the
frozen-amplitudeN=1 lattice superconductor model.24 It is
this fact that in the present model the modulus of each com-
ponent is fixed, along with the precise absence of internal
Josephson coupling between matter field species, that brings
out the physics we shall describe, namely thecharge-neutral
superfluid modes arising out of N charged condensate fields.

E. Dual field theory

Starting from Eq.s10d the above vortex system may be
formulated as a field theory, introducingN complex matter

fields fsad for each vortex species, minimally coupled to the
dual gauge fieldshsad. This generalizes the dual theory for
N=1 in Refs. 29 and 33. The theory reads19 sfor a comment
on the case of generalN, see also bottom of p. 42, Ref. 6d

Sdual= o
r
Fo

a=1

N Sma
2ufsadu2 + usD − ihsaddfsadu2 +

sD 3 hsadd2

2bucsadu2 D
+

e2

2b
So

a=1

N

hsadD2

+ o
a,h

gsa,hdufsadu2ufshdu2G . s14d

Here, we have added chemical potentialscore-energyd terms
for the vortices, as well as steric short-range repulsion inter-
actions between vortex elements. In theN=1 case, a RG
treatment of the termse2/2bdh2 yields

]e2

] ln l
= e2, s15d

and hence this term scales up, suppressing the dual vector
field h. The charged theory ind=2+1 therefore dualizes into
a ufu4 theory and vice versa.22 Correspondingly, forNù2,
Eq. s15d suppressesoa=1

N hsad, but not each individual dual
gauge field. For the particular caseN=2, assuming the same
to hold, we end up with a gauge theory of two complex
matter fields coupled minimally to one gauge field, which
was also precisely the starting point. Thus the theory is self-
dual for N=2.5,6

III. CHARGED AND NEUTRAL VORTEX MODES

In this section, we present a straightforward method of
identifying charged and neutral vortex modes for the model
Eq. s1d. Consider first the caseN=2, when the action Eq.
s10d reads

S= o
r
H2pifms1d ·hs1d + ms2d ·hs2dg

+
e2

2b
shs1d + hs2dd2 +

1

2b
F s¹ 3 hs1dd2

ucs1du2
+

s¹ 3 hs2dd2

ucs2du2 GJ .

s16d

From this we identify the massive linear combination of the
dual gauge fieldshsad, namelyH=hs1d+hs2d. If a neutral vor-
tex mode exists in the system, this implies the existence also
of a gauge field in the problem, which we will denote byA.
We therefore writehsad as linear combinations ofH andA as
follows:

hsad = GsadH + LsadA. s17d

We insert this into Eq.s16d and demand that cross terms
betweenH andA vanish, thus obtaining the following set of
equations determining the coefficientssGsad ,Lsadd:
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Gs1d + Gs2d = 1,

Ls1d + Ls2d = 0,

Gs1dLs1d/ucs1du2 + Gs2dLs2d/ucs2du2 = 0. s18d

Thus, we haveGsad= ucsadu2/C2, where C2= ucs1du2+ ucs2du2,
which yields the following expression for the gauge fieldA:

A =
1

Ls1d
ucs2du2hs1d − ucs1du2hs2d

C2 . s19d

Since we have three equations and four unknowns, we may
chooseLs1d freely, and determine it by simplifying the pref-
actor inA to getLs1d=1/C2=−Ls2d, whence we have

A = ucs2du2hs1d − ucs1du2hs2d. s20d

Inverting the relations forH andA, we have

hs1d = sucs1du2H + Ad/C2,

hs2d = sucs2du2H − Ad/C2. s21d

Inserting this back into Eq.s16d, collecting terms, and rede-
fining the fieldsH /C2→H and A /C2→A, we have the
actionS=SH+SA where

SH = o
r
H2piH ·ms+d +

1

2bH
fs¹ 3 Hd2 + m0

2H2gJ ,

SA = o
r
H2piA ·ms−d +

1

2bA
s¹ 3 Ad2J , s22d

where

ms+d = ucs1du2ms1d + ucs2du2ms2d,

ms−d = ms1d − ms2d,

1

2bH
=

sucs1du2 + ucs2du2d
2b

,

1

2bA
=

s1/ucs1du2 + 1/ucs2du2d
2b

, s23d

andm0
2=e2C2. The action in Eq.s22d, which is equivalent to

Eq. s16d, therefore describes a vortex modems+d interacting
with itself via a screened anti-Biot-Savart interaction medi-
ated by the massive vector fieldH, and the vortex modems−d

interacting with itself via an unscreened anti-Biot-Savart in-
teraction mediated by the gauge fieldA. Hence, the former
vortex mode is charged, the latter is neutral. In Appendix A,
we present an alternative method of identifying charged and
neutral modes for generalN.

IV. GAUGE FIELD CORRELATORS

Gauge field correlation functions are useful objects to
study when considering the critical properties of gauge theo-

ries. The main reason is that they provide nonlocal gauge
invariant order parameters for the theories, which in turn
enable reliable determination of critical exponents, including
anomalous scaling dimensions.Moreover, these correlators
explicitly identify the mechanism by which the Meissner ef-
fect is destroyed in type-II superconductors: The mass of the
gauge fieldA, and hence the Higgs phase (equivalently the
Meissner phase) is destroyed by a thermally driven vortex
loop proliferation of the charged vortex mode.19,22,30,31

In this section, we study in detail the direct gauge field
correlation function, as well as various combinations of dual
gauge field correlation functions, in order to gain insights
into the nature of the critical points Eq.s1d can exhibit.

A. A-field correlator and Higgs mass

We first consider the propagator for the gauge fieldA,
which provides information about at which of the critical
points the Higgs phenomenon takes place, and where the
remainingsneutrald fixed points appear. We present compact
expressions for the general-N case, in later sections we
present explicit numerical results for the casesN=2 andN
=3.

We compute the correlation functionkAsr d ·As0dl in
terms of vortex correlators in the standard way by starting
from the action Eq.s9d, prior to integrating out the gauge
field A, adding source terms containing currentsJ minimally
coupled toA, and performing functional derivations with
respect to the currents that are subject to the constraint
¹ ·J=0, after which the currents are set to zero. The details
of the computations required to compute theA-field cor-
relator are given in Appendix C. The discrete Fourier trans-
form of the gauge field propagator isGAsqd=kAq ·A−ql. We
find

GAsqd =
2/b

uQqu2 + m0
2S1 +

2p2be2

uQqu2
Gs+dsqd

uQqu2 + m0
2D , s24d

where we have defined the correlation function of the
charged vortex mode as

Gs+dsqd =KSo
a=1

N

ucsadu2mq
sadD ·So

h=1

N

ucshdu2m−q
shdDL .

s25d

Notice in Eq.s24d, that theA-field correlator is only affected
by the gauge-charged vortex modeoa=1

N ucsadu2mq
sad via the

coupling constantm0
2~e2.

Equations24d is useful in MC simulations, in conjunction
with scaling forms to be presented below, for extracting the
gauge field mass and the anomalous scaling dimension of the
gauge field. The correlation lengthjA that appears in a scal-
ing Ansatzfor the A-field correlator

GAsxd =
1

uxuD−2+hA
G±S uxu

jA
D , s26d

is related to the mass of the gauge field viamA =jA
−1. Here,

hA is the anomalous scaling dimension of the gauge fieldA.
Consequently, the gauge field propagator Eq.s24d has the
general structure38
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GAsqd ,
1

uQqu2 + SAsqd
, s27d

where, close to the critical point

SAsqd = mA
2 + Cuqu2−hA + Osuqudd, s28d

C is a constant andd.2−hA. By taking theq→0 limit of
the Eqs.s27d and s28d we may extract the gauge mass from
MC simulations. From the relationB=D3A the gauge mass
is identified as the inverse magnetic penetration depthl. The
masses of dual gauge fields are defined in a similar fashion.

Let us make a remark concerning how a charged fixed
point shA =1d could be distinguished from a neutral fixed
point shA =0d by gauge mass measurements. The magnetic
penetration length is related to thesuperconductingcoher-
ence lengthj via22,35

l−1 , js2−dd/s2−hAd , uT − Tcunsd−2d/s2−hAd, s29d

wheren is the critical exponent of the coherence length in
the superconductor, i.e.,n=0.67155s3d,39 and d is dimen-
sionality. Therefore, we see that whenhA =0, we have22,35

l , Îj , uT − Tcu−n/2, s30d

while whenhA =1, we have

l , j , uT − Tcu−n. s31d

Hence the gauge massmA =l−1 plotted as a function of tem-
perature in the critical regime should forhA =1 give a curve
with positive curvature, while for hA =0 it should give a
curve withnegative curvature.

The compact expression Eq.s24d is valid for arbitrary
number of matter field flavorsN, and generalizes the expres-
sion obtained in Ref. 22. Note that ife2=0, we have trivially
that Eq.s24d reduces to

GAsqd =
2/b

uQqu2
, s32d

which is always massless. In Secs. VI and VI we will use
large-scale MC simulations to study in detail the caseN=2
andN=3, respectively. The main feature of Eq.s24d is that at
low temperatures, we may in the very simplest approxima-
tion entirely ignore the vortex correlation functionGs+dsqd
such thatGAsqd is obviously massive with photon mass
given by the bare massm0 of the problem. Actually, in the
low-temperature regime, we haveGs+dsqd,q2 which in the
long-wavelength limit exactly cancels the factor 1/uQqu2,
rendering the propagator massive.

However, at the superconducting critical temperature, vor-
tex loops proliferate22,30,31,40–43resulting in vortex condensa-
tion and hence limq→0G

s+dsqd,const. Now, the term inside
the brackets in Eq.s24d will diverge, dominating the behav-
ior of theA-field correlator, such thatGAsqd,1/q2. Thus the
Higgs mass is destroyed.Note that the amplitudes of the
matter fields play no role in this, since they are entirely fro-
zen in the present London approximation. It is the condensa-
tion of topological defects of the matter fields, i.e., vortex
loops, that are responsible for bringing the Higgs mass to
zero, not the vanishing of the amplitudes.40 Therefore, we

may view the divergence of the penetration lengthsthe cor-
relation length in theA-field propagatord, as a manifestation
of the vortex loop blowout in the system.Vortex loopshave
dual counterparts in the current loops of the matter fields
C0

sadsr d in Eq. s1d. Conversely therefore, we may also view
the Higgs mass, i.e., the Meissner effect in the supercon-
ductor, as a manifestation of blowout of supercurrent loops
upon entering the low-temperature phase. Again, the ampli-
tudes of the matter fieldsC0

sadsr d play no special role here,
other than that they have to be nonzero across the Higgs
transition.22,30,31,40–43

B. Dual gauge field correlators

The details of the computations required for finding the
dual gauge field correlation functions in terms of vortex
fields are found in Appendix D. We find the following “Dys-
ons’s equation” for the gauge field correlator

khq
sad ·h−q

sbdl = D̃sa,bdsqd − p2D̃sa,hdsqdD̃sb,kdsqdkmq
shd ·m−q

skdl,

s33d

where we have used the fact that the trace of the transverse
projection operator is given by TrfPT

mng=2, the matrix ele-

ments D̃sa,hdsqd are defined in Eq.s12d, and a summation
over the indicessh ,kdP f1, . . . ,Ng is understood. These re-
sults are valid for allN.

To obtain more explicit expressions, we will work out in
detail what we obtain forN=2. As we have seen above, in
this case it is natural to use Eq.s33d to form correlation
functions of the combinationhs1d+hs2d. We will, for com-
pleteness also consider the combination andhs1d−hs2d and
ucs2du2hs1d− ucs1du2hs2d. We also use the fact that the interaction

matrix D̃sa,bdsqd is symmetric, and introduce the definitions

hq
s±d ; hq

s1d ± hq
s2d,

as±d ; D̃s1,1dsqd ± D̃s1,2dsqd,

bs±d ; D̃s2,2dsqd ± D̃s1,2dsqd. s34d

It is enlightening at this stage to introduce the expressions

for D̃sa,bdsqd, as follows:

D̃s1,1dsqdC2

2bucs1du2ucs2du2
=

1

uQqu2
+

ucs1du2

ucs2du2
1

uQqu2 + m0
2 ,

D̃s2,2dsqdC2

2bucs1du2ucs2du2
=

1

uQqu2
+

ucs2du2

ucs1du2
1

uQqu2 + m0
2 ,

D̃s1,2dsqdC2

2bucs1du2ucs2du2
= −

1

uQqu2
+

1

uQqu2 + m0
2 , s35d

whereC2= ucs1du2+ ucs2du2. Using Eqs.s35d in Eqs. s34d, we
find
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as+d ;
2bucs1du2

uQqu2 + m0
2 ,

bs+d ;
2bucs2du2

uQqu2 + m0
2 , s36d

andas−d andbs−d given by

as−dC2

2bucs1du2ucs2du2
;

2

uQqu2
+

ucs1du2/ucs2du2 − 1

uQqu2 + m0
2 ,

bs−dC2

2bucs1du2ucs2du2
;

2

uQqu2
+

ucs2du2/ucs1du2 − 1

uQqu2 + m0
2 , s37d

wherem0
2=e2C2. Notice how the unscreened part of the in-

teractions cancel out insas+d ,bs+dd but not insas−d ,bs−dd. This
is the origin of the qualitatively different behavior we will
find for the hq

s+d and hq
s−d correlators. Notice also how the

expressions simplify whenucs1du2= ucs2du2, when the screened
part of the interactions appearing inas−d, bs−d vanishes, such
that as−d=bs−d.

We may now write the correlation functions of the two
relevant linear combinations of dual gauge fields as follows:

Gh
s±dsqd ; khq

s±d ·h−q
s±dl = as±d + bs±d − p2ksas±dmq

s1d ± bs±dmq
s2dd

· sas±dm−q
s1d ± bs±dm−q

s2ddl. s38d

Using Eqs.s36d and s38d, we find the surprisingly compact
expression, valid for allN

Gh
s+dsqd =

2bc2

uQqu2 + m0
2S1 −

2p2b

c2

Gs+dsqd
uQqu2 + m0

2D , s39d

where we have again introducedGs+dsqd appearing in Eq.
s25d. In fact, this result could have been written down using
the known result for the charged case forN=1,22 in combi-
nation with Eq.s22d, considering the part of Eq.s22d only
pertaining to the massive vector fieldH. This provides a nice
consistency check on the general expression for the dual
gauge field correlators, as well as on the interaction matrix

D̃sa,hdsqd. In the low- and high-temperature phase, the vortex
correlatorGs+dsqd behaves as,q2 and ,csTd, respectively.
In either case, the dual gauge field correlatorGh

s+dsqd is al-
ways massive.

Consider the correlation function of the combination of
dual gauge fieldsA= ucs2du2hs1d− ucs1du2hs2d which couples to
the gauge-neutral vortex mode in Eq.s22d. In principle we
may follow the routes used in the above calculations, but by
now we realize that a quick way of obtaining the results is to
use Eq.s22d in combination with the known results for the
caseN=1 in theneutral case.22 We define

GAsqd ; kAqA−ql, s40d

and find immediately, using the results of Ref. 22 along with
the definitions in Eq.s23d,

GAsqd =
2bA
uQqu2S1 −

2p2bAGs−dsqd
uQqu2 D , s41d

where

Gs−dsqd = ksmq
s1d − mq

s2ddsm−q
s1d − m−q

s2ddl s42d

is the correlation function of the gauge-neutral vortex mode.
In the long wavelength limit the behavior ofGs−dsqd gives

rise to a dual Higgs mechanism. This comes about because
theGs−dsqd correlation function is always,q2 at long wave-
lengths, but has a nonanalytic coefficient in front of theq2

term given by the helicity modulus of the gauge-neutral
modems1d−ms2d. This serves to cancel the 1/q2 term in the
GAsqd correlation function exactly. This cancellation, origi-
nating in the vanishing of the helicity modulus of the gauge-
neutral mode, is responsible for producing a dual Higgs mass
mA in GAsqd. Higher order terms determine the actual value
of the dual Higgs mass. Thus, we see that whilehs1d+hs2d is
always massive,ucs2du2hs1d− ucs1du2hs2d plays the role of a
gauge degree of freedom which provides a dual counterpart
to A in Eq. s1d. This is a manifestation of the self-duality of
the theory which we have alluded to above.5,6,19

Notice that the existence of a dual Meissner effect arising
out of Eq.s41d is a substantially more subtle effect than the
direct Meissner effect coming out of Eq.s24d. The correlator
of the gauge-neutral mode has the property

Gs−dsqd = C2q
2 + C4q

4 + Osq6d, s43d

for all temperatures, in analogy with the vortex correlator of
the 3Dxy model for the caseN=1. It is the non-analytic
behavior of the coefficientC2, involving thehelicity modulus
of the gauge-neutral mode, which is responsible forproduc-
ing a dual Higgs mass as the gauge-neutral mode prolifer-
ates. To obtain a dual Meissner effect, a subtle cancellation is
required, namely that at some critical temperatureTc1, we
must have

1 −
2p2bucs1du2ucs2du2C2sTc1d

ucs1du2 + ucs2du2
= 0, s44d

where we have used the expression forbA from Eq. s23d. It
is important to note that while the actual value of the dual
Higgs mass is influenced by the higher order terms in Eq.
s43d, thecriterion for obtaining a dual Higgs phenomenon is
only determined by the cancellation among the terms of or-
der 1/q2 terms in Eq.s41d. This differs from the mechanism
that destroys the Higgs mass in theA correlator, since there
no such subtle cancellations are required, it suffices that the
correlatorGs+dsqd changes behavior from a constant to,q2

in the long-wavelength limit.
We finally consider the correlation function ofhs−d. Ap-

plying the results from Eq.s38d, we find19

Gh
s−dsqd =

8bls1dls2dC2

uQqu2 H1 −
2p2bls1dls2dC2Gs−dsqd

uQqu2

−
2p2bsls1d − ls2ddGsmdsqd

uQqu2 + m0
2 J + sls1d − ls2dd2Gh

s+dsqd,

s45d

where lsad= ucsadu2/C2, C2= ucs1du2+ ucs2du2, and the mixed
gauge-neutral and gauge-charged vortex field correlator is
given by
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Gsmdsqd =Ksmq
s1d − mq

s2dd ·So
a=1

2

ucsadu2m−q
sadDL . s46d

Note that for the caseN=1, such that eitherls1d or ls2d van-
ishes, then the remaininglshd=1, only the last term in Eq.
s45d survives, andGh

s−dsqd correctly reduces toGh
s+dsqd in Eq.

s39d. In the long wave length limit, it is the second term in
the curly brackets in Eq.s45d that dominates, giving rise to a
dual Higgs mechanism. Notice again how it is the vortex
correlatorGs−dsqd which determines the fate of the massless
dual gauge fieldhs1d−hs2d, just like in Eq.s41d. This is par-
ticularly evident for the caseucs1du= ucs2du, when Eq.s45d re-
duces to

Gh
s−dsqd =

4bucs1du2

uQqu2 S1 − p2bucs1du2
Gs−dsqd
uQqu2 D . s47d

This correlator forN=2, eÞ0 has precisely the same form as
the dual gauge field correlator for the caseN=1, e=0, which
exhibits a dual Higgs phenomenon.22

Substitutinglsad= ucsadu2/C2 in Eq. s45d, we see that the
criterion for destroying the dual Higgs mass is precisely the
same as the criterion we arrived at in Eq.s44d. Thus, whether
we compute the correlator in Eq.s45d or that in Eq.s41d to
establish the existence of a dual Higgs phase does not matter.
Furthermore, forN=2, eÞ0, ms1d−ms2d behaves as vortices
for N=1, e=0, i.e., it is a superfluid mode arising out of
superconducting condensates. A nonzero mA for the dual
gauge fieldA is producedby disorderingus1d at a critical
temperatureTc1 while a nonzeromA for the gauge fieldA is
destroyedby disorderingus2d at a critical temperatureTc2.

V. MONTE CARLO SIMULATIONS, N=2

Since the bare interaction between vortices is dominated
at long distances by an unscreened part, it is of interest to
study the character of the phase transition associated with the
generation of a Higgs mass for the gauge fieldA. For the
N=1 case, it is known that the vortex tangle of the 3Dxy
model is incompressible and the dual theory is a gauge
theory such thatkflÞ0 is prohibited. For the charged case,
the vortex tangle is compressible, the dual theory only has
global symmetry, and hence vortex condensation andkfl
Þ0 is possible. The introduction of charge destabilizes the
3Dxy fixed point.

To investigate what happens for the caseN=2, MC simu-
lations have been carried out for the action Eq.s11d on a
three dimensional lattice of sizeL3L3L for two different
cases. In the first case we simulate with unequal bare stiff-
nessesucs1du2=1/2 anducs2du2=1, e2=1/4 andm0

2=3/8. The
bare stiffnesses have been chosen to have well-separated
bare energy scales associated with the twist of the two types
of phases. In the second case we use equal phase stiffnesses
ucs1du2= ucs2du2=1, e2=1/4 andm0

2=1/2. Thevalues form0
have been chosen such that they are of order the lattice spac-
ing in the problem to avoid difficult finite-size effects. One
MC update consists of inserting a unitary vortex loop of

random direction and species according to the Metropolis
algorithm.

To calculate the critical exponentsa andn we performed
finite size scalingsFSSd analysis with bootstrap error esti-
mates of the third moment of the action44 M3=ksSV

−kSVld3l /L3 whereSV is given in Eq.s11d. The peak to peak
value of this quantity scales with system sizeL as Ls1+ad/n,
whereas the width between the peaks scales asL−1/n. The
advantage of this is that asymptotically correct behavior is
reached for practical system sizes.

To characterize the phase transitions further, we consider
the correlation functions given in Eqs.s24d, s25d, ands39d. In
the Higgs phase the gauge field massmA scales according to
the Ansatz38 given by Eqs.s27d and s28d

GAsqd−12

b
= mA

2 + Cuqu2−hA + Osuqudd, s48d

with a correspondingAnsatzfor Gh
s+dsqd. The masses ofA

andoa=1
N hsad are therefore defined through theq→0 limit of

the respectiveAnsätze

mA
2 ; lim

q→0

2

bGAsqd
,

mSh
2 ; lim

q→0

2bc2

Gh
s+dsqd

. s49d

The gauge field masses are found by measuring vortex corr-
elators followed by a fit for smallq to their respectiveAn-
sätze.

We briefly review theN=1 GL model. The dual field
theory of the neutral fixed point is a charged theory describ-
ing an incompressible vortex tangle.22 The leading behavior
of the vortex correlatorGs+dsqd,kmq ·m−ql is22

lim
q→0

Gs+dsqd , 5f1 − C2sTdgq2, T , Tc,

q2 − C3sTduqu2+hh, T = Tc,

q2 + C4sTdq4, T . Tc,
6 s50d

where hh is the anomalous scaling dimension of the dual
gauge fieldh. For T,Tc the mass of the dual gauge field
given by Eqs.s39d and s49d swith N=1 ande=0d is zero,
however forT.Tc the q−2 terms in Eq.s39d cancel out ex-
actly and the massmh attains an expectation value. At the
charged fixed point of the GL model, the effective field
theory of the vortices is a neutral theory. The vortex tangle is
compressible with a scalingAnsatzfor the vortex correlator

lim
q→0

Gs+dsqd , 5q2, T , Tc,

uqu2−hA , T = Tc,

csTd, T . Tc,
6 s51d

wherecsTd is a nonzero constant. Consequently, from Eqs.
s24d, s39d, ands49d swith N=1 andeÞ0d, the massmA drops
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to zero atTc, and the mass of the dual vector fieldmh is finite
for all temperatures and has a kink atTc.

22 Renormalization
group arguments yield hA =4−d where d is the
dimensionality,27,35,45 which has recently been verified
numerically.22,38

A. Critical exponents a and n, zc„1…z, zc„2…z

We observe two anomalies in the specific heat atTc1 and
Tc2 whereTc1,Tc2. We findTc1 andTc2 from scaling of the
second moment of the actionksSV−kSVld2l /L3 to be Tc1

=1.4s6d andTc2=2.7s8d. The M3 FSS plots for system sizes
L=4,6,8,10,12,14,16,20,24 areshown in Fig. 1. From the
scaling we conclude that both anomalies are in fact critical
points, and we obtaina=−0.02±0.02 andn=0.67±0.01 for
Tc1 anda=−0.03±0.02 andn=0.67±0.01 forTc2. These val-
ues are consistent with those of the 3Dxy and theinverted
3Dxy universality classes found with high precision in Refs.
39, 46, and 47.

B. Vortex correlator, Higgs mass, and anomalous scaling
dimension, zc„1…z, zc„2…z

The vortex correlators for theN=2 case are sampled in
real space andGs+dsqd given in Eq.s25d is found by a dis-

crete Fourier transformation. At the lower transitionTc1 the
leading behavior isGs+dsqd,q2 on both sides of the transi-
tion. Consequently, due to Eqs.s24d, s39d, ands49d, mA and
mSh are finite in this regime. This shows that the vortex
tangle is incompressible and that the anomalous scaling di-
mensionhA =0, which corresponds to a neutral fixed point.
Figure 2 shows the correlatorGs+dsqd aroundTc2. Below Tc2

the dominant behavior isGs+dsqd,q2 whereas Gs+dsqd
,csTd above the transition. At the critical pointGs+dsqd
,uqu, indicatinghA =1. AccordinglymA is finite below the
transition and zero forTùTc2.

For each coupling we fitGAsqd−1 for uQqu,0.9 using sys-
tem sizesL=8,12,20,32 to Eq.s48d. The results formA, and
mSh which is found in a similar fashion, are given in Fig. 3.
The system exhibits Higgs mechanism whenmA drops to
zero atTc2 with an anomaly inmSh due to vortex condensa-
tion. FurthermoremA has a kink atTc1 due to ordering of the
phase difference us1d−us2d with the phase stiffness
ucs1du2ucs2du2/ s2ucs1du2+2ucs2du2d; confirm Eq. s4d.12 The
anomalies inmA and mSh coincide precisely withTc2 and
Tc1. Note also howmSh changes abruptly atTc2. This is due
to a sudden change in screening byoa=1

N hsad, giving an
abrupt increase inmSh. This is consistent with the flow equa-
tion Eq. s15d. Note that the mass of the algebraic sum of the
dual fields appears in Eq.s10d after integrating out the gauge
field A.

We may understand the transitions as follows. AboveTc2,
A is massless, giving a compressible vortex tangle which
accesses configurational entropy better than an incompress-
ible one. BelowTc2, A is massive and merely renormalizes
uCu4 terms in Eq.s1d. The theory is effectively auCu4 theory
in this regime. Thus the remaining proliferated vortex spe-
cies originating in the matter fields with lower bare stiff-
nesses form vortex tangles as if they originated in a neutral
superfluid. For the generalN case, a Higgs mass is generated
at the highest critical temperature, after whichA renormal-
izes theuCu4 term, such that the Higgs fixed point is followed
by N−1 neutral fixed points as the temperature is lowered.

The picture that emerges from the above discussion of the
gauge field and the dual gauge field correlators is the follow-
ing. Below Tc1 there is one massless “photon,” namely

FIG. 1. The FSS of the peak to peak value of the third moment
DM3 labeledshd ands1d for Tc1 andTc2, respectively. The scaling
of the width between the peaksDb is labeledsmd and s3d for Tc1

and Tc2, respectively. The lines are power law fits to the data for
L.6 used to extracta andn.

FIG. 2. Gs+dsqd for N=2 andL=32, plotted for temperaturesT
=2.86.Tc2, T=2.76.Tc2, and T=2.63,Tc2, limq→0G

s+dsqd
,csTd, ,uqu, and ,q2, respectively. Theq→0 behavior of the
correlator matches precisely the signature of a changed fixed point
given in Eq.s51d.

FIG. 3. The massmA sld and 1−m0/mSh s1d found from Eqs.
s24d and s39d. Two nonanalyticities can be seen inmA at Tc1 and
Tc2, corresponding to a neutral fixed point and a charged Higgs
fixed point, respectively. An abrupt increase inmSh due to vortex
condensation is located atTc2.
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ucs2du2hs1d− ucs1du2hs2d, while A is massive. AboveTc1 and be-
low Tc2, both ucs2du2hs1d− ucs1du2hs2d andA are massive, while
aboveTc2, ucs2du2hs1d− ucs1du2hs2d is massive andA is mass-
less.

C. Critical exponents a and n, zc„1…z= zc„2…z

A special case is obviously presented by the caseucs1du
= ucs2du since thenTc1=Tc2;Tc, and we have a transition
directly from a low-temperature phase with one massless
dual gauge fielducs2du2hs1d− ucs1du2hs2d= ucs1du2shs1d−hs2dd to a
high-temperature phase with one massless direct gauge field
A. This is the remarkable self-duality observed in Refs. 5, 6,
and 19.

The second moment of the action withucs1du2= ucs2du2=1,
e2=1/4 and m0

2=1/2 exhibits one anomaly atTc=2.7s8d.
Scaling plots of the third moment of the action are shown in
Fig. 4. FSS yieldsa=0.03±0.04 andn=0.60±0.02. The nu-
merical value forn is in agreement with the value found in
Ref. 5,n=0.60±0.05. Note that our result fora andn is not
in agreement with hyperscaling.

D. Vortex correlator and Higgs mass,zc„1…z= zc„2…z

The mass of the gauge fieldmA was found by fitting
GAsqd−1 data from system sizesL=8,12,20,32 to Eq.s48d.
The massmSh was found similarly. The results are presented
in Fig. 5.

E. Discussion

The result for the exponentsa and n at Tc for ucs1du
= ucs2du shows that when the 3Dxy and inverted 3Dxy critical
points collapse onto each other, then instead of a simple su-
perposition, one gets a new fixed point which is in a different
universality class. This result is far from obvious. Naively
one would perhaps have guessed from Eq.s22d that for N
=2 one has two decoupled vortex modes, one neutral mode
exhibiting a phase transition in the 3Dxy universality class
and one charged mode exhibiting a phase transition in the
inverted 3Dxy universality class. Atucs1du= ucs2du a naive
guess would be that one would have two such phase transi-
tions superimposed on each other, givinga andn values in
the 3Dxy universality class. However, there is a principal
distinction from the case whenucs1duÞ ucs2du. In the latter case
the upper phase transition is always a charged critical point
because the neutral mode is not developed. Thus at the upper
transition the interaction of vortices is of short range, while
at the lower transition there is a proliferation of vortices with
long range interaction. However, in the caseucs1du= ucs2du,
then below the single phase transitionboth types of vortices
have neutral vorticity along with charged vorticity and thus
this phase transition cannot be mapped onto a superposition
of a neutral and a charged fixed points.

Also, it is the fact that the system is self-dual at this point
that invalidates the naive superposition conjecture, since the
3Dxy and inverted 3Dxy phase transitions do not describe
phase transitions of a self-dual system. Even though the
value ofn appears to be in good agreement with the 3D Ising
value, we observe that the 3D Ising model is not self-dual
either, and the new type of critical point forucs1du= ucs2du can
therefore not be in the 3D Ising universality class. The origin
of the exponents is therefore essentially topological, showing
that when the vortex loop blowouts of the neutral and
charged modes are not well separated, they interact in a non-
trivial fashion. There will therefore exist a crossover regime
parametrized byucs1du2− ucs2du2 where the exponentsa andn
change from 3Dxy values to the new values we find heressee
Fig. 7 of Ref. 5d. In principle, it is possible to compute the
relevant crossover exponents in order to shed further light on
this new self-dual universality class.

TABLE I. Phase stiffnessesucsadu and bare massesm0
2 for the

N=3 MC simulations. In all cases the chargee=1/2.

Case ucs1du2 ucs2du2 ucs3du2 m0
2

1 1/3 2/3 4/3 7/12

2 1/2 1/2 4/3 7/12

3 7/9 7/9 7/9 7/12

FIG. 4. The FSS of the peak to peak value of the third moment
DM3 labeled s1d for Tc and for ucs1du= ucs2du. The scaling of the
width between the peaksDb is labeledssd. The lines are power law
fits to the data forL.8 used to extracta andn.

FIG. 5. The massmA sld and 1−m0/mSh s1d found from Eqs.
s24d and s39d, for ucs1du= ucs2du. One nonanalyticity can be seen in
mA at Tc, corresponding to a fixed point which is not in the 3Dxy or
inverted 3Dxy universality class. An abrupt increase inmSh due to
vortex condensation is located atTc=2.7s8d.
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VI. MONTE CARLO SIMULATIONS, N=3

In the model Eq.s11d with N=3 vortex flavors we expect
in general one charged critical point associated with the con-
densation of the charged vortex mode and two neutral critical
points where neutral vortex modes proliferate. To study the
phases of this model we have performed MC simulations
with the action given in Eq.s11d with bare phase stiffnesses
given in Table I. We have applied the same methods for
calculating the critical exponentsa and n as well as gauge
masses as we did for theN=2 case.

It is useful to give the superfluid modes specifically for
the N=3 casessee Appendix A for details of the derivation
for the general-N cased. Using Eq.s4d, we have for this case

S=E d3rF 1

C2S ucs1du2

2
¹ us1d +

ucs2du2

2
¹ us2d

+
ucs3du2

2
¹ us3d − eC2AD2

+
ucs1du2ucs2du2

2C2 f¹sus1d − us2ddg2

+
ucs1du2ucs3du2

2C2 f¹sus1d − us3ddg2

+
ucs2du2ucs3du2

2C2 f¹sus2d − us3ddg2 + Vshcsadjd +
1

2
s¹ 3 Ad2G .

s52d

Here, we have definedC2= ucs1du2+ ucs2du2+ ucs3du2. In the re-
gime of short penetration length, the combination of phase
gradients which is coupled to the gauge fieldA can be
gauged away at length scales of the order of the penetration
length l=1/eC. The remaining gradient terms for the neu-
tral modes are given by

Sn =E d3rF ucs1du2ucs2du2

2C2 f¹sus1d − us2ddg2

+
ucs1du2ucs3du2

2C2 f¹sus1d − us3ddg2

+
ucs2du2ucs3du2

2C2 f¹sus2d − us3ddg2G . s53d

This action could be inferred also directly from Eq.s11d. For
the caseN=3, we write the action in the vortex representa-
tion as

SV = o
q

o
h=1

3

o
a=1

3

2p2bucsadu2mq
sadS lshd

uQqu2 + m0
2

+
da,h − lshd

uQqu2 Dmq
shd, s54d

which when written out takes the form

SV

2p2b/C2 = o
q
Hsoa

ucsadu2mq
sadd · soh

ucshdu2m−q
shdd

uQqu2 + m0
2

+
ucs1du2ucs2du2smq

s1d − mq
s2dd · sm−q

s1d − m−q
s2dd

uQqu2

+
ucs1du2ucs3du2smq

s1d − mq
s3dd · sm−q

s1d − m−q
s3dd

uQqu2

+
ucs2du2ucs3du2smq

s2d − mq
s3dd · sm−q

s2d − m−q
s3dd

uQqu2
J .

s55d

The three last terms in Eq.s55d are nothing but the vortex
representation of Eq.s53d. Notice also how all cross terms
between different vortex species cancel out for arbitrary bare
phase stiffnesses whenm0

2=0.
Thus, for the caseN=3, we have three phase variables

yielding three neutral gauge invariant combinations of phase
differences. This amounts to two true neutral modes, the re-
maining degree of freedom is associated with the composite
charged mode, which absorbsA and yields a massive vector
field via the Higgs mechanism. If all three bare phase stiff-
nessesucs1du, ucs2du, and ucs3du are different, this yields one
charged inverse 3Dxy critical point where the Meissner ef-
fect sets in, and two neutral 3Dxy critical points at lower
temperatures, all separate. Consider nowucs1du= ucs2du
, ucs3du. Then the charged mode proliferates at the highest
critical temperature where the Meissner-effect sets in, and
the two neutral modes proliferate simultaneously at a lower
temperature. The highest transition is still an inverted 3Dxy
transition, the lower one is a neutral 3Dxy critical point.Note
how this is dramatically different from the case N=2, when
the original neutral3Dxy critical point was collapsed on top
of the inverted3Dxy critical point, resulting in a new uni-
versality class of the phase transition, essentially due to the
self-duality of the N=2 system. It is also evident that collaps-
ing a neutral and a charged fixed point is quite different from
collapsing two neutral fixed points.

For the caseucs1du= ucs2du, ucs3du, in terms of the masses of
A and the two dual gauge fields associated with the neutral
modes,mA is nonzero below theuppercritical temperature,
while the two dual gauge fields become massive above the
lower critical temperature. In this case, the degenerate lower
critical point is therefore a 3Dxy critical point, while the
upper critical point is an inverted 3Dxy critical point.

A further interesting possibility is to setucs1du, ucs2du
= ucs3du. Consider the masses ofA and the two dual gauge
fields associated with the neutral mode in this case. At the
lower critical temperature, one neutral vortex mode prolifer-
ates in a 3Dxy transition, generating a mass to the dual gauge
field sthus breaking one dual gauge symmetryd. This mode is
therefore dual-higgsed out of the problem at higher tempera-
tures. The gauge fieldA becomes massivebelow the upper
critical temperature, while the dual gauge field associated
with the remaining neutral mode becomes massiveabovethe
same upper critical temperature. Hence, the situation at the
upper critical point corresponds precisely to the caseN=2,
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ucs1du= ucs2du, for which we have already seen that a non-3Dxy
critical point emerges. When all bare stiffnesses are equal,
ucs1du= ucs2du= ucs3du, all three fixed point collapse. We present
MC simulations for the three cases given in Table. I, of
which the caseucs1du, ucs2du, ucs3du is the most pertinent to
mixtures of superconducting condensates of for instance hy-
drogen and deuterium, or hydrogen and tritium.

A. Critical exponents a and n, zc„1…z, zc„2…z, zc„3…z

MC simulations are performed for aN=3 system with
bare phase stiffnessesucs1du2=1/3, ucs2du2=2/3, ucs3du2=4/3
and system sizesL=4,6,8,10,12,14,16. Wesample the
second moment of the action Eq.s11d and find three anoma-
lies for temperaturesTc1, Tc2, andTc3, which from FSS are
found to beTc1=0.98,Tc2=1.92, andTc3=3.63.

From a FSS analysis of the third moment of the action, we
have measured the critical exponentsa andn. The FSS plots
are given in Fig. 6. We finda=−0.03±0.02 and n
=0.65±0.02 forTc1, a=−0.02±0.02 andn=0.66±0.01 for
Tc2, and a=−0.01±0.03 andn=0.69±0.02 forTc3. These
values are consistent with the values for the 3Dxy and the
inverted 3Dxy universality classes.

B. Vortex correlator, Higgs mass, and anomalous scaling
dimension, zc„1…z, zc„2…z, zc„3…z

In the Higgs phase, we expect the gauge field correlator
GAsqd in Eq. s24d to scale according to theAnsatzEq. s48d.
For each coupling we fitGAsqd−1 from the MC simulations
for system sizesL=8,12,20 andestimate the gauge field
massmA.

The results for the vortex correlatorGs+dsqd in Eq. s25d
and the Higgs mass Eq.s49d are given in Fig. 7. Note how
theq dependence ofGs+dsqd changes when the temperature is
varied from above to belowTc3 from Gs+dsqd,const to
Gs+dsqd,q2, respectively. Note also how theq behavior of
the vortex correlator remains unchanged when the tempera-
ture is varied throughTc2 and Tc1, i.e., it remainsGs+dsqd

,q2. This reflects the fact that the fieldA has been higgsed
out of the problem atTc3 such that the vortex tangle is in-
compressible below this temperature. From Eq.s49d it is
therefore clear that a Higgs mass is generated atTc3 by the
establishing of a charged superconducting mode. Moreover,
when the two additional neutral superfluid modes are estab-
lished atTc2 andTc1, this adds to the total superfluid density
and hence leads to kinks in the London penetration length
and therebymA.

Precisely atTc3, mA vanishes, and the scalingAnsatz
given by Eq.s51d may be used to extracthA. From Fig. 7 and
Gs+dsqd at Tc3, we extracthA =1, from which we conclude
that the critical point atTc3 is an inverted 3Dxy critical point.
Likewise, from theGs+dsqd,q2 behavior atTc1 and Tc2 we
conclude that these two critical points featurehA =0 and
hence represent 3Dxy critical points.

C. Critical exponents a and n, zc„1…z= zc„2…z, zc„3…z

MC simulations have been performed for aN=3 system
with bare phase stiffnessesucs1du2= ucs2du2=1/2 and ucs3du2
=4/3 andsystem sizesL=4,6,8,10,12,14,16. Bymeasur-

FIG. 6. FSS of the peak to peak value of the third moment of
actionDM3 for N=3 with ucs1du2=1/3, ucs2du2=2/3, ucs3du2=4/3 la-
beled smd, snd, and sPd, for Tc1, Tc2, and Tc3, respectively. The
scaling of the width between the peaksDb ssd, sjd, and labeled
shd, for Tc1, Tc2, andTc3, respectively. The lines are power law fits
to the data forL.6 used to extracta andn.

FIG. 7. Results for the vortex correlator Eq.s25d, and the Higgs
mass Eq.s49d for the caseucs1du2=1/3,ucs2du2=2/3,ucs3du2=4/3.
The upper panel showsGs+dsqd as a function ofuQqu for seven
temperatures starting from above: Above and close toTc3, above
and close toTc2, above and close toTc1, and belowTc1. AboveTc3,
the vortices are seen to have condensed,Gs+dsqd,const while for
all temperatures belowTc3, including above and belowTc1 andTc2,
Gs+dsqd,q2 for smallq. The lower panel shows the Higgs mass as
a function of temperature, showing the onset of Meissner effect at
Tc3, and the additional anomalies atTc1 andTc2 due to the appear-
ance of additional neutral modes at these temperatures.
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ing the second moment of the action Eq.s11d we find two
anomalies for the temperaturesTc1 andTc2, which from FSS
are found to beTc1=1.46 andTc2=3.63. From a FSS analysis
of the third moment of the action we have measured the
critical exponentsa andn. The FSS plots are given in Fig. 8.
We find a=−0.03±0.02 andn=0.65±0.02 forTc1, anda=
−0.03±0.03 andn=0.68±0.02 forTc2. These values are con-
sistent with the values for the 3Dxy and the inverted 3Dxy
universality classes.

D. Vortex correlator, Higgs mass, and anomalous scaling
dimension, zc„1…z= zc„2…z, zc„3…z

Like the previous case, we extract the gauge field mass by
fitting the gauge field correlators for smallq to the Ansatz
Eq. s48d for system sizesL=8,12,20.

The results for the vortex correlatorGs+dsqd in Eq. s25d
and the Higgs mass defined in Eq.s49d are given in Fig. 9.
Note how theq dependence ofGs+dsqd changes when the
temperature is varied from above to belowTc2=3.63 from
Gs+dsqd,const toGs+dsqd,q2, respectively. Note also how
the q behavior of the vortex correlator remains unchanged
when the temperature is varied throughTc1=1.46, i.e., it re-
mainsGs+dsqd,q2. This reflects the fact that the fieldA has
been higgsed out of the problem atTc2=3.63 such that the
vortex tangle is incompressible below this temperature. From
Eq. s49d it is therefore clear that a Higgs mass is generated at
Tc2 by the establishing of a charged superconducting mode.
Moreover, when the two additional neutral superfluid modes
are established atTc2 this adds to the total superfluid density
and hence leads to a kink in the London penetration length
and therebymA.

Precisely at the charged transitionTc2, mA vanishes and
we find the gauge field correlator has the formGs+dsqd
,uqu2−hA. From theGs+dsqd data in Fig. 9 we extracthA =1,
from which we conclude that the critical point atTc2 is an
inverted 3Dxy critical point. Likewise, from the behavior of
Gs+dsqd,q2 at Tc1 conclude that this critical point features
hA =0 and hence represents a 3Dxy critical point.

E. Critical exponents a and n, zc„1…z= zc„2…z= zc„3…z

MC simulations are performed for aN=3 system with
equal bare phase stiffnessesucs1du2= ucs2du2= ucs3du2=7/9 and

FIG. 8. FSS of the peak to peak value of the third moment of
action DM3 for N=3 for ucs1du2= ucs2du2=1/2 and ucs3du2=4/3, la-
beledsmd, andsPd, for Tc1 andTc2, respectively. The scaling of the
width between the peaksDb labeledssd, sjd, for andTc1 andTc2,
respectively. The lines are power law fits to the data forL.6 used
to extracta andn.

FIG. 9. Results for the vortex correlator Eq.s25d, and the Higgs
mass Eq.s49d for the caseucs1du2= ucs2du2=1/2 anducs3du2=4/3. The
upper panel showsGs+dsqd as a function ofuQqu for five tempera-
tures starting from above: Above and close toTc2, above and close
to Tc1, and belowTc1. Above Tc2, the vortices are seen to have
condensed,Gs+dsqd,const while close toTc2, Gs+dsqd,uqu. For all
temperatures belowTc2, including above and belowTc1, Gs+dsqd
,q2 for small q. The lower panel shows the Higgs mass as a
function of temperature, showing the onset of Meissner effect at
Tc2, and an additional anomaly atTc1 due to the appearance of
additional neutral modes at this temperature.

FIG. 10. FSS of the peak to peak value of the third moment of
action DM3 for N=3 for ucs1du2= ucs2du2= ucs3du2=7/9 labeledsmd.
The scaling of the width between the peaksDb labeledssd. The
lines are power law fits to the data forL.6 used to extracta andn.
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system sizesL=4,6,8,10,12,14,16.From measurements of
the second moment of the action Eq.s11d we find one
anomaly for temperature theTc, which from FSS is found to
beTc=2.19. From a FSS analysis of the third moment of the
action we have measured the critical exponentsa andn. The
FSS plots are given in Fig. 10. We finda=0.02±0.03 and
n=0.59±0.02. The values appear not to agree with hyper
scaling. They arenot consistent with the 3Dxy universality
class.

The above values fora andn are however in agreement
with those found for the caseN=2, ucs1du= ucs2du. We observe,
based on the numerical results for the two casesN=2,
ucs1du= ucs2du and N=3, ucs1du= ucs2du= ucs3du compared to the
other cases that we have considered, that collapsing two neu-
tral critical points in the 3Dxy universality class leads to a
single critical point also in the 3Dxy universality class. On
the other hand, it appears that collapsingN−1 neutral critical
points in the 3Dxy universality classand one charged fixed
point in the inverted3Dxy universality class leads to an
N-fold degenerate single critical point in a universality class
swhich in principle depends onNd which is not that of the
3Dxy or inverted 3Dxy type. ForN=2, we may define the
universality class as that of a 3D self-dualUs1d3Us1d gauge
theory.

F. Vortex correlator, Higgs mass, and anomalous scaling
dimension, zc„1…z= zc„2…z= zc„3…z

We extract the gauge field massmA by fitting the gauge
field correlators for smallq to theAnsatzEq. s48d for system
sizesL=8,12,20,32.

The results for the vortex correlatorGs+dsqd in Eq. s25d
and the Higgs mass defined in Eq.s49d are given in Fig. 11.
Note how theq dependence ofGs+dsqd changes when the
temperature is varied from above to belowTc=2.20 from
Gs+dsqd,const toGs+dsqd,q2, respectively. From Eq.s49d it
is therefore clear that a Higgs mass is generated atTc=2.19
by the establishing of a charged superconducting mode.
From Gs+dsqd measurements atTc we find the anomalous
scaling dimension to behA =1.

G. General N

The critical properties of theN-component system are
governed solely by excitations of vortex loops with frac-
tional flux. That is, in theN=2 case,Tc1 is governed by
proliferation of the vortex loops with phase windings
sDus1d=2p ,Dus2d=0d, while Tc2 marks the onset of prolifera-
tion of the loops of vortices with windingssDus1d=0,Dus2d

=2pd. Remarkably, for generalN, below the temperature
TcN−1, whereTc1, ¯ ,TcN−1,TcN, topological excitations
with nontrivial windings only in one phase has a logarithmi-
cally divergent energy.12,19 Moreover, the composite vortex
loops sDus1d=2p ,Dus2d=2pd which in contrast have finite
energy per unit length, do not play a role as far as critical
properties are concerned.

For the caseN=2, the critical point atTc2.Tc1 is a
charged fixed point. Proliferation of the vortex loopssDus1d

=2p ,Dus2d=0d at Tc1 eliminates the neutral mode. On the
other hand, the composite vorticessDus1d=2p ,Dus2d=2pd do

FIG. 11. Results for the vortex correlator Eq.s25d, and the
Higgs mass Eq.s49d for the caseucs1du2= ucs2du2= ucs3du2=7/9. The
upper panel showsGs+dsqd as a function ofuQqu for temperatures
above and close toTc, and belowTc. Above Tc, the vortices have
condensed,Gs+dsqd,const. BelowTc, Gs+dsqd,q2 for smallq. The
lower panel shows the Higgs mass as a function of temperature,
showing the onset of Meissner effect atTc.

FIG. 12. sColor onlined Phase transitions in theN-flavor London
superconductor with different bare stiffnesses of theN order param-
eter components. The green line is the gauge field massmA. At the
highest temperature the system becomes superconducting via a
phase transition in the inverted 3Dxy universality class. At the
lower transitions the system develops composite neutral superfluid
modes in the superconducting state via a series ofN−1 phase tran-
sitions, all in the 3Dxy universality class.
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not feature neutral vorticity at any temperature and thus can
be mapped onto vortices in aN=1 superconductor with bare
phase stiffnessucs1du2+ ucs2du2. A characteristic temperature of
proliferation of such vortex loops is higher thanTc2, which
excludes the composite vortices from the sector of critical
fluctuations in the system. The same argument applies to the
N.2 case.

Summarizing the previous two sections, the resulting
schematic phase diagram of theN-flavor London supercon-
ductor in the absence of external field is presented in Fig. 12.
Assuming the bare stiffnesses have been chosen to have well
separated bare energy scales associated with the twist of
phases of every flavor, we findN distinct critical points. At
the highest critical temperature, the charged vortex mode
condenses and the gauge field acquires a mass, driving the
system into a superconducting phase. For lower critical tem-
peratures, neutral vortex loops condense and the system de-
velops superfluid modes. Hence, in zero magnetic field there
areN−1 superfluid modes arising in a superconducting state.

VII. N=2 SYSTEM IN AN EXTERNAL MAGNETIC FIELD,
LATTICE AND SUBLATTICE MELTING, AND

METALLIC SUPERFLUIDITY

We next discuss the situation when the system is sub-
jected to an external magnetic field. Two important aspects
of the physics to be described below, aresid three dimension-
ality andsii d a significant difference in the bare stiffnesses of
the condensates. As discussed recently,20,21 when an external
magnetic field is applied to a three dimensional type-II
N-component superconductor, it changes its properties much
more dramatically than in the ordinaryN=1 case. The com-
posite charged vortices have finite energy per unit length and
couple to the magnetic field, and hence are relevant for mag-
netic properties. If the bare stiffnesses of the fields are dif-
ferent, the existence of composite purely charged vortices

results in a particularly rich phase diagram with several
novel phases and phase transitions. Note that in the follow-
ing two sections we denote a constituent vortex originating
in a 2p phase winding inusad a type-a vortex, where a
P f1, . . . ,Ng.

A. N=2 system in external field atT=0

In the presence of an external magnetic field, but in the
absence of thermal fluctuations, the formation of an Abriko-
sov lattice of noncomposite vortices is forbidden because
these defects have a logarithmically divergent energy,12,19cf.
discussion following Eq.s13d. In a type-IIN-component sys-
tem, the system forms a lattice ofcomposite vorticesfor
which Dusad=2p for every aP f1, . . . ,Ng. A schematic pic-
ture of the resulting lattice of composite vortices in anN
=2 superconductor is shown in Fig. 13. In the discussion
below we consider the type-II limit, but not extreme type-II
since the interaction between vortices of different species is
depleted at the length scales smaller than the penetration
length, cf. Eq.s12d and the discussion following Eq.s13d. We
do not discuss effects of this depletion assuming a moder-
ately short penetration length scale.

B. Effects of low-temperature fluctuations on field-induced
composite vortices

In this subsection, we will consider the effects of thermal
fluctuations, and how it affects the Abrikosov vortex lattice
of composite vortices defined above.

FIG. 13. sColor onlined A type-II, N=2 system at zero tempera-
ture in external magnetic field forms a lattice of composite Abriko-
sov vortices. A composite vortex may be viewed as cocentered
type-1 sredd and type-2sblued vorticessDus1d=2p ,Dus2d=2pd.

FIG. 14. sColor onlined Low-temperature fluctuations in theN
=2 system subjected to a magnetic field. Thermal fluctuations gen-
erate closed loops of composite fractional flux vortices andlocal
splitting of field-induced composite vortex lines. The type-1 vorti-
ces sredd are the vortices of the component with the lowest bare
phase stiffness. When these vortices are viewed as world lines of
bosons, they constitute the “lighter” of the vortex species. These
“light” vortices fluctuate more strongly than the “heavier” type-2
vorticessblued.
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1. Thermal generation of looplike splitting of line vortices

At finite temperature, theN-component system subjected
to a magnetic fieldB will exhibit thermal excitations in the
form of vortex loops with fractional flux similar to theB
=0 discussion in the first part of this paper. We observe that
since the field-induced composite vortices are logarithmi-
cally bound,12,19 thermal fluctuations will induce alocal
splitting of composite vorticesin a configuration of two half-
loops connected to a straight line20,21 as shown in Fig. 14.
We observe that every branch of a “split loop” formed on a
field-induced vortex line features neutral as well as charged
vorticity. The interaction between these two branches is me-
diated by a neutral vortex mode exclusively associated with
the phase differenceg=us1d−us2d. The screened charged
modedoes not contribute to the interaction between the two
branches. This is implicit in Eq.s12d as follows. The vortex
segments of different flavors do not interact at short dis-
tances much smaller thanl=m0

−1, where the charge, orm0
2

appearing in the interaction matrix Eq.s12d, can be ignored.
On such length scales, the screened part of the interaction
matrix is essentially unscreened, and is canceled by the in-
terflavor interaction, which is unscreened on all length
scales. Hence, as also discussed in Sec. II, the intravortex
interaction is strongly reduced at length scales smaller than
l.

Moreover, in terms of the fieldg=us1d−us2d, two split
branches of a composite field-induced vortex have opposite
vorticities sDg=2p on one branch andDg=−2p on another
branchd. On the other hand, such a loop emits two integer
flux vortices at its top and bottom, which donot feature
neutral vorticity. So the process of such a thermal local split-
ting of a field-induced line may be mapped onto a thermally
generated proliferation ofclosedvortex loops in the artificial
phase fieldg as those in the neutralN=1 model in absence of
magnetic field.30,31 Hence, somewhat counterintuitively such
a splitting transition should be in the 3Dxy universality
class.20,21 This transition, being topological in its origin,
should not be confused with the topological Kosterlitz-
Thouless transition known to occur in planar systems.

2. Melting

Apart from the splitting of composite vortices and genera-
tion of closed vortex loops, the thermal fluctuations will pro-
duce one more competing process. That is, the lattice of
composite vortices can be mapped onto an ordinary vortex
lattice in a one-component superconductor. Sufficiently
strong thermal fluctuations drivea first-order melting transi-
tion of the field-induced Abrikosov lattice.31,36,48A counter-
part to this effect for the caseN=2 when ucs1duÞ ucs2du is
much more complicated. We next consider this process in the
regimes of low and high magnetic fields, separately.

C. Sublattice melting in low magnetic fields

Consider the case of weak magnetic fieldsmuch smaller
than the upper critical magnetic field for which superconduc-
tivity is essentially destroyedd for the situation whereucs1du
! ucs2du. Introducing a characteristic temperature associated
with a melting of the type-2 vortex lattice in the absence of

the condensateC0
s1d, then at sufficiently low magnetic field

this melting temperature will be much higher than the char-
acteristic temperature of thermal decomposition of a com-
posite vortex line into two individual vortex lines. Thus, the
first transition that would be encountered upon heating the
system, is the thermal splitting of field-induced composite
vortices into separate type-1 and type-2 vortices. This would
be accompanied by a proliferation of closed loops of type-1
vortices,while the vortices of type-2 will remain arranged in
a lattice. We will denote this phase transition assublattice
melting.20,21 The critical temperature of this phase transition
is denotedTSLM ssee Fig. 18d. A schematic picture of the
sublattice vortex liquid is given in Fig. 15. As discussed
above, upon thermal decomposition of the composite vorti-
ces, the emerging individual vortices can be mapped onto
positively and negatively electrically charged strings which
logarithmically interact with each other.

Quite remarkably, the Abrikosov lattice order for the com-
ponent with the highest phase stiffness survives the decom-
position transition, for the following reason. The dominant
interaction between individual vortices is the long-ranged in-
teraction mediated by neutral vorticity; cf. Eq.s12d. This
permits a mapping of such vortices onto positively and nega-
tively charged strings. Upon thermal decomposition, the ef-
fective long-range Coulomb interaction mediated by the neu-
tral mode is screened without affecting the charged modes.
Consider the case whenucs1du! ucs2du. Then the stiffnessucs2du
is large enough to keep the type-2 vortices arranged in a
lattice while the stiffnessucs1du is too weak to constrain
type-1 vortices to the lattice. Thus the “light” type-1 vortex
lines are in their molten phase. This is the physical origin of
the sublattice melting process. The situation is illustrated in
Fig. 15. We emphasize that the existence of the regime of
sublattice melting follows from the fact that the stiffness of
the neutral mode, which keeps composite vortices bound at
low temperatures, is always smaller than the smallest stiff-
ness of the individual condensates, namely

Jneutral=
ucs1du2ucs2du2

ucs1du2 + ucs2du2
, ucs1du2. s56d

FIG. 15. sColor onlined A vortex liquid of type-1 vorticessredd
immersed in a background of a type-2 vortex latticesblued in the
N=2 system in the regimeucs1du! ucs2du. This is the type-1 vortex
sublattice melting. There is a temperature region in low magnetic
field when “light” vortices are decoupled and form a liquid. “Light”
vortex loops are proliferated, while “heavy” vortices form a lattice
immersed a liquid of “heavy” vortex loops. Both heavy and light
vortices carry only a fraction of magnetic flux quantum in this state.
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D. Composite vortex lattice melting in strong magnetic fields

It is known from theN=1 system that an increase in
magnetic field suppresses the melting temperature of the vor-
tex lattice.36 Thus, an important and characteristic feature of
the phase diagram of theN=2 system is that the composite
vortex lattice melting curve should at some point cross the
decomposition curve. Thus, the phase diagram should feature
a composite vortex liquid phase in the low-temperature,
high-magnetic field corner. A schematic picture of this phase
is given in Fig. 16. However, the physics near the upper
critical field is outside the scope of the present paper.

E. Vortex line plasma in the N=2 model

If the temperature is raised either at strong or weak mag-
netic fields, a situation arises where all field-induced com-
posite vortices are decomposed and disordered. In addition,
closed loops have proliferated.30,31,36A schematic picture of
this state is shown in Fig. 17. The resulting phase diagram of
the N=2 GL model featuring the various transitions de-
scribed above, is shown in Fig. 18.

F. Physical interpretation of the external field-induced phases
of the N=2 model

We next discuss the physical interpretation of the various
phases that appear as a result of the above described vortex
matter transitions. The resulting phases, which exhibit some
quite unusual properties, come about as a result of the inter-
play between the topology of the system and thermal fluc-
tuations. This is rather remarkable, given the three-
dimensionality of the systems we consider.

1. Vortex lattice melting and the disappearance
of superconductivity

Consider first the melting transition of an interacting en-
semble of composite Abrikosov vortices. This phase transi-
tion, which is of first order,48 corresponds to the linesTM

c sBd
and TM

2 sBd shown in Fig. 18. It is only the gauge-charged
mode that couples to the external field, while the neutral
mode does not. The charged mode at low temperature forms
an Abrikosov vortex lattice with a melting temperature that is
suppressed with increasing magnetic field.36,49–51The melt-
ing temperature of the Abrikosov vortex lattice can be sup-
pressed below the temperature where the neutral mode pro-
liferates and where the composite vortex lines decompose.
For N=1, it is known that when the Abrikosov lattice melts,
superconductivity is lost also along the direction of the mag-
netic field.31,52The situation in theN=2 model is much more
complex, since then there still exists a superfluid modesthe
gauge neutral moded which is decoupled from external mag-
netic field. Thus, upon melting of the Abrikosov lattice we
arrive at emergent effective neutral superfluidity existing in a
system of charged particles.20 This is a genuinely new state
of condensed matter, and moreover one which should be re-
alizable in liquid metallic states of light atoms at in principle
experimentally accessible pressures in the range of
400 GPa.20,9

FIG. 16. sColor onlined Liquid of composite vortices in theN
=2 model immersed in a liquid of nonproliferated vortex loops. It is
realized forucs1du! ucs2du in strong magnetic fields.

FIG. 17. sColor onlined Plasma of fractional vortices in theN
=2 model in the regimeucs1du! ucs2du at high temperatures.

FIG. 18. sColor onlined A schematic phase diagram of different
phases of vortex matter and phase transition lines in theN=2 model
in the regimeucs1duÞ ucs2du. At temperaturesTM

c , TM
2 , andTSLM the

melting of the composite vortex lattice, the sublattice of heavy vor-
tices and the sublattice of the light vortices occurs, respectively. At
TLP the composite vortices decompose. The temperaturesTL

1 andTL
2

denote temperatures where a phase transition via a proliferation of
vortex loops would take place in the absence of a magnetic field in

models with bare phase stiffnessesuc̃sadusTd equal to ucsadusB,Td
swherea=1,2d, if the effect of a magnetic were to be taken into
account only via the depletion of the modulus of the order
parameter.
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So in the absence of an external magnetic field, the sys-
tem thermally excites only fractional flux vortices in the
forms of loops, with phase windings only in individual con-
densates, and these fluctuations are responsible for critical
properties. In contrast, the purely charged vorticessi.e., the
composite one-flux-quantum vortices with no neutral super-
flowd are not relevant in the absence of external field and the
system is either a superconductorsbelowTc2d or a supercon-
ductor with neutral modesbelow Tc1d. Thus the effect of a
sufficiently strong magnetic field essentially inverts the tem-
peratures of the transitions by melting the lattice of charged
modes at TM

c sBd while leaving neutral modes intact.
The phase transition from asuperconducting superfluid

phase where the neutral mode is superfluidand the Abriko-
sov vortex lattice is intact such that longitudinal supercon-
ductivity sparallel to the magnetic fieldd exists,31,52 to a me-

tallic superfluid phase where the system is superfluid, but
longitudinal superconductivity is lost due to the melting of
the vortex lattice, can be mapped onto a lattice melting tran-
sition in the N=1 model, because it is governed only by
composite vortices and neutral modes are not involved. Thus
it is a first order phase transition.36,48

2. Decomposition. The disappearance of superfluidity

Analogously, the physical meaning of the sublattice melt-
ing transitionTSLM ssee Fig. 18d is a transition from asuper-
conducting superfluidto an ordinary one-gap supercon-
ductor, because a disordering of the phaseus1d destroys the
massless neutral boson associated with the gauge invariant
phase differenceus1d−us2d.

If we heat the system further, the ordinary superconduc-
tivity will disappear via disordering of the phaseus2d when
we reach the melting transition of the remaining sublattice of
“heavy” vortices atTM

2 .
The system features one more phase transition. That is a

transition from the metallic superfluid to a normal fluid,
which has a purely topological origin. That is, from the vor-
tex matter point of view, this manifests itself as a decompo-
sition of a liquid of composite vortices to a “plasma” of
individual vortices at the characteristic temperatureTLP, and
such a transition has no counterpart in anN=1 supercon-
ductor. A schematic diagram of the resulting physical phases
is shown in Fig. 19.

3. A direct SSF\NSF transition

We note also the possibility of an existence of a phase
transition directly from a superconducting superfluidsSSFd
to a metallic normal fluidsNFd, shown in Fig. 20. What is
remarkable is that this resemblesswhile indeed being a dif-
ferent type of transitiond the type of direct phase transition
from a low temperature phase with Higgs mass and super-
fluid density of the neutral mode, to a phase with zero Higgs
mass and zero helicity modulus of the neutral mode that we
would find in zero magnetic field when the bare phase stiff-
nesses of Eq.s1d are equal, i.e.,ucs1du= ucs2du.5,6,19 The SSF
phase features one massless dual Higgs photon, and one
massive Higgs photon while the NF phase features one mass-
less photon and one massive dual Higgs photon. These
phases are thereforeself-dual, in analogy to the situation
encountered when Eq.s1d is viewed as a quantum antiferro-
magnet with easy-plane anisotropy.5,6 However, there is a

FIG. 19. sColor onlined A schematic phase diagram of physical
states appearing in theN=2 model in the regimeucs1duÞ ucs2du as a
consequence of vortex matter phase transitions. Increasing the mag-
netic field suppresses the melting transition of the composite vortex
lattice formed by the charged mode below the proliferation line for
the neutral mode, which does not couple to magnetic field. In the
absence of disorderspinning of vorticesd, superconductivity only
remainsalong the direction of the magnetic field, provided that the
vortex system remains in a lattice phase. When the composite vor-
tex lattice melts, the system looses ability to carry dissipationless
charge currents, but at large enough magnetic field, the neutral
mode should still be superfluid above the melting temperaturesRef.
20d. Thus we have a first order phase transition from asupercon-
ducting superfluid to a metallic superfluid. The neutral mode pro-
liferates through a second order phase transition in the 3Dxy uni-
versality class. Therefore, at large enough magnetic fields, a 3Dxy
anomaly in the specific heat should appear inside the vortex liquid
phase. The separation between the first order specific heat anomaly
due to vortex lattice melting and the 3Dxy anomaly due to loop
proliferation should increase with increasing magnetic field. At low
magnetic fields one has another phase transition inside the Abriko-
sov vortex lattice phase, from asuperconducting superfluid to a
one-gap (“ordinary”) superconducting state.

FIG. 20. sColor onlined A direct phase transition from SSF to
NF phasesshown with red arrowd.
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significant difference. The critical point encountered in the
case of the quantum antiferromagnet was a result of a super-
position of a 3Dxy and an inverted 3Dxy critical point. In the
2-flavor London model in finite magnetic field, the crossing
point is a superposition between a 3Dxy critical line and first
order phase transition line, so it should have a different char-
acter than the self-dual critical point discussed in Ref. 5. It
can, however, not be a 3Dxy or inverted 3Dxy critical point,
since neither of these are critical points between self-dual
phases.

Thus, both for high and low magnetic fields we have
genuinely different physics in that for a three-dimensional
systemsid a critical phenomenon takes place inside either the
vortex liquid phaseshigh magnetic fieldsd or the vortex lat-
tice phaseslow magnetic fieldsd, andsii d we have three new
equilibrium states which have no counterpart in theN=1
case. Moreover, by the discussion given above, it is clear that
the crossing point between the vortex lattice melting line and
the neutral mode proliferation line warrants further study.
This is best left for a computational analysis, to which we
now turn briefly.

G. Monte Carlo results, finite magnetic field,N=2

We now present large-scale MC results for the caseN
=2 in finite magnetic field at low magnetic fields when the
temperature is varied.21 We consider the model based on Eq.
s1d for N=2 on anL3 lattice swith L up to 96d with periodic
boundary conditions for coupling constantsucs1du2=0.2,
ucs2du2=2, ande2=1/10. The ratioucs2du2/ ucs1du2=10 brings
out one second order phase transition atTSLMsBd in the 3Dxy
universality class well below the melting temperatureTM

2 of
the vortex lattice. In LMH ucs2du2/ ucs1du2<2000, but the
physical picture remains. For real estimates ofTSLM andTM

2

in LMH, see Ref. 2. The Metropolis algorithm with local
updating is used in combination with Ferrenberg-Swendsen
reweighting. The external magnetic fieldB studied isBx

=By=0, Bz=2p /32, thus there are 32 plaquettes in thesx,yd
plane per flux quantum. This is imposed by splitting the
gauge field into a static partA0 and a fluctuating partA fluct.
The former is kept fixed tofA0

x ,A0
ysr d ,A0

zg=s0,2pxf ,0d
where f =1/32 is themagnetic filling fraction, on top of
which the latter field is free to fluctuate. Together with peri-
odic boundary conditions onA fluct, the constraintrCsA0

+A fluctddl =2pfL2, whereC is a contour enclosing the system
in the sx,yd plane, is ensured. It is imperative to fluctuateA,
otherwise type-1 and type-2 vortices do not interact.12,19 To
investigate the transition atTSLM we have performed finite
size scalingsFSSd of the third moment of the action. The
simulations are done by using vortices directly,19 but with a
finite magnetic inductionBz=2p /32.

We compute the specific heatCV and the third moment of
the action. To probe the structural order of the vortex system
we compute the planar structure functionSsadsk'd of the lo-
cal vorticity nsadsr d=s¹3 f¹usad−eAgd /2p, given by

Ssadsk'd =
1

sfL3d2KUo
r

nz
sadsr deik'·r 'U2L , s57d

wherer runs over dual lattice sites andk' is perpendicular
to B. This function will exhibit sharp peaks for the charac-

teristic Bragg vectorsK of the type-a vortex lattice and will
feature a ring-structure in its corresponding liquid of type-a
vortices. The signature of vortex sublattice melting will be a
transition from a sixfold symmetric Bragg-peak structure to a
ring structure inSs1dsK d while the peak structure remains
intact inSs2dsK d. Furthermore, we compute thevortex cocen-
tricity Nco of type-1 and type-2 vortices, defined asNco
;Nco

+ −Nco
− , where

Nco
± ;

or
unz

s2dsr dudnz
s1dsr d,±nz

s2dsr d

or
unz

s2dsr du
, s58d

wheredi,j is the Kronecker delta. The reason for considering
Nco is that we then eliminate the effect of random overlap of
vortices in the high-temperature phaseT.TSLM due to

FIG. 21. sColor onlined MC results for N=2 ucs1du2=0.2,
ucs2du2=2, ande=1/Î10. Panelsad: CV sblackd andNco sgreend. The
CV anomaly at TSLM=0.37, where type-1 vortices proliferate,
matches the point at whichNco drops to zero. Thus type-1 vortices
are torn off type-2 vortices. The remnant of the zero-field anomaly
in CV is seen as a hump atT,3.6. Panelsbd: Ss1dsK d sredd and
Ss2dsK d sblued for the particular Bragg vectorK =sp /4 ,−p /4d.
Ss1dsK d vanishes continuously atTSLM, while Ss2dsK d vanishes dis-
continuously atTM

2 =2.34. Panelscd: FSS plots of theM3 from
which the exponentsa=−0.02±0.05 andn=0.67±0.03 is extracted,
showing that the sublattice melting is a 3Dxy phase transition. Pan-
els sdd, sed, sfd, and sgd: plots of Ss2dsk'd for the temperaturesTd

=0.35,Te=0.4, Tf =1.66, andTg=2.85, respectively. AtTd, Te, and
Tf, the vortex lattice remains intact. The vortex lattice melts atTM

2

to give a vortex liquid ring pattern atTg.
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vortex-loop proliferation, and focus on thecompositenessof
field-induced vortices.

The quantityNco is the fraction of type-2 vortex segments
that are co-centered with type-1 vortices, providing a mea-
sure of the extent to which vortices of type-1 and type-2
form a compositevortex system. Hence, it probes the split-
ting processes visualized in Fig. 14. The results are shown in
Fig. 21.

At TSLM, CV has a pronounced peak associated with the
3Dxy transition, and a broader less pronounced peak which
is the finite field remnant of the zero-field inverted 3Dxy
transition.36 Scaling ofM3 at TSLM shown in the inset c in
Fig. 21 yields the critical exponentsa=−0.02±0.05 andn
=0.67±0.03 in agreement with the 3Dxy universality class.
A novel result is thatSs1dsK d vanishescontinuouslyas the
temperature approachesTSLM from below, precisely the hall-
mark of the decomposition transition that separates the two
types of vortex states depicted in Figs. 14 and 15. A related
feature is thevanishingof Nco at TSLM as a function of tem-
perature, discussed in detail below. The first-order melting
transition takes place atTM

2 , whereSs2dsK d vanishes discon-
tinuously. This is the temperature at which the translational
invariance is restored through melting of the type-2 vortex
lattice. In the temperature intervalT,TSLM the system fea-
tures superconductivity and superfluidity simultaneously,20

since there is long-range order both in the charged and the
neutral vortex modes. In the temperature intervalTSLM,T
,TM

2 long-range order in the neutral mode is destroyed by
loop-proliferation of type-1 vortices, hence superfluidity is
lost.20 However, longitudinal one-component superconduc-
tivity is retained along the direction of the external magnetic
field. ForT.TM

2 superconductivity is also lost, hence this is
the normal metallic state, which is a two-component vortex
liquid.

The most unusual and surprising feature is the continuous
variation ofSs1dsK d with temperature, even atTSLM where it
vanishes. The explanation for this is the proliferation of
type-1 vorticesswhich destroys the neutral superfluid moded
in the background of a composite vortex lattice, which the
type-1 vortices essentially do not see; cf. Fig. 22. As far as
the composite neutral Bose fieldus1d−us2d is concerned,it is

precisely as if the composite vortex lattice were not present
at all. Hence,Ss1dsK d vanishes for a completely different
reason thanSs2dsK d, namely due tocritical fluctuations, i.e.,
vortex-loop proliferationin the condensate component with
lowest bare stiffness. Such a phase transition does not com-
pletely restore broken translational invariance associated
with a vortex lattice, since for the type-2 vorticesquite re-
markably, the vortex lattice order survives the decomposition
transition, due to interaction between heavy vortices medi-
ated by charged modes. The vanishing ofNco is particularly
interesting, and finds a natural explanation within the frame-
work of the above discussion. That is, forT!TSLM, we have
Nco<1, so the vortex system consists practically exclusively
of composite vortices. As the temperature increases, thermal
fluctuations induce excursions such as those illustrated in in
Fig. 22, which reducesNco

+ from its low-temperature value,
reaching a minimum at TSLM and then increase for T
.TSLM.

We may view the splitting process as a type-1 closed vor-
tex loop superposed on a vortex lattice ofsslightlyd fluctuat-
ing composite vortices. An important point to notice is that a
type-a vortex does not interact with a composite vortex by
means of a neutral mode. This follows from a topological
argument that two split branches will feature nontrivial wind-
ing in the composite neutral fieldus1d−us2d, while a compos-
ite vortex line does not. Hence, the splitting transition may
be viewed asa type-1 vortex loop-proliferation in a neutral
superfluid. This is illustrated in Fig. 22. Thus, we may utilize
the well-known results for the critical properties of the 3Dxy
model for neutral superfluids described as a vortex-loop
proliferation.30,31,36 This “vortex sublattice melting” phase
transition is therefore in the 3Dxy universality class,30,31,36

not a first order melting transition. The resulting phase is one
where superfluidity is lost and longitudinal superconductivity
retained in the componentC0

s2d.
Conversely,Nco

− remains essentially zero untilTSLM, there-
after increasing monotonically. For temperatures above, but
close toTSLM, fluctuations in vortices originating inDus2d are
still small, so the variations inNco=Nco

+ −Nco
− reflect thermal

fluctuations in vortices originating inDus1d. The increase of
Nco

± means that type-1 vortex loops are thermally generated,
and thus tend torandomlyoverlap more with the moderately
fluctuating type-2 vortices. At their first order melting tran-
sition, type-2 vortices fluctuate only slightly.Thus the van-
ishing of Nco above TSLM reflects the increase in the density
of thermally generated type-1 vortex loops in the background
of a slightly fluctuating type-2 vortex lattice.

H. Graphical representation of phase disordering transitions
in the N=2 model

In Fig. 23 we present a schematic picture of configuration
of the order parameters phasesus1d andus2d in various points
in physical space, when vortex matter drives the system into
one of the above discussed superconducting and superfluid
states.

VIII. THE N.2 MODEL IN EXTERNAL MAGNETIC
FIELD

We next consider the new features that are encountered,
compared to theN=1 andN=2 cases, when anN.2 system

FIG. 22. sColor onlined Detailed illustration of the low-
temperature thermal fluctuations in a vortex lattice of composite
vortices. A local excursion of a type-1 vortex away from the com-
posite vortex lattice may be viewed as a type-1 bound vortex loop
superposed on the composite vortex lattice. The composite vortex
line does not interact with a vortex with nontrivial winding inDg
=Dsus1d−us2dd. A splitting of the composite vortex lattice may be
thus viewed as azero-fieldvortex-loop proliferation of type-1 vor-
tices; a 3Dxy phase transition universalitysRefs.30,31,36d.
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is subjected to an external magnetic field. These features are
due to the fact that we have more than one neutral vortex
mode, and that a vortex with phase winding in any single
phase fieldusad will excite N−1 neutral modesssee Appen-
dix Ad. We consider first the caseN=3, followed by the case
N=4. En route we introduce the useful concept of “color
charge” which facilitates a discussion of the universality
class of the phase transitions that occur in multicomponent
superconductors in external magnetic field when composite
vortices decompose due to thermal fluctuations.

A. Decomposition transitions,N=3

We stress that the system is not mapped onto afUs1dg3

neutral system because the neutral modes remain topologi-
cally coupled, as a consequence of multiple connectedness of
space introduced by the vortex core. It manifests itself in the
fact that anysingle phase variableusad; aP f1,2,3g excites
two neutral modes, as illustrated in detail below.

We introduce bare phase stiffnesses for the neutral modes
in Eq. s53d as follows:

J12 =
ucs1du2ucs2du2

C2 ,

J23 =
ucs1du2ucs3du2

C2 ,

J13 =
ucs2du2ucs3du2

C2 . s59d

Hence, a vortex with phase windingssDus1d=2p ,Dus2d

=0,Dus3d=0d, can be mapped onto two cocentered vortices
in a two-component neutral superfluid with bare stiffnesses
J12 and J13. Thus, at a distance larger than the penetration
length, such a vortex interacts with a vortexsDus1d

=−2p ,Dus2d=0,Dus3d=0d like two vortices in a neutral su-

perfluid with bare phase stiffnessJ̃=J12+J13.
Intravortex interaction, e.g., of the vortexsDus1d

=2p ,Dus2d=0,Dus3d=0d with a vortex sDus1d=0,Dus2d

=2p ,Dus3d=0d or with a vortex sDus1d=0,Dus2d=0,Dus3d

=2pd is more complicated. It can most conveniently be de-
scribed by introduction of the “color charge” concept, which
we explain in Sec. VIII B.

First, however, we observe that only a composite vortex
sDus1d=2p ,Dus2d=2p ,Dus3d=2pd has finite energy. The key
feature of a system withucs1duÞ ucs2duÞ ucs3du, is that the three
elementary constituent vortices are bound with different
strength to such a composite vortex. For example, when
ucs1du! ucs2du! ucs3du, the neutral modes excited by a vortex
sDus1d=2p ,Dus2d=0,Dus3d=0d have bare phase stiffnesses
sJ12,J13d!J23. This in turn implies that in the composite
vortex sDus1d=2p ,Dus2d=2p ,Dus3d=2pd, the constituent el-
ementary vortex sDus1d=2p ,Dus2d=0,Dus3d=0d is most
loosely bound. Thus, in contrast to theN=2 case, the effect
of thermal fluctuations forN=3 is a two step transition. In
the generalN case the process of stripping a composite vor-

FIG. 23. sColor onlined Phases of the order parameters in the
various states forN=2. In the upper left panel, bothus1d andus2d are
ordered, this is the superconducting superfluid state. In the upper
right panel, neither of the phasesus1d andus2d are ordered, however
the combinationus1d−us2d exhibits long-range order, this is the me-
tallic superfluid state. In the lower left panel,us1d is disordered and
us2d is ordered. In this case, the neutral superfluid mode is destroyed
and we are left with one charged superconducting mode, this is the
analog of the one-gap superconducting state. In the lower right
panel, neither of the phasesus1d andus2d are ordered and the com-
binationus1d−us2d does not exhibit long-range order, this is the me-
tallic normal fluid state. The states illustrated in the upper left and
lower right and left panels exist at zero as well as finite magnetic
fields. The state illustrated in the upper right panel only exists at
finite magnetic fields.

FIG. 24. sColor onlined A two-step decomposition transition in
the N=3 model in external magnetic field. The “lightest” vortex
component, originating in the order parameter component with the
lowest bare phase stiffness, tears itself loose from the composite
Abrikosov vortex of the two stiffer order parameter components at
TSpl

1 . At a higher temperatureTSpl
2 , the “next-to-lightest” vortex

componentsgreen vortexd, originating in the order parameter com-
ponent with the next-to-lowest bare phase stiffness, tears itself loose
from the vortex of the stiffest order parameter component in the
background of proliferated vortices originating in nontrivial phase
windings of the phase with lowest phase stiffnesssred vortexd.
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tex of its N constituent vortices is anN−1-step process oc-
curring successively, starting atTc1 and progressing up
throughTc2 up to TcN−1, at which point the vortex system is
fully decomposed.

For N=3, at a low temperature determined by the smallest
bare phase stiffnessucs1du and byJ12 and J13, there should
therefore take place a partial decomposition of the vortex
sDus1d=2p ,Dus2d=2p ,Dus3d=2pd into two vortices sDus1d

=2p ,Dus2d=0,Dus3d=0d+sDus1d=0,Dus2d=2p ,Dus3d=2pd,
illustrated in Fig. 24. Then, upon increasing the temperature
there should take place a phase transition, also illustrated in
Fig. 24, into a fully decomposed state defined by the phase
windings sDus1d=2p ,Dus2d=0,Dus3d=0d+sDus1d=0,Dus2d

=2p ,Dus3d=2pd→ sDus1d=2p ,Dus2d=0,Dus3d=0d+sDus1d

=0,Dus2d=2p ,Dus3d=0d+sDus1d=0,Dus2d=0,Dus3d=2pd.
We also stress that apart from the neutral modesus2d

−us3dd, which provides an attractive interaction for the vortex
pair sDus1d=0,Dus2d=2p ,Dus3d=0d+sDus1d=0,Dus2d

=0,Dus3d=2pd, the first of these vortices excites the neutral
mode sus1d−us2dd which consists of oppositely directed cur-
rents in the condensatesC0

s1d and C0
s2d. The second vortex

excites the modesus1d−us3dd which is associated with oppo-
sitely directed currents in condensatesC0

s1d and C0
s3d. These

modes, apart from giving the pairsDus1d=0,Dus2d

=2p ,Dus3d=0d+sDus1d=0,Dus2d=0,Dus3d=2pd logarithmi-
cally divergent energy per unit length,12,19 also yield some
repulsive interaction in this pair, because both the modes
sus1d−us2dd and sus1d−us3dd feature unscreened currents of
condensateC0

s1d. However, such a repulsive interaction in
this pair is negligibly small in the considered regimeucs1du
! ucs2du! ucs3du, compared to the interactions mediated by the
modesus2d−us3dd.

B. Color electric charge

Formally, the partial decomposition process can be de-
scribed by introducing the concept of “color electric
charges.” That is, we may introduce, e.g., “1red,” “1green”
and “1blue” charges associated with 2p windings in sus1d

−us2dd, sus1d−us3dd andsus2d−us3dd, respectivelyssee Table IId.
If we have a −2p winding in sus1d−us2dd, sus1d−us3dd or
sus2d−us3dd, that would correspond to “2red,” “2green” and
“2blue” color electric charges, respectively. We stress once
more that in order to preserve single valuedness of the order
parameters, the ±2p gains in phase differences may only
come as ±2p gains in individual phases. For example if we
would have sDus1d=3p /4 ,Dus2d=−5p /4d then sus1d−us2dd
would change by 2p. However, such a configuration would
be unphysical because individual order parametersC0

s1d and
C0

s2d would lose their single valuedness. Then, a vortex

sDus1d=2p ,Dus2d=0,Dus3d=0d which excites two neutral
modes associated withsus1d−us2dd and sus1d−us3dd with stiff-
nessesJ12 and J13, respectively, may be viewed as a color
charged string with color charge “1red” and “1green.”

The regime ucs1du! ucs2du! ucs3du, i.e., when J12!J13

!J23, corresponds to the situation where red electric charges
are much weaker than green charges, which in turn are much
weaker than the blue charges. The blue charge then domi-
nates the binding of the vorticessDus1d=0,Dus2d=2p ,Dus3d

=0d and sDus1d=0,Dus2d=0,Dus3d=2pd. The tightly bound
composite vortexsDus1d=0,Dus2d=2p ,Dus3d=2pd then has
electric charges2red, 2greend which loosely binds it with
s1red, 1greend color charged vortexsDus1d=2p ,Dus2d

=0,Dus3d=0d into a color charge neutral finite energy one-
flux-quantum vortexsDus1d=2p ,Dus2d=2p ,Dus3d=2pd.

In Fig. 25, we illustrate how to connect the vortex picture
to the picture of color charges, for the caseN=3. ForN=3,
each type of vortex is a bound state of two color charges.

A schematic picture of the low-temperature composite
vortex lattice phase, the partial decomposition transition in
the color electric charge representation, and the complete
decomposition transition, are given in Figs. 26, 28, and 29.

TABLE II. A color charge is defined as a ±2p winding in the
modesusad−ushdd with the following mapping forN=3.

Mode: sus1d−us2dd sus1d−us3dd sus2d−us3dd
Color charge: red green blue

FIG. 25. sColor onlined The connection between vortex illustra-
tions and bound states of color charges, for the caseN=3. Each type
of vortex is a bound state of 2 color charges. The radius of each
black circle is for graphical convenience is used to differentiate
between “heavy” and “light” vortices. The order parameter compo-
nent with the lowest bare phase stiffness is taken to be the vortex
with the “smallest diameter.” A vortex originating in a nontrivial
phase winding inusad is denoted a type-a vortex. The color of the
vortex on the top of the figure should not be confused with the color
of the electric charges in the “dual” charge representation.
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For the purposes of determining the universality class of
this partial decomposition,which is a genuine phase transi-
tion, it may also be viewed as follows. The completely intact
composite vortex is color charge neutral in the sense that it
contains a positive and negative electric charge of each color.
The fluctuation snapshot in the left part of Fig. 24 can be
viewed as a completely intact composite vortex line with a
small type-1 vortex loop superimposed on it as shown on
Fig. 27. The type-1 vortex loop which carries a red and green
electric charges does not interact with the composite vortex

which is color charge neutral. This can also be seen by ex-
amining the vortex interaction matrix given in Eq.s12d. That
is, when we add up the neutral-mode-mediated interactions
between the type-1 vortex with all three type-1,2,3 vortices
in the composite vortexsDus1d=2p ,Dus2d=2p ,Dus3d=2pd
they add to zero. The situation in the right part of Fig. 24 is
topologically equivalent to a completely intact composite
vortex line superimposed with one segment of anunbound
vortex loop.Therefore the transition may be viewed as an
Onsager vortex loop proliferation transition30,31,53of type-1
vortex loops in the background of a color charge neutral
composite vortex lattice.20,21 That is because type-1 vortex
loops, from the point of view of superfluid modes, cannot
“see” color charge neutral vortex lines, so this is equivalent
to a type-1 vortex-loop proliferation transition in the com-
plete absence of a composite color charge neutral vortex lat-
tice. Since these vortices excite neutral modes, this transi-
tion, which is the first stage in decomposing a color charge
neutral composite vortex line, is a vortex loop proliferation
transition in the 3Dxy universality class.20,21 In the color
charge representation given in Fig. 28, this also means that
the first-stage partial decomposition transition of three
charged fluctuatingline objectswith different chargessbut
such that the algebraic sum of their charges add up to zerod is
also a 2-color metal-insulator phase transition in the 3Dxy
universality class,involving flexible color line charges.

The usefulness of the color charge representation becomes
particularly clear when we go on to describe the second stage
of the decomposition transition, illustrated in Fig. 24. This
transition may be viewed as a proliferation of type-2 vortex
loops in the background of liberated type-1 vortex loops, all
superimposed on a background composite vortex lattice. The
situation therefore is more complicated than in the first stage
illustrated in Fig. 24, since that was a proliferation of type-1
loops in vacuum.

FIG. 26. sColor onlined A color charge representation forN=3
of the composite vortex lattice phase illustrated also in the left part
of Fig. 24. This low-temperature phase, where the fluctuations of
the vortex lines only involve small excursions of each of the con-
stituent vortex lines away from the composite object, may be
viewed as a 3-color dielectric phase. The composite vortex line is
“anchored” on the thickest vortex. Each constituent vortex may be
viewed as a bound state of certain combinations of color charges.
The composite vortex line may, on the other hand, be viewed as
bound states of6red, 6green, and6blue charges, as indicated by
the dotted ellipses. This is a three-color dielectric “insulating”
phase. We strongly emphasize that the above illustration is meant to
illustrate what the situation is in a typical cross section along the
lines,which are not rigid straight vortex lines.

FIG. 27. sColor onlined A local thermally driven detachment of
the type-1 vortex linesred colord from the composite vortex line can
be viewed as a superposition of thermally createdclosed type-1
vortex loopon a completely composite vortex line. Both processes
are topologically equivalent because the vorticity of the type-1 con-
stituent vortex in the composite vortex line is exactly canceled by a
superimposed type-1 vortex ring with the opposite vorticity. We
stress that if left segment of a vortex loop has a counterclockwise
vorticity then the opposite right segment has a clockwise vorticity.

FIG. 28. sColor onlined A color charge representation forN=3
of the partial decomposition transition In the color charge represen-
tation, this may be viewed as a red-green dielectric-metal transition,
while the blue dielectric phase remains intact. As explained in the
text, this partial 2-color metal-insulator transition involving fluctu-
ating line charges, is in the 3Dxy universality class. The dotted
ellipse indicates which color is involved in forming the remaining
dielectric phase.
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However, let us view this transition in the color charge
picture, illustrated in going from Fig. 28 to Fig. 29. This is a
metal-insulator transition for the blue-charge sector in the
background of coexistent red and green metallic phases.
However, red and green charges cannot screen blue charges,
while these charges eliminate the neutral modes associated
with themsthat is the ones with bare stiffnessesJ12 andJ13d.
Therefore, this is a metal-insulator transition for the sector of
the blue charges, while red and green charges screen them-
selves and do not affect this transition.

In the color charge representation given in Fig. 29, this
also means that the second-stage decomposition transition
depicted in Fig. 24 is a 1-color metal-insulator transition in

the 3Dxy universality class, involving flexible color charged
strings.

C. Decomposition transitions,N=4

In Figs. 30–33 we illustrate the partial decomposition
transitions for the caseN=4 in the color charge picture. That
is, we introduce as in the caseN=3 case “6red,” “6green”
and “6blue” charges associated with ±2p windings in sus1d

FIG. 29. sColor onlined A color charge representation of the
complete decomposition transition also illustrated in Fig. 24. In the
color charge representation, this may be viewed as a blue dielectric-
metal transition, in the background of a red-green metallic phase.
As explained in the text, this complete “1-color” metal-insulator
transition involving fluctuating line charges is in the same univer-
sality class as the partial decomposition transition, namely the 3Dxy
universality class.

FIG. 30. sColor onlined A color charge representation forN=4
of the composite vortex lattice phase. This low-temperature phase,
where the fluctuations of the composite vortex lines only involve
small excursions of each of the constituent vortex lines away from
the main composite object, may be viewed as a “6-color dielectric”
phase. Moreover, forN=4, each type-a vortex in theN=4 case is a
bound state of 3 color charges. The dotted ellipses indicate which
colors are involved in forming the dielectric phase.

FIG. 31. sColor onlined A color charge representation forN=4
of the first partial decomposition transition. In the color charge rep-
resentation, this may be viewed as a red-green-yellow dielectric-
metal transition, while the violet-blue-orange dielectric phase re-
mains intact. As explained in the text, this partial 3-color metal-
insulator transition involving fluctuating line charges is in the 3Dxy
universality class. The arrows indicate which three colors are in-
volved in the metal-insulator transition. The dotted ellipses indicate
which colors are involved in forming the remaining dielectric
phase.

FIG. 32. sColor onlined A color charge representation forN=4
of the second partial decomposition transition. In the color charge
representation, this may be viewed as a violet-blue dielectric-metal
transition, while the orange dielectric phase remains intact. As ex-
plained in the text, this partial 2-color metal-insulator transition
involving fluctuating line charges, is in the 3Dxy universality class.
The arrows indicate which two colors are involved in the metal-
insulator transition. The dotted ellipse indicates which color is in-
volved in forming the remaining dielectric phase.
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−us2dd, sus1d−us3dd and sus2d−us3dd, respectively. In addition,
we introduce “6yellow,” “ 6violet,” and “6orange” charges
associated with ±2p windings in sus1d−us4dd, sus2d−us4dd and
sus3d−us4dd, respectivelyssee Table IIId. Therefore, the case
N=4 features one new aspect which was absent in the case
N=3, namely that forN=4 we need more color charges than
number of order parameter components in order to com-
pletely cover all the possible ways that a neutral mode
susad−usbdd can be excited. Each type-a vortex is a bound
state of three color charges, as indicated in Fig. 30.

The low-temperature phase is a 4-composite color charge
neutral vortex system, which may alternatively be viewed as
a 6-color dielectric phase, Fig. 30. The first-stage partial de-
composition involves a type-1 vortex tearing itself off the
3-composite vortex, i.e., a vortex loop proliferation of type-1
loops carrying1red, 1green,1yellow color charges in the
background of color charge neutral objects. So this is a phase
transition in the 3Dxy universality class. It may alternatively
be viewed as a 3-color metal insulator transition in the red,

green, yellow line-charge sectors, Fig. 31, leaving a 3-color
sviolet, blue, oranged dielectric phase. The second-stage de-
composition process involves a type-2 vortex tearing itself
off a 2-composite vortex in the background of a system of
proliferated type-1 loops. Due to screening of red, green and
yellow charges, this transition may be viewed in a simplified
manner. It may be considered as the first-stage decomposi-
tion in aN=3 system consisting of type-2, type-3, and type-4
vortices, involving violet, blue, and orange charges. This we
have already argued is a 3Dxy stype-2d vortex loop prolifera-
tion transition, when we considered theN=3 case. Alterna-
tively, it may be viewed as a 2-color metal-insulator transi-
tion in the violet and blue line-charge sectors, Fig. 32,
leaving a 1-colorsoranged dielectric phase. The third-stage
decomposition may be viewed as a type-3 vortex loop pro-
liferation in the background of type-1 and type-2 proliferated
vortex lines. Due to screening of violet and blue charges this
may be viewed in a simplified manner. It may be considered
as a vortex loop proliferation of loops carrying orange
charges in the background of an orange-neutral vortex lat-
tice, or vacuum. This is a vortex loop proliferation in the
3Dxy universality class.20,21Alternatively, it may be viewed
as a 1-colorsoranged metal-insulator transitionssee Fig. 33d,
leaving the 6-color dielectric phase completely destroyed.

D. General N

In the generalN-component case, the number of color
charges that needs to be introduced to give an equivalent
description as the above, may be counted as follows, starting
from the third term in Eq.s4d. Each combinationusad−usbd is
given a color. We start with one phase, the one with the
lowest bare stiffness sayus1d, and introduce a nontrivial
phase winding ±2p in this phase. This excitesN−1 neutral
modes sinceN−1 gauge-invariant phase differences which
involve us1d can be formed. Introducing nontrivial phase
windings in the next phaseus2d, the one with the next-to-
lowest bare stiffness say, will also exciteN−1 neutral modes,
but onlyN−2 newneutral modes. Nontrivial phase windings
in the third phaseus3d will excite N−3 new neutral modes,
and so on. The number of different colorsNcolor we will have
to introduce for a theory withN flavors of scalar fields is
therefore given byNcolorsNd=sN−1d+sN−2d+sN−3d+¯

+2+1=NsN−1d /2, i.e., Ncolors2d=1, Ncolors3d=3, Ncolors4d
=6, andNcolors5d=10. A completely composite vortex, which
we denote as anN-composite vortex, consists ofN constitu-
ent vortices originating in nontrivial phase windings in each
of the individual phasesusad, aP f1, . . . ,Ng. Since a non-
trivial phase winding in any phaseushd, hP f1, . . . ,Ng, ex-
cites N−1 neutral modesushd−usad, it is clear that a type-h
vortex may be viewed as a bound state ofN−1 color
charges. The particular combination ofN−1 color charges,
out of the total collection ofNsN−1d /2 color charges, that
will enter the N−1-body bound state in each vortex, will
depend onh. The N-composite vortex is a color charge neu-
tral object.

Small fluctuations in theN-composite vortex may there-
fore be viewed as a dielectric insulating phase of anNsN
−1d /2-component dielectric. The first stage in theN−1 stage

TABLE III. A color charge is defined as a ±2p winding in the
modesusad−ushdd with the following mapping forN=4.

Mode: sus1d−us2dd sus1d−us3dd sus2d−us3dd
Color charge: red green blue

Mode: sus1d−us4dd sus2d−us4dd sus3d−us4dd
Color charge: yellow violet orange

FIG. 33. sColor onlined A color charge representation forN=4
of the third and complete decomposition transition. In the color
charge representation, this may be viewed as an orange dielectric-
metal transition, while the color-dielectric phase is completely de-
stroyed. As explained in the text, this partial 1-color metal-insulator
transition involving fluctuating line charges is in the 3Dxy univer-
sality class. The arrow indicates which color is involved in the
metal-insulator transition.
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decomposition process of theN-composite vortex line, where
a type-1 vortex tears itself off theN-composite vortex, is
therefore a metal-insulator transition whereN−1 color
charges of theNsN−1d /2-colors dielectric systemsimulta-
neouslyundergo a metal insulator transition, in the 3Dxy
universality class. The next stage, where a type-2 vortex
tears itself off the remainingN−1-composite vortex in the
background of a system of proliferated type-1 loops, is phase
where N−2 color chargessimultaneouslyundergo a metal
insulator transition in the 3Dxy universality class by the
same argument as used for theN=3 case, and so on. The
complete decomposition of theN-composite vortex proceeds
in N−1 steps of metal-insulator transitions for color charges,
where step number 1øNøN−1 may be viewed as either a
type-N vortex tearing itself off anN−N−1-composite vor-
tex line, or equivalently asimultaneousmetal-insulator tran-
sition for N−N new color charges that have not been in-
volved in the previousN−1 metal-insulator transitions. All
theN−1 partial decomposition transitions, or metal-insulator

transitions for color charges, are in the 3Dxy universality
class.

We should emphasize that, as follows from Eq.s4d in the
limit N→`, the strength of each of the electric charges goes
to zero. At the same time the number of colors of electric
chargesNc tends to infinity. From Eq.s4d, it follows that
even in the limitN→`, the energy binding of a type-a vor-
tex to a color charge neutral composite vortex is finite, even
though the strength of each individual color charge tends to
zero.

E. Graphical representation of phase disordering transitions
in the N=3 model

In Fig. 34, we illustrate graphically the various phase dis-
ordering transitions and partial symmetry restorations dis-
cussed in the previous section.

FIG. 34. sColor onlined A schematic plot of
states in theN=3 system. The upper left panel
shows the phases of the condensate order param-
eters that are involved. The upper right panel
shows the state where all three phasesus1d, us2d,
andus3d are ordered individually. This state is the
low-temperaturesgroundd state and features one
superconducting charged mode and two super-
fluid neutral modes. The middle left panel is a
phase whereus1d is disordered, whileus2d andus3d

are ordered. Thus, this is a state which features
one charged superconducting mode and one neu-
tral superfluid mode. The middle right panel illus-
trates a state where all of the phasesus1d, us2d, and
us3d are individually disordered. However, the dif-
ferencesus1d−us2d and us2d−us3d sand therefore
also us1d−us3dd feature long-range order. This is
therefore a state which is normal metallic, but
nevertheless features two neutral superfluid
modes. The bottom left panel illustrates a state
where all of the phasesus1d, us2d, and us3d are
individually disordered. Only the phase differ-
enceus2d−us3d exhibits long-range order. This is a
normal metallic state featuring one neutral super-
fluid mode. The bottom right panel illustrates a
state where all of the phasesus1d, us2d, andus3d are
individually disordered and where none of the
phase differencesus1d−us2d and us2d−us3d and
us1d−us2d feature long-range order. This is there-
fore a state which is normal metallic and normal
fluid sno neutral superfluid modesd. The states il-
lustrated in the upper right, middle left, and lower
right panel exist at zero as well as finite magnetic
fields. The states illustrated in the middle right
and lower left panels only exist at finite magnetic
fields.
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IX. APPLICATIONS

In this section, we will briefly mention some possible ap-
plications of the results obtained in this paper. Emphasis will
be on the caseN=2, but some results for the casesN=3 and
even N=4 may find applications in mixtures of supercon-
ducting condensates in the not too distant future.

A. Applications of results for N=2

The results forN=2 are expected to apply to two-
component superconductivity which could be achieved in
metallic states of light atoms,2,3 such as electronic and pro-
tonic condensates in liquid metallic hydrogensLMH d under
extreme pressure. Estimates exist forTc2 for such systems,
Tc2<160 K.2 A rough estimate forTc1 follows from the mass
ratio of the electronic and protonic condensate,Tc1<0.1 K.
Hence, atTc1 one should observe an extra low-temperature
3Dxy specific heat anomaly, as well as an anomaly in the
London penetration depth. An even more promising candi-
date is the the systemCHx,

3 where there are predictions of
2-component metallic states at considerably lower pressures
than those required to achieve LMH.

Here, it is appropriate to remark briefly on the micro-
scopic origins of superconductivity in the projected liquid
metallic phase of hydrogen.2,3 The proton is four times
lighter than a4He atom. It is well known that4He at normal
conditions is a classicpermanent liquid, because of high
zero-point energy and weak ordering energies. Indeed zero-
point energies of protons in a dense environment are also
high, and at increasing compression there is a shift of elec-
tron density from intramolecular regions to intermolecular,
and with it a progressive decline in the effective interproton
attractions. Because of this there is also a decline of ordering
energies from interactions relative to protonic zero-point en-
ergies. The existence ofa melting point maximumas a func-
tion of pressure in hydrogen, as well as a range of densities
where hydrogen may take upa fluid phasein its ground state
was suggested in Ref. 2. Another important circumstance is
that en route hydrogen should undergo an insulator-metal
transition and therefore the resulting phase should be the
liquid metallic hydrogen, a translationally invariant two-
component fermionic liquid. There is preliminary experi-
mental evidence that a melting point maximum may indeed
exist8 and it has received recent powerful backing inab initio
calculations.9 Experimentally a 12.4 fold compression of hy-
drogen has already been achieved at around 320 GPa.8 Esti-
mates suggest that LMH should appear at 13.6 fold compres-
sion at pressure in the vicinity of 400 GPa,9 whereas
hydrogen alloys may exhibit metallic behavior at signifi-
cantly lower pressures.3 A predicted key feature of LMH at
low temperature is the coexistence of superconductivity of
proton-proton and electron-electron Cooper pairs.2

The special pointucs1du= ucs2du has a physical realization
when Eq. s1d is viewed as an effective field theory of a
quantum antiferromagnet with easy plane anisotropy, which
facilitates a suppression of topological defects in the form of
“hedgehog” configurations which appear inOs3d-symmetric
models.5,6 fMore generally, it may be viewed as a field
theory of anOs3d model where “hedgehogs” are suppressed

by some unspecified mechanism, not necessarily limited to
easy-plane anisotropy.g

We conclude this subsection on theN=2 case with a re-
mark on how these results relate to multiflavorelectronic
condensates. To describe this case, we need to include a Jo-
sephson coupling between the matter field species. The de-
tails of how to give a vortex representation of theN-flavor
London model in the presence of interflavor Josephson cou-
pling is given in Appendix E. Had a Josephson coupling term
between condensate species been introduced in the theory for
Nù2, this would have have altered the dual theory in a
completely nonperturbative way, and would tend to lock the
phases of individual condensate fields to each other.sFor a
dual representation of this case, where the nonperturbative
character of the Josephson coupling is brought out in a par-
ticularly clear way, see Appendix E.d As a result, the transi-
tions we describe here would collapse to one, namely the
charged Higgs fixed point, which is in the inverted 3Dxy
universality class.

B. Applications of results for N=3,4

Mixtures of superconducting condensates in LMH can be
extended to include also the hydrogen-isotopes deuterium
and tritium.54 Tritium is a S=1/2 fermion, so this may give
rise to a superconducting condensate via forming spin-singlet
Cooper pairs, just as in the protonic case. Hence, our results
for N=3 could be applicable to to the mixtures of liquid
metallic hydrogen-tritium at extremely high pressures. An-
other possibility is to include deuterium as a new component.
Including deuterium as a new component in addition to hy-
drogen means that we have ansN=3d-component mixture of
superconducting condensates consisting of electrons, pro-
tons, and deuteronssdeuterium nucleid, all of which in prin-
ciple can undergo a metal-superconductor transition. Com-
pared to the situation forN=2, the situation is complicated
by at least two circumstances. First, deuterons are bosons,
and secondly they have spinS=1. This means that the elec-
trons and protons become superconducting via forming Coo-
per pairs, while the deuterons undergo a metal-
superconducting transition via Bose-Einstein condensation.
Extending this to the case of having both tritium and deute-
rium in addition to hydrogen, might provide a realization of
the caseN=4.

X. SUMMARY

We have analyzed theN-flavor London superconductor
model coupled to one gauge field with no Josephson cou-
pling between the matter field components. The dual theory
is an N-flavor GL theory coupled toN dual gauge fields,
where the sum of all dual gauge fields is massive at all cou-
plings. There areN−1 charge-neutral superfluid modes and
one charged superconducting mode in this model. We have
given a prescription for how to identify theN−1 neutral
modes for arbitraryN.

For N=2, a case which should apply to a superconducting
state of liquid metallic hydrogen, as well as for the caseN
=3, we have performed large scale MC simulations comput-
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ing sid critical exponentsa and n, sii d gauge field and dual
gauge field correlators,siii d the corresponding masses, and
sivd critical couplings using FSS. ForN=2 and ucs1du
Þ ucs2du, we find one low-temperature critical point in the
3Dxy universality class atTc1, and one critical point in the
inverted 3Dxy universality class atTc2.Tc1. For N=2 with
ucs1du= ucs2du we find one critical point with non-3Dxy values
of a andn.5 We propose these to be critical exponents in the
universality class of a self-dual gauge theory. ForN=3 and
all ucsadu unequal, we find two fixed points in the 3Dxy uni-
versality class atTc1 and Tc2, and one fixed point in the
inverted 3Dxy universality class atTc3s.Tc2.Tc1d. All criti-
cal points therefore exhibit 3Dxy values ofa andn when all
bare phase stiffnessesucsadu are different. In the caseN=3
with ucs1du= ucs2du, ucs3du we find two critical points. The
critical point atTc1,Tc2 is found to be in the 3Dxy univer-
sality class, and the critical point atTc2 is in the inverted
3Dxy universality class. For the caseN=3 with equal phase
stiffnesses we find one critical point which is non-3Dxy.

In this context, we have also noted that collapsing two
neutral critical points in the 3Dxy universality class leads to
a single critical point also in the 3Dxy universality class.
This follows from an argument implying that collapsing any
number of neutral critical points in the 3Dxy universality
class leads to a single critical point also in the 3Dxy univer-
sality class. On the other hand, it appears that collapsing
N−1 neutral critical points in the 3Dxy universality classand
one charged fixed point in the inverted3Dxy universality
class leads to a single critical point in a universality class
swhich in principle could depend onNd which is not that of
the 3Dxy or inverted 3Dxy type. ForN=2, we may define
the universality class as that of a 3D self-dualUs1d3Us1d
gauge theory. The numerical values we have obtained for the
critical exponentsa and n the two casessid N=2, ucs1du
= ucs2du andsii d N=3, ucs1du= ucs2du= ucs3du are remarkably simi-
lar, indicating that the values of the critical exponents are at
most weakly dependent onN.

In an external magnetic field at low temperature, the
ground state of the system is an Abrikosov vortex lattice of
composite vortices. However, the effect of thermal fluctua-
tions alters the physics significantly. We discuss in detail that
in the low-field regime and when the bare stiffnesses of the
condensates all differ, we find that a 3Dxy vortex sublattice
melting transition takes place. Upon thermal decomposition
of field induced composite vortex lines, the constituent vor-
tices originating in the condensates with lowest bare stiffness
disorder, while the ones originating in the stiffer condensates
remain arranged in an Abrikosov vortex lattice. When such a
transition occurs, anN=2 system looses superfluid proper-
ties, but remains superconducting. In contrast at high mag-
netic fields, the charged mode disappears via the melting
transition of the lattice of composite vortices. This is a tran-
sition from the superconducting state to a nonsuperconduct-
ing metallic superfluid state.20 Inside this metallic superfluid
phase, at a temperature much lower than the zero-field metal-
superconductor transition, we find a superfluid-normal fluid
3Dxy phase transition associated with a neutral mode-driven
proliferation of vortex loops nucleating on field-induced vor-
tex lines. These various transitions should in principle be
detectable in flux-noise experiments. We extend the discus-

sion for N.2, where we find phase transitions associated
with partial decomposition of composite vortices, yielding
several unusual states of partial symmetry breakdown. The
universality class and partial symmetry breakdowns are iden-
tified by mapping the system to an ensemble of electrically
charged strings where for theN-component system there are
NsN−1d /2 replicas of electric charges of different color.

The sublattice melting and partial decomposition transi-
tions are of purely topological origin. It involves what can be
viewed as vortices and antivorticesspositively and nega-
tively charged objectsd. The existence of positively and nega-
tively charged objects implies that the physics conceptually
in some sense is similar to what occurs in a Kosterlitz-
ThoulesssKTd transition in two dimensions. In spite of being
a decomposition of positively and negatively charged com-
posite objects,such a transition can be mapped onto a pro-
liferation of vortex loops in a vacuum, i.e., a phase transition
in the 3Dxy universality class. Another principal difference
between this type of phase transition compared to the KT
transition, is that in the 2D KT transition, vortices and anti-
vorticesspositively and negatively charged objectsd are ther-
mally generated. This cannot happen in three dimensions
since any vortex line in 3D has an infinite energy in an infi-
nite sample. In the 3D transition which we consider, the neu-
tral bound states of the charged objects are introduced by an
external magnetic field. Thus we deal with a phase type of
transition which in a very unusual form involves concepts
both from two- and three-dimensional physics.
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APPENDIX A: IDENTIFYING CHARGED AND NEUTRAL
MODES

Here, we illustrate in detail the separation of variables in
N-component London model and the extraction of the com-
posite charged and neutral modes in the London limit. The
general procedure beyond the London limit for the caseN
=2 can be found in Ref. 11. The generalN-component
Ginzburg-Landau model is given by the action
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S= o
r
Ho

a=1

N
1

2
us¹− ieAdcsadu2 + Vshcsadjd +

1

2
s¹ 3 Ad2J .

sA1d

Here, the massesMsad have been absorbed in the amplitudes
ucsadu for notational simplicity. Let us rewrite the first term in
Eq. sA1d as follows:

o
a=1

N
1

2
us¹− ieAdcsadu2 = o

a=1

N
1

2
ucsadu2s¹usadd2 − eA · s¹usadd

3ucsadu2 +
1

2
e2A2ucsadu2. sA2d

The idea now is to first extract the charged mode of the
system, and then identify the remaining terms as the neutral
modes. The charged modes is thesonlyd linear combination
of phase gradients¹usad that couples to the gauge fieldA.
We first introduce the quantity

Q ; o
a=1

N

ucsadu2 ¹ usad. sA3d

Using this, we form the combination

So
a=1

N

ucsadu2f¹usad − eAgD2

= sQ − eC2Ad2, sA4d

where C2 is defined in Eq.s5d. One can check that this
combination is gauge-invariant. By adding and subtracting
Q2/2C2, we now express Eq.sA2d as follows:

o
a=1

N
1

2
ucsadu2s¹usadd2 − eA · s¹usadducsadu2 +

1

2
e2A2ucsadu2

=
1

2Fo
a=1

N

ucsadu2s¹usadd2 −
Q2

C2G +
1

2C2sQ − eC2Ad2.

sA5d

The last term is identified as the charged mode. The first term
on the right-hand side of Eq.sA5d can be rewritten as fol-
lows:

1

2Fo
a=1

N

ucsadu2s¹usadd2 −
Q2

C2G
=

1

2C2F o
a,b=1

N

ucsadu2ucsbdu2 ¹ usads¹usad − ¹ usbddG
=

1

4C2F o
a,b=1

N

ucsadu2ucsbdu2s¹usad − ¹ usbdd2G . sA6d

Therefore, the action may be expressed as

S= o
r
HS 1

2C2 o
a=1

N

ucsadu2 ¹ usad − eC2AD2

+
1

2
s¹ 3 Ad2

+
1

4C2F o
a,b=1

N

ucsadu2ucsbdu2„¹susad − usbddd2GJ , sA7d

which is now a sum ofonecharged mode andN−1 neutral
modes. The last term in Eq.sA7d is a sum consisting of
NsN−1d /2 terms, involving all the color chargessusad

−usbdd ssee Sec. VIIId which are needed to account for all the
possible ways neutral modes can be excited in the system as
a consequence of multiple connectedness of physical space
in the presence of vortices. Note how this term vanishes
whenN=1.

APPENDIX B: DERIVATION OF EQS. (11) and (12)

Starting from the model in the Villain approximation Eq.
s7d we linearize the kinetic energy terms by introducingN
auxiliary fieldsvsad whereaP1, . . . ,N with a partition func-
tion

Z =E
−`

`

DAp
g=1

N E
−p

p

DusgdE
−`

`

Dvsgdo
nsgd

exps− Sd,

S= o
r
So

a=1

N
1

2bucsadu2
svsadd2 +

b

2
sD 3 Ad2

+ o
a=1

N

isDusad − eA + 2pnsadd ·vsadD , sB1d

whereucsadu2= uC0
sadu2/Msad. The Poisson summation formula

reads

o
n=−`

`

e2pinB = o
m=−`

`

dsm− Bd. sB2d

Here,n,mPZ andBPR. We apply Eq.sB2d to Eq.sB1d and
integrate out the integer fieldsnsad so that the fieldsvsad take
only integer values which we denotev̂sad. After a partial
summation oforoa=1

N iDusad ·v̂sad=−oroa=1
N iusadD ·v̂sad, where

the surface terms are omitted, we may integrate out the phase
fields usad. This integration produces the local constraints

D · v̂sad = 0. sB3d

To fulfill this constraint we letv̂sad=D3 ĥsad whereĥsad is an
integer-valued vector field. At this point the theory reads

Z =E
−`

`

DAp
g=1

N

o
ĥsgd

exps− Sd,

S= o
r
Fo

a=1

N
1

2bucsadu2
sD 3 ĥsadd2 − ieA ·So

a=1

N

D 3 ĥsadD
+

b

2
sD 3 Ad2G . sB4d

Again, we apply the Poisson summation formula Eq.sB2d
and the integer fieldsĥsad are replaced by continuous dual
gauge fields hsad at the cost of introducing the term
2pioahsad ·msad in the action andmsad are integer vortex
fields. Then the partition function reads
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Z =E
−`

`

DAp
g=1

N E
−`

`

Dhsgd o
msgd

dD·msgd,0 exps− Sd,

S= o
r
Fo

a=1

N
1

2bucsadu2
sD 3 hsadd2 − ieA ·So

a=1

N

D 3 hsadD
+ 2pio

a=1

N

hsad ·msad +
b

2
sD 3 Ad2G , sB5d

wheredn,m is the Kronecker delta. The gauge symmetry of

the integer valued fieldsĥsad in Eq. sB4d must be preserved
through this transformation. Hence, the action Eq.sB5d must
be invariant under the gauge transformationhsad→hsad+Dx.
The transformation produces the termoroa2piDx ·msad

which must be zero to preserve gauge symmetry. A partial
summation therefore produces the constraintD ·msad=0 on
each flavor of the vortex fields. At this point it is useful to
write the theory in the Fourier representation and the action
becomes

S= o
q
Ho

a=1

N
1

2bucsadu2
sQq 3 hq

sadd · sQ−q 3 h−q
sadd

+ pio
a=1

N

fhq
sad ·m−q

sad + h−q
sad ·mq

sadg

−
ie

2FAq ·So
a=1

N

Q−q 3 h−q
sadD + A−q ·So

a=1

N

Qq 3 hq
sadDG

+
b

2
sQq 3 Aqd · sQ−q 3 A−qdJ , sB6d

whereQq is the Fourier representation of the lattice differ-
ence operatorD. We choose the gaugeD ·A =0 andD ·hsad

=0 which in the Fourier representation isQq ·Aq=0 and
Qq ·hq

sad=0. We complete the squares inAq and get the ac-
tion

S= o
q
Ho

a=1

N
1

2bucsadu2
sQq ·Q−qdshq

sad ·h−q
sadd

+ pio
a=1

N

fhq
sad ·m−q

sad + h−q
sad ·mq

sadg

+ FAq −
ie

2
So

a=1

N

Qq 3 hq
sadDDq

−1G
·DqFA−q −

ie

2
So

a=1

N

Q−q 3 h−q
sadDDq

−1G
+

e2

4
So

a=1

N

Qq 3 hq
sadDDq

−1So
a=1

N

Q−q 3 h−q
sadDJ ,

sB7d

whereDq=bQq ·Q−q /2. After performing the Gaussian inte-
gral in Aq, the action reads

S= o
q
Ho

a=1

N
1

2bucsadu2
sQq ·Q−qdshq

sad ·h−q
sadd

+ pio
a=1

N

fhq
sad ·m−q

sad + h−q
sad ·mq

sadg +
e2

2b
So

a=1

N

hq
sadD

·So
a=1

N

h−q
sadDJ . sB8d

At this point it is useful to introduce matrices and vectors in
flavor indices. We write the action as

S= o
q

fHq
TGqH−q + ipMq

TH−q + ipHq
TM−qg, sB9d

where Hq
T=shq

s1d ,hq
s2d , . . . ,hq

sNdd and Mq
T

=smq
s1d ,mq

s2d , . . . ,mq
sNdd are vectors in flavor indices, and the

matrix Gq is given by

Gq =1
uQqu2

2bucs1du2
+

e2

2b

e2

2b
¯

e2

2b

e2

2b

e2

2b

uQqu2

2bucs2du2
+

e2

2b
¯

e2

2b

e2

2b

A � � � A
e2

2b

e2

2b
¯

uQqu2

2bucsN−1du2
+

e2

2b

e2

2b

e2

2b

e2

2b
¯

e2

2b

uQqu2

2bucsNdu2
+

e2

2b

2 , sB10d
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where uQqu2=Qq ·Q−q. In flavor indicesh ,l we write the
matrix asGq

sh,ld=dshddh,l+c, wheredshd= uQqu2/2bucshdu2 and
c=e2/2b. We complete the square and obtain the expression

S= o
q

fsHq
T + ipMq

TGq
−1dGqsH−q + ipM−qGq

−1d

+ p2Mq
TGq

−1M−qg, sB11d

whereGq
−1 is the solution ofGqGq

−1= I andI is theN3N unit
matrix. Gaussian integration ofHq yields an action expressed
in vortex variables of different flavors

S= o
q

p2Mq
TGq

−1M−q. sB12d

The matrixGq
−1 is found to have the following diagonal ele-

ments

sGq
−1dsh,hd =

paÞh
dsad + coaÞh pgÞh,a

dsgd

pa=1

N
dsad + coa=1

N pgÞa
dsgd

, sB13d

and

sGq
−1dsh,ld = −

cpaÞh,l
dsad

pa=1

N
dsad + coa=1

N pgÞa
dsgd

, sB14d

as off-diagonal elementsshÞld, where pa=xdsad;1. By

dividing the numerator and denominator bypa=1
N dsad, we ob-

tain the diagonal elements

sGq
−1dsh,hd =

1

dshd + oaÞh

c

dshddsad

1 + oa=1

N c

dsad

, sB15d

and the off-diagonal elements

sGq
−1dsh,ld = −

c

dshddsld

1 + oa=1

N c

dsad

, sB16d

wherehÞl. In total, the matrixsGq
−1dsh,ld reads

sGq
−1dsh,ld =

S 1

dshd + oa=1

N c

dshddsadDdh,l −
c

dshddsld

1 + oa=1

N c

dsad

.

sB17d

Inserting the expressions fordshd and c and multiplying by
uQqu4 in the denominator and numerator, we obtain

sGq
−1dsh,ld = 2b

sucshdu2uQqu2 + e2ucshdu2oa=1

N
ucsadu2ddh,l − e2ucshdu2ucsldu2

uQqu2suQqu2 + e2oa=1

N
ucsadu2d

. sB18d

We introduceC2=oa=1
N ucsadu2 and split the expression by

partial fractioning and obtain the matrix

sGq
−1dsh,ld =

2bucshdu2

C2 FC2dh,l − ucsldu2

uQqu2
+

ucsldu2

uQqu2 + e2C2G .

sB19d

This is the vortex interaction matrix given in Eq.s12d. In-
serting this into Eq.sB12d, the partition function of the sys-
tem is

Z = p
a

o
msad

dD·msad,0 exps− SVd,

SV = o
q

o
h,l=1

N
2p2b

C2 mq
shd ·m−q

slducshdu2FC2dh,l − ucsldu2

uQqu2

+
ucsldu2

uQqu2 + e2C2G , sB20d

which gives the action in the partition function in Eq.s11d.

The above vortex action may be written in terms of charged
and neutral vortex modes in a manner analogous to that of
Eq. sA7d, as follows:

SV

2p2b/C2 = o
q
Hsoa

ucsadu2mq
sadd · sob

ucsbdu2m−q
sbdd

uQqu2 + m0
2

+ o
a,b

ucsadu2ucsbdu2smq
sad − mq

sbdd · sm−q
sad − m−q

sbdd
2uQqu2 J .

sB21d

Here,m0
2=e2C2. While the first, screened, term in general is

present for allNù1, it is clear from the above formulation
that the second, unscreened, term is only present provided
Nù2. The factor 2 in the denominator in the unscreened
terms is essential in order for the interaction terms between
different vortex species to cancel out whenm0

2=0.
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APPENDIX C: GAUGE FIELD CORRELATOR

Introducing Fourier-transformed variables in Eq.s10d,
prior to integrating out the gauge fieldA, and adding source
terms in the form of electric currentsJ coupling linearly to
A, we obtain the actionsnote that for convenience, we have
redefined theA field in this appendix by a factorÎb as

follows: A → Ã =ÎbA, and then renamingÃ →A. Thus here
we also redefine the charge as follows:e→ ẽ=e/Îb which
we then renameẽ→e. In the end result we reinstate the
original definitions. We thus have the action Eq.s10d on the
form

SJ = o
q
F uQqu2

2bucsadu2
hq

sad ·h−q
sad + pifmq

sad ·h−q
sad + m−q

sad ·hq
sadg

−
ie

2
fAq · sQ−q 3 h−q

sadd + sQq 3 hq
sadd ·A−qg

+
1

2
fJq ·A−q + J−q ·Aqg +

uQqu2

2
Aq ·A−qG . sC1d

Summations over indicessa ,bdP f1, . . . ,Ng is understood.
Integrating out the gauge fieldsAq, we get the action on the
following form

S̃J = o
q

o
a=1

N F uQqu2

2bucsadu2
hq

sad ·h−q
sad + pifmq

sad ·h−q
sad + m−q

sad ·hq
sadg

−
Dq ·D−q

2uQqu2 G , sC2d

where we have definedDq=Jq+ ieQq3 h̃q and h̃q

=oa=1
N hq

sad. Thus, the last term in Eq.sC2d may be written

Dq ·D−q

2uQqu2
=

1

2uQqu2
J−q ·Jq + h̃q · L−q + h̃−q · Lq −

e2

2
h̃q · h̃−q,

sC3d

where we have definedLq=sie/2uQqu2dQq3Jq. Thus the ac-
tion may be written on the form

S̃J = o
q
F uQqu2

2bucsadu2
hq

sad ·h−q
sad + pifmq

sad ·h−q
sad + m−q

sad ·hq
sadg

− fh̃q · L−q + h̃−q · Lqg +
e2

2
h̃q · h̃−q −

1

2uQqu2
J−q ·JqG .

sC4d

In Eq. sC4d, a summation over indicessa ,bd is understood.
We can now integrate out the dual gauge fieldshq

sad to obtain

ZJ = p
a=1

N

o
M sad

dD·M sad,0 expf− SJ effg, sC5d

where

SJ eff = o
q

fp2mq
sadD̃sa,bdsqdm−q

sbd − FAsJq
sad,J−q

saddg. sC6d

Here, we have introduced

FAshJq,J−qjd ;
Jq

mPT
mnJ−q

n

2uQqu2
− pifm−q

sadD̃sa,bdsqdL q
sbd

+ L −q
sadD̃sa,bd · sqdmq

sbdg + L −q
sadD̃sa,bdsqdL q

sbd.

sC7d

Here, the upper index denotes a “flavor” indexsa ,bd
P f1, . . . ,Ng indicating which matter field species the fields
above correspond to, and we have introduced the vector
L q

sad=Bq, aP f1, . . . ,Ng. Using this particular property of
L q

sad, we may simplifyFAshJq ,J−qjd somewhat, to obtain

FAshJq,J−qjd ;
Jq

mPT
mnJ−q

n

2uQqu2
− pifm−q

sad · Lq + L−q ·msadqgVsad

+ L−q · LqS. sC8d

In Eq. sC8d, we have furthermore introduced

Vsad ; o
b=1

N

D̃sa,bdsqd =
2bucsadu2

uQqu2 + m0
2 ,

S ; o
a,b=1

N

D̃sa,bdsqd =
2bc2

uQqu2 + m0
2 . sC9d

The last equalities in Eqs.sC9d are found from using the

definition of D̃sa,bdsqd given in Eq.s12d, along with the defi-
nition of c2 given immediately after Eq.s12d. We have also
introduced the transverse projection operator

PT
mn = dmn −

Qq
mQ−q

n

uQqu2
, sC10d

which appears due to the transversality of the currentsJ.
Before doing functional derivations onFAshJq ,J−qjd it is
useful to multiply out the termL−q ·Lq and explicitly use the
constraint= ·J=0 before derivation. We find

L−q · Lq = −
e2

4uQqu4
«anl«arhQq

nQ−q
r Jq

lJ−q
h

= −
e2

4uQqu4
sdnrdlh − dnhdlrdQq

nQ−q
r Jq

lJ−q
h

= −
e2

4uQqu2
Jq

mPT
mnJ−q

n .

In the cross terms between vortex fields and current fields
there is no need to introduce the transverse projection opera-
tor, since the inner product automatically projects out the
transverse part ofJ since the vortices form closed loops.

We may now express the gauge field correlators formally
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kAq
mA−q

n l =
1

Z0
U d2ZJ

dJ−q
m dJq

nU
J−q=Jq=0

=
1

Z0
p
a=1

N

o
M sad

dD·M sad,0F dFA

dJ−q
m

dFA

dJq
n

+
d2FA

dJ−q
m dJq

nG
J−q=Jq=0

expf− S0 effg, sC11d

whereS0eff is Eq. sC6d with all currents set to zero. We get
for the required functional derivatives

dFA

dJq
n =

PT
nlJ−q

l

uQqu2
− 2pi

dLq

dJq
n ·m−q

sadVsad + 2L−q ·
dLq

dJq
n S,

d2FA

dJq
ndJ−q

m =
PT

mn

2uQqu2
f2 − e2Sg. sC12d

Multiplying out everything, after setting the currents to zero,
we obtain

kAq
mA−q

n l =
PT

mn

2uQqu2
f2 − e2Sg +

p2e2

uQqu2
VsadVsbdkmq

msadm−q
nsbdl,

sC13d

where a summation oversa ,bdP f1, . . . ,Ng is understood.
Settingn=m and summing overn, we get

kAq ·A−ql =
1

uQqu2
f2 − e2Sg +

p2e2

uQqu2
VsadVsbdkmq

sad ·m−q
sbdl.

sC14d

Using the definitions ofVsad and S introduced above, and
moreover reintroducing the original gauge fieldA and the
original chargee ssee start of the appendixd, this becomes

kAq ·A−ql =
1

b
H 2

uQqu2 + m0
2

+
4bp2e2

uQqu2
ucsadu2ucsbdu2

suQqu2 + m0
2d2kmq

sad ·m−q
sbdlJ

=
2/b

uQqu2 + m0
2F1 +

2bp2e2

uQqu2
Gs+dsqd

uQqu2 + m0
2G ,

sC15d

when we introduce

Gs+dsqd = KSo
sad

ucsadu2mq
sadD · So

b

ucsbdu2m−q
sbdDL ,

sC16d

which are just Eqs.s24d and s25d. Note how this has the
structure of a “Dyson’s equation,” whereGs+dsqd plays the
role of a matter field loop or “polarizability,” where the
strength of the vertex is given by 2bpe/ uQqu. As we shall see
below, a similar statement holds for the dual gauge field
correlators, but there the vertex is a scalar of strengthpi. The
difference lies in the fact that while the dual gauge fields
couple linearly to the vortex fields, it is thecurl of the gauge

field A that couples indirectly to the vortex fieldssvia the
dual gauge fieldsd.

APPENDIX D: DUAL GAUGE FIELD CORRELATORS

The computation of correlators for the dual gauge fields
hsad proceeds along the same lines as for the gauge fieldA,
but sufficiently many details are different so we include it
here for completeness. Introducing Fourier-transformed vari-
ables in Eq.s10d, and after having added source terms in
order to be able to compute correlators, the theory may be
written on the following form:

SJ = o
q
F uQqu2

2bucsadu2
hq

sad ·h−q
sad + pifmq

sad ·h−q
sad + m−q

sad ·hq
sadg

+
1

2
fJq

sad ·h−q
sad + J−q

sad ·hq
sadg +

e2

2b
hq

sad ·h−q
sbdG . sD1d

In Eq. sD1d, summation over indicessa ,bdP f1, . . . ,Ng is
understood and the last term appears after having integrated
out the gauge fieldA. Notice how we in this case have added
N source currentsJsad, one for each vortex fieldmsad. Inte-
grating out the dual gauge fieldshq

sad we get the action on the
following form

SJ eff = o
q

fp2mq
sadD̃sa,bdsqdm−q

sbd − FhshJq
sad,J−q

sadjdg,

sD2d

where we have defined

FhshJq
sad,J−q

sadjd ;
1

4
sJq

sadD̃sa,bdsqdJ−q
sbdd +

pi

2
J−q

sadD̃sa,bdsqdm−q
sbd

+
pi

2
m−q

sadD̃sa,bdsqdJ−q
sbd. sD3d

Here, as in Appendix C, the currents are divergence-free,

¹ ·Jsad=0, aP f1, . . . ,Ng, and the interaction matrixD̃sa,bd

3sqd is defined in Eq.s12d. As was the case for theA field
correlator, the constraints on the currentsJsad must be care-
fully kept track of when performing the necessary functional
derivations in order to obtain the correlation functions. The
generating functional is given by

ZJ = p
a=1

N

o
M sad

dD·M sad,0 expf− SJ effg. sD4d

Applying Eq. sC11d to Eqs.sD2d–sD4d, we find

khq
msadh−q

nsbdl =
1

Z0
U d2ZJ

dJ−q
msaddJq

nsbdU
J−q

sad=Jq
sbd=0

=
1

Z0
p
a=1

N

o
M sad

dD·M sad,0F dFh

dJ−q
msad

dFh

dJq
nsbd

+
d2Fh

dJ−q
msaddJq

nsbdG
J−q

sad=Jq
sbd=0

expf− S0J effg,

sD5d
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whereS0Jeff is Eq. sD2d in the absence of source terms. We
obtain from Eq.sD3d

dFh

dJ−q
msad =

1

2
D̃sa,bdsqdJq

msbdsqd − piD̃ sa,bdsqdmq
msbd,

d2Fh

dJ−q
msaddJq

nsbd =
PT

mn

2
D̃sb,adsqd. sD6d

Here, we must keep track of two indices on the “magnetic”
currentsJsad, since we have one currentssource termd cou-
pling to each of theN dual gauge fieldshsad, aP f1, . . . ,Ng.
The notation we use is thatJq

msad is them Cartesian compo-
nent of the current coupling to dual gauge field of flavor
af1, . . . ,Ng. We use a corresponding notation formq

msad.
Moreover, PT

mn again is the transverse projection operator
defined in Eq.sC10d, appearing due to the transversality of
the currentsJsad. Multiplying all of this together, we find

khq
msadh−q

nsbdl =
1

2
D̃sa,bdsqdPT

mn

− p2D̃sa,hdsqdD̃sb,kdsqd · kmq
mshdm−q

nskdl.

sD7d

Moreover, settingn=m and summing over Cartesian compo-
nents of the dual gauge fields, we find

khq
sad ·h−q

sbdl = D̃sa,bdsqd − p2D̃sa,hdsqdD̃sb,kdsqdkm−q
shd ·mq

skdl,

sD8d

where we have used the fact that the trace of the projection
operator is equal to 2. In Eqs.sD7d and sD8d, a summation
over the indicessk ,hdP f1, . . . ,Ng is understood. Note how
this, as for theA-field correlator, has the structure of a “Dys-
on’s equation,” where the vortex correlator plays a role
analogous to a matter field loop, or “polarizability,” with a
scalar vertexscharged of strengthpi. This is simply a reflec-
tion of the fact that dual gauge fieldshsad couple linearly to
the vortex fieldsmsad s“magnetic currents”d. The factori in
the strength of the vertex appearing in Eqs.s10d and sD1d
gives rise to an “anti”-Biot Savart law between vortex seg-
ments mediated by the dual gauge fields.

APPENDIX E: GENERALIZATION OF EQ. (10) IN THE
PRESENCE OF INTERFLAVOR JOSEPHSON

COUPLING

In this appendix, we consider theN-flavor London super-
conductor model Eq.s7d in the dual representation, including
Josephson couplings between matter fields of different fla-
vors. The Josephson coupling betweenusad andushd is local
in space-time, represented in the Euclidean action by the
termsgsa,hd cosfusadsr d−ushdsr dg. With N matter fields there
will be NsN−1d /2 such terms.sNote how there are no such
terms whenN=1.d However, since these terms act as ferro-
magnetic couplings between the phase fields of different fla-
vors, the critical properties of the model are preserved if we
only include the terms that are “nearest neighbors” in flavor

indices. This is precisely analogous to including only
nearest-neighbor Josephson coupling in a Josephson junction
array, but where the “lattice sites” now are represented by
flavor indices. In this case, we haveN−1 Josephson terms.
Therefore, we consider the action

S= − o
a=1

N

bucsadu2 cossDusad − eAd

− o
h=1

N−1

bgshd cossushd − ush+1dd +
b

2
sD 3 Ad2, sE1d

wheregshd is the Josephson coupling. In the Villain approxi-
mation the model reads

Z =E DAp
a=1

N E Dusado
nsad

p
h=1

N−1

o
mshd

exps− Sd,

S= o
r
Fo

a=1

N
bucsadu2

2
sDusad − eA + 2pnsadd2

+ o
h=1

N−1
bgshd

2
sushd − ush+1d + 2pmshdd2 +

b

2
sD 3 Ad2G .

sE2d

Here,nsad are integer vector fields whereaP f1, . . . ,Ng and
mshd are integer scalar fields withhP f1, . . . ,N−1g which
take care of 2p periodicity. We introduce the Hubbard Stra-
tonovich fieldsvsad andqshd, and apply the Poisson summa-
tion formula so that they become integer fields

Z =E DAp
a=1

N E Dusado
vsad

p
h=1

N−1

o
qshd

exps− Sd,

S= o
r
Ho

a=1

N F svsadd2

2bucsadu2
+ ivsad · sDusad − eAdG

+ o
h=1

N−1F sqshdd2

2bgshd + iqshdsushd − ush+1ddG +
h

2
sD 3 Ad2J .

sE3d

At this point we organize the phase fields and perform partial
summations so that they can be integrated out. This gives the
following constraints on the integer fields:

D ·vs1d = qs1d,

D ·vshd = qshd − qsh−1d,

D ·vsNd = − qsN−1d. sE4d

To enforce these constraints we introduce the noncompact
gauge fieldshsad and the integer fieldsBshd where a
P f1, . . . ,Ng andhP f1, . . . ,N−1g such that
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vs1d = Bs1d + D 3 hs1d,

vshd = Bshd − Bsh−1d + D 3 hshd,

vsNd = − BsN−1d + D 3 hsNd, sE5d

where hP f2, . . . ,N−1g, and qshd=D ·Bshd are instantons.
These expressions may be simplified by introducing the
dummy fieldsqs0d=qsNd=0 andBs0d=BsNd=0, so that the con-
straints become slightly more symmetric, given by

D ·vsad = qsad − qsa−1d,

vsad = Bsad − Bsa−1d + D 3 hsad, sE6d

where aP f1, . . . ,Ng. Including interflavor Josephson cou-
plings beyond “nearest-neighbor” would merely have led to
redundant additional constraints in the problem. Expressed in
the new fields, the partition function reads

Z = U E DAp
a=1

N

o
hsad

p
h=1

N−1

o
Bshd

exps− SdU
Bs0d=BsNd=0

,

S= o
r
Ho

a=1

N
sD 3 hsad + Bsad − Bsa−1dd2

2bucsadu2
+

b

2
sD 3 Ad2

− ieA ·So
a=1

N

D 3 hsadD + o
h=1

N−1
sD ·Bshdd2

2bgshd J . sE7d

The appearance ofinstantonsand effectivelycompactdual
gauge fields in the dual description when Josephson cou-
plings are included, serves to illustrate what a nonperturba-
tive effect this is. Instantons are singular objects and cannot
possibly be introduced perturbatively. Moreover, once in-
stantons are required, a compactification of the dual gauge
fields is also required, a highly nonperturbative step. There-
fore, when we consider models where Josephson coupling is
absent, it is essential to be able to rule out completely inter-
flavor Josephson coupling on symmetry groundsa priori,
and at the level of the bare action.sIn systems with multi-
componentelectronic condensates, with N=2 and where a
weak interflavor Josephson coupling must be included, it
may be possible to see the resemblance of one phase transi-
tion for a neutral mode and one phase transition for a
charged mode, such as we have presented for the zero-
Josephson coupling case. This would be so in small enough
systems with linear extent smaller than the Josephson length
given by lJ

sad=Îucsadu2/gsad, which in this context may be
viewed as setting the scale of the interinstanton separation.
This would be a finite-size effect. For bulk systems, the ap-
parent neutral mode will eventually be suppressed, leaving
one phase transition in the universality class of the inverted
3Dxy model.d

We proceed by integrating out the original gauge field and
apply the Poisson summation formula to introduce the inte-
ger vortex fieldsmsad and the integer fieldsJshd, where a
P f1, . . . ,Ng and hP f1, . . . ,N−1g. The resulting theory is
the generalization of Eq.s10d

Z = Up
a=1

N E Dhsad o
msad

p
h=1

N−1 E DBshdo
Jshd

exps− SdU
Bs0d=BsNd=0

,

S= o
r
Ho

a=1

N
sD 3 hsad + Bsad − Bsa−1dd2

2bucsadu2
+

e2

2b
So

a=1

N

hsadD2

+ o
h=1

N−1
sD ·Bshdd2

2bgshd + 2piSo
a=1

N

hsad ·msad + o
h=1

N−1

Bshd ·JshdDJ .

sE8d

First we note that like in Eq.s10d the integration of the gauge
field A makes the algebraic sum of the dual gauge fields
massive. This reflects the fact that the gauge fieldA cannot
screen instantons, it can only screen vortices. Furthermore, in
the limit gshd→0 for all hP f1, . . . ,N−1g there are no Jo-
sephson coupling terms and each fieldBshd is constrained
locally so that D ·Bshd=0. The representationBshd→D
3bshd takes care of the constraint, and the substitutionhsad

+bsad−bsa−1d→ h̃sad reduces Eq.sE8d to Eq. s10d. Finally we
consider the uncharged case,e→0 for which it is useful to
return to Eq.sE3d, integrate out the phase fields, and write
the theory in terms of the integer fieldsvsad andqshd

Z = p
a=1

N

o
vsad

p
h=1

N−1

o
qshd

dD·vsad,qsad−qsa−1d exps− Sd,

S= o
r
Ho

a=1

N
svsadd2

2bucsadu2
+ o

h=1

N−1
sqshdd2

2bgshdJ , sE9d

wheredx,y is the Kronecker delta. We sum over the fieldsqshd

for all hP f1, . . . ,N−1g and are left with the partition func-
tion

Z = p
a=1

N

o
vsad

do
a=1
N D·vsad,0 exps− Sd,

S= o
r
Ho

a=1

N
svsadd2

2bucsadu2
+ o

h=1

N−1 sog=1

h
D ·vsgdd2

2bgshd J .

sE10d

This is the theory ofN current fieldsvsad which individually
can form closed loops, or dumbbells starting and ending on
instantons. There is onlyone remaining constraint on theN
matter fields in the problem, after theN−1 instantons have
been summed out.sIf we had hadM ,N−1 Josephson cou-
pling between flavors to begin with, we would have hadN
−M remaining constraints in the problem after summing out
the instantons.d The one remaining constraint leaves only one
phase transition in the problem in the universality class of
the 3Dxy model, in contrast to theN phase transitions we
have in the complete absence of inter-flavor Josephson cou-
plings. The local constraintoa=1

N D ·vsad=0 forces each dumb-
bell to form a closed loop with one or more dumbbells of any
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flavor. The instantons have been summed out of the problem,
leaving as their only trace the possibility of having supercur-
rents change flavor, precisely what the interflavor Josephson
coupling does when expressed in terms of the fields describ-
ing the supercurrents.

It is the possibility of being able to “chop” closed current
loops of a given flavor into dumbbell pieces starting and
ending on instantons, and then joining together dumbbell
configurations of different flavors, that facilitates this.sIt has
already been noted6 that the dual field theory of a gauge
theory with two complex scalar matter fields minimally
coupled to a compact gauge field, features two complex sca-
lar dual matter fields coupled to one noncompact dual gauge
field and an interflavor Josephson coupling between the two
matter field components. This is the reverse of what we have
shown in this appendix for the caseN=2, and nicely dem-
onstrates that “duality squared equals unity.”d

Taking the limit gshd→0 for all hP f1, . . . ,N−1g con-
straintsvsad to be divergence free for allaP f1, . . . ,Ng, and
the model thus reverts back to the loop-gas representation of
N decoupled 3Dxy models.

APPENDIX F: KOSTERLITZ-THOULESS TRANSITIONS
IN N-FLAVOR SUPERCONDUCTOR IN TWO

SPATIAL DIMENSIONS AT FINITE TEMPERATURES

In 2+1 dimensions at finite temperature, the classical
critical behavior of theN-flavor superconductor is very dif-
ferent from the trues2+1d-dimensional case, i.e., the quan-
tum critical behavior taking place in two spatial dimensions
at zero temperature. Let us first recall some features of planar
superconductivity. It is well known that in two dimensional
models with aUs1d gauge symmetry there is no quasi-long-
range order at any finite temperatures because a gauge field
coupling makes the interaction between topological defects
exponentially screened.55 The situation is however different
if one takes into account the “out of plane” magnetic field.
That is, taking into account a third dimension, a vortex in a
thin superconducting film produces a “mushroom”-like mag-
netic field outside the plane, which as shown by Pearl56 gives
rise to a logarithmic intervortex interaction at distances
smaller thanfpenetration lengthg2/ ffilm thicknessg, while at
a distance larger than that the vortices interact via a 1/r law.
Thus, for a thin film with a penetration length which is sig-
nificantly larger than the sample size, a Kosterlitz-Thouless
sKTd crossover should be observable.55,56The same effect is
also the reason for the appearance of vortices with long-
range interactions in layered systems making them being es-
sentially coupledUs1d models, where various KT transitions
and crossovers were studied in numerous works.10,51,57

Here, we are interested in KT phase transitions in the
N-flavor London superconductor in 2+1 dimensions in the
regime whensid the effect of “out of plane” Pearl field can be
neglectedsshort penetration length limit or alternatively a
planar field theory without a third dimensiond, and whensii d
all components have different stiffnesses. In Ref. 34, the case
N=2 in such a regime was considered. It was shown that the

system has a KT transition into a state where quasi-long-
range order is established only in phase difference which
produces a quasisuperfluid state. This state, however, is prin-
cipally different from, e.g.,SSF to MSF transition consid-
ered in Ref. 20 and in this paper, becausesid the quasisuper-
fluid state considered in Ref. 34 is a purely two-dimensional
phenomenon,sii d in this state there is no true off-diagonal
long-range order, andsiii d there is no phase transitions from
superconductivity to superfluidity in a planar system at finite
temperature.34

Let us now consider Eq.s4d for the caseN=3, when
ucs1du! ucs2du! ucs3du. In the most interesting case of finite
penetration length, the charged mode formally can never de-
velop quasi-long-range order. That is because the composite
single-quantum vorticessDus1d=2p ,Dus2d=2p ,Dus3d=2pd
andsDus1d=−2p ,Dus2d=−2p ,Dus3d=−2pd have finite energy
and have only screened short range interaction. Thus, in the
limit where the magnetic penetration length is finite, such
vortices are always unbound at any finite temperature. We do
not consider here the possibility of a “would be” KT cross-
over which is possible in a charged system with significantly
large penetration length.55 The absence of superconductivity
means that individually all phases are disordered and the
system is not superconducting. However, considering quasi-
long-range order in phase differences ind=2, several inter-
esting possibilities arise. Composite one flux quantum vorti-
ces have short range interactions. On the other hand, vortices
with windings only in one or two phases excite neutral
modes and thus can undergo a true KT transition. This opens
up the possibility for a KT phase transitions associated with
establishing quasi-long-range order in phase differences.34

The key feature of theN.2 system where bare stiffnesses
are different, is that, as discussed in Appendix A, the neutral
modes have also different stiffnessesfsee Eqs.s53d and
s59dg.

Let us consider first the low temperature regime. Then the
vortices with short-ranged interactions, namelysDus1d

=2p ,Dus2d=2p ,Dus3d=2pd and sDus1d=−2p ,Dus2d=−2p ,
Dus3d=−2pd are liberated, while vortices with phase wind-
ings only in one or two phases are bound into pairs of vor-
tices and antivortices. In this state there isquasi-long-range
order in the phase differencesus1d−us2d, us1d−us3d, and us2d

−us3d. Recall that the gradient terms of neutral modes which
follow from separating of variable in GL functional and
dropping terms describing charged modes in Eq.s53d are

Hneutral=
1

2

ucs1du2ucs2du2

C2 f¹sus1d − us2ddg2

+
1

2

ucs1du2ucs3du2

C2 f¹sus1d − us3ddg2

+
1

2

ucs2du2ucs3du2

C2 f¹sus2d − us3ddg2. sF1d

From this, we have the following stiffnesses of neutral
modes:

SMISETH et al. PHYSICAL REVIEW B 71, 214509s2005d

214509-38



J12 =
ucs1du2ucs2du2

C2 ,

J23 =
ucs1du2ucs3du2

C2 ,

J13 =
ucs2du2ucs3du2

C2 . sF2d

Consider now what will happen as the temperature is in-
creased. Pictorially, we may illustrate this by considering
Fig. 24 by slicing through the pictures at a given coordinate
along the vortex lines, considering typical cross sections.
Upon increasing the temperature, first there will take place a
deconfinement of vortex pairssDus1d=2p ,Dus2d=0,Dus3d

=0d+sDus1d=−2p ,Dus2d=0,Dus3d=0d because vortices in
such a pair are bound by the two weakest neutral modesJ12

and J13 fJ12,J13, ucs1du2/2g. This will be accompanied by
partial decomposition of deconfinedthermally createdcom-
posite vortices sDus1d=2p ,Dus2d=2p ,Dus3d=2pd→ sDus1d

=2p ,Dus2d=0,Dus3d=0d+sDus1d=0,Dus2d=2p ,Dus3d=2pd,
because a vortexsDus1d=0,Dus2d=2p ,Dus3d=2pd has the
same neutral vorticity as a vortexsDus1d=−2p ,Dus2d

=0,Dus3d=0d namely −2p windings in neutral modesus1d

−us2d andus1d−us3d. This transition takes place at

TKT
s1d =

p

2
fJ12 + J13g =

p

2

ucs1du2

C2 fucs2du2 + ucs3du2g. sF3d

This phase transition disorders the variableus1d and corre-
spondingly eliminates quasi-long-range order in phase differ-
encesus1d−us2d and us1d−us3d. Consequently aboveTKT

s1d the
only surviving neutral mode is associated withus2d−us3d. The
remaining phase transition can be mapped onto that inN
=2 system.34 Thus the second phase transition takes place at

TKT
s2d =

p

2

ucs2du2ucs3du2

C2 . sF4d

We can now solve the general problem of KT transitions in a
system ofN planar condensates with all different bare stiff-
nesses. In the general case ofN-flavor London model the
temperatures of the lowest KT transition is given by

TKT
s1d =

p

2 o
a=2

N

J1a =
p

2

ucs1du2

C2 o
a=2

N

ucsadu2 =
p

2
ucs1du2

C2 − ucs1du2

C2 .

sF5d

The subsequent KT transitions at higher temperatures are
mapped onto theN−1, N−2, . . . cases. Taking theN→`
limit in Eq. sF5d and provided thatucs1du2!C2 we obtain

TKT
s1dfN→`g → p

2
ucs1du2. sF6d

This expression quite remarkably shows that in the limitN
→`, even in the system with short penetration length,TKT

s1d

tends to the value in aneutral system with the bare stiffness
ucs1du. In contrast in the one component case with short pen-
etration length the system does not exhibit a KT transition.

In conclusion, we note that the KT transitions considered
in this appendix are still significantly simpler than the situa-
tion arising in this model in three dimensions because,as we
have considered in previous sections, in three dimensions the
charged mode plays an extremely important role.It is pre-
cisely the interplay between neutral and charged modes
which is particularly important in three dimensions and
which gives the model a variety of different phases and
phase transitions. Also, we note that this situation is quite
different from KT transitions that are known to exist in the
s2+1d-dimensional N-component Chiral Gross-Neveu
model42 where there is only one KT transition which occurs
at finite temperatureswhen the system is effectively two-
dimensional through dimensional compactificationd.
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