PHYSICAL REVIEW B 71, 214509(2005

Field- and temperature-induced topological phase transitions in the three-dimensional
N-component London superconductor

J. SmisetH, E. Smgrgrav, E. Babae! and A. Sudbg
IDepartment of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
2Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, USA
(Received 30 November 2004; revised manuscript received 14 February 2005; published 6 Jyne 2005

The phase diagram and critical properties of Meomponent London superconductor are studied both
analytically and through large-scale Monte Carlo simulationd=i2 + 1 dimensions(components here refer to
different replicas of the complex scalar figldExamples are given of physical systems to which this model is
applicable. The model with different bare phase stiffnesses for each component is a model of superconductiv-
ity, which should arise out of metallic phases of light atoms under extreme pressure. A projected mixture of
electronic and protonic condensates in liquid metallic hydrogen under extreme pressure is the simplest ex-
ample, corresponding tN=2. These are such that Josephson coupling between different matter field compo-
nentsis precisely zero on symmetry groun@i®ie N-component London model is dualized to a theory involving
N vortex fields with highly nontrivial interactions. We compute critical exponentnd v for N=2 andN
=3. Direct and dual gauge field correlators for genétare given and th&l=2 case is studied in detail. The
model withN=2 shows two anomalies in the specific heat when the bare phase stiffnesses of each matter field
species are different. One anomaly corresponds foarted3Dxy fixed point, while the other corresponds to
a 3Dxy fixed point. Correspondingly, fdi=3, we demonstrate the existence of two neutrakgfixed points
and one inverted charged Pfixed point. For the general case, there Mrfixed points, namely one charged
inverted 30xy fixed point, andN—-1 neutral 3Dy fixed points. We explicitly identify one charged vortex mode
andN-1 neutral vortex modes. The model f=2 and equal bare phase stiffnesses corresponds to a field
theoretical description of an easy-plane quantum antiferromagnet. In this case, the critical exponents are
computed and found to be non-8pvalues. TheN-component London superconductor model in an external
magnetic field, with no interspecies Josephson coupling, will be shown to have a different feature,Marhely
superfluid phases arising out Nfcharged condensates. In particular, for2 we point out the possibility of
two different types of field-induced phase transitions in ordered quantum fliidsphase transition from a
superconductor to a superfluid or vice versa, driven by tuning an external magnetid fisldets the super-
conducting phase of liquid metallic hydrogen apart from other known quantum.fliiidé phase transition
corresponding to a quantum fluid analogue of sublattice melting, where a composite field-induced Abrikosov
vortex lattice is decomposed and disorders the phases of the constituent condensate with lowest bare phase
stiffness. Both transitions belong to the Bpuniversality class. FON= 3, there is a feature not present in the
casesN=1 andN=2, namely a partial decomposition of composite field-induced vortices driven by thermal
fluctuations. A “color electric charge” concept, useful for establishing the character of these phase transitions,
is introduced.
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I. INTRODUCTION liquid metallic state of hydrogeh® which appears being
close to a realization in high pressure experiméftshe
Ginzburg-Landau(GL) theories with several complex scalar fields represent Cooper pairs of electrons and protons.
scalar matter fields minimally coupled to one gauge field arerhis excludes, on symmetry grounds, the possibility of inter-
of interest in a wide variety of condensed matter systems anflavor pair tunneling, i.e., there is no intrinsic Josephson cou-
beyond. This includes such apparently disparate systems @fing between different species of the condensate. This sets it
the two-Higgs doublet modél,superconducting low tem- apart from systems with multiflavoelectronic condensates
perature phases of light atoms such as hydrégemder arising out of superconducting order parameters originating
extreme enough pressures to produce liquid metallion multiple-sheet Fermi surfaces, such as is the case in
states, and effective theories for easy-plane quanturMgB,. For the latter system, Josephson coupling in internal
antiferromagnet$-® Well-known cases of multicomponent order parameter spaceannot be ruled out on symmetry
systems are represented by multiband supercondddiikes  grounds, and must therefore be included in the description.
MgB; where there are two order parameters corresponding his is so because the Josephson coupling represents a sin-
Cooper pairs made up of electrons living on different sheetgular perturbation and can never be ignored on sufficiently
of Fermi surface. In that case however condensates are ning length scales. This is otherwise well known from stud-
independently conserved and thi1) X U(1) symmetry is ies of extremely layered superconducttteshere the critical
broken toU(1), so the main results of this paper do not applysector is that of the 2By model in the absence of Josephson
to multiband superconductors. In contrast, in the projected¢oupling, while any amount of interlayer phase-coupliimg
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an extended systenproduces a critical sector belonging to A special feature is presented by the important cidse
the 3Dxy universality classlt is precisely the lack of Joseph- =2. Here, it turns out that théual description of the theory
son coupling in certain, but by no means all systems witlis isomorphic to the starting poif€1°® Normally, in d=2
multiple flavor order parameters, that opens up the possibil-+1, a gauge theory dualizes into a global theory and vice
ity of novel and interesting critical phenomenidowever, versa. In contrast &(1) X U(1) gauge theory dualizes into
even in interband Josephson-coupled condensates, interearotherU(1) X U(1) gauge theory, i.e., the theories aef-
ing physics arises at finite length scaté4? dual. In general the theory has two separate critical points,
A two-component action with no Josephson coupling inone inverted 3Ry and one 3Ry critical point!® For the
(2+1) dimensions, with matter fields originating in a bosonic special case where the bare phase stiffnesses of the two mat-
representation of spin operators, is also claimed to be thter fields are equal, as they naturally are in the case of easy-
critical sector of a field theory separating a Néel state and plane quantum antiferromagnets in the absence of an exter-
paramagnetic (valence bond orderg¢dstate of a two- nal magnetic field;® another interesting feature appears. In
dimensional quantum antiferromagnet at zero temperaturthis case, there is only one critical point separating two
with easy-plane anisotrody This happens because, al- phases described kself-dual field theoriesThis cannot be
though the effective description of the antiferromagnet in-either an inverted 3Ry or a 3Dxy fixed point. Self-duality
volves ana priori compact gauge field, it must be supple- also precludes the possibility ofZ2) universality class al-
mented by Berry-phase terms in order to properly describéhough the exponentthat we find for this case appears to be
S=1/2 spin system$3!4 Berry-phase terms in turn cancel close to the Ising valuévhile « is nob. This phase transition
the effects of monopoles at the critical pofiftHence, an  therefore defines a new universality class, namely that of the
effective description in terms of two complex scalar matterd=2+1 U(1) X U(1) self-dual gauge theory.
fields coupled to oneoncompacgauge field suffices to de-  What happens to such multicomponent charged conden-
scribe the nontrivial quantum critical point separating a statgates in three dimensions in the absence of Josephson cou-
with brokeninternal SU2) symmetryand a paramagnetic pling between the order parameter components, but in the
SU(2)-symmetric state with brokeexternal symmetrylat-  presence of an external magnetic field, has been recently
tice translational invariangeThe latter state is the valence- studied in Refs. 20 and 21 for the cade 2, with particular
bond ordered state. Critical behavior separating states diffeemphasis on applications to liquid metallic hydrogen. In this
ing in this manner Is not captured by the Landau-Wilson-naper, we extend on this and consider in detail the effects of
Ginzburg paradigm;*®and requires a description of a phase 1 ning the external magnetic field and temperature when also
transition Wlth.OLI.t a .Iocal order parameter. An.example ofN=3 New features appear compared to M2 case, be-
such a description is the well known Kosterlitz-Thouless ., se composite vortices consisting of nontrivial windings in

phase transition taking place in the Pmodel*® The dif- . i
ference from the Kosterlitz-Thouless case and the quantun"’"‘nII order parameter components can now undergo partial de

critical behavior described above is that while the low tem_compositions by tearing vortices of individual order param-
perature phase of the 2§ model is a Gaussian fixed line, eter components off the composite vortices, one after the

this is not so for either side of the quantum critical point of other. We prowd_e a (.juallplcture of these procesgess a .
the easy-plane quantum antiferromaghéfsWe also men- vortex Ioo_p prollfgratlon in the 'background of a cpmposne
tion that another example of a multicomponent system with/ortex lattice andii) as a metal-insulator transition in a sys-
no intercomponent Josephson effect are Spin-trip|et SupeFem .COI‘ISISt.Ing Of- Several “C0|OI’S Of eleCt”C Charges” In a
conductors which are well known to allow a Variety of topo_ multicolor dielectric background. The new Concept of “color
logical defects and phase transitiddsSome of the topics we charge” will be introduced and explained in detail in this
discuss below are related to the models of spin-triplet paire@aper.It allows us to determine the universality class, and
electronst® the partially broken symmetries of the partial decomposition
Since the condensates described above in the context tfansitions taking place in multiflavor superconductors in an
light atoms and easy-plane quantum antiferromagnets amxternal magnetic fieldWe also show that the number of
gauge-charged condensates, the order parameter flavors amors N.o,, Of dual charges exceeds the number of field
all coupled to each other via a noncompact gauge field. Thisomponentgflavorg for N> 3.
coupling is vastly different from the Josephson coupling in  The outline of the paper is as follows. The first six sec-
the sense that while aW-flavor order parameter condensate tions of the paper deal with results in zero external magnetic
with no coupling between different species in general willfield. In Secs. VII and VIII we present results in finite mag-
have N phase transitions, a Josephson coupling between retic field. Readers who wish to consult results on finite
pair of order parameter species will collapse the two indeimagnetic field may proceed directly to Sec. VII.
pendent phase transitions they undergo with no coupling, In Sec. Il, we introduce the model and the main approxi-
down to one. Josephson coupling between all pairs of ordemation we will use to study the model, as well as the duality
parameter species will collapse &llphase transitions down transform that will be used extensively, along with the ex-
to a single one, namely an inverted Bptransition. On the  plicit vortex representation of the model. In Sec. IIl, we ex-
other handN order parameter species coupled to one and thelicitly transform the action for th&l=2 case into an action
same gauge field will still undergo in genetdiphase tran- consisting of two parts(i) one charged vortex mode with
sitions, namely onénverted3Dxy transition where a Higgs vortex interactions mediated by a massive vector field and
phenomenon takes place, followed Ry 1 3Dxy transitions  (ii) one neutral vortex mode with vortex interactions medi-
as the coupling constants are increased beyond the Higgs ated by a gauge field. In Sec. IV, we compute gauge field
3Dxy critical point$1° correlators and dual gauge field correlators in terms of vortex
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correlatorsThis explicitly identifies the mechanism by whichthe individual condensates are conserved, the potential
a.thermally driver_l vortex loop proliferation_ destroys the V({\]fg")(r)}) must be function ot\lfg"‘)(r)|2 only. In this pa-
Higgs phase (Meissner effect) and dual Higgs plidsé per, we focus on the critical phenomena and phase diagram
Gauge field correlators are useful in characterizing thesf Eq. (1) in zero as well as finite external magnetic field,
charged fixed point of thal-flavor London modet?#?while  and for these purposes the model in Eq.will be studied in
dual gauge field correlators are also useful in characterizinghe phase-only approximatior‘ifg“)(r):|‘Ifg“)|exp[i6(“)(r)]

the N—1 neutral fixed points” In Sec. V, we present large- \yhere|w(?| is a constant, i.e., we freeze out amplitude fluc-
scale Monte Carl¢MC) simulations for the casi=2, com-  yations ofeach individual matter fieldThe model we study
puting critical exponents at the neutral and charged fixes therefore the generalization to arbitraxyof the frozen-
points, as well as the mass of the gauge field as a function ofhjityde one gap lattice superconductor model also known
temperature. The neutral fixed point is found to be in the;q the London superconductor model.

3Dxy universality class, while the charged fixed point is  5ne may well ask what confidence one should put in the
shown to be in the inverted 3y universality class. We also _ﬂphase only approximation for all fields when the bare phase
consider in detail the case when the two bare phase Stifigitness of each individual condensate is very different, such
nesses of the model are identical, showing that the resultings is the case in LMH. The answer is that one can be quite
one fixed pointis in a new universality class distinct from the ., igent that this is a useful and reasonable approximation.
3Dxy and inverted 3y universality classes. In Sec. VI, we ~gnsider first the casd=2. We use the phase only approxi-
present corresponding results for the cise3. In Sec. VI, 51i0n with confidence for considering the criticality here. It
we outline the phases to expect for the cse2 when an  coainly works at the lowest critical temperature. After that
external magnetic field is applied. We also present resultﬁoim, we are left with a one-component superconductor.

from large-scale MC simulations revealing a novel phasgypat the field with the lowest phase stiffness does above the
transition in the 3Ry universality class inside the Abrikosov |qwvest critical temperature is not of interest, it is only the

vortex lattice phase at low magnetic fields when temperaturgsmaining field with criticality at higher temperature  that
is increased. In Sec. VIII, we do the same whéRr 2, em-  ayers. Hence, significantly above the lowest critical tem-
phasizing the qgahtaﬂvely new features compared tp the CaSSerature, we may still apply the phase only approximation
N=2. We also introduce a useful “color charge” picture ot the remaining one-component case if it is of type-Il. For
fche various p_art|al decomposition transitions of the composg;g field, we may use the phase only approximation up to the
ite vortex lattice that we encounter for the case WNeR3.  pighest critical temperature with the same confidence as we
In Sec. X, we summarize our results. In Appendix A, We 4, yse the phase only approximation for the field with the
identify charged an neutral vortex modes for gen#¥aln  |oyest phase stiffness up to and slightly above the lowest
Appendix B, we derive the vortex representation for thejica| temperature. The same argument can be repeated for
generalN case. In Appendices C and D, we derive expreShiiraryN: We can use the phase only approximation for the

sions for gauge field correlators and dual gauge field correlage|gs yp to and slightly above their respective critical tem-
tors, respectively. In Appendix E we generalize our dual repyeratres. After that it is immaterial what they do, it is only

resentation for grbitraryN to _also include. inter—flavor. the remaining components that matter.
Josephson coupling. In Appendix F, we consider Kosterlitz-
Thouless transitions for the genefdlease in two spatial i _
dimensions at finite temperature. A. Basic properties of the model

Varying Eq.(1) with respect toA, we obtain the equation
Il. MODEL AND DUAL ACTION for the supercurrent

For an analysis of the possible phase transitions in a GL
model of N individually conserved bosonic matter fields, J=
each coupled to one and the sal€l) noncompact gauge
field, we study a version of tha-flavor GL theory in 2+1 (2)
dimensionswith no Josephson coupling terrhstween order - \ey excitations in such aN-flavor GL model carry frac-
parameter components._ Moreover, we ignorel mixed gradieq}ona“ flux. Consider a vortex where the pha#@(r) has a
terms, such that there is no Andreev-Bashkin e(f)éahe 27 winding around a vortex core, while other phases do not
model is defined byN complex scalar fieldg¥, (r)|_“ have nontrivial windings. Expressing from Eqg. (2), and
=1,...N} coupled through the charge to a fluctuating integrating along a path around the vortex core at a distance

S I8’ © (o) ) gl w62
EW{\PO VU - v ) - 2 e A

gauge fieldA(r), with the action larger than the magnetic penetration length, we obtain an
expression for the magnetic flux encompassed by the path
o | < [[V-ieAN W ()2 (@ ivpen b ’ g Fer
S=| d| X (@ + V() 9 y
a=1

p2f Nopez |71
1 #0= §aa —o L SEEE L @
+2IVxAMP|, () M Loz M
where®,=2.07x 101* T m? is the flux quantum. As it will
whereM@ s the mass of the condensate speciedVhen  be clear from a discussion following E(L.3) [see Eq(12)],
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such a vortex has a logarithmically divergent enéfgy.  (which is not a gauge invariant quaniitis higgsed into a
Only a compositevortex where all phase§® have 2mn massive vector field by coupling to the vector potential. In
winding around the core carries integer flux and has finitehe caseN=2, the situation is different in the sense that one
energy. As detailed below, the composite vortices are resporcan form a gauge invariant quantity by subtracting phase
sible for the magnetic properties of the system at low temgradients. Thus th&J(1) X U(1) system may be viewed as
peratures while thermal excitations in the form of loops ofpossessingi) a localU(1) gauge symmetry associated with
individual fractional-flux vortices are responsible for the the phase sum which is coupled to the vector potential and
critical properties of the system in the absence of an externahus yields a massive vector field, afid) a global U(1)
field. symmetry which is associated with a phase difference where
Note that since each individual amplitude is frozen, thisthere is no coupling to the vector potential. These charged
model will be different from the case where only the sums oind neutral modes are naturally described by the first and
the squares of the amplitudes are froZ&he latter is usu-  third terms in Eq(4), respectively. FON=3, the situation is
ally referred to as the N-component scalar QED principally different from both thé=1 andN=2 cases. That
(NSQED), %% or the CP""* model?® (As far as critical prop- s, in Eq. (4) for N=3, we find one term describing the
erties are concerned, the NSQED model and thé"€P charged modethe first term and three terms describing
model have been shown to belong to the same universalityauge-invariant neutral phase combinations.
class?®) We strongly emphasize that we must distinguish our  The two neutral modes in E¢), in theN=3 case, cannot
model from NSQED and CF, and will consequently be pe properly described by only two terms, for topological rea-
referring to it as theN-flavor London superconduct¢NLS)  sons. A vortex excitation produces a zero in the order param-
model. The NLS is in fact the natural model to consider foreter space, thus making the superconductor multiply con-
the physical systems mentioned in the introduction, in parnected. A vortex with a nontrivial phase winding in any of
ticular pertaining to the superconducting mixtures of metallicthe three components would result in nontrivial contributions
phases of light atoms. As we shall see, the NLS model hag two of three phase-difference terms in E4). Hence, for
physics which sets it distinctly apart from the NSQED andN=3 an elementary vortex, i.e., with nontrivial winding only
the CP'"! models, and it does not have critical properties inin one of the phases excites two neutral modesyeneral,
the same universality class as they do. This becomes particwhen all|¢/)| differ, the bare phase stiffnesses of two neu-
larly apparent in the larght limit, as we shall see in Sec. tral modes excited by each of the three possible elementary
I1D. vortices, are different. Thus, the neutral modes in the system
are described by three phase-difference terms in (Ep.
These three terms are not independent when the condition of
single-valuedness of each of the N order parameter compo-
Before we proceed further, it is useful to give anothernents is enforcechamely that individual phases may change
form of the action. For brevity we introduce the bare phaseonly by integer multiples of 2 around zeroes of the order
stiffness of the matter field with flavor index defined as parameters.
|@)2=|w\¥|2/M@. Then Eq.(1) may be rewritten in terms ~ Using Eq.(4) as opposed to Eq1), has advantages, be-
of onecharged and\—-1 neutral modes as followsletails of ~ cause the neutral and charged modes are explicitly identified.

B. Separation of variables

this are found in Appendix A We haveS=[d% £, with This facilitates a discussion of the critical properties of the
N ) N-flavor system. Moreover, E¢4) will allow us to identify
1 1 2 various states gbartially broken symmetry which emerge if
- (@|2y gl _ a2 =
L= NP2 Z’l [PV 0 eYrA ) + Z(V X A) an N-flavor system is subjected to external magnetic fiéld.
\ We will come back to these points in detail in Secs. VII and
1 VIII.
e & WP (6 - 692, @
a,B=1 C. The Villain approximation
where The theory Eq.(1) is discretized on al=3 dimensional

N cubic lattice with spacing=1 and sizel.3, and in the phase
2= |fop. 5) only approximation the action reads
a=1 N 3
— a)|2 @

The first term in Eq.(4) represents the charged mode cou- S= ; [_ﬂgw ) #2:1 COS(AMG( (1) —eA,(r))
pling to the gauge field\, and the remaining terms are the
N-1 neutral modes which do not couple Ao This means B 5
that they have gauge charge equal to zero. We will come +§[V XAMF]. (6)
back to this in Sec. lll. This form Ed4) will be useful later
when we discuss finite field effects in Sec. VIIl. We alsoHere, we have included the inverse temperature cougging
stress that’ in the above expression should not be confused=1/T. The symbolA* denotes the lattice difference operator
with \I'E)“) defined in Eq(1). in direction u in Euclidean space and the position veator

Counting degrees of freedom in Ed) requires care. The runs over all points on the lattice. The partition function in
caseN=1 yields the well known answer that a phase variablethe Villain approximation is
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o N m N Thomas and Ston&.In Appendix E we generalize this result
:f DALl | DEV]] D exp-9), even further by including interflavor Josephson coupling.
—o LS em 7=1 p(") When N=2 there is an important difference from the
N=1 case, which gives rise to entirely different physics.
ﬂ|¢r(a B Note how it is thealgebraic sunof the dual photon fields in
S=2 | > T—(AdY-eA+2mn@)2+ = (A X A)? Eqg. (10) that is massive. This differs from the cabk=1,
L wheree produces one massive dual photon with bare mass

(7) €?/2, and the model describes a vortex figidr) interacting
through a massive dual vector field h(r). However,

ity, and the lattice position index vectar is suppressed when N=2, since A-m'®/(r)=0, a gauge transformation
Here, we stress the importance of keeping track of 2he h'@(r) —h@(r)=h'“(r)+Ag(r) for a[1, ... N] leaves
periodicity of the individual phasegror N=1 it has been Ehe action in Eq(10) invariant if one of the gauge fields, say
shown that thermal fluctuations in this model excite topo-h”(r) compensates the sum in the last term in the action
logical defects in form of closed vortex loops. At the critical with Ag\”(r)=-3 ;ﬁnAg(V)(r) Thus, even in the presence of
temperature the system undergoes a vortex loop proliferatioa gauge charge, such that the direct model is a gauge
phase transitioR?-31 theory, the dual description is such that the individual dual
photon fields are also gauge fields.

Integrating out the dual gauge fields we get a generalized
theory of vortex fields ofN flavors interacting through the

In the following, we transform the model E(7) into a  potentialD*”(r)

wheren'@(r) are integer vector fields ensuringrderiodic-

D. Vortex representation

theory of interacting vortex loops of different flavors. The N
procedure is descnbed.ln deta|.l in Appgnd|x B Thg kinetic 2=T1 > 6umiv £
energy terms are linearized by introduciNgauxiliary fields a=1 o)

vi9(r). Applying the Poisson summation formula and inte-
grating ovem@(r) constrains the fields®(r) to take only
integer valuesi'®(r). Integration over alld’®(r) produces
the local constrainta -V®(r)=0, which are fulfilled by re-
placing ¥@(r) with Axh(a)(r) where h(a)(r) are integer- where é,, is the Kronecker delta, and the discrete Fourier

valued fields. By applying the Poisson summation once moréansform of the vortex interaction potential B*7(q),

and summing over ah(®(r), the fieldsh®(r) take continu-  9\VeNn by'®

ous valuesh®(r) and the integer-valued vortex fields D(a,n)(q) N 5 =\

m@(r) are introduced. We recognize'®”(r) as the dual 2B O e Sl ——

gauge fields of the theory. To preserve the gauge symmetry Bl |Qq| Mo |Qq|

of h@(r) each vortex field of flavor index is constrained where\@ = |y(®2/ W2, and¥2is given by Eq(5). Here, the

by the condition bare massn, is the inverse bare screening length given by
A-m@() =0. ® m(z):ez‘lf?, and|Qq|2:Ei:1.[2 sin(g*/2)]?2 is the Fourier rep-

resentation of the lattice Laplace operator, wheateé
Hence the vortex fields form closed loops. At this stage, the=2mn*/L with n“e[1,... L]. Note that= \@=1. Note
action reads also that where?=0, the interaction matrix reduces to

(A X h(@)? . (@)
S= ELE_l 2B |eA-(C§1A><h(“>> Dl@)(q) = 28]y ||Qq|2 (13

S,=m2>, 2 mYr)D@(r —r)m(r'), (12

ryr’ an

(12

N This means that when there is no charge coupling the matter
+27i > m@ . h(@ + ﬂ(A X A) ] 9) fields to afluctuatinggauge field, there is no interaction be-
tween vortices of different flavors. This simple case corre-
sponds to Eq(l) representing a system hfdecoupled 3Ry
where the vortex fieldsn®/(r) are constrained by Eq8).  models. Also note that for vortices of different flavors,

We integrate out the gauge fiekdr) and get a theory in the = o, whene= 0, the interaction matrix tends to vanish when

a=1

dual gauge field'@(r) and the vortex fieldsn'@(r),° the intervortex distance is much smaller then the effective
(anz penetratior_l Iengtmzll_mo. It fo_llows from the fact that
5= 2 [27112 m(@ . p@ 4 E (A X h'*) when the intervortex distance is much smaller tharthe
ot 2,3|¢a>| vortices interact as il does not screen, i.e., asAfdoes not

N 5 fluctuate. In this case, it is clear that the action we describe is
e (@ simply that of N decoupled 3Ry models, i.e., interflavor
ol 2h ' (10) interactions vanish, cf. Eq13). For instance, for the case
N=2, there will be no interactions between vortices of con-
This generalizes to arbitra the results of Peskif? and  densate¥'” and vortices of the condensatel? unless we

a=1
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allow the gauge field to fluctuate. In the extreme type-Il limit fields ¢'® for each vortex species, minimally coupled to the

where \ — only intraflavor interactions between vortices dual gauge field$®. This generalizes the dual theory for

will exist (see also Ref. 34 N=1 in Refs. 29 and 33. The theory re&tifor a comment
The first term of the vortex interaction potential E?2) on the case of generdl, see also bottom of p. 42, Ref) 6

is a Yukawa screened potentialhile the second term medi-

ates long range Coulomb interactions between vortex fields N (A X h(”‘))z

If N=1 the latter cancels out exactly and we are left with theg, = > | > (m2|¢(a>|2 +|(A = ih@) @2 + —)

well studied vortex theory of the GL model which has a r Lamt\ 2|2

charged fixed point foe+ 0.223%For N=2 we find a theory N 2

of vortex loops ofN flavors interacting through long range + i(E h(a)> + > g(a,n)|¢(a)|2|¢(7;)2:| _ (14)

Coulomb with an additive screened part. If the number of 2B\ =1 @y

speciesN grows to infinity and¥?— o, the vortex interac-

tion receives the dominant contribution from a diagonal unyere we have added chemical potentizire-energyterms
screenedN X N Coulomb matrix. But there are physical Situ- for the vortices, as well as steric short-range repulsion inter-

ations where off-diagonal interactions play an important roleyctions between vortex elements. In thel case, a RG
even in the largeN limit (to be discussed belgwOne can  {eatment of the ternte?/28)h? yields

also observe from Eq.3) that in theN— <o limit when all

components have similar stiffness the magnetic flux enclosed

- o€’
by elementary vortices also tends to zero. Thus,Ner o — =g (15)
the physics of the model is governed by neutral modes only. dinl

The energy density of one straight vortex line of flawor
in a distance larger than the effective penetration deptls  and hence this term scales up, suppressing the dual vector
found by integrating along the line using the last term in thefield h. The charged theory id=2 + 1 therefore dualizes into
potential Eq(12) only3® This produces an energy term of the a |#|* theory and vice vers® Correspondingly, foN=2,
form D(r) ~In(|r|), and shows that such a vortex has loga-Eq. (15) suppresse&™_,h(@, but not each individual dual
rithmically divergent energy. gauge field. For the particular calke=2, assuming the same
The largeN limit of the NLS serves to illustrate how dif- to hold, we end up with a gauge theory of two complex
ferent the physics is from the largedimit of the NSQED  matter fields coupled minimally to one gauge field, which
model and the CP modéf:?2In the largeN expansion of the was also precisely the starting point. Thus the theory is self-
NSQED model, only one charged fixed point is foumdhich ~ dual for N=256
is infrared stable providedNe>365), with critical exponent

1/v=1+48/N+--- in D=327 This is consistent with the re-
sults found in the largé¥ limit of the CEN-Y model?® The IIl. CHARGED AND NEUTRAL VORTEX MODES

origin of the difference between these results and the results

we find for the NLS model is easily traced to the following identifying charged and neutral vortex modes for the model
fact. The treatment of the NSQED model in Ref. 27 'sEq. (1). Consider first the cash=2, when the action Eq.

strictly speaking correct only in the case of type-I supercon—(lo) reads
ductivity, since they find that for physical valuesifonly a

first order phase transition from a superconductor to a normal
metal takes placéno infrared stabldixed pointis found for _ ra() (D) @ hQ
physical values oN). This is correct only for values of the s=2 2ri[m™ - T+ mE -
Ginzburg-Landau parametar<0.8/y2, as has been shown

In this section, we present a straightforward method of

r

in recent large-scale MC simulatioctisand in earlier analyti- + ﬁ(h(l) +h@)2+ 1 (V x h(D)2 .\ (V X h@)2
cal treatment$? The transitions discussed below where neu- 28 28] |¢Y)? |22
tral modes appear do not significantly depend on whether the (16)

system is type-l or type-Il. Our results are therefore best
thought of as generalizations to arbitreyof the problem

studied many years ago by Dasgupta and Halperin on th ual gauge fields@, namely?/=h®+h. I a neutral vor-

frozen-amplitudeN=1 lattice superconductor modllt is d icts in th his implies th : |
this fact that in the present model the modulus of each com(€x mode eX.'StS n the system, this IMPLEs t. e existence also
f a gauge field in the problem, which we will denote Hy

ponent is fixed, along with the precise absence of intern ¢ () ; o
Josephson coupling between matter field species, that brin?ge therefore writdh' as linear combinations 6¥ and A as
out the physics we shall describe, namely tharge-neutral ollows:

superfluid modes arising out of N charged condensate fields

rom this we identify the massive linear combination of the

h(@ =T@H + A@ 4, (17)

E. Dual field theory We insert this into Eq(16) and demand that cross terms

Starting from Eq.(10) the above vortex system may be betweerH and.4 vanish, thus obtaining the following set of
formulated as a field theory, introducilg complex matter equations determining the coefficierfi&®, A(®):

214509-6



FIELD- AND TEMPERATURE-INDUCED TOPOLOGICAL.. PHYSICAL REVIEW B 71, 214509(2005

rv+r@=1, ries. The main reason is that they provide nonlocal gauge
invariant order parameters for the theories, which in turn
AD 4 A@=( enable reliable determination of critical exponents, including

anomalous scaling dimensiongloreover, these correlators
DA (D] (112 2 A (21 1212 — explicitly identify the mechanism by which the Meissner ef-
TOADOE+ TENy2]2=0. (18) fect is destroyed in type-ll superconductors: The mass of the
Thus, we havel@=|y(@|2/ W2, where W2=|yV|?+|¢?|?,  gauge fieldA, and hence the Higgs phase (equivalently the
which yields the following expression for the gauge figld ~ Meissner phase) is destroyed by a thermally driven vortex
)2 () D22 loop proliferation of the charged vortex maéf&?230:31
B (7 [¢*Yh (19 In this section, we study in detail the direct gauge field
AW P2 ' correlation function, as well as various combinations of dual
auge field correlation functions, in order to gain insights
to the nature of the critical points E¢l) can exhibit.

A

Since we have three equations and four unknowns, we m
chooseA W freely, and determine it by simplifying the pref-

actor in A to getAW=1/¥2=-A@ whence we have A. A-field correlator and Higgs mass
A=[2)2h@ - |y 2h@), (20) We first consider the propagator for the gauge fiald
) ) which provides information about at which of the critical
Inverting the relations fo#{ and.A, we have points the Higgs phenomenon takes place, and where the
h = (| D2 + A)w2 remaining(neutra) fixed points appear. We present compact

expressions for the genendl-case, in later sections we

present explicit numerical results for the cadés2 andN
h® = (|2 PH - A2, (21) =3

Inserting this back into E(16), collecting terms, and rede- W& compute the correlation functiofA(r)-A(0)) in
fining the fieldsH/W2—7H and A/W2— A, we have the terms of vortex correlators in the standard way by starting
action S=S,,+S, where from the action Eq(9), prior to integrating out the gauge

field A, adding source terms containing currefitsinimally
_ . o, 1 2 2. coupled toA, and performing functional derivations with
SH—; {ZmH-m( )+ ZEH[(V X H)"+mgH ]}’ respect to the currents that are subject to the constraint
V-J=0, after which the currents are set to zero. The details
1 of the computations required to compute tAefield cor-
S,= > {ZwiA m + ——(V x A)2}' (22) relator are given in Appendix C. The discrete Fourier trans-
2B 4 form of the gauge field propagator ¢ (q)=(A4-A_y). We

r

where find
2/, 2mBe? GY(q)
m® = gOPm® + [ 2)Pm @, Galq) = 2,3 2( . ,32 i q ), @4
Qql*+mg [Qql* 1Qql*+ My
m©=m® -m®@, where we have defined the correlation function of the
charged vortex mode as
1 (PP N N
2B 26 G = (21|w<“>|2m£;‘>) -(21|¢<">|2m£’3)
a= 7=
1 WP+ PP 23 (25)
2B 2B ' Notice in Eq.(24), that theA-field correlator is only affected

andmZ=e?¥2. The action in Eq(22), which is equivalent to by the gauge-charged vortex momgzlwf(“”zm;a) via the

Eq. (16), therefore describes a vortex modé® interacting ~ coupling constantng = €.

with itself via a screened anti-Biot-Savart interaction medi- Equation(24) is useful in MC simulations, in conjunction
ated by the massive vector f|e}ﬂ, and the vortex modm(_) with Scaling forms to be presented beIOW, for eXtraCting the
interacting with itself via an unscreened anti-Biot-Savart in-9auge field mass and the anomalous scaling dimension of the
teraction mediated by the gauge field Hence, the former gauge field. The correlation leng#i that appears in a scal-
vortex mode is charged, the latter is neutral. In Appendix A,ing Ansatzfor the A-field correlator

we present an alternative method of identifying charged and 1 X
neutral modes for generél. Ga(x) = m%(a). (26)
IV. GAUGE FIELD CORRELATORS is related to the mass of the gauge field mazf,gl. Here,

7, IS the anomalous scaling dimension of the gauge field
Gauge field correlation functions are useful objects toConsequently, the gauge field propagator E2f) has the
study when considering the critical properties of gauge theogeneral structuré
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may view the divergence of the penetration len@tte cor-

galq) ~ _|Q P+3A() (27) relation length in theA-field propagator, as a manifestation
q A of the vortex loop blowout in the systerdortex loopshave
where, close to the critical point dual counterparts in the current loops of the matter fields
- P9 in Eq. (1). Conversely therefore, we may also view
Sa(q) =M +Clg2 7+ O(lq]), (29 Yo (1) InEa (1) y y

the Higgs mass, i.e., the Meissner effect in the supercon-
C is a constant and>2-7,. By taking theq— 0 limit of ductor, as a manifestation of blowout of supercurrent loops
the Egs.(27) and(28) we may extract the gauge mass from upon entering the low-temperature phase. Again, the ampli-
MC simulations. From the relatioB=A X A the gauge mass tudes of the matter fieldﬂ/g“)(r) play no special role here,
is identified as the inverse magnetic penetration dapffhe  other than that they have to be nonzero across the Higgs
masses of dual gauge fields are defined in a similar fashiofransition22-30.31,40-43

Let us make a remark concerning how a charged fixed
point (74=1) could be distinguished from a neutral fixed

. . B. Dual gauge field correlators
point (7,=0) by gauge mass measurements. The magnetic

penetration length is related to tiseiperconductingcoher- The details of the computations required for finding the
ence length¢ via?2:3% dual gauge field correlation functions in terms of vortex
fields are found in Appendix D. We find the following “Dys-
-1 2-d)/(2- v(d-2)/(2—
S | e PR (29 ons's equation” for the gauge field correlator

where v is the critical exponent of the coherence length in @ nBh S (ap) = ) = (B D 0
the superconductor, i.ey=0.6715%3),® and d is dimen-  (hg”-h%) =D"“P(q) - #°D'“7(q)D#*(q)(mg” - mly),
sionality. Therefore, we see that whep=0, we havé*3> (33)

[¢ —V
N~ NE~[T=-T 2, (300 where we have used the fact that the trace of the transverse
while when7,=1, we have projection operator is given by [P4"]=2, the matrix ele-
mentsD@?(q) are defined in Eq(12), and a summation

N~ e~ T-T™ G Gver the indiceg 7, x) € [1, ... N] is understood. These re-
Hence the gauge mass, =\"! plotted as a function of tem- sults are valid for alN.
perature in the critical regime should fgr =1 give a curve To obtain more explicit expressions, we will work out in
with positive curvature while for 7,=0 it should give a detail what we obtain foN=2. As we have seen above, in
curve withnegative curvature this case it is natural to use E(33) to form correlation

The compact expression E¢R4) is valid for arbitrary  functions of the combinatiom™™+h@. We will, for com-
number of matter field flavorl, and generalizes the expres- pleteness also consider the combination &fd-h® and
sion obtained in Ref. 22. Note thatéf=0, we have trivially  |#?[?h™-|yV|?h@. We also use the fact that the interaction

that Eq.(24) reduces to matrix D(@#)(q) is symmetric, and introduce the definitions
218 +
Gala) ==, (32) hg” =h’ +hQ,
Qql
which is always massless. In Secs. VI and VI we will use a® = 5(1'1)(q)15(1’2)(q)

large-scale MC simulations to study in detail the chkse2

andN=3, respectively. The main feature of Eg4) is that at _ 3

low temperatures, we may in the very simplest approxima- b® = D?2(q) + D*2(q). (34

tion entirely ignore the vortex correlation functidg®™)(q) ) . ) ] . )

such thatGa(q) is obviously massive with photon mass It |s~enl|ghten|ng at this stage to introduce the expressions

given by the bare massy of the problem. Actually, in the for D*#)(q), as follows:

low-temperature regime, we ha@™(q) ~ g which in the B

long-wavelength limit exactly cancels the factor|Q@4?, DV(qw? 1 . WP 1

rendering the propagator massive. 28|V @2 |Qq|2 |'//(2)|2|Qq|2+ mé
However, at the superconducting critical temperature, vor-

tex loops proliferat&30-31.40-4Fesulting in vortex condensa- 5

tion and hence ligp_oG™(q) ~ const. Now, the term inside D@2(qw2 1 . |22 1

the brackets in Eq.24) will diverge, dominating the behav- 268l V12 @12 ~ 2 ()2 24 m2’

ior of the A-field correlator, such thada(q) ~ 1/g2. Thus the AR 1Q4 17 1 m

Higgs mass is destroyedNote that the amplitudes of the -

matter fields play no role in this, since they are entirely fro- DL2(q)w? 1 N 1 35

zen in the present London approximation. It is the condensa- 28|y V22 |Qq|2 |Qq|2+ me’ (39

tion of topological defects of the matter fields, i.e., vortex

loops, that are responsible for bringing the Higgs mass towhere W2=|y/9?+|y4?[2. Using Egs.(35) in Egs.(34), we

zero, not the vanishing of the amplitud®sTherefore, we find
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o= 2BVF G@) = (MP -m)(mY-m®) (42
‘Qq| + mé is the correlation function of the gauge-neutral vortex mode.
In the long wavelength limit the behavior 67 (q) gives
28142 - - : :
= L7 1 (36) rise to a dual Higgs mechanism. This comes about because

Qg+’

anda™ andb™ given by

the GX)(q) correlation function is always-g? at long wave-
lengths, but has a nonanalytic coefficient in front of tife
term given by the helicity modulus of the gauge-neutral

awz 2 [y PP -1 modem®-m(@. This serves to cancel the 47 term in the
28|y V2?2 = |Qq|2 * |Qq|2+ m G 4(q) correlation function exactly. This cancellation, origi-
nating in the vanishing of the helicity modulus of the gauge-
w2 2 [y)yYR-1 neutral mode, is responsible for producing a dual Higgs mass
ETEENEE = o Qe (37)  my in G4(q). Higher order terms determine the actual value
By a Qql"+ 1M of the dual Higgs mass. Thus, we see that whife+h®@ is

wheremZ=e?¥2, Notice how the unscreened part of the in- always massive|y?|*h™-[y/V[>h? plays the role of a
teractions cancel out iia™,b™)) but not in(a””,b™). This  gauge degree of freedom which provides a dual counterpart
is the origin of the qualitatively different behavior we will t0 A in Eq. (1). This is a manifestation of thegself—duality of
find for the ' and h*”) correlators. Notice also how the the theory which we have alluded to abdve: o
expressions simplify whepy!?[2=|y?[2, when the screened Notice that the existence of a dual Meissner effect arising
part of the interactions appearingaf’, b vanishes, such out of Eq.(41) is a substantially more subtle effect than the

thata”=b®). direct Meissner effect coming out of E24). The correlator
We may now write the correlation functions of the two ©f the gauge-neutral mode has the property
relevant linear combinations of dual gauge fields as follows: GO(q) = Coq2 + Cug + O(aF), (43)

(%) = (h® @&y = 5(#) () — ()mD ()m (2
9n (@) <hq h"q> av+b (@ Mq b Ma ) for all temperatures, in analogy with the vortex correlator of
-(@Pm = b=m2)). (38)  the 3Dxy model for the casN=1. It is the non-analytic
. , . behavior of the coefficiert,, involving thehelicity modulus
gj;)?gsgi%?(?/?"gr}if?ﬁ\’l we find the surprisingly compact of the gauge-neutral mode, which is responsiblepi@duc-
' ing a dual Higgs mass as the gauge-neutral mode prolifer-
2By ( 27?8 GY(q) ates. To obtain a dual Meissner effect, a subtle cancellation is

- . (39 - it
Qg%+ me P Qg2+ mé) required, namely that at some critical temperatligg we

must have
where we have again introduce®*(q) appearing in Eq.
(25). In fact, this result could have been written down using
the known result for the charged case i+ 1,22 in combi-
nation with Eq.(22), considering the part of Eq22) only
pertaining to the massive vector figtd This provides a nice Wwhere we have used the expression fior from Eq. (23). It
consistency check on the general expression for the dud$ important to note that while the actual value of the dual
gauge field correlators, as well as on the interaction matrixiiggs mass is influenced by the higher order terms in Eq.
E)(a,r])(q). In the low- and high-temperature phase, the vorte>é(43)’ thecrltgrlon for obtaining a d_ual Higgs phenomenon is
correlatorG™(q) behaves as-q? and ~c(T), respectively. only determined by the cancellation among the terms of or-

) . + . der 1/g° terms in Eq.(41). This differs from the mechanism
In either case, the dual gauge field correla;f{)r)(q) is al- that destroys the Higgs mass in thecorrelator, since there
ways massive.

Consider the correlation function of the combination of no such subtle cancellations are required, it suffices that the
. i correlatorG™)(q) changes behavior from a constant-t@?
dual gauge fieldsd =|¢@>?hD - |yD2h® which couples to (@) g o

: S in the long-wavelength limit.
the gauge-neutral vortex mode in E@2). In principle we We finally consider the correlation function bf”). Ap-

may follow the routes used in the above calculations, but by, . 19
now we realize that a quick way of obtaining the results is tgblymg the results from Eq(38), we finct

G (q) =

2728l VPP 2P Cy(Ty)
EVEEVC

1 0, (44)

use Eq.(22) in combination with the known results for the o 8N\ (22 22BN\ PW2G0)(q)
caseN=1 in theneutral case?? We define G = SYE - Q2
q q
Ga(a) =(AgA_y), (40)
A q a a _ ZWZB()\(:L) B A(Z))G(m)(q) + ()\(l) _ A(Z))Zg(+)( )
and find immediately, using the results of Ref. 22 along with |Qq|2 + m(2) h (),

the definitions in Eq(23), (45)

2B 27°B,4G7(q)
Galq)= 0 T2<1— |S z ; (41)  where N@=|y@2/ W2 P2=|yV]2+ |42 and the mixed
q q gauge-neutral and gauge-charged vortex field correlator is
where given by
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2 random direction and species according to the Metropolis
GM(g) ={ (m{’ -m?)- (E |¢(“)|2m<_”3) . (46)  algorithm.
a=1 To calculate the critical exponengsand » we performed
finite size scaling(FSS analysis with bootstrap error esti-

Note that for the cashi=1, such that eithex” or A® van-  mates of the third moment of the actdnMs=((S,
ishes, then the remaining”=1, only the last term in Eq. —(S))3/L3 whereS, is given in Eq.(11). The peak to peak
(45) survives, and;\(q) correctly reduces tg;”(q) in EQ.  value of this quantity scales with system sizeas L1/,
(39). In the long wave length limit, it is the second term in whereas the width between the peaks scalet 4. The
the curly brackets in Eq45) that dominates, giving rise to a advantage of this is that asymptotically correct behavior is
dual Higgs mechanism. Notice again how it is the vortexreached for practical system sizes.
correlatorG™(q) which determines the fate of the massless To characterize the phase transitions further, we consider
dual gauge fielh®-h@, just like in Eq.(41). This is par-  the correlation functions given in Eq@4), (25), and(39). In
ticularly evident for the casps!|=|4?|, when Eq.(45) re-  the Higgs phase the gauge field massscales according to

duces to the Ansat?® given by Eqs(27) and(28)
N [l c" 2
G () = & WJ (1 - 7B </f<1>|2—(§)> .4 Ga(a)™*==m; +Clg[>7 + O(|q|9), (48)
|Qq| |Qq| B

. . (+)
This correlator foN=2, e+ 0 has precisely the same form as With a co(r;;aspond|ngknsatzfqr 9y (q). The masses oA
the dual gauge field correlator for the caée1, e=0, which ~ and=.-;h*® are therefore defined through the- 0 limit of

exhibits a dual Higgs phenomenéh. the respectivéAnsatze
Substitutingh (@ =|¢(®)|2/W? in Eq. (45), we see that the
criterion for destroying the dual Higgs mass is precisely the 2 _ | 2
same as the criterion we arrived at in E44). Thus, whether Ma = qanO BGA@)’
we compute the correlator in E45) or that in Eq.(41) to
establish the existence of a dual Higgs phase does not matter.
Furthermore, foN=2, e# 0, m®-m® pehaves as vortices s . 2B
for N=1, e=0, i.e., it is a superfluid mode arising out of Msh =(L'Ln0 gff)(q)' (49)

superconducting condensate& nonzeromy for the dual
gauge field.A is producedby disorderingd? at a critical
temperaturél;; while a nonzeram, for the gauge field\ is
destroyedby disorderingd'? at a critical temperature,,.

The gauge field masses are found by measuring vortex corr-
elators followed by a fit for smald| to their respectiveéAn-

satze
We briefly review theN=1 GL model. The dual field
V. MONTE CARLO SIMULATIONS, N=2 theory of the neutral fixed point is a charged theory describ-

ing an incompressible vortex tangi®&The leading behavior
Since the bare interaction between vortices is dominatedf the vortex correlatos(+>(q)~<mq-m_q) is22
at long distances by an unscreened part, it is of interest to

study th_e characte_r of the phase transition ass_ouated with the [1-Cy(T)q?, T<T,
generation of a Higgs mass for the gauge fidldFor the . - 5 2am
N=1 case, it is known that the vortex tangle of thexgD lim G™(q) ~|0a° - Cs(Ma[*™, T=T, (50)

e @P+CMa', T>Te

model is incompressible and the dual theory is a gauge

theory such tha{¢) # 0 is prohibited. For the charged case,

the vortex tangle is compressible, the dual theory only hasvhere 7, is the anomalous scaling dimension of the dual

global symmetry, and hence vortex condensation éd gauge fieldh. For T<T, the mass of the dual gauge field

#0 is possible. The introduction of charge destabilizes thegiven by Egs.(39) and (49) (with N=1 ande=0) is zero,

3Dxy fixed point. however forT>T, the q 2 terms in Eq.(39) cancel out ex-
To investigate what happens for the case2, MC simu-  actly and the masay, attains an expectation value. At the

lations have been carried out for the action Effl) on a  charged fixed point of the GL model, the effective field

three dimensional lattice of sizex L X L for two different  theory of the vortices is a neutral theory. The vortex tangle is

cases. In the first case we simulate with unequal bare stifftompressible with a scalingnsatzfor the vortex correlator

nessesy\V|?=1/2 and|4?|?=1, €=1/4 andmi=3/8. The

bare stiffnesses have been chosen to have well-separated 9, T<T,,

bare energy scales associated with the twist of the two types lim GO(q) ~ 1 [glZ™, T=T,, (51)

of phases. In the second case we use equal phase stiffnesses 4—0

|y V2=|yf?]2=1, e#=1/4 andmi=1/2. Thevalues form c(M, T>T,

have been chosen such that they are of order the lattice spac-

ing in the problem to avoid difficult finite-size effects. One wherec(T) is a nonzero constant. Consequently, from Egs.

MC update consists of inserting a unitary vortex loop of(24), (39), and(49) (with N=1 ande+ 0), the massn, drops
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FIG. 3. The massn, () and 1-my/myy, (+) found from Eqgs.
(24) and (39). Two nonanalyticities can be seennm, at T.; and
Teo, corresponding to a neutral fixed point and a charged Higgs

and T,, respectively. The lines are power law fits to the data forfixed point, respectively. An abrupt increasenyy, due to vortex

L>6 used to extractr and v.

to zero afT,, and the mass of the dual vector fielg is finite
for all temperatures and has a kinkt??> Renormalization
group arguments vyield no=4-d where d is the
dimensionality?”-3>4% which has recently been verified
numerically?238

A. Critical exponents & and », |/9|<|y?)]

We observe two anomalies in the specific heal atand
Teo whereT < Tg,. We findT;; and T, from scaling of the
second moment of the actiot(S,—(S,))?)/L® to be T,
=1.46) andT;,=2.7(8). The M5 FSS plots for system sizes
L=4,6,8,10,12,14,16,20,24 ashown in Fig. 1. From the

scaling we conclude that both anomalies are in fact critical

points, and we obtai=-0.02+0.02 and»=0.67+0.01 for
T.1anda=-0.03+£0.02 and’=0.67+0.01 fofT.,. These val-
ues are consistent with those of thex3band theinverted

3Dxy universality classes found with high precision in Refs.

39, 46, and 47.
B. Vortex correlator, Higgs mass, and anomalous scaling
dimension, |P] < |y

The vortex correlators for thBl=2 case are sampled in
real space an"(q) given in Eq.(25) is found by a dis-

1
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FIG. 2. G™)(q) for N=2 andL=32, plotted for temperatureb
=2. 86>TC2, T=2. 76—T02, and T=2. 63<T021 |Imqﬁ0G(+)(q)
~c(T), ~|qg|, and ~@?, respectively. Theg—0 behavior of the

condensation is located &t,.

crete Fourier transformation. At the lower transitidg the
leading behavior is5™(q) ~g? on both sides of the transi-
tion. Consequently, due to EqR4), (39), and(49), m, and
ms;, are finite in this regime. This shows that the vortex
tangle is incompressible and that the anomalous scaling di-
mensionz, =0, which corresponds to a neutral fixed point.
Figure 2 shows the correlat@*)(q) aroundT,,. Below T,
the dominant behavior isG™(q)~q? whereas G™(q)
~¢c(T) above the transition. At the critical poirG™(q)
~|q|, indicating 7, =1. Accordinglym, is finite below the
transition and zero fof = T,.
For each coupling we fif(q)™* for |Qq< 0.9 using sys-
tem sized =8,12,20,32 to Eq48). The results fom,, and
My, which is found in a similar fashion, are given in Fig. 3.
The system exhibits Higgs mechanism whap drops to
zero atT., with an anomaly inms,, due to vortex condensa-
tion. Furthermorem, has a kink ail;; due to ordering of the
phase difference ¢V-¢@ with the phase stiffness
zﬁ(l)|2|¢/(2)|2/(2|w‘l)|2+2|¢‘2)|2) confirm Eq. (4).12 The
anomalies inm, and my,, coincide precisely withT., and
T¢1. Note also hownyy, changes abruptly &k.,. This is due
to a sudden change in screening BY.,h'®, giving an
abrupt increase imyy,. This is consistent with the flow equa-
tion Eq. (15). Note that the mass of the algebraic sum of the
dual fields appears in ELO) after integrating out the gauge
field A.

We may understand the transitions as follows. Abdyg
A is massless, giving a compressible vortex tangle which
accesses configurational entropy better than an incompress-
ible one. BelowT,,, A is massive and merely renormalizes
|W|* terms in Eq.(1). The theory is effectively &V|* theory
in this regime. Thus the remaining proliferated vortex spe-
cies originating in the matter fields with lower bare stiff-
nesses form vortex tangles as if they originated in a neutral
superfluid. For the generdl case, a Higgs mass is generated
at the highest critical temperature, after whighrenormal-
izes theg/W|* term, such that the Higgs fixed point is followed
by N-1 neutral fixed points as the temperature is lowered.

The picture that emerges from the above discussion of the

correlator matches precisely the signature of a changed fixed poigauge field and the dual gauge field correlators is the follow-

given in Eq.(52).

ing. Below T;; there is one massless “photon,” namely
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1000 - ' = 0.1 TABLE I. Phase stiffnesseg)()| and bare massesj for the
o N=3 MC simulations. In all cases the chargel/2.
& 7
. e e G U G m
%T ; 7 E
S 1 1/3 2/3 4/3 7112
P, 1 001 2 1/2 1/2 4/3 7/12
100 | - 3 719 719 719 7/12
s - D. Vortex correlator and Higgs mass,|gP|=|y?)]
10
L

The mass of the gauge fielah, was found by fitting
FIG. 4. The FSS of the peak to peak value of the third momeniG,(q) ™ data from system sizes=8,12,20,32 to Eq(49).

AM; labeled(+) for T, and for [¢Y|=[¢/?|. The scaling of the ~The massny, was found similarly. The results are presented
width between the peaksg is labeledO). The lines are power law jn Fig. 5.

fits to the data fol.>8 used to extractr and v.

E. Discussion
|22 =y D|2h@ while A is massive. Abovd,,; and be-
low T, both[#2)2h® ~|yV[2h® and A are massive, while ~ The result for the exponents and v at T, for [y
aboveTg,, |#2)2hW—|ytY2h@ is massive andh is mass-  =|#?| shows that when the 3@y and inverted 3Ry critical
less. points collapse onto each other, then instead of a simple su-
perposition, one gets a new fixed point which is in a different
universality class. This result is far from obvious. Naively
C. Critical exponents a and v, |9|=|y?) one would perhaps have guessed from &9) that for N
=2 one has two decoupled vortex modes, one neutral mode
A special case is obviously presented by the da@&€|  exhibiting a phase transition in the [ universality class
=|¢/?| since thenT.,=T,=T,, and we have a transition and one charged mode exhibiting a phase transition in the
directly from a low-temperature phase with one masslesinverted 30xy universality class. Atfy\Y|=|4?| a naive
dual gauge fieldy@)?h@®D -V Ph@=[yV]2(hW-h?) to a  guess would be that one would have two such phase transi-
high-temperature phase with one massless direct gauge fielibns superimposed on each other, givimgnd v values in
A. This is the remarkable self-duality observed in Refs. 5, 6the 3Dxy universality class. However, there is a principal
and 19. distinction from the case whdg?| # [/?)|. In the latter case
The second moment of the action withV'|?=|¢?|?=1,  the upper phase transition is always a charged critical point
€=1/4 and m§=1/2 exhibits one anomaly af.=2.7(8). because the neutral mode is not developed. Thus at the upper
Scaling plots of the third moment of the action are shown intransition the interaction of vortices is of short range, while
Fig. 4. FSS yieldsx=0.03+0.04 and’=0.60+£0.02. The nu- at the lower transition there is a proliferation of vortices with
merical value forv is in agreement with the value found in long range interaction. However, in the ca\lsdél)|:|¢(2>|,
Ref. 5,»=0.60+0.05. Note that our result farandv is not  then below the single phase transitiboth types of vortices
in agreement with hyperscaling. have neutral vorticity along with charged vorticity and thus
this phase transition cannot be mapped onto a superposition
of a neutral and a charged fixed points.

L , , - - — 1 Also, it is the fact that the system is self-dual at this point
* P that invalidates the naive superposition conjecture, since the
08¢ ) - 108 3Dxy and inverted 3Ry phase transitions do not describe
\ : - phase transitions of a self-dual system. Even though the
o 0.6 T N 106 & . . .
£ \ L £ value of v appears to be in good agreement with the 3D Ising
€ o4l r 04 & value, we observe that the 3D Ising model is not self-dual
’ . either, and the new type of critical point fof'?|=|¢?| can
02+ 3 {02 therefore not be in the 3D Ising universality class. The origin
T of the exponents is therefore essentially topological, showing
ey TV SRR RN RN R L that when the vortex loop blowouts of the neutral and
2 22 24 26 ; 28832 34 charged modes are not well separated, they interact in a non-

trivial fashion. There will therefore exist a crossover regime
FIG. 5. The mass, (#) and 1-my/my;, (+) found from Egs. ~ Parametrized byy/ D[~ [2|? where the exponents and v

(24) and (39), for |/Y|=|4?|. One nonanalyticity can be seen in change from 3Ry values to the new values we find hésee

m, at T, corresponding to a fixed point which is notin thexdr  Fig. 7 of Ref. 5. In principle, it is possible to compute the

inverted 3xy universality class. An abrupt increaserig;, due to  relevant crossover exponents in order to shed further light on

vortex condensation is located Bi=2.7(8). this new self-dual universality class.
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VI. MONTE CARLO SIMULATIONS, N=3 s, i 2 (Ea |¢(a)|2mga)) '(277|¢(77)|2m(—7¢7q))

In the model Eq(11) with N=3 vortex flavors we expect 272BIW2 q |Qql* + me

in general one charged critical point associated with the con- D12 1212 (D) © @ @
densation of the charged vortex mode and two neutral critical [ (Mg’ —mg”) - (Mg —mZy)

points where neutral vortex modes proliferate. To study the " |Qq|2

phases of this model we have performed MC simulations

with the action given in Eq(11) with bare phase stiffnesses + PP - mg) - (mf - m)

given in Table I. We have applied the same methods for 1Qql?

calculating the critical exponents and v as well as gauge

masses as we did for thé=2 case. |22 OHm? - mP) - (m% -m)
It is useful to give the superfluid modes specifically for + |Qq|2

the N=3 case(see Appendix A for details of the derivation

for the generaN casg. Using Eq.(4), we have for this case (59

The three last terms in E@55) are nothing but the vortex
ek | ¢<2)| representation of Eq53). Notice also how all cross terms
J dr 2( VoD +— between different vortex species cancel out for arbitrary bare
v 2 phase stiffnesses wherg=0
|¢<1>|2|,/,2>|2 D aene2 Thus, for the caséN=3, we have three phase variables
— V¢V - ¢?)] yielding three neutral gauge invariant combinations of phase
differences. This amounts to two true neutral modes, the re-

| 3)|2
V69 - e\IfZA o

|1//1)|2|1,//(3)| 4 _ 4N maining degree of freedom is associated with the composite
* 212 [V (6~ - )] charged mode, which absorBsand yields a massive vector

@20 132 field via the Higgs mechanism. If all three bare phase stiff-
Uanhlad [V(6? - 0(3))]2+V({¢(’1)})+}(V X A)?2 nessedy/Y|, |4?|, and || are different, this yields one
2y? 2 ' charged inverse 3%y critical point where the Meissner ef-

(52) fect sets in, and two neutral 3@ critical points at lower
temperatures, all separate. Consider ndw|=|y?)|
<|#*¥|. Then the charged mode proliferates at the highest

Here, we have define®?=|y/Y|2+|? 2+ |32, In the re-  critical temperature where the Meissner-effect sets in, and

gime of short penetration length, the combination of phasehe two neutral modes proliferate simultaneously at a lower

gradients which is coupled to the gauge fiedd can be temperature. The highest transition is still an inverteck@D

gauged away at length scales of the order of the penetratiamnansition, the lower one is a neutral 8pcritical point. Note

lengthA=1/eV¥. The remaining gradient terms for the neu- how this is dramatically different from the case=R, when

tral modes are given by the original neutral3Dxy critical point was collapsed on top
of the inverted3Dxy critical point, resulting in a new uni-
versality class of the phase transition, essentially due to the

S, = f &r {|‘/’l)|2|’/’(2>|2[v(0<1) g2 self-duality of the N2 system. It is also evident that collaps-
ing a neutral and a charged fixed point is quite different from
‘ 91/(1 2| ¢(3)|2 collapsing two neutral fixed points
T V(Y - 63 For the caséyV|=|y?| <|¢%)], in terms of the masses of
v A and the two dual gauge fields associated with the neutral
w,(z 12|32 modes,m, is nonzero below thepper critical temperature,
02 T [V(6? - 69)]?]. (53)  while the two dual gauge fields become massive above the

lower critical temperature. In this case, the degenerate lower
critical point is therefore a 3Ky critical point, while the

This action could be inferred also directly from E@1). For ~ upper critical point is an inverted 3& critical point.

the caseN=3, we write the action in the vortex representa- A further interesting possibility is to sef/”] <|y?)|
tion as =|yd)|. Consider the masses &f and the two dual gauge

fields associated with the neutral mode in this case. At the
lower critical temperature, one neutral vortex mode prolifer-

3 3 . .. .
A ates in a 3Ry transition, generating a mass to the dual gauge
=22 2ﬂ23|<ﬁ(“)|2m(“)<p|2—+mé field (thus breaking one dual gauge symmgtihis mode is
a 7=le=l ) q therefore dual-higgsed out of the problem at higher tempera-
S, ﬂ—)\ K tures. The gauge field becomes massivieelowthe upper
+ 10,2 )qun)* (54) critical temperature, while the dual gauge field associated
q with the remaining neutral mode becomes masab@vethe
same upper critical temperature. Hence, the situation at the
which when written out takes the form upper critical point corresponds precisely to the chlse?,
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SMISETH et al. PHYSICAL REVIEW B 71, 214509(2005
o T T=400 + ' o5
- A -4,
5 . 109 | T=357  x Lo R
s -4 10 T=286 x P SRt
- o o T=192 O + b % xxX x " oo®
T=167 = « X x X 5 O g
. o 1ot E T=100 o x ¥*° o n® _
g - o = T=087 * o u 1
5 o g ] g i % o9 . 50®
e 107 . 2 e = = 2 ut o
= e 3 < < L o n n fo) o
< [ o Tom g RS o © «* ]
A - - 10 n 0 © o . ® 1
f’” ‘8. “‘\ = -2 ° [ ]
S B a - 10 o .® .
e g 10° | . . .
L 1
1 107" 10°
L 10 Qq
1 T T T
FIG. 6. FSS of the peak to peak value of the third moment of -NI.'...,,"‘ i' ' ' ' | ' '
actionAM; for N=3 with [¢\D2=1/3, [¢/2|?=2/3, |4¥|?=4/3 la- os b * o | |
beled (A), (A), and (@), for T¢y, Tep, and Te, respectively. The ' i \» . . i
scaling of the width between the peakg (O), (M), and labeled 06 L | | M | |
(O, for Ty, Teo, andTeg, respectively. The lines are power law fits o ™ i | *, !
to the data fol. > 6 used to extractr and v. = 04 | | o
T |
|¢/D|=]44?)], for which we have already seen that a norx$D o2l i | | ]
critical point emerges. When all bare stiffnesses are equal Terl Teo!l Tes]
|[¢2|=[¢@] =], all three fixed point collapse. We present ok v 00Ny . Nes 4
MC simulations for the three cases given in Table. I, of 05 10 15 20 25 30 35 40 45 50
which the casgy/Y| < |y@|<|4%)| is the most pertinent to T

mixtures of superconducting condensates of for instance hy-

drogen and deuterium, or hydrogen and tritium. FIG. 7. Results for the vortex correlator Eg5), and the Higgs

mass Eq.(49) for the case|yV]2=1/3 |y?2=2/3 |3 2=4/3.
The upper panel show&™)(q) as a function of|Qq\ for seven
temperatures starting from above: Above and clos@tp above
and close tdl.,, above and close t®,1, and belowT,;. Above T3,
the vortices are seen to have condenﬁ,‘dl(q)~const while for
all temperatures beloW,, including above and beloW,; andT,,,
G™(q) ~ o for smallq. The lower panel shows the Higgs mass as

A. Critical exponents a and v, |¢®] <|y@| < |43

MC simulations are performed for =3 system with
bare phase stiffnessegV|?=1/3, [?[?=2/3, [*®?=4/3
and system size£=4,6,8,10,12,14,16. Wesample the
second moment of the action Ed.1) and find three anoma-

lies for temperatureS., Tep, andTes, which from FSS areé 1 . and the additional anomalies B, and T, due to the appear-

found to beT.,=0.98,T,=1.92, andT3=3.63. . ance of additional neutral modes at these temperatures.
From a FSS analysis of the third moment of the action, we

have measured the critical exponeatandv. The FSS plots
are given in Fig. 6. We finda=-0.03+0.02 andv

=0.65+0.02 forT,;, «=-0.02+0.02 andv=0.66+0.01 for
T and «=-0.01+£0.03 andv=0.69+£0.02 forT.3. These
values are consistent with the values for thexgand the

~ 0. This reflects the fact that the fiel has been higgsed
out of the problem afl.5 such that the vortex tangle is in-
compressible below this temperature. From E4p) it is
therefore clear that a Higgs mass is generate@.aby the

a function of temperature, showing the onset of Meissner effect at

inverted 30Xy universality classes.

B. Vortex correlator, Higgs mass, and anomalous scaling

establishing of a charged superconducting mode. Moreover,
when the two additional neutral superfluid modes are estab-
lished atT;, and T4, this adds to the total superfluid density

and hence leads to kinks in the London penetration length

dimension, || <|y@| <[] and therebym,.
. ' Precisely atT.; ma vanishes, and the scalingnsatz
In the Higgs phase, we expec;t the gauge field Correlatogr;iven by Eq.(51) may be used to extraet,. From Fig. 7 and
Ga(q) in Eq. (24) to scale according to th&nsatzEq. (48). GO(q) at T, we extractna=1. from which we conclude
For each coupling we fi§,(q)™* from the MC simulations q c A= 2

. a : : that the critical point a3 is an inverted 3Ry critical point.
i;);sssﬁtem sized =8,12,20 andestimate the gauge field Likewise, from theG*)(q) ~ g2 behavior atT,, and T,, we
A.

The results for the vortex correlat@*(q) in Eq. (25) conclude that these two critical points featusg=0 and

and the Higgs mass E@9) are given in Fig. 7. Note how hence represent 3@y critical points.

theq dependence d&™)(q) changes when the temperature is -

varied from above to belowl.; from G™(q)~const to C. Critical exponents e and v, |¢]=[y?] <]y
G™(q) ~g? respectively. Note also how thee behavior of MC simulations have been performed folNa& 3 system
the vortex correlator remains unchanged when the temperavith bare phase stiffnessgg?>=|y4?[?=1/2 and |®|?
ture is varied throughr., and T, i.e., it remainsG™(q) =4/3 andsystem size$ =4,6,8,10,12,14,16. Byneasur-
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FIG. 8. FSS of the peak to peak value of the third moment of ’.’ ;' ' ' ' ' | ' '
action AMg for N=3 for |¢Y|?=|y@2=1/2 and|y¥|?=4/3, la- 08 L ! | |
beled(A), and(®), for T.; andT.,, respectively. The scaling of the ' Mes e o |
width between the peaksg labeled(O), (W), for andT,; and Ty, 06 L i * . i |
respectively. The lines are power law fits to the datalfor6 used e ! ’ |
to extracta and v. = ! . !
04 : ! -
i ol
ing the second moment of the action El) we find two 0z b | | ]
anomalies for the temperatur€s; and T;,, which from FSS Terl Teol
are found to b&.;=1.46 andl.,=3.63. From a FSS analysis ok . 'I . . . . ’ . . 4
of the third moment of the action we have measured the 05 10 15 20 25 30 35 40 45 50
critical exponentsr andv. The FSS plots are given in Fig. 8. T

We find «=-0.031£0.02 andv=0.65+0.02 forT,;, and a= .
-0.03+0.03 and’=0.68+0.02 foIT,,. These values are con- FIG. 9. Results for the vortex correlator E§5), and the Higgs

sistent with the values for the 3@ and the inverted 3gy ~ Mass Ea(49) for the casdy/|?=|y/?2=1/2 and|y/*|?=4/3. The
universality classes upper panel show&™(q) as a function oﬂQq| for five tempera-

tures starting from above: Above and closeTtg, above and close
to T.4, and t(>e)lochl. Above T,, the vortice(s)are seen to have
) ) condensedG'*)(q) ~ const while close td.,, G*(q)~|q|. For all
dimension, || =|¢2] <] temperatures t()?e)lowcz, including aboveczzind bec:())vvli' G"(q)
Like the previous case, we extract the gauge field mass by g for small g. The lower panel shows the Higgs mass as a
fitting the gauge field correlators for smajlto the Ansatz ~ function of temperature, showing the onset of Meissner effect at
Eq. (48) for system size$=8,12, 20. T, and an additional anomaly &, due to the appearance of
The results for the vortex correlat@™*)(q) in Eq. (25) additional neutral modes at this temperature.
and the Higgs mass defined in E49) are given in Fig. 9.
Note how 9t]k?eq dependence OG%G)((;) cha?nges wheg the E. Critical exponents a and v, || =]¢/2|=|]
temperature is varied from above to bel@w=3.63 from MC simulations are performed for =3 system with
G™(q) ~const toG™)(q) ~ ¢?, respectively. Note also how equal bare phase stiffnesses®|?=|y?|?=|¢¥)?=7/9 and
the g behavior of the vortex correlator remains unchanged
when the temperature is varied through=1.46, i.e., it re- —— — — 10°
mainsG™(q) ~ g2 This reflects the fact that the field has T
been higgsed out of the problem Bt,=3.63 such that the 10° | el
vortex tangle is incompressible below this temperature. From : T =
Eq. (49) it is therefore clear that a Higgs mass is generated at " ="
T., by the establishing of a charged superconducting mode=® I gy
Moreover, when the two additional neutral superfluid modes °
are established &t;, this adds to the total superfluid density I 1102
and hence leads to a kink in the London penetration length » e, ]
and therebym,. Bl
Precisely at the charged transitidp,, m, vanishes and L
we find the gauge field correlator has the fo@"(q) 0
~|q[>~7a. From theG™(q) data in Fig. 9 we extraci, =1,
from which we conclude that the critical point &, is an FIG. 10. FSS of the peak to peak value of the third moment of
inverted 3Lxy critical point. Likewise, from the behavior of action AM; for N=3 for |D|2=|y/22=|43|2=7/9 labeled (A).
G™(q)~q? at T; conclude that this critical point features The scaling of the width between the peaks labeled(O). The
n,=0 and hence represents ax3[xcritical point. lines are power law fits to the data for>6 used to extrack and .

D. Vortex correlator, Higgs mass, and anomalous scaling

1

A
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! e . . . .
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F. Vortex correlator, Higgs mass, and anomalous scaling
FIG. 11. Results for the vortex correlator E@5), and the dimension, || =| @] =| )|
Higgs mass Eq(49) for the casgy!V[>=[y?2=|¢/32=7/9. The _ -
upper panel shows*(q) as a function ofQ,| for temperatures We extract the gauge field mass, by fitting the gauge
above and close t@,, and belowT,. Above T,, the vortices have field correlators for smalf to theAnsatzEq. (48) for system
condensed3™(q) ~ const. BelowT,, G™*(q) ~q? for smallgq. The ~ SizesL=8,12,20,32.
lower panel shows the Higgs mass as a function of temperature, The results for the vortex correlat@™(q) in Eq. (25)
showing the onset of Meissner effectTt and the Higgs mass defined in H49) are given in Fig. 11.
Note how theq dependence 06" (q) changes when the
temperature is varied from above to beldw=2.20 from
system size&=4,6,8,10,12,14, 16rom measurements of G (q) ~ const toG™(q) ~ ¢?, respectively. From Eq49) it
the second moment of the action E@1) we find one is therefore clear that a Higgs mass is generatef.aR.19
anomaly for temperature thE, which from FSS is found to by the establishing of a charged superconducting mode.
beT.=2.19. From a FSS analysis of the third moment of theFrom G*(q) measurements &f, we find the anomalous
action we have measured the critical exponengdv. The  scaling dimension to beg,=1.
FSS plots are given in Fig. 10. We fined=0.02+0.03 and

v=0.59+0.02. The values appear not to agree with hyper G. GeneralN
scaling. They aranot consistent with the 3Ry universality The critical properties of thé\-component system are
class. governed solely by excitations of vortex loops with frac-

The above values for and v are however in agreement tiona| flux. That is, in theN=2 case,T,, is governed by
with those found for the cade=2, [/V|=|/?|. We observe, proliferation of the vortex loops with phase windings
based on the numerical results for the two cabes2, (A6Y=27,A6?=0), while T, marks the onset of prolifera-
[P =[¢?] and N=3, [¢V|=[¢/?|=|¢/I| compared to the tion of the loops of vortices with winding& ¢V'=0,A 42
other cases that we have considered, that collapsing two net27). Remarkably, for generaN, below the temperature
tral critical points in the 3Ry universality class leads to a T,_;, whereTy <+ <Tq-1< T topological excitations
single critical point also in the 3%y universality class. On  with nontrivial windings only in one phase has a logarithmi-
the other hand, it appears that collapshig1 neutral critical  cally divergent energ¥?'® Moreover, the composite vortex
points in the 3Dy universality classaind one charged fixed loops (A#Y=27,A6?=27) which in contrast have finite
point in the inverted3Dxy universality class leads to an energy per unit length, do not play a role as far as critical
N-fold degenerate single critical point in a universality classproperties are concerned.

(which in principle depends oN) which is not that of the For the caseN=2, the critical point atT.,>T;; is a
3Dxy or inverted 30xy type. ForN=2, we may define the charged fixed point. Proliferation of the vortex loofs¢?
universality class as that of a 3D self-dui(l) X U(1) gauge  =27,A#?=0) at T, eliminates the neutral mode. On the
theory. other hand, the composite vortices¢Y =27, A¢?=27) do
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FIG. 13. (Color onling A type-ll, N=2 system at zero tempera-
ture in external magnetic field forms a lattice of composite Abriko-
sov vortices. A composite vortex may be viewed as cocentered
type-1(red and type-2(blue) vortices(A¢ Y =27,A62=27).

FIG. 14. (Color online Low-temperature fluctuations in tHe
not feature neutral vorticity at any temperature and thus caf2 system subjected to a magnetic field. Thermal fluctuations gen-
be mapped onto vortices inNi=1 superconductor with bare erate closed loops of composite fractional flux vortices budl
phase stiffnesh//il)|2+|¢/(2)|2. A characteristic temperature of splitting of field-induced composite vortex lines. The type-1 vorti-
proliferation of such vortex loops is higher thdg,, which ces(red are the vortices of the component with the lowest bare
excludes the composite vortices from the sector of criticaPhase stiffness. When these vortices are viewed as world lines of

fluctuations in the system. The same argument applies to tHResons, they constitute the “lighter” of the vortex species. These
N> 2 case “light” vortices fluctuate more strongly than the “heavier” type-2

Summarizing the previous two sections, the resulting’o"tices(®Iue.

schematic phase diagram of theflavor London supercon- yesuylts in a particularly rich phase diagram with several

ductor in the absence of external field is presentEd in Flg quove| phases and phase transitions. Note that in the follow-

Assuming the bare stiffnesses have been chosen to have wgly two sections we denote a constituent vortex originating

separated bare energy scales associated with the twist pf a 27 phase winding ind® a typea vortex where a

phases of every flavor, we find distinct critical points. At <[1,... N].

the highest critical temperature, the charged vortex mode ) _

condenses and the gauge field acquires a mass, driving the A. N=2 system in external field atT=0

system into a superconducting phase. For lower critical tem- In the presence of an external magnetic field, but in the

peratures, neutral vortex loops condense and the system dabsence of thermal fluctuations, the formation of an Abriko-

velops superfluid modes. Hence, in zero magnetic field thergov lattice of noncomposite vortices is forbidden because

areN-1 superfluid modes arising in a superconducting statethese defects have a logarithmically divergent enétgcf.
discussion following Eq(13). In a type-lIN-component sys-

VII. N=2 SYSTEM IN AN EXTERNAL MAGNETIC FIELD, tem, thea(g)y/ftem forms a lattice @bmposite vorticegor
LATTICE AND SUBLATTICE MELTING, AND which Ag'¥=247 f(_)r everya e [1,... ,N]._A schgmatp pic-
METALLIC SUPERFLUIDITY ture of the resulting lattice of composite vortices in &n

=2 superconductor is shown in Fig. 13. In the discussion
We next discuss the situation when the system is subbelow we consider the type-II limit, but not extreme type-I|

jected to an external magnetic field. Two important aspectsince the interaction between vortices of different species is
of the physics to be described below, ajethree dimension-  depleted at the length scales smaller than the penetration
ality and(ii) a significant difference in the bare stiffnesses oflength, cf. Eq(12) and the discussion following E¢L3). We
the condensates. As discussed recefitfywhen an external do not discuss effects of this depletion assuming a moder-
magnetic field is applied to a three dimensional type-llately short penetration length scale.
N-component superconductor, it changes its properties much
more dramatically than in the ordinal=1 case. The com- B. Effects of Iow-temperature quctl_Jations on field-induced
posite charged vortices have finite energy per unit length and composite vortices
couple to the magnetic field, and hence are relevant for mag- In this subsection, we will consider the effects of thermal
netic properties. If the bare stiffnesses of the fields are diffluctuations, and how it affects the Abrikosov vortex lattice
ferent, the existence of composite purely charged vorticesf composite vortices defined above.
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1. Thermal generation of looplike splitting of line vortices

At finite temperature, thé&l-component system subjected
to a magnetic fieldB will exhibit thermal excitations in the
form of vortex loops with fractional flux similar to thB
=0 discussion in the first part of this paper. We observe that
since the field-induced composite vortices are logarithmi-
cally bound!?® thermal fluctuations will induce docal
splitting of composite vorticef a configuration of two half-
loops connected to a straight liffe?! as shown in Fig. 14.
We observe that every branch of a “split loop” formed on a
field-induced vortex line features neutral as well as charged
vorticity. The interaction between these two branches is me- FIG. 15. (Color onling A vortex liquid of type-1 vorticesred)
diated by a neutral vortex mode exclusively associated withmmersed in a background %f a ty|c2>e-2 vortex lattibaie) in the
the phase differencey= 0V- 92 The screened charged N=2 system in the reglmM |<|¢f?|. This is the type-l vortex _
modedoes not contribute to the interaction between the twgpuPlattice melting. There is a temperature region in low magnetic
branches. This is implicit in Eq12) as follows. The vortex 1e/d when “light” vortices are decoupled and form a liquid. "Light
segments of different flavors do not interact at short dis_yortex loops are.pm“f“erated’,,vvh"e heavy” vortices form a 'at_t'ce
tances much smaller tha)n:mgl, where the charge, Cmg |mmersed a liquid of he_avy vortex Iqops. Both hea\{y and light

L - . . g vortices carry only a fraction of magnetic flux quantum in this state.
appearing in the interaction matrix E@.2), can be ignored.

On such length scales, the screened part of the interactiafe Condensatdfgl)' then at sufficiently low magnetic field
matrix is essentially unscreened, and is canceled by the inhis melting temperature will be much higher than the char-
terflavor interaction, which is unscreened on all lengthacteristic temperature of thermal decomposition of a com-
scales. Hence, as also discussed in Sec. Il, the intravortgypsite vortex line into two individual vortex lines. Thus, the
interaction is strongly reduced at length scales smaller thafirst transition that would be encountered upon heating the
A system, is the thermal splitting of field-induced composite
Moreover, in terms of the fieldy=¢"-6?, two split  vortices into separate type-1 and type-2 vortices. This would
branches of a composite field-induced vortex have oppositBe accompanied by a proliferation of closed loops of type-1
vorticities (Ay=2m on one branch andy=-2m on another  vortices,while the vortices of type-2 will remain arranged in
branch. On the other hand, such a loop emits two integera lattice. We will denote this phase transition asblattice
flux vortices at its top and bottom, which duwt feature  melting2>2! The critical temperature of this phase transition
neutral vorticity. So the process of such a thermal local splitis denotedTg,, (see Fig. 18 A schematic picture of the
ting of a field-induced line may be mapped onto a thermallysublattice vortex liquid is given in Fig. 15. As discussed
generated proliferation aflosedvortex loops in the artificial above, upon thermal decomposition of the composite vorti-
phase fieldy as those in the neutrdl=1 model in absence of ces, the emerging individual vortices can be mapped onto
magnetic field*3! Hence, somewhat counterintuitively such positively and negatively electrically charged strings which
a splitting transition should be in the 3® universality |ogarithmically interact with each other.
class?®?! This transition, being topological in its origin,  Quite remarkably, the Abrikosov lattice order for the com-
should not be confused with the topological Kosterlitz- ponent with the highest phase stiffness survives the decom-

Thouless transition known to occur in planar systems. position transition for the following reason. The dominant
) interaction between individual vortices is the long-ranged in-
2. Melting teraction mediated by neutral vorticity; cf. E¢L2). This

Apart from the splitting of composite vortices and genera-permits a mapping of such vortices onto positively and nega-
tion of closed vortex loops, the thermal fluctuations will pro-tively charged strings. Upon thermal decomposition, the ef-
duce one more competing process. That is, the lattice dEctive long-range Coulomb interaction mediated by the neu-
composite vortices can be mapped onto an ordinary vorte{fal mode is screened without affecting the charged modes.
lattice in a one-component superconductor. SufficientlyConsider the case whé#®|<|/?)|. Then the stiffnesi)?)|
strong thermal fluctuations drivefirst-order melting transi- IS large enough to keep the type-2 vortices arranged in a
tion of the field-induced Abrikosov lattic¥:3548A counter-  lattice while the stiffnesgy/?| is too weak to constrain
part to this effect for the cash=2 when |4V #|¢?| is  type-1 vortices to the lattice. Thus the “light” type-1 vortex
much more complicated. We next consider this process in thénes are in their molten phase. This is the physical origin of

regimes of low and high magnetic fields, separately. the sublattice melting process. The situation is illustrated in
Fig. 15. We emphasize that the existence of the regime of
C. Sublattice melting in low magnetic fields sublattice melting follows from the fact that the stiffness of

] o the neutral mode, which keeps composite vortices bound at
Consider the case of weak magnetic fiéduch smaller o temperatures, is always smaller than the smallest stiff-
than the upper critical magnetic field for which superconducygss of the individual condensates, namely

tivity is essentially destroygdor the situation wheréy/Y| D222
<|y?)]. Introducing a characteristic temperature associated _ PPy 2

: : . : ‘]neutral— (1)]2 (2)]2 < |l// | . (56)
with a melting of the type-2 vortex lattice in the absence of [t V]2 + 9]
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FIG. 18. (Color onling A schematic phase diagram of different
phases of vortex matter and phase transition lines itNth2 model
in the regime|y/V| # ||, At temperatureds), T2, and Tg,y the
melting of the composite vortex lattice, the sublattice of heavy vor-
tices and the sublattice of the light vortices occurs, respectively. At
T_p the composite vortices decompose. The temperat[tredef
denote temperatures where a phase transition via a proliferation of
vortex loops would take place in the absence of a magnetic field in
models with bare phase stiffnessg$®|(T) equal to|4@|(B,T)
(wherew=1,2), if the effect of a magnetic were to be taken into
account only via the depletion of the modulus of the order
parameter.

FIG. 16. (Color online Liquid of composite vortices in th&l
=2 model immersed in a liquid of nonproliferated vortex loops. It is
realized for|y/P|<|¢?| in strong magnetic fields.

D. Composite vortex lattice melting in strong magnetic fields

It is known from theN=1 system that an increase in F. Physical interpretation of the external field-induced phases
magnetic field suppresses the melting temperature of the vor- of the N=2 model
ice36 i isti . . . . .
tex lattice=" Thus, an important and characteristic feature of e next discuss the physical interpretation of the various
the phaltse_dlagralm of the=2 iystlem is that the_composneh hases that appear as a result of the above described vortex
vortex lattice melting curve should at some point cross theyaiter transitions. The resulting phases, which exhibit some

decomposition curve. Thus, the phase diagram should featu[ﬁj
a composite vortex liquid phase in the low-temperature

high-magnetic field corner. A schematic picture of this phas

ite unusual properties, come about as a result of the inter-
lay between the topology of the system and thermal fluc-
uations. This is rather remarkable, given the three-

is given in Fig. 16. However, the physics near the UPPeliimensionality of the systems we consider.

critical field is outside the scope of the present paper.

E. Vortex line plasma in the N=2 model

If the temperature is raised either at strong or weak magg,
netic fields, a situation arises where all field-induced comy
posite vortices are decomposed and disordered. In additiogtnd T

closed loops have proliferaté@t1:36A schematic picture of
this state is shown in Fig. 17. The resulting phase diagram
the N=2 GL model featuring the various transitions de-
scribed above, is shown in Fig. 18.

FIG. 17. (Color online Plasma of fractional vortices in thd
=2 model in the regiméyP|< |y at high temperatures.

o

1. Vortex lattice melting and the disappearance
of superconductivity

Consider first the melting transition of an interacting en-
mble of composite Abrikosov vortices. This phase transi-
ion, which is of first ordef® corresponds to the lin€g,(B)

ZM(B) shown in Fig. 18. It is only the gauge-charged
rpode that couples to the external field, while the neutral
mode does not. The charged mode at low temperature forms
an Abrikosov vortex lattice with a melting temperature that is
suppressed with increasing magnetic f&d%>1The melt-

ing temperature of the Abrikosov vortex lattice can be sup-
pressed below the temperature where the neutral mode pro-
liferates and where the composite vortex lines decompose.
For N=1, it is known that when the Abrikosov lattice melts,
superconductivity is lost also along the direction of the mag-
netic field®15?The situation in théN=2 model is much more
complex, since then there still exists a superfluid m@te
gauge neutral modevhich is decoupled from external mag-
netic field. Thus, upon melting of the Abrikosov lattice we
arrive at emergent effective neutral superfluidity existing in a
system of charged particlé8 This is a genuinely new state

of condensed matter, and moreover one which should be re-
alizable in liquid metallic states of light atoms at in principle
experimentally accessible pressures in the range of
400 GP&0?°
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B4 . . Ba A direct SSF to NF phase transition
. @ MSEF: Metallic Super.ﬂuld ) - of a nonstandard universality class
"_MSF i NF SSF: Superconducting Superfluid L
\\ i NF: Normal fluid \MSF | NF
<Y 1G-SC: “One-gap” Superconductor N \‘
\\.4._. SSF - “"-t
SSF \™% Aoz [
------ —— L ™
\ 1G-SC NIGBE
\\\ \\\ .......................
\\\\\— G R e T > T
+
[ The compasite neutral U(1) symmetry | FIG. 20. (Color _onllne) A direct phase transition from SSF to
NF phase(shown with red arroy
The original symmetry
| { The charged (gauge-field coupled) U(1)symmetry| tallic superfluid phase where the system is superfluid, but
\\\».w . longitudinal superconductivity is lost due to the melting of
U(l)xU(l)E)..._m the vortex lattice, can be mapped onto a lattice melting tran-
sition in the N=1 model, because it is governed only by
composite vortices and neutral modes are not involved. Thus
. it is a first order phase transitiGh?2
T

FIG. 19. (Color online A schematic phase diagram of physical 2. Decomposition. The disappearance of superfluidity

states appearing in té=2 model in the regiméy!?| #[¢/?| as a Analogously, the physical meaning of the sublattice melt-
consequence of vortex matter phase transitions. Increasing the Maigg transitionTg, y (see Fig. 18is a transition from asuper-

netic field suppresses the melting transition of the composite Vorteéonducting superfluidto an ordinary one-gap supercon-
lattice formed by the charged mode below the proliferation line forductor, because a disordering of the pha#® destroys the

the neutral mode, which does not couple to magnetic field. In th§,assless neutral boson associated with the gauge invariant
absence of disordeipinning of vortice$, superconductivity only phase differencet — g2,

remainsalongthe direction of the magnetic field, provided that the If we heat the system further, the ordinary superconduc-

vortex system remains in a lattice phase. When the composite Voﬁvity will disappear via disordering of the phaﬁz) when

tex lattice melts, the system looses ability to carry dissipationles e reach the melting transition of the remaining sublattice of
charge currents, but at large enough magnetic field, the neutrg|

” : 2
mode should still be superfluid above the melting tempergfet. e_l‘:’lt\]/y vortlce? afTy. h . That i
20). Thus we have a first order phase transition frorsugercon- e system features one more phase transition. That Iis a

ducting superfluid to a metallic superflui@he neutral mode pro- transmon from the metalllp SUP?rﬂu'd to _a normal fluid,
liferates through a second order phase transition in theyami- ~ Which has a purely topological origin. That is, from the vor-
versality class. Therefore, at large enough magnetic fields,xy 3D {€X matter point of view, this manifests itself as a decompo-
anomaly in the specific heat should appear inside the vortex liquigition of a liquid of composite vortices to a “plasma” of
phase. The separation between the first order specific heat anomdijdividual vortices at the characteristic temperattyg, and

due to vortex lattice melting and the % anomaly due to loop Such a transition has no counterpart in lr1 supercon-
proliferation should increase with increasing magnetic field. At lowductor. A schematic diagram of the resulting physical phases
magnetic fields one has another phase transition inside the Abrikds shown in Fig. 19.

sov vortex lattice phase, from superconducting superfluid to a

one-gap (“ordinary”) superconducting state 3. A direct SSF—NSF transition

So in the absence of an external magnetic field, the sys- We note also the possibility of an existence of a phase
tem thermally excites only fractional flux vortices in the transition directly from a superconducting superfl(85H
forms of loops, with phase windings only in individual con- to a metallic normal fluidNF), shown in Fig. 20. What is
densates, and these fluctuations are responsible for criticeémarkable is that this resemble@sghile indeed being a dif-
properties. In contrast, the purely charged vortiies, the ferent type of transitionthe type of direct phase transition
composite one-flux-quantum vortices with no neutral superfrom a low temperature phase with Higgs mass and super-
flow) are not relevant in the absence of external field and théluid density of the neutral mode, to a phase with zero Higgs
system is either a superconductbelow T.,) or a supercon- mass and zero helicity modulus of the neutral mode that we
ductor with neutral modébelow T.,). Thus the effect of a would find in zero magnetic field when the bare phase stiff-
sufficiently strong magnetic field essentially inverts the temnesses of Eq(l) are equal, i.e.|y!V|=|4?| 5619 The SSF
peratures of the transitions by melting the lattice of chargedphase features one massless dual Higgs photon, and one
modes at §,(B) while leaving neutral modes intact. massive Higgs photon while the NF phase features one mass-

The phase transition from superconducting superfluid less photon and one massive dual Higgs photon. These
phase where the neutral mode is superfand the Abriko-  phases are thereforgelf-dual in analogy to the situation
sov vortex lattice is intact such that longitudinal supercon-encountered when Eql) is viewed as a quantum antiferro-
ductivity (parallel to the magnetic fieldexists31°2to ame-  magnet with easy-plane anisotropy.However, there is a
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significant difference. The critical point encountered in the
case of the quantum antiferromagnet was a result of a supel
position of a 3y and an inverted 3Ry critical point. In the
2-flavor London model in finite magnetic field, the crossing
point is a superposition between a@pxcritical line and first
order phase transition line, so it should have a different char-
acter than the self-dual critical point discussed in Ref. 5. It
can, however, not be a 3@ or inverted 3y critical point,
since neither of these are critical points between self-dual
phases. N

Thus, both for high and low magnetic fields we have %
genuinely different physics in that for a three-dimensional
system(i) a critical phenomenon takes place inside either the
vortex liquid phasghigh magnetic fieldsor the vortex lat-
tice phasdlow magnetic fields and(ii) we have three new
equilibrium states which have no counterpart in el
case. Moreover, by the discussion given above, it is clear tha
the crossing point between the vortex lattice melting line and
the neutral mode proliferation line warrants further study.
This is best left for a computational analysis, to which we
now turn briefly.

G. Monte Carlo results, finite magnetic field,N=2

We now present large-scale MC results for the chise
=2 in finite magnetic field at low magnetic fields when the
temperature is variett. We consider the model based on Eq.
(1) for N=2 on anL? lattice (with L up to 96 with periodic
boundary conditions for coupling constanig?[?=0.2, FIG. 21. (Color onlin@ MC results for N=2 |4#V[2=0.2,
|4/?)?=2, ande?=1/10. The ratio|?|?/|PY?=10 brings  |§?|2=2, ande=1/y10. Panela): Cy (black andN, (green. The
out one second order phase transitiomaf,(B) in the 3aDxy  C, anomaly atTg \,=0.37, where type-1 vortices proliferate,
universality class well below the melting temperatifgof ~ matches the point at whidN, drops to zero. Thus type-1 vortices
the vortex lattice. In LMH|lﬂ(2)|2/|lﬂ(1)|2z2000, but the are torn off type-2 vortices. The remnant of the zero-field anomaly
physical picture remains. For real estimatesTgfy, and T3, in Cy is seen as a hump &t~3.6. Panei(b): SP(K) (red) and
in LMH, see Ref. 2. The Metropolis algorithm with local S”(K) (blug) for the particular Bragg vectoK =(m/4,~/4).
updating is used in combination with Ferrenberg—Swendseﬁ‘(l)('_() vanishes é:ontlnuously s, While S?/(K) vanishes dis-
reweighting. The external magnetic fieBl studied isBx  continuously atTy=2.34. Panel(c): FSS plots of theM; from
=BY=0, B?=27/32, thus there are 32 plaquettes in they) Whlch the exponent&:—Q.OZiO.QS gnd/=0.6710.03 is 'e.xtracted,
plane per flux quantum. This is imposed by splitting theshowmg that the sublattice meltlnzg) is a 8Pphase transition. Pan-
gauge field into a static pa#&t, and a fluctuating par . ?ls @, (el’ (®), arld (@ plots Ojs( (k) for the temperatureSq
The former is kept fixed to[Aé A(Y)(r) Aé]:(O 2. 0) —0.35,Te—0.4,Tf71.66, ar)dTg.—Z.SS, respectively. A.Td’ Te, and

. “L0 10l ! ! T, the vortex lattice remains intact. The vortex lattice melt§,\2ﬁlt
Wh_ere f=1/32 is the_magnenc filling fraction, on t_op of _to give a vortex liquid ring pattern &,
which the latter field is free to fluctuate. Together with peri-
odic boundary conditions o\, the constraintf-(Ag
+Aq,cdl =27fL2, whereC is a contour enclosing the system
in the (x,y) plane, is ensured. It is imperative to fluctudte
otherwise type-1 and type-2 vortices do not intefdéf. To
investigate the transition g, we have performed finite
size scaling(FSS of the third moment of the action. The
simulations are done by using vortices direéfiygut with a
finite magnetic inductioB*=27/32.

We compute the specific he@t, and the third moment of
the action. To probe the structural order of the vortex system

teristic Bragg vector& of the typee« vortex lattice and will
feature a ring-structure in its corresponding liquid of type-
vortices. The signature of vortex sublattice melting will be a
transition from a sixfold symmetric Bragg-peak structure to a
ring structure inSYP(K) while the peak structure remains
intact inS?(K). Furthermore, we compute tvertex cocen-
tricity N, of type-1 and type-2 vortices, defined &g,

— NIt -
=Ng,— N, where

we compute the planar structure functisti'(k | ) of the lo- Er |n§2)(r)|6n(1>(r)¢n<z)(r)
cal vorticity n((r)=(V X [V#®-eA])/ 2, given by Ngp = (2)2 ‘. (59
L 2, In2(m)]
§a><kl>:m—3>2< X ni(ryeke s 2> (57)
' whered; ; is the Kronecker delta. The reason for considering

wherer runs over dual lattice sites ard, is perpendicular N is that we then eliminate the effect of random overlap of
to B. This function will exhibit sharp peaks for the charac- vortices in the high-temperature pha3e>Tg ), due to
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precisely as if the composite vortex lattice were not present
at all. Hence,SP(K) vanishes for a completely different
reason thar8?(K), namely due taritical fluctuations, i.e.,
vortex-loop proliferationin the condensate component with
lowest bare stiffness. Such a phase transition does not com-
pletely restore broken translational invariance associated
with a vortex lattice, since for the type-2 vorticgsite re-
markably, the vortex lattice order survives the decomposition
) ) ) ) transition, due to interaction between heavy vortices medi-

FIG. 22. (Color onling Detailed illustration of the low- 5taqg by charged modes. The vanishing\gf is particularly
temperature thermal flgctuations in a vortex lattice of CompOSitGinteresting, and finds a natural explanation within the frame-
vort_lces. A local excursion of a type-1 vortex away from the com-\yqrk of the above discussion. That is, fbre Tg, , We have
posite vortex lattice may be viewed as a type-1 bound vortex IoopNCoz 1, so the vortex system consists practically exclusively
superposed on the composite vortex lattice. The composite vortegf composite vortices. As the temperature increases, thermal
line d?es not interact with a vortex with nontrivial winding &y fjyctuations induce excursions such as those illustrated in in
=A(¢-6?). A splitting of the composite vortex lattice may be Fig 22, which reducesl!, from its low-temperature value,
t_hus viewed as aero-ﬂeldyortex-!oop prollferatlon of type-1 vor- reaching aminimum at Tg, and thenincrease for T
tices; a 3y phase transition universaliRefs. 303134, >Toim-

We may view the splitting process as a type-1 closed vor-
vortex-loop proliferation, and focus on tikempositenessf  tex loop superposed on a vortex lattice(slightly) fluctuat-
field-induced vortices. ing composite vortices. An important point to notice is that a

The quantityN,, is the fraction of type-2 vortex segments type-w vortex does not interact with a composite vortex by
that are co-centered with type-1 vortices, providing a meameans of a neutral mode. This follows from a topological
sure of the extent to which vortices of type-1 and type-2argument that two split branches will feature nontrivial wind-
form a compositevortex system. Hence, it probes the split- ing in the composite neutral field? - 62, while a compos-
ting processes visualized in Fig. 14. The results are shown iite vortex line does not. Hence, the splitting transition may
Fig. 21. be viewed as typel vortex loop-proliferation in a neutral

At Tg m, Cy has a pronounced peak associated with thesuperfluid This is illustrated in Fig. 22. Thus, we may utilize
3Dxy transition, and a broader less pronounced peak whickhe well-known results for the critical properties of thex3D
is the finite field remnant of the zero-field inverted 3D model for neutral superfluids described as a vortex-loop
transition3® Scaling of M5 at Tg;y shown in the inset ¢ in  proliferation3%:31:36 This “vortex sublattice melting” phase
Fig. 21 yields the critical exponenis=—-0.02+0.05 andv  transition is therefore in the 3 universality class?-3136
=0.67x0.03 in agreement with the R universality class. not a first order melting transition. The resulting phase is one
A novel result is thatSY(K) vanishescontinuouslyas the — where superfluidity is lost and longitudinal superconductivity
temperature approach@g, , from below, precisely the hall- retained in the componeﬂrgz).
mark of the decomposition transition that separates the two ConverselyN_, remains essentially zero unfik, ;, there-
types of vortex states depicted in Figs. 14 and 15. A relatedfter increasing monotonically. For temperatures above, but
feature is thevanishingof N, at T, as a function of tem-  close toTg, ,, fluctuations in vortices originating in 6 are
perature, discussed in detail below. The first-order meltingstill small, so the variations iN.,=Ng,—Ng, reflect thermal
transition takes place at,, whereS?(K) vanishes discon- fluctuations in vortices originating id Y. The increase of
tinuously. This is the temperature at which the translationaN;, means that type-1 vortex loops are thermally generated,
invariance is restored through melting of the type-2 vortexand thus tend toandomlyoverlap more with the moderately
lattice. In the temperature interval<Tg y the system fea- fluctuating type-2 vortices. At their first order melting tran-
tures superconductivity and superfluidity simultaneodly, sition, type-2 vortices fluctuate only slightlJhus the van-
since there is long-range order both in the charged and thishing of N, above T\, reflects the increase in the density
neutral vortex modes. In the temperature intefVgly<T  of thermally generated typgvortex loops in the background
< T2, long-range order in the neutral mode is destroyed byof a slightly fluctuating typ€ vortex lattice
loop-proliferation of type-1 vortices, hence superfluidity is _ . ) _ »
lost20 However, longitudinal one-component superconduc- H. Graphical representaﬂon of phase disordering transitions
tivity is retained along the direction of the external magnetic in the N=2 model
field. ForT>T§,I superconductivity is also lost, hence this is  In Fig. 23 we present a schematic picture of configuration
the normal metallic state, which is a two-component vortexof the order parameters phas#8 and ¢ in various points
liquid. in physical space, when vortex matter drives the system into

The most unusual and surprising feature is the continuousne of the above discussed superconducting and superfluid
variation of SY(K) with temperature, even i, , where it~ states.
vanishes. The explanation for this is the proliferation of
type-1 vorticegwhich destroys the neutral superfluid mpde
in the background of a composite vortex lattice, which the
type-1 vortices essentially do not see; cf. Fig. 22. As far as We next consider the new features that are encountered,
the composite neutral Bose fiel? - ¢? is concerneditis  compared to thé&l=1 andN=2 cases, when aN>2 system

VIIl. THE N>2 MODEL IN EXTERNAL MAGNETIC
FIELD
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Step 1 (T=Th)|  [Step 2 (=T}

1
Phases of the fields: «Q(‘) 8

M AB =2
SUPERCONDUCTING SUPERFLUID | METALLIC SUPERFLUID 46°=
U]
A =2
SN2 W A At ,
AB =2
/ ﬁ W ﬁ 'ﬂ FIG. 24. (Color onling A two-step decomposition transition in
¥ the N=3 model in external magnetic field. The “lightest” vortex
v component, originating in the order parameter component with the
/‘ f / / % lowest bare phase stiffness, tears itself loose from the composite

Abrikosov vortex of the two stiffer order parameter components at

"ONE-GAP" SUPERCONDUCTOR NORMAL FLUID Tépl. At a higher temperaturd §p|, the “next-to-lightest” vortex
V /v componeni(green vortex, originating in the order parameter com-
% 7 e ponent with the next-to-lowest bare phase stiffness, tears itself loose

from the vortex of the stiffest order parameter component in the
/ \ background of proliferated vortices originating in nontrivial phase
— /J D 4 windings of the phase with lowest phase stiffnégsl vortey.
i ( '\/ We introduce bare phase stiffnesses for the neutral modes

Y" in Eq. (53) as follows:
JL2 W

FIG. 23. (Color online Phases of the order parameters in the v
various states fo=2. In the upper left panel, boi#t and #? are D2l 32
ordered, this is the superconducting superfluid state. In the upper 3= |¢ | |'r// |
right panel, neither of the phasé$’ and 62 are ordered, however B P2 '
the combinatiord™ - ¢@ exhibits long-range order, this is the me-
tallic superfluid state. In the lower left pan#f? is disordered and |¢(2)|2|¢(3)|2
62 is ordered. In this case, the neutral superfluid mode is destroyed J3= — - (59
and we are left with one charged superconducting mode, this is the v

analog of the one-gap superconducting state. In the lower righfjance. a vortex with phase Winding(SSQ(l)ZZW AG?

panel, neither of the phaseés” and ¢ are ordered and the com- _, A#¥=0), can be mapped onto two cocentered vortices

bination ¢V - #@ does not exhibit long-range order, this is the me- S )
: . . ' n a two-component neutral superfluid with bare stiffnesses
tallic normal fluid state. The states illustrated in the upper left and.;, 13 . .
J*and J*°. Thus, at a distance larger than the penetration

lower right and left panels exist at zero as well as finite magneti(i h h " int t ith tei gD
fields. The state illustrated in the upper right panel only exists a ength, such ‘a voriex nteracts wi a_ vorte;

finite magnetic fields. =-27,A60?=0,A6¥=0) like two vortices in a neutral su-
perfluid with bare phase stiffnegs J*2+J'3,

is subjected to an external magnetic field. These features are Intravortex interaction, e.g,, of the vortexAd®
due to the fact that we have more than one neutral vortex 27,A602=0,A0¥=0) with a vortex (A¢Y=0,A6
mode, and that a vortex with phase winding in any single=27,A¢¥=0) or with a vortex (A¢Y'=0,A¢?=0,A6%
phase fieldd'® will excite N-1 neutral modegsee Appen- =2m) is more complicated. It can most conveniently be de-
dix A). We consider first the case=3, followed by the case scribed by introduction of the “color charge” concept, which
N=4. En route we introduce the useful concept of “colorwe explain in Sec. VIII B.
charge” which facilitates a discussion of the universality First, however, we observe that only a composite vortex
class of the phase transitions that occur in multicomponentA 8V =27,A6?=27,A6®=27) has finite energy. The key
superconductors in external magnetic field when compositéeature of a system withy®| # |4?)] # | %), is that the three
vortices decompose due to thermal fluctuations. elementary constituent vortices are bound with different
strength to such a composite vortex. For example, when
N N |y V] < |yf?|<|yt?)], the neutral modes excited by a vortex
A. Decomposition transitions,N=3 (A0V=27,A69=0,A60%=0) have bare phase stiffnesses
We stress that the system is not mapped onfy@)]®  (J3'2,3'%) <J%. This in turn implies that in the composite
neutral system because the neutral modes remain topologiortex (A¢Y=27,A0?=27,A6®=27), the constituent el-
cally coupled, as a consequence of multiple connectedness efmentary vortex (A¢Y=27,A0?=0,A0%=0) is most
space introduced by the vortex core. It manifests itself in théoosely bound. Thus, in contrast to thi=2 case, the effect
fact that anysingle phase variable®; @ [1,2,3] excites  of thermal fluctuations foN=3 is a two step transition. In
two neutral modes, as illustrated in detail below. the generaN case the process of stripping a composite vor-
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TABLE II. A color charge is defined as a #2winding in the “Vortex”-"Color Charge” duality
mode (6@ - ¢7) with the following mapping folN=3.

Mode: (Y -¢?) (6V-¢9) (62-¢9)

Color charge: red green blue

6% 0r

tex of its N constituent vortices is aN—1-step process oc- ;
curring successively, starting éltc; and progressing up “Type-1 vortex’  “Type-2 vortex” “Type-3 vortex”
throughT., up to T.n-1, at which point the vortex system is
fully decomposed.

. Two ngutral
ForN=3, at a low temperature determined by the smallest  Two nutral Two nputral o g

modes excited

. i d ited
bare phase stiffnesg/?| and by J*? and J', there should L R modet &
therefore take place a partial decomposition of the vortex
(AgV=27,A0@=27,A6¥=2m) into two vortices (AgY R i e R ———
“+Red” and “+Green” “-Red” an ue’ = .
=27,A0?=0,A6%=0)+(A0V=0,A0@ =27, A0® =27), elec(teric iharges = electric charges electric charges

=0,A0?=2m,A09=0)+(A0V=0,A6?P=0,A0%=2m).

We also stress that apart from the neutral made
- 6%)), which provides an attractive interaction for the vortex
pair (A0Y=0,A0P=27,A09=0)+(A¢Y=0,A6?
=0,A0®=27), the first of these vortices excites the neutral  FIG. 25. (Color online The connection between vortex illustra-
mode (#Y'- @) which consists of oppositely directed cur- tions and bound states of color charges, for the bs8. Each type
rents in the condensateEf)l) and \II(OZ)_ The second vortex Of vortex is a bound state of 2 color charges. The radius of each
excites the modé#™ - #®) which is associated with oppo- Plack circle is for graphical convenience is used to differentiate

- - - ) ©) between “heavy” and “light” vortices. The order parameter compo-
sitely directed currents in condensaﬁ!‘g1L andW¥”. These i y g : : P P
modes, apart from giving the paiAgY=0,A62 nent with the lowest bare phase stiffness is taken to be the vortex

=2, A0P=0)+(A0D=0,A6P=0,A09=2m) logarithmi- with the “smallest diameter.” A vortex originating in a nontrivial

. ) g1 ; phase winding ind'® is denoted a type- vortex. The color of the
cally divergent energy per unit length;® also yield some ortex on the top of the figure should not be confused with the color
repulsive interaction in this pair, because both the modegs the electric charges in the “dual” charge representation

(6Y-69) and (#V-69) feature unscreened currents of

(1) . . . .

condensatel';”. However, such a repulsive mtergcn(l))n N (AgV=27,A6@=0,A6%=0) which excites two neutral
this ;2)a|r is 3negI|g|ny small in the considered rgglrhté | modes associated witt#') - 6@) and (69— 63) with stiff-
<|y?| <|y?|, compared to the interactions mediated by the occeal’? and J18 respectively, may be viewed as a color

mode (6%~ 6%). charged string with color chargetted” and “+green.”
The regime |4V <|y@|<|y¥)], ie., when JP<J®
< J?3 corresponds to the situation where red electric charges
are much weaker than green charges, which in turn are much
Formally, the partial decomposition process can be deweaker than the blue charges. The blue charge then domi-
scribed by introducing the concept of “color electric nates the binding of the vorticdd 6V=0,A62 =27, A6
charges.” That is, we may introduce, e.gkred,” “+green”  =0) and (A6V=0,A6?=0,A63=27). The tightly bound
and “+blue” charges associated withr2windings in (6% composite vortexA#D=0,A62 =27, A¢®=27) then has
- 6?), (Y- 6%) and(6? - 69), respectivelysee Table . electric charge(—red, —green which loosely binds it with
If we have a -2 winding in (6V-6?), (6Y-69) or  (+red, +green color charged vortex(A#Y=2z A¢g?
(6@ -69), that would correspond to-*red,” “~green” and  =0,A¢3=0) into a color charge neutral finite energy one-
“—blue” color electric charges, respectively. We stress onc@ux-quantum vorteXA 6P =27, A0? =27, A6 =27).
more that in order to preserve single valuedness of the order |n Fig. 25, we illustrate how to connect the vortex picture
parameters, the #2 gains in phase differences may only tg the picture of color charges, for the cade3. ForN=3,
come as *Zr gains in individual phases. For example if we each type of vortex is a bound state of two color charges.
would have (A¢Y=3n/4,A6?=-5m/4) then (6~ 6?) A schematic picture of the low-temperature composite
would change by 2. However, such a configuration would vortex lattice phase, the partial decomposition transition in
be unphysical because individual order parameﬁegg and  the color electric charge representation, and the complete
\Ifgz) would lose their single valuedness. Then, a vortexdecomposition transition, are given in Figs. 26, 28, and 29.

illustrated in Fig. 24. Then, upon increasing the temperature

there should take place a phase transition, also illustrated it

Fig. 24, into a fully decomposed state defined by the phase

windings (A¢P=27,A69=0,A0%9=0)+(A6V=0,A¢? O Q
=27,A09=27) — (A0V=27,A60?=0,A60°=0)+ (A6

B. Color electric charge
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A6CLorn A8 o

FIG. 28. (Color online A color charge representation ftN=3

‘ EIG' 26. (Cplor onllnel A_C°|°L char_?le repredserlltatl_on ;NT? of the partial decomposition transition In the color charge represen-
ort € composllte vortex fattice phase illustrated aiso In the € tpar ation, this may be viewed as a red-green dielectric-metal transition,
of Fig. 24. This low-temperature phase, where the fluctuations o

. ) 3 hile the blue dielectric phase remains intact. As explained in the
the vortex lines only involve small excursions of each of the con-

. i ¢ h ) bi b text, this partial 2-color metal-insulator transition involving fluctu-
stituent vortex lines away from the composite object, may _eating line charges, is in the 3 universality class. The dotted

Ylewed as”a 3-color Q|electr|c phase. The composite vortex line Bllipse indicates which color is involved in forming the remaining
anchored” on the thickest vortex. Each constituent vortex may beyiq|actric phase

viewed as a bound state of certain combinations of color charges.

The composite vortex line may, on the other hand, be viewed a§ich js color charge neutral. This can also be seen by ex-
bound states of-red, =green, and-blue charges, as indicated by amining the vortex interaction matrix given in E@2). That

the dotted ellipses. This is a three-color dl_electnc_ m_sulatmg is, when we add up the neutral-mode-mediated interactions
phase. We strongly emphasize that the above illustration is meant {0

! I . ' etween the type-1 vortex with all three type-1,2,3 vortices
illustrate what the situation is in a typical cross section along the th it t )(Ae(l)—Z A0D=2m AgI=2 )
lines, which are not rigid straight vortex lines In the composite vorte — £, — £, —em

they add to zeroThe situation in the right part of Fig. 24 is

opologically equivalent to a completely intact composite

thi For t?el %urposes qudetﬁ_mr]]lr.ung the u.n|ver§al|ty tclass_ o{/ortex line superimposed with one segment ofwarbound
IS partial decomposIlionvniCh IS a genuiné phase ransi- oy loop. Therefore the transition may be viewed as an

tion, it may also be viewed as follows. The completely intact nsager vortex loop proliferation transiti@h3-53of type-1

composite vortex is color charge neutral in the sense that ortex loops in the background of a color charge neutral

contains a positive and negative electric charge of each COIOE‘omposite vortex lattic®2! That is because type-1 vortex
The fluctuation snapshot in the left part of Fig. 24 can b

. q letelv intact it tox i ith eIoops, from the point of view of superfluid modes, cannot
viewed as a compietely intact composite vortex in€ With &ugeon )0 charge neutral vortex lines, so this is equivalent

lir.nag;y_‘l)_ﬁ'lt vort(ix Io;)p Isuperlrrr:pc;‘sed on I asd shzlwn Mo a type-1 vortex-loop proliferation transition in the com-
g. 27. 1Ne lype-L VOrtex 10op Which carries a red and greet 1o 5psence of a composite color charge neutral vortex lat-
electric charges does not interact with the composite vorte ce. Since these vortices excite neutral modes, this transi-

tion, which is the first stage in decomposing a color charge
neutral composite vortex line, is a vortex loop proliferation
transition in the 3Ry universality clasg®?! In the color
charge representation given in Fig. 28, this also means that
the first-stage partial decomposition transition of three
charged fluctuatindine objectswith different chargegbut

such that the algebraic sum of their charges add up tg &ero
also a 2-color metal-insulator phase transition in thexD
universality classinvolving flexible color line charges

FIG. 27. (Color onling A local thermally driven detachment of The usefulness of the color charge representation becomes

the type-1 vortex linéred coloj from the composite vortex line can Particularly clear when we go on to describe the second stage
be viewed as a superposition of thermally creattmsed typel ~ ©Of thg_decomposnpn transition, |IIl_Jstrat.ed in Fig. 24. This
vortex loopon a completely composite vortex line. Both processestransition may be viewed as a proliferation of type-2 vortex
are topologically equivalent because the vorticity of the type-1 conloops in the background of liberated type-1 vortex loops, all
stituent vortex in the composite vortex line is exactly canceled by &uperimposed on a background composite vortex lattice. The
superimposed type-1 vortex ring with the opposite vorticity. We situation therefore is more complicated than in the first stage
stress that if left segment of a vortex loop has a counterclockwisdlustrated in Fig. 24, since that was a proliferation of type-1
vorticity then the opposite right segment has a clockwise vorticity.loops in vacuum.
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A6™or A6*2n

A8®L2n

OXO,

A% on

A6%on

FIG. 31. (Color onling A color charge representation fdi=4
of the first partial decomposition transition. In the color charge rep-
eresentation, this may be viewed as a red-green-yellow dielectric-

color charge representation, this may be viewed as a blue dielectri€?€tal transition, while the violet-blue-orange dielectric phase re-

metal transition, in the background of a red-green metallic phase_m"’“ns Intact. AS e>_<pla|n<_ed in the tf?Xt’ _th|s partial :_3-<_:o|or metal-
As explained in the text, this complete “1-color’ metal-insulator insulator transition involving fluctuating line charges is in thex§D

transition involving fluctuating line charges is in the same univer-un'versa"ty class. The arrows indicate which three colors are in-

sality class as the partial decomposition transition, namely the/3D volved in the metal-insulator transition. The dotted ellipses indicate
universality class ' which colors are involved in forming the remaining dielectric

phase.

However, let us view this transition in the color charge
picture, illustrated in going from Fig. 28 to Fig. 29. This is a the 3Dxy universality class, involving flexible color charged
metal-insulator transition for the blue-charge sector in thestrings.
background of coexistent red and green metallic phases.

However, red and green charges cannot screen blue charges, C. Decomposition transitions,N=4

while these charges eliminate the neutral rggges asli)ociated
with them (that is the ones with bare stiffnessks andJ*°). . ) .
Therefore, this is a metal-insulator transition for the sector ofransm_ons for the C?S“:“ in the color charge”pil‘cture. Tt1at
the blue charges, while red and green charges screen thefri: Wf '””OS'UCG as in the C‘.%st case “ffed: i_greerl1
selves and do not affect this transition. and “+blue” charges associated with #2vindings in (6%

In the color charge representation given in Fig. 29, this
also means that the second-stage decomposition transition A6"Lon
depicted in Fig. 24 is a 1-color metal-insulator transition in

FIG. 29. (Color onling A color charge representation of the
complete decomposition transition also illustrated in Fig. 24. In th

In Figs. 30-33 we illustrate the partial decomposition

A6Lon

A6%on

26™2n (5 ) A6%L0n
N ‘ _“@, :':“( ""
A6"2n

A%y

FIG. 32. (Color onling A color charge representation fdi=4

FIG. 30. (Color online A color charge representation foi=4 of the second partial decomposition transition. In the color charge
of the composite vortex lattice phase. This low-temperature phasegpresentation, this may be viewed as a violet-blue dielectric-metal
where the fluctuations of the composite vortex lines only involvetransition, while the orange dielectric phase remains intact. As ex-
small excursions of each of the constituent vortex lines away fronplained in the text, this partial 2-color metal-insulator transition
the main composite object, may be viewed as a “6-color dielectric’involving fluctuating line charges, is in the 3Puniversality class.
phase. Moreover, fa=4, each typex vortex in theN=4 case isa The arrows indicate which two colors are involved in the metal-
bound state of 3 color charges. The dotted ellipses indicate whicinsulator transition. The dotted ellipse indicates which color is in-
colors are involved in forming the dielectric phase. volved in forming the remaining dielectric phase.
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AB(A)—Z green, yellow line-charge sectors, Fig. 31, leaving a 3-color
= (violet, blue, orangedielectric phase. The second-stage de-
composition process involves a type-2 vortex tearing itself
off a 2-composite vortex in the background of a system of
proliferated type-1 loops. Due to screening of red, green and
yellow charges, this transition may be viewed in a simplified
manner. It may be considered as the first-stage decomposi-
tion in aN=3 system consisting of type-2, type-3, and type-4
vortices, involving violet, blue, and orange charges. This we
have already argued is a & (type-2 vortex loop prolifera-
tion transition, when we considered the=3 case. Alterna-
tively, it may be viewed as a 2-color metal-insulator transi-
tion in the violet and blue line-charge sectors, Fig. 32,
leaving a 1-color(orange dielectric phase. The third-stage
decomposition may be viewed as a type-3 vortex loop pro-
Aem—2n liferation in the background of type-1 and type-2 proliferated
— vortex lines. Due to screening of violet and blue charges this
may be viewed in a simplified manner. It may be considered
as a vortex loop proliferation of loops carrying orange
charges in the background of an orange-neutral vortex lat-
tice, or vacuum. This is a vortex loop proliferation in the
3Dxy universality clasg®?! Alternatively, it may be viewed
FIG. 33. (Color onling A color charge representation fo=4 as a 1-coloforange metal-insulator transitiofsee Fig. 33

of the third and complete decomposition transition. In the C°|°rleaving the 6-color dielectric phase completely destroyed.
charge representation, this may be viewed as an orange dielectric-

metal transition, while the color-dielectric phase is completely de-
stroyed. As explained in the text, this partial 1-color metal-insulator D. GeneralN

transition involving fluctuating line charges is in the 3puniver- In the generalN-component case, the number of color
salltyI glasls. The arrow indicates which color is involved in the charges that needs to be introduced to give an equivalent
metal-nsulator transition. description as the above, may be counted as follows, starting

_ . from the third term in Eq(4). Each combinatio® - 6% is
= 6?), (69-69) and (6% -6%), respectively. In addition, given a color. We start with one phase, the one with the

we introduce *yellow,”“ *violet,” and “*orange” charges |owest bare stifiness sag', and introduce a nontrivial
associated with +2 windings in (6~ 6%), (¢#?-¢“) and phase winding +z in this phase. This excited—1 neutral
(6¥-¢%), respectively(see Table Ill. Therefore, the case modes sinceN—1 gauge-invariant phase differences which
N=4 features one new aspect which was absent in the casgyolve ¢V can be formed. Introducing nontrivial phase
N=3, namely that foN=4 we need more color charges than windings in the next phasé®?, the one with the next-to-
number of order parameter components in order to compwest bare stiffness say, will also exclte- 1 neutral modes,
pletely cover all the possible ways that a neutral modeyyt onlyN-2 newneutral modes. Nontrivial phase windings
(6)-6#) can be excited. Each type-vortex is a bound in the third phase/® will excite N-3 new neutral modes,
state of three color charges, as indicated in Fig. 30. and so on. The number of different cold¥s,,, we will have
The low-temperature phase is a 4-composite color charg® introduce for a theory wittN flavors of scalar fields is
neutral vortex system, which may alternatively be viewed asherefore given byN.o(N)=(N-1)+(N-2)+(N=3)+:--
a 6-color dielectric phase, Fig. 30. The first-stage partial des2+1=N(N-1)/2, i.e., Neolo2)=1, Neoio3)=3, Neoior(4)
composition involves a type-1 vortex tearing itself off the =g andNo(5)=10. A completely composite vortex, which
3-composite vortex, i.e., a vortex loop proliferation of type-1e denote as aN-composite vortex, consists &f constitu-
loops carrying+red, +green, +yellow color charges in the ent yortices originating in nontrivial phase windings in each
background of color charge neutral objects. So this is a phasg the individual phase#®, ae[1,... N]. Since a non-

transition in the 3Ry universality class. It may alternatively yial phase winding in any phasé”, ne[1,... N], ex-
be viewed as a 3-color metal insulator transition in the redcitesN—l neutral modes” - 6@, it is clear that a typey

vortex may be viewed as a bound state Mf1 color
charges. The particular combination Nf-1 color charges,
out of the total collection oN(N-1)/2 color charges, that
will enter the N-1-body bound state in each vortex, will

A8%on

TABLE Ill. A color charge is defined as a #2winding in the
mode(¢'® - ¢?) with the following mapping folN=4.

Mode: (6V-¢?) (6V-69) (6@-69) depend ony. The Ncomposite vortex is a color charge neu-
Color charge: red green blue tral object
Mode: (60— 69) (62— g9) (69— ) Small fluctuations in théN-composite vortex may there-

fore be viewed as a dielectric insulating phase ofN(N

Color charge: yellow violet orange ‘ ; : g
—-1)/2-component dielectric. The first stage in tie 1 stage
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decomposition process of tiNncomposite vortex line, where
a type-1 vortex tears itself off thBl-composite vortex, is
therefore a metal-insulator transition wheté—1 color
charges of theN(N-1)/2-colors dielectric systemsimulta-
neouslyundergo a metal insulator transition, in the x3D

class.

PHYSICAL REVIEW B 71, 214509(2005

FIG. 34. (Color online A schematic plot of
states in theN=3 system. The upper left panel
shows the phases of the condensate order param-
eters that are involved. The upper right panel
shows the state where all three phasgés 6@,
and ¢ are ordered individually. This state is the
low-temperaturgground state and features one
superconducting charged mode and two super-
fluid neutral modes. The middle left panel is a
phase wher@V is disordered, while/? and §®
are ordered. Thus, this is a state which features
one charged superconducting mode and one neu-
tral superfluid mode. The middle right panel illus-
trates a state where all of the phag€s, #?, and
69 are individually disordered. However, the dif-
ferencesdV- 6@ and ¢?2-6¢® (and therefore
also ¢V - ¢®) feature long-range order. This is
therefore a state which is normal metallic, but
nevertheless features two neutral superfluid
modes. The bottom left panel illustrates a state
where all of the phaseg®, 62, and ¢® are
individually disordered. Only the phase differ-
enced? - ¢ exhibits long-range order. This is a
normal metallic state featuring one neutral super-
fluid mode. The bottom right panel illustrates a
state where all of the phasé¥, 62, and¢® are
individually disordered and where none of the
phase differencef?-62 and #?-¢® and
#V- 62 feature long-range order. This is there-
fore a state which is normal metallic and normal
fluid (no neutral superfluid modgsThe states il-
lustrated in the upper right, middle left, and lower
right panel exist at zero as well as finite magnetic
fields. The states illustrated in the middle right
and lower left panels only exist at finite magnetic
fields.

transitions for color charges, are in the x3Puniversality

We should emphasize that, as follows from E4).in the
limit N— o, the strength of each of the electric charges goes
to zero. At the same time the number of colors of electric

universality class. The next stage, where a type-2 vortehargesN. tends to infinity. From Eq(4), it follows that
tears itself off the remaining—1-composite vortex in the eyen in the limitN — o, the energy binding of a type-vor-
background of a system of proliferated type-1 loops, is phasgy to a color charge neutral composite vortex is finite, even

where N-2 color chargesimultaneouslyundergo a metal
insulator transition in the 3Ky universality class by the

Zero.

same argument as used for the=3 case, and so on. The
complete decomposition of tHé-composite vortex proceeds
in N-1 steps of metal-insulator transitions for color charges,
where step number< A'<N-1 may be viewed as either a E. Graphical representation of phase disordering transitions
type-\ vortex tearing itself off arN—-A\/—1-composite vor-
tex line, or equivalently aimultaneousnetal-insulator tran-

sition for N-=N new color charges that have not been in-
volved in the previousV-1 metal-insulator transitions. All

though the strength of each individual color charge tends to

in the N=3 model

In Fig. 34, we illustrate graphically the various phase dis-
ordering transitions and partial symmetry restorations dis-

the N-1 partial decomposition transitions, or metal-insulatorcussed in the previous section.
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IX. APPLICATIONS by some unspecified mechanism, not necessarily limited to
. . I . . easy-plane anisotrogy.
e D 0 We conclude Ins Subsecton on e case i & e
be on the casbl=2. but some results for the césrdsS and ark on how these re_sults_relate to multlfla\ﬁdgctronlc
evenN=4 may ﬁn’d applications in mixtures of supercon- condensates. 'I_'o describe this case, We_need to !nclude a Jo-
ducting condensates in the not too distant future. se_phson coupllng between the matter f|¢|d species. The de-
tails of how to give a vortex representation of tNeflavor
London model in the presence of interflavor Josephson cou-
A. Applications of results for N=2 pling is given in Appendix E. Had a Josephson coupling term
The results forN=2 are expected to apply to two- between condensate species been introduced in the theory for
component superconductivity which could be achieved ilN=2, this would have have altered the dual theory in a
metallic states of light aton?s® such as electronic and pro- completely nonperturbative way, and would tend to lock the
tonic condensates in liquid metallic hydrogérMH) under ~ phases of individual condensate fields to each offfr@r a
extreme pressure. Estimates exist Top for such systems, dual representation of this case, where the nonperturbative
T.,~160 K2 A rough estimate foll; follows from the mass ~character of the Josephson coupling is brought out in a par-
ratio of the electronic and protonic condensattg,~0.1 K. ticularly clear way, see Appendix EAs a result, the transi-
Hence, afT,; one should observe an extra low-temperaturetions we describe here would collapse to one, namely the
3Dxy specific heat anomaly, as well as an anomaly in thecharged Higgs fixed point, which is in the inverted 8D
London penetration depth. An even more promising candiuniversality class.
date is the the systei@H,,® where there are predictions of
2-component metallic states at considerably lower pressures B. Applications of results for N=3,4

than those required to achieve LMH. , i .
Here, it is appropriate to remark briefly on the micro-  Mixtures of superconducting condensates in LMH can be

scopic origins of superconductivity in the projected liquid €xtended to include also the hydrogen-isotopes deuterium
metallic phase of hydroget® The proton is four times and tritium>* Tritium is a S=1/2 fermion, so this may give
lighter than a’He atom. It is well known thatHe at normal ~ 'ise toa su_pergonduct_lng condensz_ite via forming spin-singlet
conditions is a classipermanent liquid because of high Cooper pairs, just as |n.the protonic case. .Hence, OUI’- re;ults
zero-point energy and weak ordering energies. Indeed zerdor N=3 could be applicable to to the mixtures of liquid
point energies of protons in a dense environment are als@etallic hydrogen-tritium at extremely high pressures. An-
high, and at increasing compression there is a shift of elecother pOSSIbIlIty is to include deuterium as anew c_:(_)mponent.
tron density from intramolecular regions to intermolecular,/ncluding deuterium as a new component in addition to hy-
and with it a progressive decline in the effective interprotondrogen means that we have @=3)-component mixture of
attractions. Because of this there is also a decline of orderinguperconducting condensates consisting of electrons, pro-
energies from interactions relative to protonic zero-point enions, and deuterorsleuterium nuclei all of which in prin-
ergies. The existence afmelting point maximuras a func- ~ Ciple can undergo a metal-superconductor transition. Com-
tion of pressure in hydrogen, as well as a range of densitieBared to the situation faN=2, the situation is complicated
where hydrogen may take wpfluid phasen its ground state by at least two circumstances. First, deuterons are bosons,
was suggested in Ref. 2. Another important circumstance ignd secondly they have sp8+ 1. This means that the elec-
that en route hydrogen should undergo an insulator-metdfons and protons become superconducting via forming Coo-
transition and therefore the resulting phase should be theer pairs, while the deuterons undergo a metal-
liquid metallic hydrogen, a translationally invariant two- Superconducting transition via Bose-Einstein condensation.
component fermionic liquid. There is preliminary experi- Extending this to the case of having both tritium and deute-
mental evidence that a melting point maximum may indeedium in addition to hydrogen, might provide a realization of
exis® and it has received recent powerful backinginitio ~ the caseN=4.
calculations’ Experimentally a 12.4 fold compression of hy-
drogen has already been achieved at around 320°@Rti-
mates suggest that LMH should appear at 13.6 fold compres-
sion at pressure in the vicinity of 400 GPawhereas We have analyzed th#l-flavor London superconductor
hydrogen alloys may exhibit metallic behavior at signifi- model coupled to one gauge field with no Josephson cou-
cantly lower pressuresA predicted key feature of LMH at pling between the matter field components. The dual theory
low temperature is the coexistence of superconductivity ofs an N-flavor GL theory coupled td\ dual gauge fields,
proton-proton and electron-electron Cooper pairs. where the sum of all dual gauge fields is massive at all cou-
The special pointy/?Y|=|4?| has a physical realization plings. There aré&N\-1 charge-neutral superfluid modes and
when Eq.(1) is viewed as an effective field theory of a one charged superconducting mode in this model. We have
guantum antiferromagnet with easy plane anisotropy, whiclyiven a prescription for how to identify thBl-1 neutral
facilitates a suppression of topological defects in the form oimodes for arbitraryN.
“hedgehog” configurations which appear@{3)-symmetric ForN=2, a case which should apply to a superconducting
models>® [More generally, it may be viewed as a field state of liquid metallic hydrogen, as well as for the chse
theory of anO(3) model where “hedgehogs” are suppressed=3, we have performed large scale MC simulations comput-

X. SUMMARY
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ing (i) critical exponentsx and », (ii) gauge field and dual sion for N>2, where we find phase transitions associated
gauge field correlatorgjii) the corresponding masses, andwith partial decomposition of composite vortices, yielding

(iv) critical couplings using FSS. FoN=2 and [/"|  several unusual states of partial symmetry breakdown. The
#|¢/?|, we find one low-temperature critical point in the universality class and partial symmetry breakdowns are iden-
3Dxy universality class al;;, and one critical point in the iriqq by mapping the system to an ensemble of electrically

inverted 3xy universality class al ,>T¢;. For N=2 with :
|/ =|4?| we find one critical point with non-38y values K{E;@i;’ /;trrlng”s whe;e Tor ttrriN,xcEmponer;t;%/fstemtthelre are
of a andv.> We propose these to be critical exponents in the eplicas of electric charges ot ditterent color.

universality class of a self-dual gauge theory. Ro¥3 and The sublattice melting and partial decomposition transi-
a” |lﬁ(a)| unequaL we f|nd two fixed points in the 3@ uni_ tionS are Of purely t0p0|Ogica| Ol’igin. It inVOIVeS What can be
versality class afl,; and T, and one fixed point in the viewed as vortices and antivorticépositively and nega-
inverted 30y universality class at 3(>T.,>T.,). All criti- tively charged objecis The existence of positively and nega-

cal points therefore exhibit 3y values ofa andv when all  tively charged objects implies that the physics conceptually
bare phase stiffness¢g!?| are different. In the casbl=3  in some sense is similar to what occurs in a Kosterlitz-
with [¢]=|¢/?| <[y we find two critical points. The ThoulessKT) transition in two dimensions. In spite of being
critical point atT¢; < T, is found to be in the 3Ry univer- 3 decomposition of positively and negatively charged com-
sality class, and the critical point &, is in the inverted posite objectssuch a transition can be mapped onto a pro-
3Dxy universality class. For the cadé=3 with equal phase |ifaration of vortex loops in a vacuunie., a phase transition
stiffnesses we find one critical point which is nons8D in the 3Dxy universality class. Another principal difference
In this context, we have also noted that collapsing twop o een this type of phase transition compared to the KT
neutral critical points in the 3y universality class leads to yangition, is that in the 2D KT transition, vortices and anti-
a ?'”g'e critical point also in the 3@ universality (;Iass. vortices(positively and negatively charged objectse ther-
This follows from an argument |mply|ng that coI.Iapsmg any mally generated. This cannot happen in three dimensions
number of neutra] C”t'cal. points in the .3@ umversghty since any vortex line in 3D has an infinite energy in an infi-
class leads to a single critical point also in thexyminiver- nite sample. In the 3D transition which we consider, the neu-

sality class. On the other hand, it appears that collapsing| yond states of the charged objects are introduced by an

N-1 neutral cr!tical poi_nts.in the 3_)D/universality.clasar.1d external magnetic field. Thus we deal with a phase type of
one charged fixed point in the invertdDxy universality  yansition which in a very unusual form involves concepts

class leads to a single critical point in a universality Classooth from two- and three-dimensional phvsics
(which in principle could depend oN) which is not that of PRYSICS.

the 3Dxy or inverted 3Dxy type. ForN=2, we may define
the universality class as that of a 3D self-duH[l) X U(1)
gauge theory. The numerical values we have obtained for the

critical exponentsa and v the two casedi) N=2, [¢Y) _ _ o
=[y)| and(ii) N=3, |¢/V|=| 4| =| )| are remarkably simi- This work was funded by the Norwegian University of

lar, indicating that the values of the critical exponents are apcience and Technology through the Norwegian High Perfor-
most weakly dependent dx. mance Computing Program, by the Research Council of Nor-

In an external magnetic field at low temperature, theVaV: Grant Nos. 157798/432, 158518/431, and 158547/431

ground state of the system is an Abrikosov vortex lattice of NVANOMAT), by STINT and the Swedish Research Coun-
composite vortices. However, the effect of thermal fluctuaCll: @nd by the US National Science Foundation DMR-
tions alters the physics significantly. We discuss in detail thaP302347. We acknowledge helpful discussions and commu-
in the low-field regime and when the bare stiffnesses of th&lications with K. Berkje, H. Kleinert, O. Motrunich, F. S.
condensates all differ, we find that a 8pvortex sublattice 09Ueira, S. Sachdev, Z. Tesanovic, and A. Vishwanath. E.B.

melting transition takes place. Upon thermal decompositiorjih"’lnkS L. D. Faddeev and A. J. Niemi for many discussions

of field induced composite vortex lines, the constituent vor-2f multigap models. A.S. thanks H. Kleinert and the Institut

tices originating in the condensates with lowest bare stiffnesf Theoretische Physik der Freie Universitat Berlin for hos-
disorder, while the ones originating in the stiffer condensate®it@lity while part of this work was being completed. In par-
remain arranged in an Abrikosov vortex lattice. When such /cular, we wish to thank N. W. Ashcroft for many enlight-
transition occurs, aN=2 system looses superfluid proper- €NiNY discussions and for collaboration on Ref. 20.

ties, but remains superconducting. In contrast at high mag-

netic fields, the charged mode disappears via the melting

transition of the lattice of composite vortices. This is a tran- APPENDIX A: IDENTIFYING CHARGED AND NEUTRAL

sition from the superconducting state to a nonsuperconduct- MODES

ing metallic superfluid stat&.Inside this metallic superfluid

phase, at a temperature much lower than the zero-field metal- Here, we illustrate in detail the separation of variables in
superconductor transition, we find a superfluid-normal fluidN-component London model and the extraction of the com-
3Dxy phase transition associated with a neutral mode-driveiposite charged and neutral modes in the London limit. The
proliferation of vortex loops nucleating on field-induced vor- general procedure beyond the London limit for the chise
tex lines. These various transitions should in principle be=2 can be found in Ref. 11. The generdlcomponent
detectable in flux-noise experiments. We extend the discugsinzburg-Landau model is given by the action
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N which is now a sum obnecharged mode anN—-1 neutral
s=> {E |(V-ieA) Y92 + V{9 + = (V X A (. modes. The last term in E4A7) is a sum consisting of
a=12 N(N-1)/2 terms, involving all the color charge&d®
(A1)  —6P) (see Sec. VIl which are needed to account for all the

possible ways neutral modes can be excited in the system as
a consequence of multiple connectedness of physical space
in the presence of vortices. Note how this term vanishes

Here, the massdd (@ have been absorbed in the amplitudes
|¢/<)| for notational simplicity. Let us rewrite the first term in

Eqg. (Al) as follows: whenN=1.
N1 N1
Z(V=-ieA) @2 = SS9V 692 = eA - (V H@
Cgl 2|( '€ )I// | g’l 2|l'b | ( ) ( ) APPENDIX B: DERIVATION OF EQS. (11) and (12)

1 Starting from the model in the Villain approximation Eg.
X[y + §e2A2|'/’(a)|2- (A2) (7) we linearize the kinetic energy terms by introduciNg
auxiliary fieldsv(® wherea e 1, ... N with a partition func-
The idea now is to first extract the charged mode of theion
system, and then identify the remaining terms as the neutral N
modes. The charged modes is loaly) linear combination ”
of phase gradient¥ ¢® that couples to the gauge fiel. Z= f_w DAH . Da J Dv 7)2 exp-9),
We first introduce the quantity i

N
0= [yYPV 42, (A3) s=> (2 ———(v@)2+ & (A X A)?
a=1 r a=1 2ﬁ|‘#a)|2
Using this, we form the combination
+ 2 (A0 - eA + 27n(@) -v(“)) , (B1)

N 2
(2 A eA]) =(O@-eV?A?,  (A4)
a=l where|y/®)[2=|W{”|2/M@. The Poisson summation formula

where ¥2 is defined in Eq.(5). One can check that this reads
combination is gauge-invariant. By adding and subtracting

0?/2¥2, we now express EqA2) as follows: S @mB= S sm-B). (B2)
N n=—o m=—o
Z1HD2(V 62 = eA - (V 0O D)2 + =e2A2]
Elzlw( [F(V )2 = A - (V61 |/ + SePAZ g/ Here,n,me 7 andB e R. We apply Eq(B2) to Eq.(B1) and

§ integrate out the integer fieldg® so that the fields'® take

1 02 1 only integer values which we denofé®. After a partial

= E[E [V 6)2 - @} * 5920 eW?A)?, summation off, SN_iA @ .§(@=-% SN jg9A U@, where
a=l the surface terms are omitted, we may integrate out the phase

(A5) fields ¢@. This integration produces the local constraints

The last term is identified as the charged mode. The first term A-V@=0. (B3)
on the right-hand side of EQA5) can be rewritten as fol- ~ .
lows: To fulfill this constraint we lef@=A X h(®) whereh(® is an

integer-valued vector field. At this point the theory reads

- N
Z:J DAL D exp-9),

=1

N
1 0?
= (@)2(y glan2 - —_
Zlglw 2V 6) q,zl

2\1,2[ 2 [ AYPRY 4V - v W)}

o,B=1

N . N
S=2 [2 — = (AX h@?2-jeA - (2 A X h(“))

~ 28| V|2 ~
4\1,2[ X S P PPV O - 0(ﬁ>)2]. (A6) e | a1 281407 ot
a,B=1 B
Therefore, the action may be expressed as + E(A X A)?|. (B4)

2
s=> ( 22 | D2V o) - q,2A> + }(V X A)2 Again, we apply the Poisson summation formula Hg2)
2V 2 and the integer field&@ are replaced by continuous dual
}} gauge fieldsh'® at the cost of introducing the term
(A7)

r

272, ,h@-m@ in the action andm'®@ are integer vortex
fields. Then the partition function reads

> PR YPIAV (8 - 6P))?
=
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1
z= f DALl | DY Symmoexp-9), =21 2 5a92(Qq- Qg (hy” -h'y)
—o0 y=1J - m(}’) q a=1 2B|lﬁ( |
N
N N .
1 +ai Y, [h(® - m@+h@ . m
S:E EW(Axh(a))Z_ieA.(zAxh(a)) 770%-[ q q q q ]
r a=1 2B|¢ | a=1
. N
N ie _
+A- = X h{® |Dg*
+2mi D) h(a)-m(")+§(A><A)2], (B5) [ q 2(C§1Qq a ) a
a=1 - N
i Dol A- = 3 Q. x h@ | DL
where 6, , is the Kronegker delta. The gauge symmetry of Pa| AT ~ Q-q -q |Pgq
the integer valued fields'® in Eq. (B4) must be preserved “
through this transformation. Hence, the action @$) must (N N
be invariant under the gauge transformatiof) — h(@+Ay. *7 2 Qg x i DG X Qg x h ] 1,
The transformation produces the terfy= 27iAy-m@ a=1 a=1

which must be zero to preserve gauge symmetry. A partial (B7)
summation therefore produces the constrainm(®=0 on

each flavor of the vortex fields. At this point it is useful to whereD,=8Q,-Q_4/2. After performing the Gaussian inte-
write the theory in the Fourier representation and the actioyral in A4, the action reads

becomes
N
N
1 $=2\ 2 52 @2 Qq- Qg hy” -h')
S=211 2 s @i3(Qq X hi?) - (Qq X h'¥) e [
q a=1 2B|¢f( | N N
N +i > [h@ . m@ 4 h@ @]y é > hl@
+mi > [h{ - m@ +h(@ . m] e AP
a=1 N
. N N (@)
ie W R | X ht ) : (B8)
—E[Aq(EQ-qXh(_q))+A_q-<EQq><hg)>] (1 ‘
a=1 a=1
At this point it is useful to introduce matrices and vectors in
B flavor indices We write the action as
+ E(Qq X Aq) ’ (Q—q X A—q)} ) (B6)

S= 2 [HGgH_q +imMIH_q+imHIM_g],  (B9)
whereQ, is the Fourier representation of the lattice differ- a
ence operatoA. We choose the gaugk-A=0 andA-h(®

=0 which in the Fourier representation @,-A,=0 and  Where HT:(hél),hff),--- ,hqu)) and Mg
Qq-h\”'=0. We complete the squares Ay, and get the ac- =(mf]1),mff), ...,my") are vectors in flavor indices, and the
tion matrix G, is given by
|
Qqf , & Ll L &
2ByM2 - 2 28 28 28
¢ Q* | € & &2
— + —_— P —_— R
28 2By 2B 28 28
Gy = : : , (B10)
L L U o2 &
28 28 2Bly™NY2 28 2B
¢ N
28 28 28 2Bly™P " 2B
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where|Qq|2 Qq'Q—g. In flavor |nd|cesn N we write the  dividing the numerator and denominatorﬂyzld(“), we ob-
matrix asG.”" =d( 5, +c, whered”=|Q,|2/28|#/”|? and  tain the diagonal elements

c=¢€/2p. We complete the square and obtain the expression
1

C
S= 3 [(H] +imMIG;HGq(H_q +imM_qG;) FERD e

N C
+ PMTGSIM_g], (B11) 1421 q@

whereG is the solution ofG, G 1= andl is theN X N unit
matrix. Gaussian mtegratlon bfq yields an action expressed and the off-diagonal elements
in vortex variables of different flavors

c
= Tg! (7))
S % MG M. (B12) (G = - d7dv (B16
c
The matrixG_! is found to have the following diagonal ele- 1 +Ea:1m
q d
ments
LS wheren# \. In total, the matrix(G,")”) reads
(G_l)(”’”)_ a:#?y tC aFn 79&770( (513)
@) T HN do+cSV ] Lysy ¢ ) o _C
a=1 a=111lyz d@» a=1 (mgle@ | TN (g™
and (Gal)(rm\) =
1+ Ea 1 d
1 oLl 4 (B17)
(GgH'"™N = - — 5 (B14) B17
a)
Ha=1 d( + CEDFl H)’#

Inserting the expressions fat” andc and multiplying by
as off-diagonal elementéy+\), whereIl,.zd®=1. By |Qq|4 in the denominator and numerator, we obtain

(GHN = 2ﬂ(|lﬁ(”)|2|Qq|2 + e2|¢(77)|22'::1 |¢(a)|2)57/,>\ _ e2|¢(7;)|2|¢(>\)|2 o
q QuIQuf + &€ Z [ |

We introduce\PZ:Egzﬂzp(“)|2 and split the expression by The above vortex action may be written in terms of charged

partial fractioning and obtain the matrix and neutral vortex modes in a manner analogous to that of
P B o R
v |Qql? |Qqf* + €2
(B19) s, (X, [#PmE - (2, [P Pm )

This is the vortex interaction matrix given in EfL2). In-  27°8/W? :§ |Qq2+ M
serting this into Eq(B12), the partition function of the sys-
tem is . |¢‘“)|2|¢//(’3)|2(mg“) - mﬁf’)) . (m(_(a) - m(ff‘))

z=]1 2 Sxmwoexp-Sy), B 2|Qq?

@ m (B21)

N U
Sy=>, E m(” (”|¢,// ”)Iz[ 2 Here,m=¢e?¥2. While the first, screened, term in general is

2
g A=l |Qq| present for allN=1, it is clear from the above formulation
|(/,(x)|2 that the second, unscreened, term is only present provided
—IQ 2+ eyl |’ (B20) N=2. The factor 2 in the denominator in the unscreened

terms is essential in order for the interaction terms between
which gives the action in the partition function in Ed.1).  different vortex species to cancel out wheg=0.
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APPENDIX C: GAUGE FIELD CORRELATOR JHPHY Y -
. . . . Fa{dgd-g) = 2129 = wi[m&D*A(q)L P
Introducing Fourier-transformed variables in EQ.0), 2|Q|
prior to integrating out the gauge field, and adding source @R (@p) (a (@B
terms in the form of electric currentscoupling linearly to +LGD - (q)mP ]+ L (q)Lg”
A, we obtain the actioiinote that for convenience, we have (C?)

redefined theA field in this appendix by a facton,B as . .
foll A—A=\BA, and th A Th h Here, the upper index denotes a “flavor” indéx, 83)
ollows: A—A=\jA, and then renaming — us here [1,... N] indicating which matter field species the fields

we also redefine the charge as folloves:>€=e/ \'8 which above correspond to, and we have introduced the vector
we then renam&—e. In the end result we reinstate the (4 . . .
L, =Bg ae[1,... N]. Using this particular property of

original definitions. We thus have the action Efj0) on the ga

form , We may S|mpI|fyFA({J J_q}) somewhat, to obtain
$=2 ﬂh@ h'@ + 7ri[m{® - h'@ + m'@ . ()] JUpEVYY
. 2,3| l/f(”‘)|2 q q q q a 'q FA({\]q’\]_q}) = _‘42|Q—|2q I[m(“) A +A m(a)q]\/(a)
q
- _[Aq (Q X h ) + (Qq X h a)) A—q] + A‘q AqS (C8)

Qqf?

S AqAgl. (C1) In Eqg. (C8), we have furthermore introduced

1
+ E[Jq AgtI g Al

Summations over indice&r,pB) €[1,... N] is understood. _ % @B 2,3|¢(a>|2
Integrating out the gauge fields,, we get the action on the T < (@)= 0 |2+
following form AL a

N
Qe (@ @y @ (@ 4 (@ @
« h a a _h_a + _a h a N _
%? LBI&‘”I2 Fmlmg” b+ meg ha'l S= > D<“ﬂ>(q)=2[:—$2. (C9)
D..D a,B=1 |Qq| +rné
- 2Q,2 ] (©2

The last equalities in Eq4C9) are found from using the

where We have definedDy=Jy+ieQq X hy h, and h definition ofB(“ﬁ)(q) given in Eqg.(12), along with the defi-

_EE lh . Thus, the last term |n chz) may be wntten nition of ¢ given immediately after Eq(12). We have also
introduced the transverse projection operator

D, -D_ ~ ~ e~ ~

—4 —4-_—=_3 .J,+hg-Aq+h_q-A;——hg-h_

2|Qq|2 2|Q |2 q q q q q q 2 q qr QMQV

(C3) Py =" - 0 |_2 , (C10
q
where we have definedl,=(ie/2|Q4|?)Qq X Jq. Thus the ac-
tion may be written on the form which appears due to the transversality of the currdnts
_ Q42 Before doing functional derivations oRa({Jq,J_q}) it is
S = 2 Z—l;mhf;’) h' + mi[m{® - h'Y +m - h(] useful to multiply out the term_, - A, and explicitly use the
Bl constraintV-J=0 before derivation. We find
~ ~ €~ ~ 1
- [hq ' A—q + h_q ) Aq] + th ' h—q 2|Q |2J_q J
A_ A -— Sav)\saanVQp J)\J'r/
(C4) q q 4|Qq|4 q~-g-q~-q
In Eq. (C4), a summation over indice@y, 8) is understood. _ e " " v "
=- 808\ 818)QEQL NI
We can now integrate out the dual gauge fiehéf% to obtain 4|Qq|4( )QaQ% e
N
—— LKV TV
Z,=11 X Samwoexd—Syerl, (CH 4Q |2JqP g
a=1 (@

where In the cross terms between vortex fields and current fields

_ 2 (@F@8) ® (@ (@) there'is no nee_d to introduce the transverse pro_jection opera-
Syen= 2 [wmg? DA @mB - Fa(3g"35D]. (CO) oy, since the inner product automatically projects out the
d transverse part of since the vortices form closed loops.
Here, we have introduced We may now express the gauge field correlators formally
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(AT 1 &z field A that couples indirectly to the vortex fieldsia the
AqAZ "z, s AN 9,0 dual gauge fields
APPENDIX D: DUAL GAUGE FIELD CORRELATORS
:—H 2 Sam@ Zn Fa : -
Z g1 1y AMI0 53;4 83, The computation of correlators for the dual gauge fields

h{@ proceeds along the same lines as for the gauge Aield
5Fp but sufficiently many details are different so we include it
83,83 exd-Senl, (CLY here for completeness. Introducing Fourier-transformed vari-

4--q=Jq=0 ables in Eq.(10), and after having added source terms in
where Sy is Eq. (C6) with all currents set to zero. We get order to be able to compute correlators, the theory may be

for the required functional derivatives written on the following form:
SFa _ PP Ay (e OAq - Q4* @+ mi[m@ - h @+ m@ . h
3" Q |2 — 2 T -m_qV()+2A_q- &VS’ S = E ZBIgb(")Ith h% + 77 |[mq .h_q+m_q.hq]
q q q q
&
52F + Ja) h(“)_l_J(Q) h(a’) +_h(a) h(ﬁ) D1
Fa o Pa-gs) (12 2 I* 26" Oy
8350, 2|Qq|

In Eq. (D1), summation over indicesa,B) [1,... N] is
Multiplying out everything, after setting the currents to zero, nderstood and the last term appears after having integrated
we obtain out the gauge field. Notice how we in this case have added
) puv TR e N source current§®, one for each vortex fieldah'@. Inte-
(AGALY = 20 |2[2 - e8]+ 0 |2V VI mZg”), grating out the dual gauge flelﬂé we get the action on the
q q following form

Syet = E[wzm DA (@)m¥% - Fr({3§”, 3],

(C13

where a summation ovdi,B) €[1, ... ,N] is understood.

Settingry=ux and summing ovep, we get
gr=u g g (D2)
<Aq 'A—q> =

|2[2 e’S]+ VEVE(mE . m#). where we have defined

Qq |Qq|2
(C19 E ({J(tl) J(Dé)}) == ‘](Q)D(aﬁ)(q)\](ﬁ) + EJ(Q)D(CY,B)(q)m(ﬁ

Using the definitions ovV'® and S introduced above, and

moreover reintroducing the original gauge fieddand the + lim(a)a(aﬁ)( )38 (D3)
original chargee (see start of the appendijxhis becomes 2 =g
(Aq-A >_ 1 2 Here, as in Appendix C, the currents are diverggnce—free,
- |Qq|2+mo V- J@®=0, ae[1,... N], and the interaction matrip(#
43P |¢ 2|¢(ﬂ)|2 X(q) is defined in Eq(12). As was the case for tha field
+ > 5 55(my - m#) correlator, the constraints on the curredt¥ must be care-
|Qq| (Iqu + mo) fully kept track of when performing the necessary functional
218 zlgﬂzez GM(q) derivations in order to obtain the correlation functions. The
= |Qq|2+ e |Qq|2 |Qq|2+ m ]’ generating functional is given by
(C15 .
Z,=11 2 Sy oexd-Syenl. (D4)
when we introduce a=1 (e
GH(q) = <<E |¢(a)|2mga)) _(2 |¢(,8)|2m(_€))>, Applying Eq. (C11) to Eqgs.(D2)—(D4), we find
@) B
. 82,
(C16 (g Ony )>__ 5040 53, so=apco
which are just Eqs(24) and (25). Note how this has the d
structure of a “Dyson’s equation,” whe@*)(q) plays the _OFn oFy
role of a matter field loop or “polarizability,” where the _Z_Ol_[l %} Sam(@,0 5\]}_‘«(01) 537 B)
strength of the vertex is given byszre/ |Q,|. As we shall see M 4
below, a similar statement holds for the dual gauge field 5Fy,
correlators, but there the vertex is a scalar of stremgtfihe + W} (@(p exH~ Sy el
difference lies in the fact that while the dual gauge fields w0 a5
couple linearly to the vortex fields, it is tfoairl of the gauge (D5)

214509-35



SMISETH et al. PHYSICAL REVIEW B 71, 214509(2005

where S5t IS EQ. (D2) in the absence of source terms. We indices. This is precisely analogous to including only

obtain from Eq.(D3) nearest-neighbor Josephson coupling in a Josephson junction
array, but where the “lattice sites” now are represented by
Fn__ lfj(a,ﬁ)(q)\]u(ﬁ)(q) - wiﬁ(“ﬂ)(q)mg(ﬁ), flavor indices. In this case, we hade-1 Josephson terms.
s 2 q Therefore, we consider the action
F Py .
o= TL B ), (D6) S=-2 Bl cogAd” ~eA)
5J,4_an) 5] E(B) 2 =
Here, we must keep track of two indices on the “magnetic” Nl - sy L B 5
currentsJ@, since we have one currefgource term cou- - 2 B9 cog @7 — 6V) + E(A X A%, (ED)

pling to each of the\ dual gauge field&®, ae[1,... NJ.

The notation we use is thdg‘(“) is the u Cartesian compo-  whereg(” is the Josephson coupling. In the Villain approxi-
nent of the current coupling to dual gauge field of ﬂaVormatlon the model reads

aof1l,... N]. We use a corresponding notation fmr;‘ *

Moreover, P4 again is the transverse projection operator
defined in Eq.(ClO), appearing due to the transversality of fDAH IDH > H 2 exp-9),
the currents)®@. Multiplying all of this together, we find n(@ 7=1 m(”)

1~
<hg(a)hz(qﬂ)> = ED(oz,ﬁ)(q) pLr

_ ﬂzﬁ(a,n)(q)ﬁ(ﬂm)(q) '(mf;(”)rrL”((f)).

(1)
(D7) + 3 B - g s 22+ o x a2
Moreover, setting’=u and summing over Cartesian compo- 7t
nents of the dual gauge fields, we find (E2)
(hff‘) .h<_ﬂ;)> =D@A)(q) - ﬂzﬁ(a,n)(q)B(ﬁ,K)(QXm(_g) _mgk>>, Here,n® are integer vector fields wheree[1, ... N] and

m” are integer scalar fields witlpe[1,... N-1] which
(Dg) take care of Zr periodicity. We introduce the Hubbard Stra-
where we have used the fact that the trace of the projectiotpnovich fieldsv!® andq”, and apply the Poisson summa-
operator is equal to 2. In EqéD7) and (D8), a summation tion formula so that they become integer fields
over the indicesk, ) €[1, ... ,N] is understood. Note how
this, as for theA-field correlator, has the structure of a “Dys- o
on’s equation,” where the vortex correlator plays a role jDAH JDQ( )E H % exp(=9),
analogous to a matter field loop, or “polarizability,” with a
scalar vertexXcharge of strengthsi. This is simply a reflec-
tion of the fact that dual gauge fielté® couple linearly to ()2 )2
the vortex fieldsm'@ (“magnetic currents’ The factori in s=2 E 2ﬁ|¢f(a)|2 +iv@ . (A4 - eA)
the strength of the vertex appearing in E¢B0) and (D1) '

gives rise to an “anti”-Biot Savart law between vortex seg- (q )2 7
ments mediated by the dual gauge fields. + 2 2597 +iqP (g7 - gy | + E(A X A)?
7=1
(E3)
APPENDIX E: GENERALIZATION OF EQ. (10) IN THE
PRESENCE OF INTERFLAVOR JOSEPHSON At this point we organize the phase fields and perform partial
COUPLING summations so that they can be integrated out. This gives the

In this appendix, we consider tidflavor London super- following constraints on the integer fields:

conductor model Eq.7) in the dual representation, including Ay = g®
Josephson couplings between matter fields of different fla- a
vors. The Josephson coupling betwe## and 67 is local

in space-time represented in the Euclidean action by the A v =g — gD,
termsg@” cog 89 (r)- ¢ (r)]. With N matter fields there
will be N(N-1)/2 such terms(Note how there are no such AvN = gN-D, (E4)

terms whenN=1.) However, since these terms act as ferro-

magnetic couplings between the phase fields of different flaTo enforce these constraints we introduce the noncompact
vors, the critical properties of the model are preserved if wegauge fieldsh'® and the integer fieldsB'” where «

only include the terms that are “nearest neighbors” in flavore [1, ... N] and e [1,... N—1] such that

214509-36



FIELD- AND TEMPERATURE-INDUCED TOPOLOGICAL.. PHYSICAL REVIEW B 71, 214509(2005

vO=BD + A % h(l), N N-1
1l f ph@S I [ DB expi-)
a=1

Z = 1
vim =B —B7 D 4 A x h("), m(@ 7=1 I B(0=g(N)=g
vV = - BN 4 A p, (E5) > % (AX h@+B@ -BaD2 ¢ (% h >)2
S= + — @
where 7e[2,... N-1], and q”=A-B” are instantons. P e} 2By 2B\ a=1
These expressions may be simplified by introducing the N-1 (2 N N-1
dummy fieldsq®=qN'=0 andB@=BN'=0, so that the con- LS @B S h@ . m@ 4+ S g . g
i i ic. g &
straints become slightly more symmetric, given by 1 2B9 ) 1
A . V(a) = q(a) — q(a_l)’ (ES)
@ — a(@) _ aled) @ First we note that like in Eq10) the integration of the gauge
VI9=BY =BT+ A XN, (E®)  field A makes the algebraic sum of the dual gauge fields

where ae[1, ... N]. Including interflavor Josephson cou- massive. This reflects the fact that the gauge fReldannot

plings beyond “nearest-neighbor’ would merely have led toScreen instantons, it can only screen vortices. Furthermore, in

- . . K imit g(» - -
redundant additional constraints in the problem. Expressed ift€ lImit g7 —0 for all ne[1,... N-1] t)h(_are are no Jo
the new fields, the partition function reads sephson coupling terms and each fi@t is constrained

locally so that A-B”=0. The representatiorB(” — A
X b takes care of the constraint, and the substitutih

, +b@—pleD 1@ reduces Eq(ES) to Eq.(10). Finally we

N-1

z= JDAHEH > exp-9)

a=1p(@) =1 g(n)

BO=B(N=0 consider the uncharged case;> 0 for which it is useful to
return to Eq.(EJ), integrate out the phase fields, and write
N - i i i ) (m)
A X h@ + B(@ - gla-1)2 the theory in terms of the integer field§” andq
s=> E( > ) +E(A><A)2
=i 2By 2 NNl

N N-1 (A B(”))Z Z: H E H 2 5A-V(a),q(0<)—q(d‘1) eXF(_ S)y

—ieA - (E A X h(“)) + > o (E7) a=1 (@) 7=1 ¢(n
a=1 7=1 2:89 K

The appearance dhstantonsand effectivelycompactdual o (v(@)? - (g”)?
¢ Ay =212 . (E9

gauge fields in the dual description when Josephson cou- = | = 280 ”? * 1 289"

plings are included, serves to illustrate what a nonperturba-

tive effect this is. Instantons are singular objects and cannovhered, , is the Kronecker delta. We sum over the fietfl®
possibly be introduced perturbatively. Moreover, once in-for all ne[1,... N-1] and are left with the partition func-
stantons are required, a compactification of the dual gauggon

fields is also required, a highly nonperturbative step. There- \

fore, when we consider models where Josephson coupling is

absent, it is essential to be able to rule out completely inter- z=11X OsN_ Av(@),0 exp-9),

flavor Josephson coupling on symmetry grourdsriori, byl

and at the level of the bare actiofin systems with multi-

componentelectronic condensatesvith N=2 and where a N (V(@)?2 N-1 (D7 AL y)2

weak interflavor Josephson coupling must be included, it S=D1> ———=+ > et

may be possible to see the resemblance of one phase transi- pall Y 17/ e} 29"

tion for a neutral mode and one phase transition for a (E10

charged mode, such as we have presented for the zero-
Josephson coupling case. This would be so in small enoughhis is the theory oN current fieldsv® which individually
systems with linear extent smaller than the Josephson lengéan form closed loops, or dumbbells starting and ending on
given by )\5“):\5'|¢(“)|2/g<“), which in this context may be instantons. There is onlgneremaining constraint on thi
viewed as setting the scale of the interinstanton separatiomatter fields in the problem, after tié-1 instantons have
This would be a finite-size effect. For bulk systems, the apbeen summed outlf we had hadM <N-1 Josephson cou-
parent neutral mode will eventually be suppressed, leavingling between flavors to begin with, we would have Hed
one phase transition in the universality class of the inverted-M remaining constraints in the problem after summing out
3Dxy model) the instanton$.The one remaining constraint leaves only one
We proceed by integrating out the original gauge field andphase transition in the problem in the universality class of
apply the Poisson summation formula to introduce the intethe 3Dxy model, in contrast to thé&l phase transitions we
ger vortex fieldsm'@ and the integer fields”, wherea  have in the complete absence of inter-flavor Josephson cou-
e[1,... N] and »e[1,... N-1]. The resulting theory is plings. The local constrairi"_,A -v(®'=0 forces each dumb-
the generalization of Eq10) bell to form a closed loop with one or more dumbbells of any
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flavor. The instantons have been summed out of the problensystem has a KT transition into a state where quasi-long-
leaving as their only trace the possibility of having supercur+ange order is established only in phase difference which
rents change flavor, precisely what the interflavor Josephsoproduces a quasisuperfluid state. This state, however, is prin-
coupling does when expressed in terms of the fields descritgipally different from, e.g. SSFto MSF transition consid-
ing the supercurrents. ered in Ref. 20 and in this paper, becalgehe quasisuper-

It is the possibility of being able to “chop” closed current fluid state considered in Ref. 34 is a purely two-dimensional
loops of a given flavor into dumbbell pieces starting andPhenomenonii) in this state there is no true off-diagonal
ending on instantons, and then joining together dumbbel{ONg-range order, andii) there is no phase transitions from
configurations of different flavors, that facilitates tHik.has superconduit|V|ty to superfluidity in a planar system at finite
already been notécthat the dual field theory of a gauge eMPeraturé:

theory with two complex scalar matter fields minimally -6t us now consider Eq(4) for the caseN=3, when

1) 2) 3) ; : -
coupled to a compact gauge field, features two complex scaW |<|’% |<<|¢/®)]. In the most interesting case of finite i

: enetration length, the charged mode formally can never de
lar dual matter fields coupled to one noncompact dual gaug

. . . elop quasi-long-range order. That is because the composite
field and an interflavor Josephson coupling between the tw ingle-quantum  vortices(A g =27, Ag2 =27, Ag¥=2m)

matter field components. This is the reverse of what we hav Do _ 2= _ 3y _ -
shown in this appendix for the case=2, and nicely dem- Bind (A 2m, A 2m, Adl 2m) have finite energy
onstrates that “duality squared equals unijty.”

Taking the limit g'? —0 for all »<[1,... N-1] con-

and have only screened short range interaction. Thus, in the
limit where the magnetic penetration length is finite, such
) - . vortices are always unbound at any finite temperature. We do
straintsv'®) to be divergence free for alte[1,... N] and o conider here the possibility of a “would be” KT cross-
the model thus reverts back to the loop-gas representation g{er which is possible in a charged system with significantly
N decoupled 3Ry models. large penetration lengfi?. The absence of superconductivity
means that individually all phases are disordered and the
system is not superconducting. However, considering quasi-

APPENDIX F: KOSTERLITZ-THOULESS TRANSITIONS long-range order in phase differencesdin2, several inter-
IN' N-FLAVOR SUPERCONDUCTOR IN TWO esting possibilities arise. Composite one flux quantum vorti-
SPATIAL DIMENSIONS AT FINITE TEMPERATURES ces have short range interactions. On the other hand, vortices

with windings only in one or two phases excite neutral

In 2+1 dimensions at finite temperature, the classicamodes and thus can undergo a true KT transition. This opens
critical behavior of theN-flavor superconductor is very dif- up the possibility for a KT phase transitions associated with
ferent from the trug2+1)-dimensional case, i.e., the quan- establishing quasi-long-range order in phase differefftes.
tum critical behavior taking place in two spatial dimensionsThe key feature of thé&>2 system where bare stiffnesses
at zero temperature. Let us first recall some features of planare different, is that, as discussed in Appendix A, the neutral
superconductivity. It is well known that in two dimensional modes have also different stiffnessgsee Eqgs.(53) and
models with aU(1) gauge symmetry there is no quasi-long- (59)].
range order at any finite temperatures because a gauge field Let us consider first the low temperature regime. Then the
coupling makes the interaction between topological defectgortices with short-ranged interactions, name{p ¢
exponentially screened.The situation is however different =27,A0?=27,A0®=27) and (A¢P=-27,A6P=-27,
if one takes into account the “out of plane” magnetic field. A¢®=-27) are liberated, while vortices with phase wind-
That is, taking into account a third dimension, a vortex in aings only in one or two phases are bound into pairs of vor-
thin superconducting film produces a “mushroom’-like mag-tices and antivortices. In this state thereyigsi-long-range
netic field outside the plane, which as shown by Péaites  order in the phase difference?- 62, ¢1-63, and 62
rise to a logarithmic intervortex interaction at distances-¢®. Recall that the gradient terms of neutral modes which
smaller thar{ penetration lengtlt/[ film thicknes$, while at  follow from separating of variable in GL functional and
a distance larger than that the vortices interact viaraldw.  dropping terms describing charged modes in 58) are
Thus, for a thin film with a penetration length which is sig-
nificantly larger than the sample size, a Kosterlitz-Thouless
(KT) crossover should be observaPté® The same effect is 1|03 p?)?

also the reason for the appearance of vortices with long- Hneutra™ ZT[V(Q(D_ 0?9)12
range interactions in layered systems making them being es-
sentially coupledJ(1) models, where various KT transitions PP o ane
and crossovers were studied in numerous wétR&57 TS 2 (Ve =]
Here, we are interested in KT phase transitions in the 2121 132
N-flavor London superconductor in 2+1 dimensions in the +EM[V(0@)— ¢3) P2 (F1)
regime wher{i) the effect of “out of plane” Pearl field can be 2 P2 '

neglected(short penetration length limit or alternatively a

planar field theory without a third dimensigrand when(ii)

all components have different stiffnesses. In Ref. 34, the casérom this, we have the following stiffnesses of neutral
N=2 in such a regime was considered. It was shown that thenodes:
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O il P i U -
w2 T2 vz
0121432 We can now solve the general problem of KT transitions in a
323 = |¢f( 1°[y"°] system ofN planar condensates with all different bare stiff-
B P2 ’ nesses. In the general case Mfflavor London model the
temperatures of the Iowest KT transition is given by
(W2 YP Ll IWI
J13: _ F2 T(l) = Jla (oz 1) )
\PZ ( ) KT ZaEZ 2 \1,2 azzhb |¢(

Consider now what will happen as the temperature is in- (F5)

cr_eased. Plc_tqually, we may |I_Iustrate this _by con3|de_3r|ng.|.he subsequent KT transitions at higher temperatures are
Fig. 24 by slicing through the pictures at a given coordinat apped onto theN-1, N-2 cases. Taking thé\— o

along the vortex lines, considering typical cross sectionsymit in Eq. (F5) and provided thaly/V|2<¥2 we obtain
Upon increasing the temperature, first there will take place a

deconfinement of vortex pair$AdP=27,A6?=0,A¢0% TWIN-=] 7_T|¢(1>|2 (F6)
=0)+(A0V=-27,A6?=0,A0®=0) because vortices in KT 2 '

such a pair are bound by the two weakest neutral mdtfes
and J'3 [J2< JB<[¢/Y)?/2]. This will be accompanied by
partial decomposition of deconfingdermally createccom-
posite vortices (A0V =27, A0? =27, A0¥=27) — (AJY

This expression quite remarkably shows that in the lilit

— o0, even in the system with short penetration Iengtfif,
tends to the value in aeutral system with the bare stiffness
|#/Y]. In contrast in the one component case with short pen-

=2m,A0?=0,A60%=0)+(A¢V=0,A6? =27, A0 =2m), etration length the system does not exhibit a KT transition.
because a vortexA#'Y=0,A60?=27,A¢0®=2m) has the In conclusion, we note that the KT transitions considered
same neutral vorticity as a vortexA¢Y=-2mw,A¢?  in this appendix are still significantly simpler than the situa-
=0,A¢®=0) namely -2r windings in neutral mode#'Y tion arising in this model in three dimensions becaaseye

- 6@ and ¢V - ¢, This transition takes place at have considered in previous sections, in three dimensions the

| charged mode plays an extremely important rdtels pre-
Y cisely the interplay between neutral and charged modes
T%_ [‘]12+‘]13] P2 [|¢(2)|2+|¢(3)|2] (F3) WhicK is particSIaEI/y important in three dimengions and
which gives the model a variety of different phases and
This phase transition disorders the varial€ and corre- phase transitions. Also, we note that this situation is quite
spondingly eliminates quasi-long-range order in phase differeifferent from KT transitions that are known to exist in the
ences#V-¢? and #V- 3. Consequently abov& the  (2+1)-dimensional N-component Chiral ~Gross-Neveu
only surviving neutral mode is associated witf - 0(5 The  modef? where there is only one KT transition which occurs
remaining phase transition can be mapped onto thall in at finite temperaturdwhen the system is effectively two-
=2 system?* Thus the second phase transition takes place afimensional through dimensional compactificajion
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