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We study the magnetic behavior of a finite superconducting ring in the presence of a uniform applied field
directed along its axis by means of the critical-state model and the minimization of magnetic energy. We
systematically study the dependence of the magnetization and the ac susceptibility upon the geometry of the
ring and develop an approximate analytical expression for the case of narrow rings of any aspect ratio. Besides,
we show how the critical-current density of the superconductor can be obtained from magnetization measure-
ments and conclude that ring geometry is a very convenient one for such a purpose. In particular, we present
an expression for the full penetration field in the case of finite rings, which allows us to find the value of the
critical current from the value of the magnetic field at just one point on the axis of the ring.
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[. INTRODUCTION sample. Iff({)) can be theoretically found, can be simply
. . . extracted from the measurementldf., which, sometimes,

The macroscopic magnetic properties of type-Il supercongan pe obtained from techniques such as Hall probe
ductors depend on the value of its critical-current dendity, measuremenis.
which is often experimentally obtained from magnetizatio_n The full penetration field for the case of constantan be
measurements of the superconductors, normally by usingnaytically obtained in general whenever the last penetrated
Bean's critical-state modél.Since the relation betweed, point, P, after an increase of the applied field from zero, is
and the magnetization data depends strongly on geometry, ghown. In these cases,.,equals the magnetic field created
is very convenient to explore different superconductor 9e0Mpy currents in the penetrated samplePat In this way, ana-
etries in order to optimize a process for accurately obtainingytica| expressions for finite cylindefstapes of finite cross
Je- - section? and multifilamentary tapéshave been derived. In
In the critical-state model framework, the dependence obther geometries, the full penetration field has been obtained
the critical current upon the internal field,(H)), is com-  py ysing a numerical procedure for calculating the complete
monly obtained from the width of the measured magnetizazyrrent penetration proce®s12A similar procedure for find-
tion loop, divided by some characteristic length of thejng the full penetration field of finite cylinders for the case of
sample,J;=AM(H,)/d. This method was originally derived j_depending on the internal field was presented in Ref. 10.
for the case ofl; independent oH; (Bean's model If, in-  Of special relevance is the fact that for very thin samples the
stead,J. depends on the internal field, what is obtained is afield of full penetration is of the order af.d whered is the
function J.(H,) which is, in principle, not exactly the intrin- short dimension of the sample, not &, beinga the large
sic dependence of the critical current with the internal fielddimensiont3
function, J.(H;). These two functions are approximately In this paper we will focus on the ring geometry. The
equal only if some conditions concerning the internal fieldpractical importance of finite cylinders and rings comes from
homogeneity are mét® It has been demonstrated that the their use as key components in devices such as magnetic
superconducting critical current density and its dependenckearings’ or as permanent magnégThe ring geometry has
on the internal field can be more precisely obtained from thealso been used to study grain boundaries in melt-textured
magnetization loops when measuring thin samples in perpersuperconductor¥>1” The ring geometry maintains the cylin-
dicular applied magnetic fields up to sufficiently high applieddrical symmetry but, because of the inner hole, presents
fields, because in this case demagnetization fields help crea¢eme properties different from those of a bulk cylindrical
most adequate conditions for extractidgH;).6 superconductor. In particular, the ring shape geometry can

An important parameter involved in the determination ofhave a lower ratio of weight to trapped magnetic flux than a
J. from magnetic measurements is the full penetration fieldgylindrical bulk superconductd?. Furthermore, since the
Hpen This field, defined as the minimum applied field at stress is the largest at the center of a disk, in a ring sample,
which a zero-field cooled type-ll superconductor become®ne can avoid some mechanical problems by removing this
fully penetrated on the initial magnetization curve, is relatedcentral part of the superconduct8rFinally, we shall dem-
to the critical-current density and to the geometry of theonstrate in this work that the ring geometry presents some
sample. In the simplest case of constaptHpe=Jcf(()), characteristics that make it an optimum geometry for the
wheref(Q) represents a function of only the geometry of thedetermination ofl; from magnetic measurements.
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Although the ring geometry is a particular case of cylin-there. Following the Bean’s critical state model we put a
drically symmetric systems, no detailed study of current peneurrent with valud =J.(AR)(AL), for a givenJ, value. When
etration, magnetization loops, and susceptibility has been rehere are other currents already set in the superconductor
ported for the case of a finite ring. Only partial results arethere exists an extra contribution to the magnetic energy
known until now, summarized as follows. The full penetra-coming from the mutual inductances of all present currents
tion field for infinitely long rings isHZ "= Jc(Rou— Rind)s
where Ry, is the interior radius of the ring ang,, is the Eij :< > Mij,kl'kl)'ij- (1)
external radius of the ring, whereas on the other limit, an KI#ij
approximate expression for the field of full penetration ofThe calculation of self and mutual inductances is described
thin rings can be found in Ref. 2@ee below As far as we i Ref. 10.
knOW, neither epr'ESSionS nor numerical results for the pen- This process is repeated until it becomes impossib|e to
etration field in the general case of a finite Superconductingjecrease the magnetic energy by Setting a hew current any-
ring have been reported. where. Then, from the existing current profiles one can cal-

In this work we will present a systematic study of the cylate the corresponding magnetizatic®ec. 111 A). When
magnetic behavior of a superconducting finite ring in thethe field is further increased, the same procedure starts again
presence of an applied field directed along its principal axisfrom the previous current values.

The paper is structured as follows. In Sec. ”, we discuss the The described procedure solves numerica”y the critical-
main properties of the penetration of currents inside the Susiate problem in cylindrically symmetric caséven if the
perconducting ring, the way to calculate the full penetrationapp”ed field is not uniforn2223 This model has also been
field and how to obtain the critical current of the supercon-developed for the case df depending on the internal fief
ductor from field measurements. We will illustrate the and has been app“ed to the study the critical state penetra-
method with an application of the procedure to an actuation in other geometries such as multifilamentary tepbs.
measurement of a,Ba,Cu;0; superconducting ring. In Sec.  general, the procedure allows us to calculate current profiles
I1l, we calculate and discuss the magnetization and susceptys |ong as the direction of the induced currents is known. It is
bility of the rings, including an analytical model for narrow clear that in the case of rings with an axial applied field, the
rings, and how they can be used to measure the full penetrghnduced currents must always flow in the azimuthal direc-
tion field. Finally, the conclusions are presented in the lastjgn.
section. In order to present a systematic analysis, we normalize the

lengths toR,; and the magnetic quantities &R, so that

the results only depend on dimensionless ratjgd /R,

Il. CURRENT PROFILE'S:I,étIg FULL PENETRATION and 5=R,/ Ry, and not on the particular values af, Ry,
or Ry The quantityJ.R,; is the full penetration field of an
A. Model infinitely long bulk cylinder:Hpe{y— <, 6=0)=JRy

We consider a type-Il superconducting ring of axial length
L, inner radiusR,;, and external radiu®,. We use cylin- B. Current and field profiles
drical coordinates with the origin located at the geometrical
center of the ring and the axis along its axis.

We assume a uniform applied field,=H,Z, and that the
superconductor obeys the critical-state mddeith a con-
stant critical-current density].. We also assume that there
are neither equilibrium magnetization nor surface barriers i
the superconductor, which is equivalent to consider applie

fle||dS E?UCh Ielx(rger th.ﬁn tTe Ilowerhcntlcal f|eI5]_C1. ibution f increased in increments of 0JIR,,; (J. is assumed the same

n this work we will calculate the current distribution for ¢, ) samples It can be observed the expected behavior
a g|venHafoIIowmg the energy m|n|m|z§1t|on numencal pro- ?ue to the demagnetization effects: there is a large penetra-
cedure presented in Refs. 10,21. We give a brief overview o ion in the upper and lower faces of the rings and a deeper

the process as follows. enetration from the lateral surface for lowgrings1%.24
S 1l okt it D o aror an e sprcorng

' 9 tube the induced critical current shields the applied field not
angular directionJ=J,(p,2)6. We discretize the supercon- only in its interior but also in the hole before it reaches the
ductor as a set af X m coaxial circuits(rings) of rectangular  saturation. In the present case of finite superconducting
cross section and definBR=R/n and AL=L/m. Setting a rings, the field in the hole is not null, and induced currents
currentl;; at a circuit indexed a§ requires an energi;  tend to shield the superconductor volume but not the hole.

:%Lijlﬁ, (whereL;; is the self-inductance of thg circuit)  An interesting property is that the total magnetic flux that
while it contributes to reduce the energy by a fadfpp

In Fig. 1 we show the calculated current penetration pro-
files for several zero-field cooled rings with different values
of y and 6. We plot three sets of figures corresponding to
cases ofy=5.0, 1, and 0.2. For every case we consider
=0.8, 0.5, and 0.2, and, for comparisa¥s 0, which corre-
ponds to the case of a bulk cylinder. In all cases we show
e current profiles at applied fields starting from zero and

I

ﬁXt, passes through a circle on the 0 plane in the core of the
Where(ﬁﬁXtZMOHa’iTpiz is the magnetic flux threading the cir- superconductofthe region which is not penetrated by cur-
cuit i, which has a radiug;. We find in this way the circuit rent9 is zero, as can be demonstrated by calculating the cir-

that yields the largest decrease of energy and set a currentulation of the vector potential along a circle in the core.
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FIG. 1. Calculated penetration profiles for twelve rings at different applied fields. Uppdalifile)-(c)-(d): y=5, center linge)-(f)-(g)-
(h): ¥=1.0, and bottom lindi)-(j)-(k)-(): y=0.2. Left column(a)-(e)-(i): §=0.8, center left columitb)-(f)-(j): §=0.5, center right column
(0)-(9)-(k): 6=0.2, and right columr(d)-(h)-(I): 6=0 (bulk cylindep. In all cases, the applied field, increases from zero in steps of
AH,=0.1J.R,+ Only a semiplane of constant angle is plotted. In each figure, the left axis corresponds to the rotation axis. The length
dimensions in they=5 sample have been reduced by a factor of 2.5.

Since some field passes through the hole, in the inner surfadaround the superconducting regia@s lines passing through
region of the finite ring there should be some curresgge the hole, confirming that the total flux passing through a
Fig. 2). However, for a given applied field that does not circle in the core of the superconductor is zero.

produce a full penetration, the presence of the hole slightly
modifies the general profile formed by the currents. We show
in Fig. 1 that the penetration from the inner surface is very
shallow, except for larges and lowery (due to numerical Since current penetrates in the rings not only from the
precision in the calculations the narrow penetration from theouter surfaces but also from the inner one, the last penetrated
hole is not seen in some of the cases in Fig.Ih other place in a superconducting ring is, in general, unknown.
words, although there is always penetration from the innefFrom the symmetry of the problem one can only ensure that
surface, currents penetrate mainly from the external surfacte last penetrated place lies on the midpléze0) of the

to inside the superconductor. The presence of the hole baging, but cannot know where exactly it is. Thus, it is impos-
cally marks the ends of the superconducting region and prasible to find the analytical solution for the penetration field
duces slight variation in the penetration profile. The full pen-following the method of calculating the field created by the
etration field will therefore be, for a givep lower for larger  fully penetrated sample at the last penetrated pbint.

6 mainly because the superconducting region is smaller. However, we can use the energy minimization procedure
For narrow rings(6=1), specially if they are short, the to numerically obtain the penetration field as the applied field
last penetration place is significatively far from the innerat which the last place becomes penetrated by currents. Cal-
surface. To see more clearly this effect we show in Fig. 2 theulated results are presented in Fig. 3, where we have plotted

magnetic field line® for the casey=0.2, §=0.8 at different  the calculated penetration fielthormalized toJ.R,,) as a
values of the applied field. We observe as many closed linetinction of y for different & values. We observe in the figure

C. Full penetration field
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FIG. 2. Approximate field lines for a ring wity=0.2 andé .
=0.8. Applied fields arda) H,/J.R,,=0.1 and(b) 0.02. Gray re- 4

gions correspond to current penetrated regions. . ) .
FIG. 3. Calculated penetration field for differefitvalues as a

. . . o . function of y. The different symbols correspond to the numerically
that the full penetration field increases with increasinfpr  cajculated penetration fieltsee text for different 8. Solid lines
all &s. This is because, for a fixed, a largery means a correspond to the approximate expression of @j. Dotted lines
smaller demagnetizing effect so that the increment of theorrespond to the approximation for thin rifgq. (6)] whereas
internal field inside the superconductor due to demagnetizatashed lines correspond to the infinite ring lifg. (3)].

tion is smaller. As a consequence, the full penetration of the

sample is achieved at larger applied fieltlse detailed ex- thin-ring 2(1-6) 8(1+9)
planation is similar to that for bulk finite cylinders; see, for Lo — (- { { } - }
example, Ref. 10 JeRout m(1+0) (1-9
For the general case of arbitragyand 6, we propose an 1
approximate expression fét ey, 9): - 5(In5+ 1- 5)), (6)

Hoed 7, 0) 1-08 (2(1L+6) 2(1+9) [2|Y? where the induced current is considered as the average of the
pen:9) _ Y : ) o !
IR, T2(1+9) Y +11+ y : current across the dimension. This yields a full penetration
¢ out field just proportional td_ for very smally's.
2 We have included in Fig. 3 the approximate expression of
This equation contains the known analytical limits for EQ: (2) and the limiting cases of infinitely long rind€q.

long samples and bulk cylinders. In the limits, there are (3] and thin ringgEq. (6)] for comparison.
no demagnetization effects and the full penetration field,

Hpen(?’HOO, 5)=H;eﬂng tends to D. Determination of J. from direct Hall-probe measurements
i Several methods for experimentally obtainihgare based
Hpen o 1-5 3) on the measurement of the full penetration field together with
JRout ' the use of an expression that relates this field withFor

example, for a thin ring geometry, Pannet¢al.” found that
In the case of bulk cylinders, the full penetration field, € (Z component of themagnetic field measured above the
(y,6=0)=H i superqonductor _has a minimum at the radial distance corre-
Hre per | sponding to the inner radius for a given current penetration.
ol 2712 They argued that this minimum was the largéstabsolute
Hpen _ 7’|n{2 + {1 +(Z) } } (4) valug just when the applied field equaled the full penetration
JRuw 2 |y y ’ field. This procedure, accurate for thin rings, would fail for
larger v because the minimum of the field above the super-
which is the expression analytically obtained by Fédr ~ conductor does not always accomplish the above condition.
the case of finite cylinders. We propose an alternative method to measdgg, and
When y<1, Eq.(2) reduces to thus J;, from the measurement of the magnetic field at just
one point. In Fig. 4 we show the calculated magnetic field on
the axis of the ring at the point just above the superconduct-
(5) ing ring surfacep=0,z=L/2) as a function of théuniform)
applied field. We have plotted the results for two rings with
6=0.5 and 0.8, with three differeng's for each case. One
For very thin superconducting rings, another approximatean observe a kink just at the value of the full penetration
expression was presentédfor the full penetration field, field. This kink is more evident, and therefdrg,, is more

Hg‘;ﬂ g, easily measured, as the superconducting ring becomes thin-

Hoed 7<1,8) _ y(1-9) [4(1+5)}
IR 2@+d L vy |
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FIG. 4. (a) Calculatedz component of the magnetic field at the B 2.5t
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ner, narrower, and when measuring the field as close to the

geometrical centefz=0;p=0) of the ring as possible. The FIG. 5. Experimental and cglculatéd) magqetic field andb) ‘

ring geometry becomes, thus, an optimum geometry to medt second derivative as a function of the applied field at the point

sure the critical current of the superconducting material. ~ 2=1/2. p=0. Points correspond to experimental data and solid
When the applied field is lower than the penetration field,CUTVes to calculated data.

the total field at the chosen point depends on the currerdpserve the presence of a kink in the field data which corre-

penetrated region and can be only numerically calculédsd sponds to an appreciable peak in the second derivative. This

in Fig. 4). Only when the superconductor is fully penetratedpeak gives the value of the measured penetration field of the

the total field at pointp=0,z=L/2) can be analytically cal- ring. We have obtained in this walt P~ 1.9x 10°A/m.

culated as With the dimensions of the ring and the measukl® we
s find the valueJ$*®~4.0x 10°A/m? using the numerically
H(p=02) _ Hs L n Rout+ V(z = LI2)"+ RGy, calculatedH,,e, [we could have as well used E€L), with
JRout  JRout  2Rout R+ \(z- L/2)%2+ R, slightly less accurady In order to check the consistency of
PR the method we also plot the calculated data by inserting in
Rout+ V(z+ L/2)2+R§ut the calculations this value of the critical current. As ex-
=In Rint+V’(Z+L/2)2+R1%1t : (@) pected, the kink in the total applied field, as well as the

maximum in the second derivative coincide with the experi-
Once the full penetration field is known, the use of B2).  mentally observed. The main difference is that in the calcu-
will allow us to find the critical current density of the super- |ated data the kink is more prominent.
conductor. In practice, the full penetration field can be more This is a simple outline of the procedure we can use for
clearly determined if plotting derivatives of tzecomponent measuring the critical-current density in a superconductor,
of the total field at point{p=0,z=L/2) with respect to the assumed as constant. One of the sources of imprecision in
applied field. this procedure comes from the smoothness in the second
In order to illustrate the validity of this approach we have derivative peak and in the accuracy in which this derivative
made an experiment with an,Ba,Cu;0; ring?®? of dimen-  can be obtained. A large number of points in the raw data
sionsR,,=2.45 mm,R;,;=1.63 mm,L=0.17 mm. We have curve and a closer position of the Hall probe to the center of
measured the magnetic field with a Hall probe located on thé¢he ring can yield a better precision, since the kink would be
axis of the ring and at a distancke=80 um above the top more evident. Another source of inaccuracy comes from the
face of the ring. The ring was initially zero-field cooled and approximation in Eq.(2). Whenever high accuracy is re-
then an applied field was applied parallel to the ring axisquired and other error sources have been minimized, one can
which was also the axis of the superconductor. In Fig. 5 we use the numerically calculated values instead of the approxi-
present the measured values of the field together with theated formula.
second derivative of the data with respect to the applied field However, in most of the cases, the consideration of the
(calculated by standard numerical derivation proceduis  constant critical-current density becomes the main source of
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experimental error. A more detailed procedure for obtaining Ill. MAGNETIZATION LOOPS AND SUSCEPTIBILITY
the J.(H;) dependence will be published elsewhere. In the

i A. General expressions
present example, provided that the sample has a syntie

. S . ' Once the current penetration process is known, the mag-
dependence on the internal field is weak in the range of f'elqﬁetization and the ag susceptibi?ity can be calculated asga

used and this makes th_e procedure_work well. In general, th'ﬁmction of the applied field. We define the magnetization as
method would be applicable whepis small and when the  (he magnetic moment per unit volume of superconducting

dependence of the critical current density upon the internahaterial. In the present case, the magnetization will have
field is not very strong. only z component given by
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T T — The ac susceptibility can be calculated from the magneti-
zation loops. Defining the complex susceptibility gs x’
—-iy”, the real and imaginary susceptibilitfirst harmonic
component for an ac applied field in the formH,
=Hgcog 6) can be calculated &

v=0.2,1.0,5.0

v =2 [ MulHdOlcosds, (12
mHo 0

m

¥=— [ MedHy(O)sin( @) de. (13

y=0.2,1.0,5.0 - mHoJ o

.
O UOTAONMIOaNM®WAEOOO®
T
|||||||||||||

] For the case of constadf, these expressions can be evalu-

12 By o eaui Y A ated directly from the virgin magnetization cur¢ahich,

0.1 " IR 1 from the simulation point of view has the advantage of re-
max e out ducing considerably the computation timén that case the

susceptibilities can be calculated as

o
o
=

FIG. 7. Calculated real and imaginary susceptibility and mod-

eled susceptibility Eqs23) and (25) as a function of the ac field —g (Mo H.— 2H’
amplitude. X' (Ho) = _2f Min(H") —=— dH’,
mHoJo VHG = (Hg=2H")?
M %o f 'dp’d (8) (9
=—— 5| p'dp'dz,
’ (R<2)ut_ Rﬁn)l- Q 4 Ho
"(Hp) = ——| Mini(Hg)Hp— 2 Min(H)dH' |.
where() represents the current penetrated region. When the X'(Ho) ’7TH§|: n(HolHo Jo nH) }
sample is fully penetrated by curren€y,is the entire volume (15)
of the superconductor and the magnetization achieves its
maximum(in magnitudé saturated value, given by As a general fact of the critical state with constantboth
X' andy” for fields aboveH,.,can be calculated directly just
Moy 1 & from their values aHp, and the saturation magnetization.
— =\ 1+—] (9 From Egs.(14) and(15) we find
JRouwt 3 1+6

8 H H
We note that the saturation magnetization is independent of x'(Hp= Hpen) = X’(Hpe,) + ?Msat\/_H@ - (1 - _H@)
but depends o@d. The magnetic moment of a ring in the fully ™o 0 0

penetrated state can be considered as that of a cylinder of (16)
radiusR,,; after subtracting that of another cylinder of radius

Rt SinceJ R, /3 corresponds to the saturation magnetiza- H2, Mo (Houn— Ho)

tion of a bulk cylinder(either thin?® finite 1% or infinitely X'(Ho= Hpen = X' (Hpen 55" + ——PF——
long!), and the factor 162/(1+6) is always larger than Ha mHy

unity, we note that the saturated magnetization for a ring is 17

always larger than that of the cylinder with the samét is
also interesting to note that, for a very narrow rifg— 1),
the saturation magnetization tendsk®, /2.

SinceJ, is constant, the complete magnetization loop cal
be calculated from the virgin magnetization curvé®as

In particular, these equations are valid fidg larger than
J.R.ui for all 5 andy values, since this is the largest value for
rfhe full penetration fieldHped v, X) < IRy See Fig 3. The
analytical expressions fdvls,;andH,e,are given in Eqs(2)
and(9), respectively.

Ha- H
MyeHa) = Mini(Ho) — 2Mini<aTo> , (10) B. Analytical model for narrow rings

In the cases in which the maximum applied field is much
larger than the penetration field, we have observed that the
Mref(Ha) = = Miel(= Ha), (1) virgin magnetization curve can be rather well described by
two straight lines. This condition is well fulfilled in the case
where Hy is the maximum applied field after a zero-field of narrow rings of any value of. In general, the thinner the
cooling processM;y; represents the initial virgin magnetiza- sample is, the better the condition is fulfilled.

tion (applied field from 0 toHg), Me(H,) is the reversal We introduce in this section a simple model to analyti-
curve (applied field fromH, to —Hg), and M(H,) is the  cally obtain the magnetization and susceptibility for narrow
returning curve(applied field from Hg to Hyp). rings. A similar model was already proposed for very thin
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and narrow ringg® Here we extend it to the case of narrow 2 Hpen  Hoen oo
rings with anyy value. X' (Ho>Hpep) = i —Hp— - =2+ O(HpedHo) 2,
0

We approximate the initial magnetization by the two fol- Ho

lowing straight lines: (27)
M 4/ M
Mini(Ha) = LHa 0<Ha= Hpen: (18) X'(Hp> Hper) = _<_ jt)- (28)
pen ™ Ho
Mini(Ha) = Msat 0< Hpeng Hay (19) C. Results
where H,e, and Mg, are given by Egs(2) and (9), respec-  In Figs. 6a) and @b) we plot the calculated magnetiza-
tively. tion loops for differenty and § values. The magnetization of

The reversal and the returning curves are obtained directl§ superconducting ring has the peculiarity that, for some of
from the initial virgin curve using Eq.10). We must distin-  the geometrical parameters, it presents a kink. It can be ob-
guish two casesHo<Hpe, and Ho>Hpes (8) When Hy served that these kln_ks are eaS|Iy_d|st|ngU|shabIe dor
<Hpen =0.5 and ally’s. The kink is more evident for larg&s. The

field at which the kink is produced is, exactly, the penetration

Meat field, in all cases, as long ak is considered_ constant. Wg

—Hp<|H | <Hy< Hoen  (20) observe that the initial slope of the magnetization curve in-
Hpen creasegin magnitudé with decreasingy because of the de-
magnetization effects, as known for cylindéfsThe slope
increasegin magnitudé with increasing the value of as
well, so that narrower rings have larger initial slopg,
Moo, = Msa(l _Ho , Ha ) Ha> Ho— 2Hoen (21) =limy,__o(M,/Hy). This effect is not due to the increase of

the demagnetization effects whéns larger. Instead the rea-

Mreu(Ha) =

(b) WhenHg>Hgep

pen pen

son is that the saturation magnetization of a ring is larger
_ than that for a bulk cylinder with the samgEg. (9)]. More-
Mrev=~Msar Ha<Ho=2Hper (22) over, the penetration field is smaller &sncreaseEq. (2)

Using Eqgs.(14) and(15), we obtain and Fig. 3. As a consequence, the initial slope should be
larger in magnitude.
In Fig. 7 we present the real and imaginary susceptibility

x'(Ho) = H 2 Ho < Hpen, (23)  calculated from the values of magnetization for different val-
pen ues of y and 6=0.8, together with the expressions coming
from the simple analytical mod€Eqs.(21)—(24)]. A kink in
Mol 1 both components of the susceptibility is observed, consistent
X' (Hp = —= > with experimental results on actual YBCO rings This
Hipen kink is a consequence of the one appearing in the magneti-
1 , 2Hpen| 1 zation loop, produced when the amplitude of the applied
- s 1- I 1 field equals the full penetration field. Therefore, same as for

the magnetization loops, the kink is more evident for small
~ ZHEen> ~ (1 ~ ZHEen)z} y's and larged's. Thus, the measurements of magnetization

Ho Ho or susceptibility in rings can be used to find the full penetra-
tion field from the kink as well, from which, using E(R),
Ho> Hpen (24) the critical-current density can be obtained.

and
IV. CONCLUSIONS

X'(Ho) =0 Ho< Hypen, (25 We have studied the penetration of currents inside a finite

superconducting ring, based on the critical-state model with
AMgnf | Hpenl? Hoen constant critical current density. The value ofJ. of a su-
X"(Ho) = o _Hp_ - _Hp_ Ho>Hpen (26)  perconductor can be obtained directly from the measurement
T pen 0 0 of the magnetic field at one point. This is because the pres-
We observe that all the curves collapse into a single curvence of the hole in the ring produces a sharp change in the
when normalizing the susceptibility to the initial susceptibil- process of penetration of currents inside the superconductor
ity value xo=Msaf Hpen @and the amplitude of the ac field,  which is translated to a kink in the total field versus applied

to Hpen field as well as in the magnetization loops and the suscepti-
We can analytically obtain from the simple model the bility curves. This kink is produced just when the supercon-
limiting curves for the casély>H,e,as ducting sample becomes fully penetrated. The dependence of
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this field upon the sample geometry can be obtained from athe case of cylindrical superconductors composed of differ-

approximate expressiditg. (2)], therefore providing a use- ent coaxial cylindrical tubes.

ful technique to determind.. The kink is more evident for

thin and narrow rings, being therefore this geometry an op-

timum candidate for determining; of a superconducting  This work has been supported by Spain’s Ministerio de

sample. Educacion y CiencigF1S2004-02792 and Generalitat de
The model developed for rings can be easily extended t€atalunya(SGR 2001-00189 and CeRMAE
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