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We study the magnetic behavior of a finite superconducting ring in the presence of a uniform applied field
directed along its axis by means of the critical-state model and the minimization of magnetic energy. We
systematically study the dependence of the magnetization and the ac susceptibility upon the geometry of the
ring and develop an approximate analytical expression for the case of narrow rings of any aspect ratio. Besides,
we show how the critical-current density of the superconductor can be obtained from magnetization measure-
ments and conclude that ring geometry is a very convenient one for such a purpose. In particular, we present
an expression for the full penetration field in the case of finite rings, which allows us to find the value of the
critical current from the value of the magnetic field at just one point on the axis of the ring.
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I. INTRODUCTION

The macroscopic magnetic properties of type-II supercon-
ductors depend on the value of its critical-current density,Jc,
which is often experimentally obtained from magnetization
measurements of the superconductors, normally by using
Bean’s critical-state model.1 Since the relation betweenJc
and the magnetization data depends strongly on geometry, it
is very convenient to explore different superconductor geom-
etries in order to optimize a process for accurately obtaining
Jc.

In the critical-state model framework, the dependence of
the critical current upon the internal field,JcsHid, is com-
monly obtained from the width of the measured magnetiza-
tion loop, divided by some characteristic length of the
sample,Jc=DMsHad /d. This method was originally derived
for the case ofJc independent ofHi sBean’s modeld. If, in-
stead,Jc depends on the internal field, what is obtained is a
function JcsHad which is, in principle, not exactly the intrin-
sic dependence of the critical current with the internal field
function, JcsHid. These two functions are approximately
equal only if some conditions concerning the internal field
homogeneity are met.2–6 It has been demonstrated that the
superconducting critical current density and its dependence
on the internal field can be more precisely obtained from the
magnetization loops when measuring thin samples in perpen-
dicular applied magnetic fields up to sufficiently high applied
fields, because in this case demagnetization fields help create
most adequate conditions for extractingJcsHid.6

An important parameter involved in the determination of
Jc from magnetic measurements is the full penetration field,
Hpen. This field, defined as the minimum applied field at
which a zero-field cooled type-II superconductor becomes
fully penetrated on the initial magnetization curve, is related
to the critical-current density and to the geometry of the
sample. In the simplest case of constantJc, Hpen=JcfsVd,
wherefsVd represents a function of only the geometry of the

sample. IffsVd can be theoretically found,Jc can be simply
extracted from the measurement ofHpen which, sometimes,
can be obtained from techniques such as Hall probe
measurements.7

The full penetration field for the case of constantJc can be
analytically obtained in general whenever the last penetrated
point, P, after an increase of the applied field from zero, is
known. In these cases,Hpen equals the magnetic field created
by currents in the penetrated sample atP.8 In this way, ana-
lytical expressions for finite cylinders,8 tapes of finite cross
section,9 and multifilamentary tapes9 have been derived. In
other geometries, the full penetration field has been obtained
by using a numerical procedure for calculating the complete
current penetration process.10–12A similar procedure for find-
ing the full penetration field of finite cylinders for the case of
Jc depending on the internal field was presented in Ref. 10.
Of special relevance is the fact that for very thin samples the
field of full penetration is of the order ofJcd whered is the
short dimension of the sample, not ofJca, beinga the large
dimension.13

In this paper we will focus on the ring geometry. The
practical importance of finite cylinders and rings comes from
their use as key components in devices such as magnetic
bearings14 or as permanent magnets.15 The ring geometry has
also been used to study grain boundaries in melt-textured
superconductors.16,17The ring geometry maintains the cylin-
drical symmetry but, because of the inner hole, presents
some properties different from those of a bulk cylindrical
superconductor. In particular, the ring shape geometry can
have a lower ratio of weight to trapped magnetic flux than a
cylindrical bulk superconductor.18 Furthermore, since the
stress is the largest at the center of a disk, in a ring sample,
one can avoid some mechanical problems by removing this
central part of the superconductor.19 Finally, we shall dem-
onstrate in this work that the ring geometry presents some
characteristics that make it an optimum geometry for the
determination ofJc from magnetic measurements.
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Although the ring geometry is a particular case of cylin-
drically symmetric systems, no detailed study of current pen-
etration, magnetization loops, and susceptibility has been re-
ported for the case of a finite ring. Only partial results are
known until now, summarized as follows. The full penetra-
tion field for infinitely long rings isHpen

`-ring=JcsRout−Rintd,
whereRint is the interior radius of the ring andRout is the
external radius of the ring, whereas on the other limit, an
approximate expression for the field of full penetration of
thin rings can be found in Ref. 20ssee belowd. As far as we
know, neither expressions nor numerical results for the pen-
etration field in the general case of a finite superconducting
ring have been reported.

In this work we will present a systematic study of the
magnetic behavior of a superconducting finite ring in the
presence of an applied field directed along its principal axis.
The paper is structured as follows. In Sec. II, we discuss the
main properties of the penetration of currents inside the su-
perconducting ring, the way to calculate the full penetration
field and how to obtain the critical current of the supercon-
ductor from field measurements. We will illustrate the
method with an application of the procedure to an actual
measurement of a Y1Ba2Cu3O7 superconducting ring. In Sec.
III, we calculate and discuss the magnetization and suscepti-
bility of the rings, including an analytical model for narrow
rings, and how they can be used to measure the full penetra-
tion field. Finally, the conclusions are presented in the last
section.

II. CURRENT PROFILES AND FULL PENETRATION
FIELD

A. Model

We consider a type-II superconducting ring of axial length
L, inner radiusRint, and external radiusRout. We use cylin-
drical coordinates with the origin located at the geometrical
center of the ring and thez axis along its axis.

We assume a uniform applied field,Ha=Haẑ, and that the
superconductor obeys the critical-state model,1 with a con-
stant critical-current density,Jc. We also assume that there
are neither equilibrium magnetization nor surface barriers in
the superconductor, which is equivalent to consider applied
fields much larger than the lower critical field,Hc1.

In this work we will calculate the current distribution for
a givenHa following the energy minimization numerical pro-
cedure presented in Refs. 10,21. We give a brief overview of
the process as follows.

We start with a zero-field cooled superconductor. Due to
the cylindrical symmetry, any induced current will flow in

angular directionJ=Jusr ,zdû. We discretize the supercon-
ductor as a set ofn3m coaxial circuitssringsd of rectangular
cross section and defineDR=R/n and DL=L /m. Setting a
current I ij at a circuit indexed asi j requires an energyEij

= 1
2Lij I i j

2, swhere Lij is the self-inductance of thei j circuitd
while it contributes to reduce the energy by a factorI ijfi j

ext,
wherefi j

ext=m0Hapri
2 is the magnetic flux threading the cir-

cuit i, which has a radiusri. We find in this way the circuit
that yields the largest decrease of energy and set a currentI

there. Following the Bean’s critical state model we put a
current with valueI =JcsDRdsDLd, for a givenJc value. When
there are other currents already set in the superconductor
there exists an extra contribution to the magnetic energy
coming from the mutual inductances of all present currents

Eij = S o
klÞi j

Mij ,klIklDI ij . s1d

The calculation of self and mutual inductances is described
in Ref. 10.

This process is repeated until it becomes impossible to
decrease the magnetic energy by setting a new current any-
where. Then, from the existing current profiles one can cal-
culate the corresponding magnetizationsSec. III Ad. When
the field is further increased, the same procedure starts again
from the previous current values.

The described procedure solves numerically the critical-
state problem in cylindrically symmetric casesseven if the
applied field is not uniformd.22,23 This model has also been
developed for the case ofJc depending on the internal field10

and has been applied to the study the critical state penetra-
tion in other geometries such as multifilamentary tapes.9 In
general, the procedure allows us to calculate current profiles
as long as the direction of the induced currents is known. It is
clear that in the case of rings with an axial applied field, the
induced currents must always flow in the azimuthal direc-
tion.

In order to present a systematic analysis, we normalize the
lengths toRout and the magnetic quantities toJcRout, so that
the results only depend on dimensionless ratiosg=L /Rout
andd=Rint /Rout, and not on the particular values ofJc, Rint,
or Rout. The quantityJcRout is the full penetration field of an
infinitely long bulk cylinder:Hpensg→` ,d=0d=JcRout.

B. Current and field profiles

In Fig. 1 we show the calculated current penetration pro-
files for several zero-field cooled rings with different values
of g and d. We plot three sets of figures corresponding to
cases ofg=5.0, 1, and 0.2. For every case we considerd
=0.8, 0.5, and 0.2, and, for comparison,d=0, which corre-
sponds to the case of a bulk cylinder. In all cases we show
the current profiles at applied fields starting from zero and
increased in increments of 0.1JcRout sJc is assumed the same
for all samplesd. It can be observed the expected behavior
due to the demagnetization effects: there is a large penetra-
tion in the upper and lower faces of the rings and a deeper
penetration from the lateral surface for lower-g rings.10,24

It is known that for an infinite superconducting ringsa
tubed the induced critical current shields the applied field not
only in its interior but also in the hole before it reaches the
saturation. In the present case of finite superconducting
rings, the field in the hole is not null, and induced currents
tend to shield the superconductor volume but not the hole.
An interesting property is that the total magnetic flux that
passes through a circle on thez=0 plane in the core of the
superconductorsthe region which is not penetrated by cur-
rentsd is zero, as can be demonstrated by calculating the cir-
culation of the vector potential along a circle in the core.
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Since some field passes through the hole, in the inner surface
region of the finite ring there should be some currentssee
Fig. 2d. However, for a given applied field that does not
produce a full penetration, the presence of the hole slightly
modifies the general profile formed by the currents. We show
in Fig. 1 that the penetration from the inner surface is very
shallow, except for largerd and lowerg sdue to numerical
precision in the calculations the narrow penetration from the
hole is not seen in some of the cases in Fig. 1d. In other
words, although there is always penetration from the inner
surface, currents penetrate mainly from the external surface
to inside the superconductor. The presence of the hole basi-
cally marks the ends of the superconducting region and pro-
duces slight variation in the penetration profile. The full pen-
etration field will therefore be, for a giveng, lower for larger
d mainly because the superconducting region is smaller.

For narrow ringssd.1d, specially if they are short, the
last penetration place is significatively far from the inner
surface. To see more clearly this effect we show in Fig. 2 the
magnetic field lines25 for the caseg=0.2, d=0.8 at different
values of the applied field. We observe as many closed lines

saround the superconducting regiond as lines passing through
the hole, confirming that the total flux passing through a
circle in the core of the superconductor is zero.

C. Full penetration field

Since current penetrates in the rings not only from the
outer surfaces but also from the inner one, the last penetrated
place in a superconducting ring is, in general, unknown.
From the symmetry of the problem one can only ensure that
the last penetrated place lies on the midplanesz=0d of the
ring, but cannot know where exactly it is. Thus, it is impos-
sible to find the analytical solution for the penetration field
following the method of calculating the field created by the
fully penetrated sample at the last penetrated point.8

However, we can use the energy minimization procedure
to numerically obtain the penetration field as the applied field
at which the last place becomes penetrated by currents. Cal-
culated results are presented in Fig. 3, where we have plotted
the calculated penetration fieldsnormalized toJcRoutd as a
function ofg for differentd values. We observe in the figure

FIG. 1. Calculated penetration profiles for twelve rings at different applied fields. Upper linesad-sbd-scd-sdd: g=5, center linesed-sfd-sgd-
shd: g=1.0, and bottom linesid-sjd-skd-sld: g=0.2. Left columnsad-sed-sid: d=0.8, center left columnsbd-sfd-sjd: d=0.5, center right column
scd-sgd-skd: d=0.2, and right columnsdd-shd-sld: d=0 sbulk cylinderd. In all cases, the applied fieldHa increases from zero in steps of
DHa=0.1JcRout. Only a semiplane of constant angle is plotted. In each figure, the left axis corresponds to the rotation axis. The length
dimensions in theg=5 sample have been reduced by a factor of 2.5.
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that the full penetration field increases with increasingg for
all d’s. This is because, for a fixedd, a largerg means a
smaller demagnetizing effect so that the increment of the
internal field inside the superconductor due to demagnetiza-
tion is smaller. As a consequence, the full penetration of the
sample is achieved at larger applied fieldssthe detailed ex-
planation is similar to that for bulk finite cylinders; see, for
example, Ref. 10d.

For the general case of arbitraryg andd, we propose an
approximate expression forHpensg ,dd:

Hpensg,dd
JcRout

=
g

2

s1 − dd
s1 + dd

lnS2s1 + dd
g

+ H1 +F2s1 + dd
g

G2J1/2D .

s2d

This equation contains the known analytical limits for
long samples and bulk cylinders. In the limitg→`, there are
no demagnetization effects and the full penetration field,
Hpensg→` ,dd=Hpen

`-ring tends to

Hpen
`-ring

JcRout
= 1 −d. s3d

In the case of bulk cylinders, the full penetration field,
Hpensg ,d=0d=Hpen

cyl , is

Hpen
cyl

JcRout
=

g

2
lnH 2

g
+ F1 +S2

g
D2G1/2J , s4d

which is the expression analytically obtained by Forkl8 for
the case of finite cylinders.

Wheng!1, Eq. s2d reduces to

Hpensg ! 1,dd
JcRout

=
g

2

s1 − dd
s1 + dd

lnF4s1 + dd
g

G . s5d

For very thin superconducting rings, another approximate
expression was presented20 for the full penetration field,
Hpen

thin-ring,

Hpen
thin-ring

JcRout
= gS 2

p

s1 − dd
s1 + ddHlnF8s1 + dd

s1 − dd G − 1J
−

1

2
slnd + 1 −ddD , s6d

where the induced current is considered as the average of the
current across theL dimension. This yields a full penetration
field just proportional toL for very smallg’s.

We have included in Fig. 3 the approximate expression of
Eq. s2d and the limiting cases of infinitely long ringsfEq.
s3dg and thin ringsfEq. s6dg for comparison.

D. Determination of Jc from direct Hall-probe measurements

Several methods for experimentally obtainingJc are based
on the measurement of the full penetration field together with
the use of an expression that relates this field withJc. For
example, for a thin ring geometry, Pannetieret al.7 found that
the sz component of thed magnetic field measured above the
superconductor has a minimum at the radial distance corre-
sponding to the inner radius for a given current penetration.
They argued that this minimum was the largestsin absolute
valued just when the applied field equaled the full penetration
field. This procedure, accurate for thin rings, would fail for
largerg because the minimum of the field above the super-
conductor does not always accomplish the above condition.

We propose an alternative method to measureHpen, and
thus Jc, from the measurement of the magnetic field at just
one point. In Fig. 4 we show the calculated magnetic field on
the axis of the ring at the point just above the superconduct-
ing ring surfacesr=0,z=L /2d as a function of thesuniformd
applied field. We have plotted the results for two rings with
d=0.5 and 0.8, with three differentg’s for each case. One
can observe a kink just at the value of the full penetration
field. This kink is more evident, and thereforeHpen is more
easily measured, as the superconducting ring becomes thin-

FIG. 2. Approximate field lines for a ring withg=0.2 andd
=0.8. Applied fields aresad Ha/JcRout=0.1 andsbd 0.02. Gray re-
gions correspond to current penetrated regions.

FIG. 3. Calculated penetration field for differentd values as a
function of g. The different symbols correspond to the numerically
calculated penetration fieldssee textd for different d’s. Solid lines
correspond to the approximate expression of Eq.s2d. Dotted lines
correspond to the approximation for thin ringfEq. s6dg whereas
dashed lines correspond to the infinite ring limitfEq. s3dg.
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ner, narrower, and when measuring the field as close to the
geometrical centersz=0;r=0d of the ring as possible. The
ring geometry becomes, thus, an optimum geometry to mea-
sure the critical current of the superconducting material.

When the applied field is lower than the penetration field,
the total field at the chosen point depends on the current
penetrated region and can be only numerically calculatedsas
in Fig. 4d. Only when the superconductor is fully penetrated
the total field at pointsr=0,z=L /2d can be analytically cal-
culated as

Hzsr = 0,zd
JcRout

=
Ha

JcRout
+

L

2Rout
Fln

Rout + Îsz− L/2d2 + Rout
2

Rint + Îsz− L/2d2 + Rint
2

− ln
Rout + Îsz+ L/2d2 + Rout

2

Rint + Îsz+ L/2d2 + Rint
2 G . s7d

Once the full penetration field is known, the use of Eq.s2d
will allow us to find the critical current density of the super-
conductor. In practice, the full penetration field can be more
clearly determined if plotting derivatives of thez-component
of the total field at pointsr=0,z=L /2d with respect to the
applied field.

In order to illustrate the validity of this approach we have
made an experiment with an Y1Ba2Cu3O7 ring26,27of dimen-
sionsRout=2.45 mm,Rint=1.63 mm,L=0.17 mm. We have
measured the magnetic field with a Hall probe located on the
axis of the ring and at a distanced.80 mm above the top
face of the ring. The ring was initially zero-field cooled and
then an applied field was applied parallel to the ring axis,
which was also thec axis of the superconductor. In Fig. 5 we
present the measured values of the field together with the
second derivative of the data with respect to the applied field
scalculated by standard numerical derivation proceduresd. We

observe the presence of a kink in the field data which corre-
sponds to an appreciable peak in the second derivative. This
peak gives the value of the measured penetration field of the
ring. We have obtained in this wayHpen

exp<1.93104A/m.
With the dimensions of the ring and the measuredHpen

exp we
find the valueJc

exp<4.03108A/m2 using the numerically
calculatedHpen fwe could have as well used Eq.s1d, with
slightly less accuracyg. In order to check the consistency of
the method we also plot the calculated data by inserting in
the calculations this value of the critical current. As ex-
pected, the kink in the total applied field, as well as the
maximum in the second derivative coincide with the experi-
mentally observed. The main difference is that in the calcu-
lated data the kink is more prominent.

This is a simple outline of the procedure we can use for
measuring the critical-current density in a superconductor,
assumed as constant. One of the sources of imprecision in
this procedure comes from the smoothness in the second
derivative peak and in the accuracy in which this derivative
can be obtained. A large number of points in the raw data
curve and a closer position of the Hall probe to the center of
the ring can yield a better precision, since the kink would be
more evident. Another source of inaccuracy comes from the
approximation in Eq.s2d. Whenever high accuracy is re-
quired and other error sources have been minimized, one can
use the numerically calculated values instead of the approxi-
mated formula.

However, in most of the cases, the consideration of the
constant critical-current density becomes the main source of

FIG. 4. sad Calculatedz component of the magnetic field at the
center of the top surface of the ringsz=L /2 ,r=0d as a function of
the applied field. Different lines correspond to different rings: from
thinner to thicker lineg=0.2, 1.0, and 2.0. The lines marked with
open and solid symbols correspond tod=0.8 and 0.5, respectively.
The dotted lines correspond to the field created by fully penetrated
rings sanalytically calculatedd. They provide an easy visualization
of the kink in each curvessee textd.

FIG. 5. Experimental and calculatedsad magnetic field andsbd
its second derivative as a function of the applied field at the point
z=L /2 , r=0. Points correspond to experimental data and solid
curves to calculated data.
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experimental error. A more detailed procedure for obtaining
the JcsHid dependence will be published elsewhere. In the
present example, provided that the sample has a smallg, the
dependence on the internal field is weak in the range of fields
used and this makes the procedure work well. In general, this
method would be applicable wheng is small and when the
dependence of the critical current density upon the internal
field is not very strong.

III. MAGNETIZATION LOOPS AND SUSCEPTIBILITY

A. General expressions

Once the current penetration process is known, the mag-
netization and the ac susceptibility can be calculated as a
function of the applied field. We define the magnetization as
the magnetic moment per unit volume of superconducting
material. In the present case, the magnetization will have
only z component given by

FIG. 6. Calculated magnetization loops for different rings.sad Results for fixedg and differentd fd=0.0 sinmostd, 0.2, 0.5, and 0.8
soutmostdg. sbd Results for fixedd and differentg fg=5 sinnerd, 1, 0.2souterdg.
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Mz =
Jc

sRout
2 − Rint

2 dL
E

V

r8dr8dz, s8d

whereV represents the current penetrated region. When the
sample is fully penetrated by currents,V is the entire volume
of the superconductor and the magnetization achieves its
maximumsin magnituded saturated value, given by

Msat

JcRout
=

1

3
S1 +

d2

1 + d
D . s9d

We note that the saturation magnetization is independent ofg
but depends ond. The magnetic moment of a ring in the fully
penetrated state can be considered as that of a cylinder of
radiusRout after subtracting that of another cylinder of radius
Rint. SinceJcRout/3 corresponds to the saturation magnetiza-
tion of a bulk cylinderseither thin,28 finite,10 or infinitely
long1d, and the factor 1+d 2/ s1+dd is always larger than
unity, we note that the saturated magnetization for a ring is
always larger than that of the cylinder with the sameg. It is
also interesting to note that, for a very narrow ringsd→1d,
the saturation magnetization tends toJcRout/2.

SinceJc is constant, the complete magnetization loop can
be calculated from the virgin magnetization curve as28

MrevsHad = M inisH0d − 2M iniSHa − H0

2
D , s10d

MretsHad = − Mrevs− Had, s11d

where H0 is the maximum applied field after a zero-field
cooling process,M ini represents the initial virgin magnetiza-
tion sapplied field from 0 toH0d, MrevsHad is the reversal
curve sapplied field fromH0 to −H0d, and MretsHad is the
returning curvesapplied field from −H0 to H0d.

The ac susceptibility can be calculated from the magneti-
zation loops. Defining the complex susceptibility asx=x8
− ix9, the real and imaginary susceptibilitysfirst harmonic
componentd for an ac applied field in the formHa
=H0cossud can be calculated as28

x8 =
2

pH0
E

0

p

MrevfHasudgcossuddu, s12d

x9 =
2

pH0
E

0

p

MrevfHasudgsinsuddu. s13d

For the case of constantJc, these expressions can be evalu-
ated directly from the virgin magnetization curveswhich,
from the simulation point of view has the advantage of re-
ducing considerably the computation timed. In that case the
susceptibilities can be calculated as

x8sH0d =
− 8

pH0
2E

0

H0

M inisH8d
H0 − 2H8

ÎH0
2 − sH0 − 2H8d2

dH8,

s14d

x9sH0d =
4

pH0
2FM inisH0dH0 − 2E

0

H0

M inisH8ddH8G .

s15d

As a general fact of the critical state with constantJc, both
x8 andx9 for fields aboveHpencan be calculated directly just
from their values atHpen and the saturation magnetization.
From Eqs.s14d and s15d we find

x8sH0 ù Hpend = x8sHpend +
8

pH0
2MsatÎHpen

H0
− S1 −

Hpen

H0
D ,

s16d

x9sH0 ù Hpend = x9sHpend
Hpen

2

H0
2 +

4MsatsHpen− H0d
pH0

2 .

s17d

In particular, these equations are valid forH0 larger than
JcRout for all d andg values, since this is the largest value for
the full penetration fieldfHpensg ,xdøJcRout; see Fig 3g. The
analytical expressions forMsat andHpen are given in Eqs.s2d
and s9d, respectively.

B. Analytical model for narrow rings

In the cases in which the maximum applied field is much
larger than the penetration field, we have observed that the
virgin magnetization curve can be rather well described by
two straight lines. This condition is well fulfilled in the case
of narrow rings of any value ofg. In general, the thinner the
sample is, the better the condition is fulfilled.

We introduce in this section a simple model to analyti-
cally obtain the magnetization and susceptibility for narrow
rings. A similar model was already proposed for very thin

FIG. 7. Calculated real and imaginary susceptibility and mod-
eled susceptibility Eqs.s23d and s25d as a function of the ac field
amplitude.
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and narrow rings.29 Here we extend it to the case of narrow
rings with anyg value.

We approximate the initial magnetization by the two fol-
lowing straight lines:

M inisHad =
MsatHa

Hpen
0 , Ha ø Hpen, s18d

M inisHad = Msat 0 , Hpenø Ha, s19d

whereHpen and Msat are given by Eqs.s2d and s9d, respec-
tively.

The reversal and the returning curves are obtained directly
from the initial virgin curve using Eq.s10d. We must distin-
guish two cases,H0,Hpen and H0.Hpen: sad When H0
,Hpen,

MrevsHad =
Msat

Hpen
− H0 , uHau , H0 , Hpen, s20d

sbd WhenH0.Hpen,

Mrev = MsatS1 −
H0

Hpen
+

Ha

Hpen
D Ha . H0 − 2Hpen, s21d

Mrev = − Msat Ha , H0 − 2Hpen. s22d

Using Eqs.s14d and s15d, we obtain

x8sH0d =
Msat

Hpen
H0 , Hpen, s23d

x8sH0d =
Msat

Hpen
F1

2

−
1

p
arcsinS1 −

2Hpen

H0
D −

1

p
S1

−
2Hpen

H0
DÎ1 −S1 −

2Hpen

H0
D2G

H0 . Hpen s24d

and

x9sH0d = 0 H0 , Hpen, s25d

x9sH0d =
4Msat

pHpen
SFHpen

H0
G2

−
Hpen

H0
D H0 . Hpen. s26d

We observe that all the curves collapse into a single curve
when normalizing the susceptibility to the initial susceptibil-
ity value x0=Msat/Hpen and the amplitude of the ac fieldH0
to Hpen.

We can analytically obtain from the simple model the
limiting curves for the caseH0@Hpen as

x8sH0 @ Hpend =
2

p
S−ÎHpen

H0
−

Hpen

H0
D + OsHpen/H0d3/2,

s27d

x9sH0 @ Hpend .
4

p
S−

Msat

H0
D . s28d

C. Results

In Figs. 6sad and 6sbd we plot the calculated magnetiza-
tion loops for differentg andd values. The magnetization of
a superconducting ring has the peculiarity that, for some of
the geometrical parameters, it presents a kink. It can be ob-
served that these kinks are easily distinguishable ford.
.0.5 and allg’s. The kink is more evident for larged’s. The
field at which the kink is produced is, exactly, the penetration
field, in all cases, as long asJc is considered constant. We
observe that the initial slope of the magnetization curve in-
creasessin magnituded with decreasingg because of the de-
magnetization effects, as known for cylinders.12 The slope
increasessin magnituded with increasing the value ofd as
well, so that narrower rings have larger initial slope,xini
= limHa→0sMz/Had. This effect is not due to the increase of
the demagnetization effects whend is larger. Instead the rea-
son is that the saturation magnetization of a ring is larger
than that for a bulk cylinder with the sameg fEq. s9dg. More-
over, the penetration field is smaller asd increasefEq. s2d
and Fig. 3g. As a consequence, the initial slope should be
larger in magnitude.

In Fig. 7 we present the real and imaginary susceptibility
calculated from the values of magnetization for different val-
ues ofg and d=0.8, together with the expressions coming
from the simple analytical modelfEqs.s21d–s24dg. A kink in
both components of the susceptibility is observed, consistent
with experimental results on actual YBCO rings.20,30 This
kink is a consequence of the one appearing in the magneti-
zation loop, produced when the amplitude of the applied
field equals the full penetration field. Therefore, same as for
the magnetization loops, the kink is more evident for small
g’s and larged’s. Thus, the measurements of magnetization
or susceptibility in rings can be used to find the full penetra-
tion field from the kink as well, from which, using Eq.s2d,
the critical-current density can be obtained.

IV. CONCLUSIONS

We have studied the penetration of currents inside a finite
superconducting ring, based on the critical-state model with
constant critical current densityJc. The value ofJc of a su-
perconductor can be obtained directly from the measurement
of the magnetic field at one point. This is because the pres-
ence of the hole in the ring produces a sharp change in the
process of penetration of currents inside the superconductor
which is translated to a kink in the total field versus applied
field as well as in the magnetization loops and the suscepti-
bility curves. This kink is produced just when the supercon-
ducting sample becomes fully penetrated. The dependence of
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this field upon the sample geometry can be obtained from an
approximate expressionfEq. s2dg, therefore providing a use-
ful technique to determineJc. The kink is more evident for
thin and narrow rings, being therefore this geometry an op-
timum candidate for determiningJc of a superconducting
sample.

The model developed for rings can be easily extended to

the case of cylindrical superconductors composed of differ-
ent coaxial cylindrical tubes.
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