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Taking into account a tunneling current with ballistic and diffusive components, we study the tunneling
magnetoresistance �MR� in FM/I/NM/I/FM double tunnel junctions where FM is the ferromagnet, NM the
normal metal, and I the insulating barrier. The ballistic component results in oscillations of the MR with a
single period, while the diffusive one leads to their decay with thickness of the NM layer. It is shown that the
experimental results observed in NiFe/Al2O3/Cu/Co junctions by Yuasa, Nagahama, and Suzuki �Science
297, 234 �2002�� are intrinsic features, which can be reproduced by the present calculations.
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Spin-dependent tunneling and large tunneling
magnetoresistance1–3 �TMR� in magnetic tunnel junctions
FM/I/FM �where FM is the ferromagnetic metal �electrode�
and I the insulating layer �tunnel barrier��, have recently at-
tracted much interest due to their wide applications in spin-
tronics. Magnetic double tunnel junctions with the more
complicated structure FM/I/A/I/FM have more interesting
physics, where A stands for a normal metal �NM�,4–7 or a
semiconducting,8 or a superconducting layer.9,10 For such a
double-barrier structure, if region A between two tunnel bar-
riers is a few nanometers in length, it is a typical mesoscopic
system and coherent tunneling plays an important role in the
mesoscopic transport. For thickness L of region A shorter
than the mean free path �p of electrons due to elastic scatter-
ing, the coherent transport is in the ballistic regime; while for
L longer than �p, the transport is in the diffusive regime.
Adding the spin degree of freedom to conventional charge-
based transport in mesoscopic systems will result in addi-
tional effects and applications.

For a FM/I/NM/I/FM double tunnel junction, theories pre-
dicted an oscillation of the TMR effect as a function of the
NM layer thickness because the spin polarization of the tun-
neling electron oscillates as a result of the resonant
tunneling.4–6 In early experiments,11–14 however, the ob-
served TMR ratios of the magnetic double tunnel junc-
tions showed an almost monotonic decrease with NM layer
thickness, no oscillation of the TMR being observed. Such a
monotonic decrease of TMR has been explained by Zhang
and Levy15 in terms of decoherent electron propa-
gation across the NM layer. Recently, Yuasa et al.16 per-
formed an elegant experimental study in high-quality
NiFe/Al2O3/Cu/Co junctions and observed clear oscilla-
tions of the TMR, indicating a spin-polarized resonant tun-
neling. Three characteristic features of the oscillations were
reported: �i� the TMR oscillation is well fitted by a damped
oscillation function with an exponential decay; �ii� there is
zero average value of the oscillating TMR so that the sign of
the TMR ratio alternates; �iii� the single period of the TMR
oscillations with Cu thickness is determined by 2� /q1 where
q1 is the scattering vector for the Cu quantum-well states
along the �001� direction. Only a few theories have been
proposed to explain these features observed in the experi-

ment. Itoh et al.17 stressed the combined effects of barrier
thickness and disorder, and suggested that the disorder in the
barrier decreases the asymptotic value of the TMR ratio to
zero. Mu et al.18 supposed a relatively complicated barrier
structure for the Al2O3/Cu interface, in which the width of
the main barrier was assumed proportional to the NM layer
thickness L so that the oscillations of the tunneling conduc-
tance decay in amplitude with increasing L. Recently, the
exponential decay of the TMR oscillation was attributed to
the finite mean free path of electrons in the NM by Itoh et
al.19

In this paper we propose that the tunneling current in the
system includes ballistic and diffusive components. In the
presence of scattering processes in the NM, only a fraction of
the electrons transmit ballistically while the remainder get
scattered inside the well and effectively leak out of the bal-
listic stream. The ballistic component of the spin-polarized
electrons results in the oscillations of the TMR, while the
diffusive component leads to their decay with increasing L.
The zero average value of TMR oscillations is found to stem
from the high asymmetry in barrier strength in the present
composite junction: a tunnel junction in one side and an
Ohmic-contact one in the other side. It is an intrinsic feature
of a FM/I/NM/FM junction, independent of properties of the
potential barrier. Even though the simplest �-type barrier is
used, the zero average value of TMR will be reproduced. If
both junctions are of tunnel type, the average value of oscil-
lations of the TMR will be finite. In order to clarify the
physical origin of the experimental results, we do not want to
make more complicated band calculations for the realistic
system. Instead, we wish to capture essential physical factors
and perform a model calculation as simple as possible. It is
found from our calculations that, for parallel �P� and antipar-
allel �AP� magnetization configurations, the oscillations of
tunneling conductances have the same period and the same
average value, but different amplitudes, making the sign of
the TMR alternate and the average value vanish. Further, this
result can be analytically verified under the assumption that
the transmission probability of the left FM/I/NM junction is
much smaller than that of the right NM/FM Ohmic contact.
This assumption is undoubtedly reasonable in the
NiFe/Al2O3/Cu/Co junctions.
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We first consider the ballistic tunneling of electrons for
current flow through an FM/I/NM/I/FM double-barrier struc-
ture. As shown in Fig. 1, for the left barrier, let a1 and a3
indicate the incoming wave amplitudes from both sides, and
b1 and b3 the outgoing wave amplitudes. They satisfy the
following relation:

�b1

b3
� = �r1 t1�

t1 r1�
��a1

a3
� , �1�

where r1 and r�1 are the reflection amplitudes for the left
barrier while t1 and t�1 are the corresponding transmission
amplitudes. For the right barrier, similarly, we have

�a3�

b2
� = �r2 t2�

t2 r2�
��b3�

a2
� . �2�

Since the electron trasport in the NM is ballistic and the
electronic wave vector remains unchanged, b3�a3� is related
to b3��a3�� by a phase difference, i.e.,

b3� = b3exp�ikNL�, a3� = a3exp�− ikNL� , �3�

where kN is the perpendicular component of the Fermi wave
vector of electrons in the NM, along the �001� direction. It is
straightforward to eliminate a3 ,a3� ,b3, and b3� from Eqs.
�1�–�3� to obtain

�b1

b2
� = �r t�

t r�
��a1

a2
� , �4�

where t= t1t2exp�ikNL� /D, t�= t1�t2�exp�ikNL� /D, r=r1

+ t1t1�r2exp�i2kNL� /D, and r�=r2�+r1�t2t2�exp�i2kNL� /D with
D=1−r1�r2exp�i2kNL�. If the tunnel barrier has bilateral sym-
metry, we have ti= ti� and ri=ri� with i=1,2. In this case,
squaring �ti�2=Ti and �ri�2=Ri, we obtain the transmission
probability in the ballistic regime,20

Tc��� =
T1T2

1 + R1R2 − 2�R1R2cos �
, �5�

and the reflection probability Rc���=1−Tc���, where �
=q1L with q1 the scattering vector of quantum states for
electrons confined in the �001� direction. Both Tc��� and
Rc��� are oscillating functions of �, where the relation
cos�2kNL�=cos�K−q1�L=cos�q1L� has been used with K the
reciprocal lattice vector in the �001� direction. It was pointed
out by Yuasa, Nagahama, and Suzuki,16 and will also be
shown below, that conduction electrons with wave vector k
normal to the tunnel barrier �k	 =0� make the main contribu-
tions to the tunneling current in an ideal tunnel junction. The
oscillation period of the conductance, regardless of the rela-

tive orientation of the magnetizations of the two FM elec-
trodes, is equal to 2� /q1. The oscillation is around an aver-
age value, which is determined by averaging Tc in an
oscillation period, yielding 
Tc����=T1T2 / �1−R1R2�. If T1

�T2, we have 
Tc�����T1.
We wish to point out that the average of the oscillating

transmission probability Tc��� in the ballistic regime is ap-
proximately equal to the constant transmission probability Ts

in the diffusive regime. Since the diffusive scattering may
cause a change in parallel wave vector k	, we introduce the

averaging transmission probability T̄1�T̄2� for the left �right�
barrier as the average of T1�T2� over k	, the latter being a
function of k	. The average reflection probability is given by

R̄1=1− T̄1 �R̄2=1− T̄2�. Ts can be approximately obtained by
summing the probabilities for electronic transmission with
zero reflection, with two reflections, with four reflections,

and so on: Ts=T1T̄2+T1T̄2R̄1R̄2+T1T̄2R̄1
2R̄2

2+¯,20 yielding

Ts =
T1T̄2

1 − R̄1R̄2

. �6�

Alternatively, Eq. �6� can be obtained by remaking Eqs.
�1�–�4�. In Eqs. �1�, �2�, and �4�, each component of the
column matrices is redefined as an incoming or outgoing
electron flow, and the S-matrix element sij is replaced by
either average reflection or transmission probability �sij�2. In-
stead of Eq. �3�, electron flow continuity conditions in the
NM yield a3�=a3 and b3�=b3. Equation �6� then follows. Such
a semiclassical result is the same as Eq. �59� of Ref. 21.

In what follows we consider a combination of the ballistic
with the diffusive transport. For a fraction of the current due
to the diffusive transport, an electron first tunnels into the
NM and then, after changing its wave vector due to the elas-
tic scattering, tunnels out of the NM. Introducing the mean
free path �p of electrons in the NM and taking care to insert
a factor exp�−L /�p�,20 we then obtain

Tc =
T1T2exp�− 2L/�p�

1 + R1R2exp�− 4L/�p� − 2�R1R2exp�− 2L/�p�cos �
,

�7�

Rc =
R1 + R2exp�− 4L/�p� − 2�R1R2exp�− 2L/�p�cos �

1 + R1R2exp�− 4L/�p� − 2�R1R2exp�− 2L/�p�cos �
.

�8�

In this case, Tc+Rc�1, so that T1
s =1−Tc−Rc is the scatter-

ing probability in the NM region. As shown in Fig. 2, T1
s is

just the diffusive transport part of arriving at the right
NM/FM interface, Evidently, T1

s increases with L. In the
large-L limit, Tc=0, Rc=R1, and T1

s =1−R1, corresponding to
a completely diffusive case. It then follows that the diffusive
transport part of the whole double-barrier structure is given

by Ts=T1
s T̄2 / �1− R̄1R̄2�. The total tunneling probability is the

sum of the ballistic and the diffusive components, yielding

FIG. 1. Two potential barriers as shown are placed in series with
coherence distance L. The problem is to find the S matrix of the
composite structure.
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T = Tc +
�1 − Tc − Rc�T̄2

1 − R̄1R̄2

. �9�

Equation �9� together with Eqs. �7� and �8� is a general result
for the tunneling probability in the double-barrier structure.
It is not only suitable to various bilateral-symmetric barriers,
but also readily extended to other asymmetric barriers. The
tunneling probability T should be spin dependent in magnetic
tunnel junctions; its spin dependence is not explicitly given
in Eq. �9� and will be discussed below.

For a FM/NM tunnel junction with a rectangular potential
barrier, the tunneling probability of an electron at the Fermi
level in the majority-spin ��= ↑ � or minority-spin ��= ↓ �
band is given by22

Ti��k	� =
4kFi�kN�2

��2 + kFi�
2 ���2 + kN

2 �sinh2��b� + �2�kFi� + kN�2 ,

�10�

with i=1 and 2. Here kFi↑�↓� is the perpendicular component
of the electronic Fermi wave vector with majority �minority�
spin in the FM, �=�2m�U−EF�+k	

2 with U the barrier
height, and b the barrier width. We choose a free-electron
model for a NiFe/Al2O3/Cu/Co junction, similar to that
used in Ref. 17. In the present model, however, no disorder
effect is taken into account in the tunnel barrier, and NiFe
and Co have different exchange energies �1 and �2, respec-
tively. The potential profile of the model system is shown in
Fig. 3, where 	 is the energy difference in the band bottom
between the majority-spin band of NiFe and the Cu band. If
	 is taken to be zero and �1=�2, the band model will be
exactly the same as that in Ref. 17. From Fig. 3, it follows

that kFi↑=�2mEF−k	
2, kFi↓=�2m�EF−�i�−k	

2, and kN

=�2m�EF−	�−k	
2. For the left NiFe/Al2O3/Cu tunnel junc-

tion, since �b
1, Eq. �10� reduces to

T1��k	� =
16kF1�kN�2exp�− 2�b�

��2 + kF1�
2 ���2 + kN

2 �
. �11�

For the right Cu/Co Ohmic contact, we have

T2��k	� =
4kF2�kN

�kF2� + kN�2 . �12�

Evidently, T1��k	� is much smaller than T2��k	� and T1��k	� is
maximal at k	 =0. From the two-channel current model, the
tunneling conductance is the sum of those in the two spin
channels and depends on the magnetization configuration of
the two FM electrodes. For the P configuration, GP=G↑↑
+G↓↓; while for the AP configuration, GAP=G↑↓+G↓↑, with

G��� =
e2kF�

2

�2��2

0

�c

d� T������cos � sin � . �13�

Here � is the angle between the electronic wave vector and
the barrier normal, and �c is the critical incident angle of an
electron with spin � in the FM electrode. To guarantee all the
wave vectors �kFi� and kN� appearing in the integral to be real
variables, we get �c=sin−1�k�,min /kF1�� where k�,min is the
minimum among the electronic wave vectors for the spin-�
channel in the three regions: the left FM, the middle NM,
and the right FM. Taking the spin-up channel for example,
kF1�=kF1↑ ,k�,min is the minimum among kF1↑ ,kN, and
kF2↑�kF2↓� in the P �AP� alignment. According to Eqs.
�7�–�9�, T is a function of T1 ,R1 ,T2, and R2, but their spin
dependences are not explicitly given there. In consideration
of spin dependence of T��� ,T1 and R1 in Eqs. �7�–�9� should
be replaced by T1� and R1�, respectively, and T2 and R2
replaced by T2�� and R2��. The TMR ratio is given by �GP

−GAP� /GAP.
From Eq. �13� together with Eqs. �7�–�10�, we have evalu-

ated numerically the conductance as a function of thickness
of the NM layer for P and AP magnetization configurations.
The parameters used in the present calculations are as fol-
lows: EF=4.2 eV, 	=0, and �p=1.5 nm for the Cu layer,
�1 /EF=0.42 and �2 /EF=0.82 for the NiFe and Co elec-
trodes, respectively, and U1=5 eV and b=2 nm for the
Al2O3 barrier. Figure 4 shows a rapid drop of the transmis-
sion probability T��� with incident angle � of the electron. It
is found that T��� reduces its magnitude by a factor of almost
10, respectively, at �=0.23 for the spin-up channel and at
�=0.32 for the spin-down channel, indicating that T������
in the integrand in Eq. �13� may be approximately replaced
by T�����=0�. This numerical result may be understood by
the following analytic argument. According to Eq. �11�, the
transmission probability is proportional to exp�−2�b�, which
is approximately equal to exp�−2�0b�exp�−� sin2�� where
�0=��k	 =0�=�2m�U−EF�, �=�0bEF / �U−EF� for the
spin-up channel and �=�0b�EF−�1� / �U−EF� for the spin-
down channel. The transmission probability decreases expo-
nentially with sin2�. The same argument has been
made16,23,24 that the conduction electrons with wave vector k

FIG. 2. Scattering processes in the NM cause electrons to leak
out of the ballistic stream and result in the diffusive component of
current in a FM/I/NM/I/FM double tunnel junction.

FIG. 3. Schematic representation of energy bands and potential
profile in the P and AP alignments in a FM/I/NM/FM junction.
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normal to the barrier �k	 =0� make the main contributions to
the tunneling current. This is the reason why cos �
=cos 2kNL in Eqs. �5�, �7�, and �8� can be replaced by
cos q1L, resulting in the single period 2� /q1 of the TMR
oscillations.

Figure 5 shows the L dependence of the TMR ratio, which
reproduces essential features observed in the experiment.16 It
is easily understood that the TMR oscillations arise from the
ballistic conduction of electrons and quantum interference in
the NM, while the decay comes from the existence of �p and
the contribution of the diffusive transport. The alternation of
the positive and negative TMR can be understood by the fact
that the tunneling conductances for the P and AP configura-
tions have the same oscillation period, but the oscillating
amplitude for the former is greater than that for the latter, as
shown in Fig. 6. As far as the zero average of TMR oscilla-
tions is concerned, we examine the average transmission
probability in the ballistic regime. The average transmission
probability 
Tc����=T1T2 / �1−R1R2� may be rewritten as


T���
c ����−1 = T1�

−1 + T2��
−1 − 1. �14�

Since T1�
−1 
T2��

−1

1 in the present system, we have


T���
c �����T1�. It depends only on T1� of the

NiFe/Al2O3/Cu junction, but is independent of T2��, indicat-
ing that G��� does not depend on whether the magnetization
configuration is P or AP. It then follows that the average of
the coherent TMR oscillations is zero, which stems from the
highest asymmetry of two potential barriers. For a FM/I/NM/
I/FM double tunnel junction with higher symmetry, there
will be a finite average value of the TMR oscillations. The
present mechanism is quite different from that in Ref. 17. In
that work the key point is the presence of disorder in the
barrier, which breaks the k	 conservation in tunneling pro-
cesses and induces new conductance channels via quantum-
well states for the AP alignment. The new conductance chan-
nels increase the conductance of the AP alignment to
approximately that of the P alignment so that the average
MR ratio decreases to almost zero.

Finally, we wish to briefly discuss the decaying behavior
of the TMR oscillation amplitude by comparing the present
approach with that in Ref. 17. To explain the experimental
data of TMR oscillations,16 the diffusive scattering has been
taken into account in both the approaches. The main differ-
ence between them is that the diffusive scattering was as-
sumed within the tunnel barrier in Ref. 17, while it is in the
NM in the present work. Such a difference gives rise to
qualitatively different results for decaying oscillations of the
TMR. For diffusive scattering in the barrier, the TMR oscil-
lations decay inversely proportional to L; while in the
present work, they decay exponentially as exp�−2L /�p�,
much faster than 1/L. The present result is similar to that in
a recent theory of Itoh et al.,19 both of them being consistent
with the experimental data.16 In the present approach to the
diffusive transport, we have made the approximation of re-

placing the k	-dependent T1�T2� with its average T̄1�T̄2� over
k	. Although this approximation is very suitable for the

FIG. 4. �Color online� Transmission probability T��� as a func-
tion of incident angle � of electrons.

FIG. 5. The TMR ratio as a function of thickness of the NM
layer �solid line�. In the diffusive case, the TMR vanishes as shown
by the dashed line.

FIG. 6. Tunneling conductance as a function of thickness of the
NM layer for P and AP magnetization configurations with G0

=GP�L=0�. In the diffusive case, GP=GAP is constant, as shown by
the horizontal line.
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present system of T1�T2, its improvement would be neces-
sary for a complete theory, which merits further study.

In summary we have presented a theoretical approach to
the tunneling conductance and TMR in magnetic double tun-
nel junctions with both ballistic and diffusive components.
The former results in oscillations of the MR with single pe-
riod 2� /q1, while the latter leads to their decay exponen-
tially with thickness of the NM layer. The average value of
MR oscillations depends to a great extent on the two poten-

tial barriers. For the present FM/I/NM/FM junction with high
asymmetry, the average tends to zero. The single period
arises from the fact that the normal incidence �k	 =0� domi-
nates the tunneling conductance as long as the potential bar-
rier is wide enough.

This work is supported by the National Natural Science
Foundation of China under Grants No. 10374046 and No.
90403011.
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