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Motivated by recent experiments on undoped La2CuO4, which found pronounced temperature-dependent
anisotropies in the low-field magnetic susceptibility, we have investigated a two-dimensional square lattice of
S=1/2 spins that interact via Heisenberg exchange plus the symmetric and antisymmetric Dzyaloshinskii-
Moriya anisotropies. We describe the transition to a state with long-ranged order and find the spin-wave
excitations, with a mean-field theory, linear spin-wave analysis, and using Tyablikov’s random-phase approxi-
mation decoupling scheme. We find the different components of the susceptibility within all of these approxi-
mations, both below and above the Néel temperature, the latter using the method of Lee and Liu, and obtain
evidence of strong quantum fluctuations and spin-wave interactions in a broad temperature region near the
transition.
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I. INTRODUCTION

The quantum magnetism of low-dimensional systems has
attracted considerable attention in recent years, in part due to
the strong interest in the cuprate superconductors. For ex-
ample, it has been postulated that a strong antiferromagnetic
�AF� exchange interaction may be responsible for the high-
temperature superconductivity in these compounds.1

The ubiquitous structural and electronic constituent of this
latter class of materials is the CuO2 plane, and in this paper
we consider the magnetic properties of such planes in their
undoped state. In particular, we consider the temperature de-
pendence of the static, uniform magnetic susceptibility for a
single plane in an undoped La2CuO4 crystal. This system is
known to be an AF insulator with a very simple structure;
namely, it can be approximately thought of as one CuO2
plane stacked between LaO planes, with this structural unit
repeated, in a body-centered tetragonal pattern, throughout
all space. However, a small orthorhombic distortion intro-
duces important spin-orbit couplings into the magnetic
Hamiltonian, leading to an AF state with a weak canted fer-
romagnetic moment. These spin-orbit interactions are central
to the results presented in this paper.

As was known from the start of research on the cuprate
superconductors, complete knowledge of the properties of
the spin-1

2 quantum Heisenberg AF on a square lattice is an
absolute necessity.2 However, some experiments have dem-
onstrated that a complete description of the magnetic behav-
ior found in, e.g., La2CuO4 requires additional physics. Ex-
amples include �i� weak ferromagnetism in the low-
temperature orthorhombic �LTO� phase,3,4 �ii� spin wave
gaps with in- and out-of-plane modes,5 and perhaps most
importantly, �iii� the unusual anisotropy of the magnetic
susceptibility observed by Lavrov, Ando, Komiya, and
Tsukada.6 It was this latter experiment that led us to com-

plete a sequence of theoretical investigations on a model that
should describe such a three-dimensional array of such CuO2
planes modeling La2CuO4, a structure similar to those found
in many cuprate superconductors. This paper summarizes the
first of these studies, which was concerned with a single
CuO2 plane, with this plane described by a near-neighbor
Heisenberg model plus spin-orbit couplings as embodied by
antisymmetric and symmetric Dzyaloshinskii-Moriya �DM�
interactions.7,8

An important point needs to be raised to clarify the appli-
cability of this work to a real physical system, such as
La2CuO4. First, note that according to the Mermin-Wagner
theorem9 a two-dimensional �2D� system with a continuous
symmetry cannot undergo a continuous phase transition, at
any nonzero temperature, to a state with true long-ranged
order. However, when one includes both the antisymmetric
and symmetric DM interactions this symmetry is lifted, and
thus the model that we study in this paper will have a true
phase transition to an ordered phase at some nonzero tem-
perature, which we shall label by TN, in analogy to the Néel
ordering temperature of a pure antiferromagnet. So the or-
dered phase for our model of a single plane will include a
weak-ferromagnetic canted moment, as well as long-ranged
AF order. Note that current estimates10 of another interaction
present in the physical La2CuO4 system—that being a very
weak AF interlayer coupling which is usually denoted by
J�—is that this energy scale is close to that of the DM in-
teractions, and thus it is likely that both this exchange and
the DM interactions are roughly equally responsible for the
observed transition. This serves to emphasize that our study
of a single plane is not expected to accurately explain all of
the observed magnetic properties of La2CuO4; in fact, this
work stands alone as a theoretical study of an isolated plane,
but it is of considerable interest to learn which experimental
data can and which data cannot be explained by such a
single-plane model.
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We focus on the role of the DM interaction between the
neighboring spins in a CuO2 plane. This interaction arises
from the orthorhombic distortion in La2CuO4 �which is as-
sociated with the small tilt of the CuO6 octahedra� together
with the spin-orbit interaction. The DM interaction leads to a
small canting of the Cu spins out of the plane, so that the
weak-ferromagnetic order appears in each CuO2 plane and
subsequently allows for the formation of 3D AF order. This
allows one to observe a pronounced peak in the zero-field
magnetic susceptibility11 �c�T�, and the earliest work on the
importance of this interaction focused on DM physics. To be
specific, Thio et al.3,12 analyzed their susceptibility data us-
ing a Landau theory expanded to sixth order, for a 2D
Heisenberg antiferromagnet with interlayer coupling and
DM-generated terms. They obtained reasonable fits of their
theory to the susceptibility- and field-dependent magnetiza-
tion data, and deduced parameters which characterized mag-
netic properties of the La2CuO4 system. As we shall explain
below, we believe that the necessity of incorporating such
higher-order terms into their fits is suggestive of the impor-
tant role played by spin-wave interactions, a conclusion con-
sistent with the results presented in this and our future papers
on this problem.

Investigations of the magnetic ground state of La2CuO4
were performed by several groups of authors, usually within
the framework of the linear spin-wave �SW� theory. The cal-
culations were based on an effective model Hamiltonian de-
rived by Moriya’s perturbation theory8 applied to Hubbard-
type Hamiltonians by taking into account the spin-orbit
coupling. In the most general form, the effective spin Hamil-
tonian, in addition to the isotropic exchange interaction, in-
cludes the above-mentioned antisymmetric and symmetric
DM interactions. The first microscopic derivation of the spin
Hamiltonian was performed by Coffey, Rice, and Zhang;13

they estimated the antisymmetric DM coupling constants and
showed that when the DM vectors alternate a net ferromag-
netic moment may be generated in the ground state. Shekht-
man, Entin-Wohlman, and Aharony14 subsequently showed
that the symmetric anisotropies contribute to the magnetic
energy in the same order as the antisymmetric DM aniso-
tropy and can never be neglected. Several groups10,15,16 re-
examined the Moriya’s theory and found expressions for the
effective spin Hamiltonian which includes both types of
anisotropies. The linear SW theory applied to such models at
T=0 allows one to obtain previously reported values of the
spin-wave gaps at the center of the 2D Brillouin zone, as
well as to estimate the magnitudes of the anisotropic-
exchange interactions. However, a detailed consideration of
the model with the antisymmetric and symmetric DM
anisotropies at nonzero temperatures is up to now absent
from the literature.

A very rough and simple approximation which can be
used to study the effective magnetic model at finite tempera-
tures is the mean-field approximation �MFA�. The MFA ig-
nores effects of fluctuations and correlations between the
spins; hence, it fails for T near TN and gives no short-range
order above the transition temperature. At very low T the
noninteracting SW theory is useful, and it gives a successful
prediction of the energy of low-lying excited states and cor-
rectly reproduces the dominant term in the low-T magnetiza-

tion. But it fails near the phase transition point. To analyze
the high-temperature behavior the 1/T expansion method can
be employed. But since the La2CuO4 crystal ordering tem-
perature is much smaller than the magnitude of the superex-
change interaction �TN�J�, the high-temperature expansion
�to the first few orders in J /T� is not able to discuss the
temperature region of interest—that is, T near the transition
temperature.

In the present paper, we consider the 2D spin-1
2 aniso-

tropic quantum Heisenberg antiferromagnet over the entire
temperature range including both symmetric and antisym-
metric DM interactions. We employ the technique of double-
time temperature-dependent Green’s functions within the
framework of the random-phase approximation �RPA�. The
first time such a scheme was used was by Tyablikov,17 and he
applied this formalism to the Heisenberg ferromagnet �the
RPA for magnetic models is often referred to as Tyablikov’s
decoupling approximation�. This work was generalized by
Lee and Liu18 to obtain the longitudinal correlation function,
and this latter study is important in the development pre-
sented in our paper. The important feature of this technique
is that it deals with the entire temperature region and is in a
good agreement with the SW theory at low T, as well as with
1/T expansions at high T. In this paper, within such a
scheme, we find the transition temperature at which long-
range order would be established for an isolated plane. We
obtain the excitation spectrum, sublattice magnetization, and
susceptibility tensor as a function of temperature and cou-
pling constants. We also employ the MFA and SW theories to
compare results of all of these approximation schemes and
note the essential differences between them.

Of course, many investigations of the 2D spin-1
2 antifer-

romagnet have been completed previous to this work. We
have already mentioned the most popular and simple meth-
ods to study spin models: that is, phenomenological Landau
theory, linear SW theory, the MFA, and high-temperature
expansions. They yield an analytical description of a wide
range of physical properties and are very useful for practical
purposes. At the same time great progress in the understand-
ing of the ground state, thermodynamic properties, and spin
dynamics of the Heisenberg magnets was made with the use
of newer and more complicated analytical schemes. Arovas
and Auerbach19 used a path-integral formulation of the MFA
theory within the Schwinger-boson representation. This
method corresponds to the large-N limit of the generalized
SU�N� model; however, various difficulties with this method
have been discussed in the literature.20,21 Takahashi22 has for-
mulated and successfully applied the so-called modified SW
theory to the Heisenberg model which reproduced the results
of conventional SW theory and is closely related to the
Schwinger-boson theory. For the one-dimensional chain, Ta-
kahashi’s modified SW theory yields very good agreement
with Bethe ansatz results, as well as for the 2D classical
ferromagnet at low T �in that it agrees with Monte Carlo
results�. A self-consistent SW theory that is based on the
boson-pseudofermion representation was developed to study
the thermodynamics of 2D systems and was also applied to
S�1 systems with an Ising-anisotropy 2D magnet.23 An im-
portant feature of all these methods is that they can be used
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to describe both the ordered and disordered �i.e., the case of
no long-range order� states.

Other related work includes the following: �i� The fer-
mion representation to perform a 1/N expansion was used by
Affleck and Marston,24 a large-S 2D Heisenberg antiferro-
magnet in the long-wavelength limit, and �ii� based on the
diagrammatic method for the spin operators, the thermody-
namics and the longitudinal spin dynamics of Heisenberg
magnets were studied.25,26 However, the most noteworthy
success in the investigation of this system is the work of
Chakravarty et al.,27 who used a renormalization-group ap-
proach to the quantum nonlinear � model, the latter of which
describes the low-T behavior of the 2D Heisenberg AF in the
long-wavelength limit.

As will become apparent below, the formalism that we
have chosen to implement is more appropriate for this prob-
lem than any of those listed above or the theories listed
above are too complicated to invoke when one goes beyond
the 2D spin-1

2 Heisenberg AF and includes spin-orbit cou-
plings.

The above few paragraphs summarize theoretical efforts
that were directed towards the understanding of the 2D S
=1/2 square-lattice AF. The application of these and related
work to describe the magnetic properties of so-called single-
layer cuprate superconductors, such as La2CuO4, has at-
tracted the attention of many theorists, and fortunately an
extensive review of this work, written by Johnston, already
exists.28 In this review28 one can find a comparison of the
temperature dependence of the magnetic susceptibility for an
AF Heisenberg square lattice calculated by different analyti-
cal methods and quantum Monte Carlo calculations, and
apart from the �post-review� data given by Lavrov et al.,6

application of the analytical predictions together with the
numerical results shows a very good fitting to the experimen-
tal data for the different single-layer cuprate compounds.

Our paper is organized as follows. In Sec. II we present
the model Hamiltonian that we will study, introduce a con-
venient coordinate transformation with which it is simple to
complete analytical calculations, and then derive the trans-
formation that relates the static uniform susceptibility in both
coordinate systems. In Sec. III we derive and describe the
MFA results, and then in Sec. IV we present our derivations
from applying the Tyablikov-Lee-Liu approach to our model
Hamiltonian. In Sec. V we present a detailed examination of
numerical results that follow from our work, including a
comparison of MFA, RPA, and SW theories. Finally, in Sec.
VI we summarize our paper including a brief discussion of
the remainder of the work that we have completed on the full
three-dimensional problem.

II. MODEL AND DEFINITIONS

A. Model Hamiltonian and the initial representation

We consider a model for the Cu spins that are present in
the CuO2 planes of a La2CuO4 crystal in the LTO phase and
employ a square lattice with nearest-neighbor interactions
described by the following effective magnetic
Hamiltonian:14,15

H = J�
�i,j�

Si · S j + �
�i,j�

Dij · �Si � S j� + �
�i,j�

Si · �Jij · S j . �1�

This Hamiltonian consists of the superexchange interaction
together with the antisymmetric DM interaction �D term� and

the symmetric pseudodipolar interaction ��J term�. As was
discussed in the Introduction, the DM and pseudodipolar
anisotropies arise as a result of the mixture of Hubbard-type
interaction energies and spin-orbit coupling in the low-
symmetry crystal structure.

For the LTO phase, we use anisotropic interactions of the
form

Dab =
d
�2

�− 1,1,0�, Dac =
d
�2

�− 1,− 1,0� �2�

and

�Jab = ��1 �2 0

�2 �1 0

0 0 �3
�, �Jac = � �1 − �2 0

− �2 �1 0

0 0 �3
� , �3�

where the corresponding coordinates, in what we refer to as
the “initial representation” in the LTO phase, are shown in
Fig. 1�a�. Note that the DM vector given in Eq. �2� alternates
in sign on successive bonds in the a-b and a-c directions of
the lattice, as is represented schematically by the double ar-
rows in Fig. 1�b�.

We mention that the symmetric tensor �J has been ob-
tained by several authors10,14–16,29 in different forms. We
have chosen the general form of this tensor, from which
other specialized choices can be extracted. For instance, the
form of the symmetric tensor obtained by Koshibae, Ohta,
and Maekawa15 can be recovered from this definition if �3
=�2−�1.

In the LTO phase the classical ground state is determined
uniquely,15,16,30 and below the Néel temperature the Cu spin
structure shows long-range antiferromagnetic order with
weak ferromagnetism �viz., all spins cant out of the plane�.
To be concrete, in the classical ground state the spins are
canted from in-plane antiferromagnetic order by a small
angle given by

FIG. 1. �a� Coordinates in the initial representation. �b� Thin
arrows: the Cu spins. Open arrows: the DM vectors.
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	 =
1

2
tan−1	 d/�2

J + 1
2 ��1 + �3�


 , �4�

and each plane has a net ferromagnetic moment in the z
direction perpendicular to the CuO2 planes �weak ferromag-
netism�.

In the simplified case of the zero pseudodipolar interac-

tion ��J=0� it was found13,31 that the ground-state spin con-
figuration exhibits rotational symmetry about the DM vector
which is the origin of the Goldstone mode in the spin-wave
spectrum. Since in this simplified case there is a continuous
symmetry in the ground state, the thermal fluctuations de-
stroy the long-range order for any T
0, according to the
Mermin-Wagner theorem. In the general case of the model
Hamiltonian of Eq. �1�, the continuous symmetry no longer
exists and the spin-wave spectrum is gapped in the long-
wavelength limit q=0. Consequently, the effect of thermal
fluctuations is reduced. That is, the DM �D�0� together

with pseudodipolar ��J�0� interactions can give rise to long-
range order for low �but nonzero� temperatures even for the
purely two-dimensional case �TN
0�, and the Mermin-
Wagner theorem does not preclude the possibility of a non-
zero sublattice magnetization for nonzero temperatures in
this general case. �Note that this does not imply that the
transition to 3D long-ranged magnetic order is not influenced
by the interplanar exchange coupling, but simply that this
latter coupling is not, in general, necessary to achieve such
an order.�

B. Characteristic representation

In solving this system, it is more convenient �theoreti-
cally� to transform from the initial representation, given
above, to the characteristic representation �CR� in which the
quantization axis �z� is in the direction of a classical moment
characterizing the ground state. In the present case there are
two such classical vectors in the direction of the canted mo-
ments �recall that we are considering only a single CuO2
plane�. Therefore, we introduce two rotated coordinate sys-
tems, as shown in Fig. 2. Spin degrees of freedom in the
initial representation are denoted by �Si�, but in the charac-

teristic representation we use ��i�. �We follow the notation
that i sites belong to sublattice 1, whereas j sites belong to
sublattice 2.� For the sites of sublattice 1 we apply a trans-
formation of the form

��i
x

�i
y

�i
z � =

1

2�sin 	 + 1 sin 	 − 1 − �2 cos 	

sin 	 − 1 sin 	 + 1 − �2 cos 	

�2 cos 	 �2 cos 	 2 sin 	
�

��
1
�2

1
�2

0

− 1
�2

1
�2

0

0 0 1
��Si

x

Si
y

Si
z �

=
1
�2� 1 sin 	 − cos 	

− 1 sin 	 − cos 	

0 �2 cos 	 �2 sin 	
��Si

x

Si
y

Si
z � �5�

and, for sublattice 2,

�� j
x

� j
y

� j
z � =

1
�2� 1 sin 	 cos 	

− 1 sin 	 cos 	

0 − �2 cos 	 �2 sin 	
��Sj

x

Sj
y

Sj
z � . �6�

The quantization axes �z� of the new spin operators �i and � j

coincide with the unit vectors in the direction of canted mo-
ments, Fig. 2.

The model Hamiltonian of Eq. �1� in terms of the new
operators � reads

HCR = �
�i, j�ab

�A��i
+� j

− + �i
−� j

+� − B*�i
+� j

+ − B�i
−� j

− − J2�i
z� j

z�

+ �
�i, j�ac

�A��i
+� j

− + �i
−� j

+� + B�i
+� j

+ + B*�i
−� j

− − J2�i
z� j

z� ,

�7�

where we introduced the definitions

J1 = J + �1,

J2 =
1

2
��1 − �3� +��d2/2� +J +

1

2
��1 + �3��2

, �8�

J3 = −
1

2
��1 − �3� +��d2/2� + J +

1

2
��1 + �3��2

,

J4 = − �2 sin 	 +
d

�2
cos 	 , �9�

A =
J1 − J3

4
, B =

J4

2
+ i

J1 + J3

4
. �10�

The subscripts �i , j�ab and �i , j�ac in the summations of Eq.
�7� imply the nearest neighbors in the ab and ac directions,
as shown in Fig. 1�b�.

FIG. 2. Numbered arrows represent the Cu spin structure in a
CuO2 plane. Two sublattices 1 and 2 are introduced. For each sub-
lattice the spin coordinate system within the characteristic represen-
tation �i.e., after the transformations given by Eqs. �5� and �6�� is
shown. The thin net is shown only to simplify the visualization of
the spin structure.
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The form of the Hamiltonian in the characteristic repre-
sentation is similar to an XYZ model, but is clearly more
complicated since terms of the form �i

−� j
−−�i

+� j
+ are present,

which thus imply terms like Si
xSj

y. Thus, we can extract from
our results, in this representation, the magnetic susceptibility
of the XYZ model calculated in both the mean-field and
random-phase approximations by setting the imaginary part
of B equal to zero. We will consider numerical results for this
simpler model in a future publication.

C. Magnetic susceptibility in the initial
and characteristic representations

We consider the response of the system, described by the
Hamiltonian H in either the initial �Eq. �1�� or characteristic
representation �Eq. �7��, to an externally applied constant
magnetic field h. It is convenient to consider the application
of this field in one direction only, which we take to be the �
direction of the initial representation,

H� = H − h��
l=1

N

Sl
�, �11�

where �=x or y or z �it is to be noted that � is not summed
over in Eq. �11�� and N is the number of the lattice sites.

The statistical operator of the system is required to evalu-
ate ensemble averages of relevant physical quantities, nota-
bly correlators and thermal Green’s functions, and can be
written as

� = e−H� = e−HT� exp�h��
l=1

N �
0



Sl
����d�� , �12�

where Sl���=eH�Sle
−H� is the operator in the Heisenberg rep-

resentation for imaginary time argument � and T� is the time-
ordering operator. The zero-field susceptibility describes the
response of the system to such a field and is defined to be

�� � � ��M��
�h� �

h�=0
=

1

N
�
l=1

N

�
l�=1

N �
0



�T�Sl
����Sl�

� �0��d� ,

�13�

where

�M�� = 1/N�
l

N

�Sl
�� , �14�

with correlators such as �T�Sl
����Sl�

� �0�� taken with respect to
the zero-field Hamiltonian H.

The square lattice is bipartite and can be divided into
sublattices 1 and 2. Then, by using the definitions

�11
� =

2

N
�
i=1

N/2

�
i�=1

N/2 �
0



�T�Si
����Si�

� �0��d�, i,i� � sublattice 1,

�15�

�22
� =

2

N
�
j=1

N/2

�
j�=1

N/2 �
0



�T�Sj
����Sj�

� �0��d�, j, j� � sublattice 2,

�16�

�12
� =

2

N
�
i=1

N/2

�
j=1

N/2 �
0



�T�Si
����Sj

��0��d� ,

�17�

�21
� =

2

N
�
j=1

N/2

�
i=1

N/2 �
0



�T�Sj
����Si

��0��d� ,

we can express the quantity of interest, ��, as

�� =
1

2
��11

� + �22
� + �12

� + �21
� � . �18�

Then, using symmetry equivalent this simplifies �see below�
the calculation of the zero-field susceptibility in the initial
representation to

�� = �11
� + �12

� . �19�

The simpler form of Eq. �7� vs Eq. �1� makes it clear that
it is desirable to perform calculations first using the charac-
teristic representation and to then transform back into the
initial representation. To this end we require the relevant
form of the susceptibility tensor in the characteristic repre-
sentation. To begin, let us perform transformations S1
=A�1, S2=B�2 �A= �a���� ,B= �b����� to the characteristic
representation, such that the analog of Eq. �11� is

H� = HCR − �
i=1

N/2

�a�x�i
x + a�y�i

y + a�z�i
z�h1

�

− �
j=1

N/2

�b�x� j
x + b�y� j

y + b�z� j
z�h2

�. �20�

Note that we have generalized the applied field to be h1 for
sublattice 1 and h2 for sublattice 2, and in general we will
treat these as two independent applied fields. If we define the
components of susceptibility in the characteristic representa-
tion as

�11
�����

=
2

N
�
i=1

N/2

�
i�=1

N/2 �
0



�T��i
�����i�

���0��d� , �21�

�12
�����

=
2

N
�
i=1

N/2

�
j=1

N/2 �
0



�T��i
����� j

���0��d� , �22�

then the susceptibility given in Eq. �15� �N.B. in the initial
representation� can be written as
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�11
� =

2

N
�
i=1

N/2
��Si

��
�h1

�

=
2

N
�
i=1

N/2 �a�x

���i
x�

�h1
� + a�y

���i
y�

�h1
� + a�z

���i
z�

�h1
� �

= a�x
2 �11

�x�x
+ a�xa�y�11

�x�y
+ a�xa�z�11

�x�z
+ a�y

2 �11
�y�y

+ a�ya�x�11
�y�x

+ a�ya�z�11
�y�z

+ a�z
2 �11

�z�z
+ a�za�x�11

�z�x

+ a�za�y�11
�z�y

, �23�

and in the same way �see Eq. �19��,

�12
� = a�xb�x�12

�x�x
+ a�xb�y�12

�x�y
+ a�xb�z�12

�x�z
+ a�yb�y�12

�y�y

+ a�yb�x�12
�y�x

+ a�yb�z�12
�y�z

+ a�zb�z�12
�z�z

+ a�zb�x�12
�z�x

+ a�zb�y�12
�z�y

. �24�

The quantities ������
that are introduced above in Eqs.

�21� and �22� have the following interpretation. For instance,

the component �12
�����

determines the response of the expec-
tation value 2/N�i=1

N/2��i
�� of the spins of sublattice 1 to the

magnetic field applied to the spins of sublattice 2 �no field
applied to the spins of sublattice 1� in the �� direction. In-

deed, the perturbation H�=H−h2
��� j=1

N/2� j
�� formally leads to

the response

2

N

�

�h2
���i=1

N/2

��i
�� =

2

N
�
i=1

N/2

�
j=1

N/2 �
0



�T��i
����� j

���0��d� � �12
�����

.

�25�

Similarly, the response of the spins of sublattice 1 to the

perturbation H�=H−h1
���i=1

N/2�i
�� is given by

2

N

�

�h1
���i=1

N/2

��i
�� =

2

N
�
i=1

N/2

�
i�=1

N/2 �
0



�T��i
�����i�

���0��d� � �11
�����

.

�26�

So by substituting the inverse to the CR transformation,
given by Eqs. �5� and �6�, into Eqs. �23� and �24� and taking
into account that ��x�z

=��y�z
=��z�x

=��z�y
=0 in the charac-

teristic representation �which can be derived analytically�,
one obtains the desired transformation between the two rep-
resentations: namely,

�x = �11
x + �12

x

=
1

2
��11

�x�x
+ �12

�x�x
+ �11

�y�y
+ �12

�y�y
− �11

�x�y
− �12

�x�y
− �11

�y�x

− �12
�y�x

� , �27�

�y = �11
y + �12

y

=
sin2�	�

2
��11

�x�x
+ �12

�x�x
+ �11

�y�y
+ �12

�y�y
+ �11

�x�y
+ �12

�x�y

+ �11
�y�x

+ �12
�y�x

� + cos2�	���11
�z�z

− �12
�z�z

� , �28�

�z = �11
z + �12

z

=
cos2�	�

2
��11

�x�x
− �12

�x�x
+ �11

�y�y
− �12

�y�y
+ �11

�x�y
− �12

�x�y

+ �11
�y�x

− �12
�y�x

� + sin2�	���11
�z�z

+ �12
�z�z

� . �29�

III. MEAN-FIELD ANALYSIS

In this section we develop the MFA for the system defined
by Eq. �1� and obtain the behavior of the magnetic suscepti-
bility and a defining equation for the order parameter as a
function of temperature. In part we include this derivation to
make evident how the formalism of Sec. II C is applied to
extract the zero-field uniform magnetic susceptibility. How-
ever, and more importantly, we will show that when the cant-
ing angle induced by the DM couplings is small, there are
significant deviations from the mean-field results; viz., quan-
tum fluctuation effects are large. Thus, here we establish the
MFA susceptibility with which to make these comparisons.

Within the MFA we focus on one of the spins and replace
its interaction with other spins by an effective field. To this
end the following replacement is used:

Si
aSj

b = �Si
a�Sj

b + Si
a�Sj

b� − �Si
a��Sj

b� , �30�

where a and b can be equal to any of x ,y ,z. It is to be noted
that it is more convenient to perform the MFA calculations
starting from the model in the characteristic representation,
and thus we consider Eq. �7� and the analog of the above
equation for the � operators.

First, we find the equation for the order parameter. The
Hamiltonian, Eq. �7�, within the MFA reads as

Hi
MFA = − ZJ2��z��i

z, �31�

and we find that the order parameter, to be denoted by �, is
found from the solution of

� � ��z� =
1

2
tanh�

2
ZJ2��z�� , �32�

where J2 is given by Eq. �8� and Z=4 is the coordination
number. From this equation it is immediately seen that
within the MFA the Néel temperature at which � vanishes is

TN
MFA = J2 =

1

2
��1 − �3� +��d2/2� +J +

1

2
��1 + �3��2

.

�33�

Now, we find the susceptibility of the system within the
MFA below TN

MFA. First, we apply a magnetic field in the z
direction of the sublattice 1:

H� = H − h1
z�

i

�i
z, i sites � 1 sublattice. �34�

The Hamiltonian within the MFA can be written as
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H� MFA = − �
i
	�

�j�i

J2�� j
z� + h1

z
�i
z − �

j
�
�i�j

J2��i
z�� j

z,

�35�

where ��i�j
means sum over all sites i which are nearest

neighbors of site j. Then

��i
z� =

1

2
tanh�

2 	��j�i

J2�� j
z� + h1

z
� ,

�� j
z� =

1

2
tanh�

2 �
�i�j

J2��i
z�� . �36�

We write the mean value of �z operators in the form

��i
z� = ��1

z�0 + ��1
z , �� j

z� = ��2
z�0 + ��2

z , �37�

where ��1
z�0= ��2

z�0=� is the expectation value of �z operator
in the absence of the field and the term ��z is the part of ��z�
induced by the applied field. Since the applied field h1

z as
well as the terms involving ��z are small, we may expand
Eq. �36� in powers of these terms. Then, we find

�11
�z�z

= � ��1
z

h1
z
�

h1
z=0

=



4
sech2�

2
ZJ2��

1 − 	J2Z

4

2

sech4�

2
ZJ2�� ,

�21
�z�z

= � ��2
z

h1
z
�

h1
z=0

=

ZJ2	

4

2

sech4�

2
ZJ2��

1 − 	J2Z

4

2

sech4�

2
ZJ2�� .

�38�

Due to the complicated couplings found in Eq. �7�, the
transverse components are much more involved to calculate.
Applying a field in the x direction to the spins of sublattice 1
we consider

H� = H − h1
x�

i

�i
x, i sites � 1 sublattice, �39�

and within the MFA we thus examine

H� MFA = − �
i

��h1
x + h1

x��i
x + h1

y�i
y + h1

z�i
z�

− �
j

�h2
x� j

x + h2
y� j

y + h2
z� j

z� . �40�

Similarly, by applying a field in the y direction to the spins of
sublattice 1 we consider

H� MFA = − �
i

�h1
x�i

x + �h1
y + h1

y��i
y + h1

z�i
z�

− �
j

�h2
x� j

x + h2
y� j

y + h2
z� j

z� , �41�

where

h1
x = �

�j�i

�− 2A�� j
x� + 2 Im B�� j

y�� ,

h2
x = �

�i�j

�− 2A��i
x� + 2 Im B��i

y�� ,

h1
y = �

�j�i

�− 2A�� j
y� + 2 Im B�� j

x�� ,

h2
y = �

�i�j

�− 2A��i
y� + 2 Im B��i

x�� ,

h1
z = �

�j�i

J2�� j
z�, h2

z = �
�i�j

J2��i
z� , �42�

where Im B denotes the imaginary part of B. Then, the sys-
tem of equations determining the transverse components of
susceptibility, Eqs. �25� and �26�, within the MFA scheme is
found to be

−
J2

2
�11

�x�x
= A�21

�x�x
− Im B�21

�y�x
−

1

2Z
,

−
J2

2
�11

�x�y
= A�21

�x�y
− Im B�21

�y�y
,

−
J2

2
�21

�x�x
= A�11

�x�x
− Im B�11

�y�x
,

−
J2

2
�21

�x�y
= A�11

�x�y
− Im B�11

�y�y
,

−
J2

2
�11

�y�x
= A�21

�y�x
− Im B�21

�x�x
,

−
J2

2
�11

�y�y
= A�21

�y�y
− Im B�21

�x�y
−

1

2Z
,

−
J2

2
�21

�y�x
= A�11

�y�x
− Im B�11

�x�x
,

−
J2

2
�21

�y�y
= A�11

�y�y
− Im B�11

�x�y
. �43�

The solution of this system, Eqs. �43�, turns out to be

�11
�x�x

= �22
�x�x

= �11
�y�y

= �22
�y�y

=
1

4Z	 J2/2 + A

�1
2 +

J2/2 − A

�2
2 
 ,

�12
�x�x

= �21
�x�x

= �12
�y�y

= �21
�y�y

=
1

4Z	 J2/2 + A

�1
2 −

J2/2 − A

�2
2 
 ,
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�11
�x�y

= �22
�x�y

= �11
�y�x

= �22
�y�x

=
Im B

4Z 	 1

�1
2 −

1

�2
2
 ,

�12
�x�y

= �21
�x�y

= �12
�y�x

= �21
�y�x

=
Im B

4Z 	 1

�1
2 +

1

�2
2
 , �44�

where

�1 = ��J2/2 + A�2 − Im B2, �2 = ��J2/2 − A�2 − Im B2.

�45�

Using the relation between the components of susceptibility
in the initial and characteristic representations given in Eqs.
�27�–�29�, we obtain the final result for the zero-field uni-
form susceptibility within the MFA below the MFA ordering
temperature TN

MFA—viz.,

�x MFA =
1

4

1

J1 + J2
, �46�

�y MFA =
1

4

sin2�	�

J2 − J3

+
cos2�	�

4

sech2�

2
zJ2��

T + J2 sech2�

2
zJ2�� ,

�47�

�z MFA =
1

4

cos2�	�

J2 + J3

+
sin2�	�

4

sech2�

2
zJ2��

T − J2 sech2�

2
zJ2�� ,

�48�

with the equation for the order parameter � given by Eq.
�32�. �For d=�i=0, implying that 	=0 and J2=J, the above
seemingly complicated results indeed reduce to the correct
MFA expression for the susceptibility.�

The following comments on the MFA result are in order.
First, note that for physical values of d and �i �d ,�i�J� the
canting angle out of the xy plane is very small; thus, since
the AF moment is in the yz plane and nearly aligned along
the ±y axes, �z diverges at TN

MFA, but the other two compo-
nents remain finite at the transition. However, while the x
component of the susceptibility remains independent of the
temperature, since the canting produces a net FM moment in
the z direction that is coupled to the y component of the local
moment, there is an additional increase of �y as the transition
is approached from below.

Now consider the paramagnetic temperature region �T

TN�, for which the only components with nonzero-spin ex-
pectation values are those driven by the applied field. Fol-

lowing similar considerations to above, the final results for
the components of susceptibility in the initial representation
for high temperatures �T
TN� read

�x MFA =
1

4

1

J1 + T
, �49�

�y MFA =
1

4

sin2�	�
T − J3

+
1

4

cos2�	�
T + J2

, �50�

�z MFA =
1

4

cos2�	�
T + J3

+
1

4

sin2�	�
T − J2

. �51�

Note that in the limit T→TN
MFA=J2 we obtain that the x,y

components of the susceptibility are continuous at the tran-
sition, whereas the z component of the susceptibility diverges
at the Néel point, from above or below, owing to the pres-
ence of the weak-ferromagnetic moment that first develops at
the transition.

IV. LINEAR RESPONSE THEORY WITHIN THE RPA

A. Susceptibility below TN

In this section we derive expressions for the static, uni-
form susceptibility within the RPA below the ordering tem-
perature TN. Note that this temperature is determined with
the RPA and is not equivalent to that found in the previous
section.

We employ thermal Green’s functions in the analysis of
the spin Hamiltonian given in Eq. �1� with spin 1

2 . The defi-
nition of such Green’s functions for two Bose operators A, B
and the corresponding equation of motion are given by

GAB��� = �T�A���B�0�� , �52�

dGAB���
d�

= ������A,B�� + �T��H���,A����B�0�� .

As discussed in the Introduction, we adopt a procedure
that was introduced by Lee and Liu,18 as this technique al-
lows for us to find longitudinal component of the suscepti-
bility. To this end, we introduce the perturbed Hamiltonian
�in the characteristic representation�

H1
f = HCR − f�

i

�i
z, �53�

where f is a small fictitious field; note that the field is applied
to the spins of sublattice 1 only, and within the present paper
we restrict f to be constant and static.

In the imaginary-time formalism, the Green’s functions to
be used are

Gln
f ��� = �T��l

+����n
−�0�� f, Gln

f−��� = �T��l
−����n

−�0�� f ,

l � sublattice 1,

Gn�n
f ��� = �T��n�

+ ����n
−�0�� f, Gn�n

f− ��� = �T��n�
− ����n

−�0�� f ,

�54�
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n,n� � sublattice 2,

where the expectation values are taken with respect to the
perturbed Hamiltonian in Eq. �53�. After an expansion in a
power series of f we can write

Gln
f ��� = Gln

�0���� + fGln
�1���� + O�f2� . �55�

Since Gln
�0����=Gln���, from now drop the superscript and use

Gln
f ��� = Gln��� + fGln

�1���� + O�f2� . �56�

Also, we introduce

��i
z���� f = ��i

z� + fvi + O�f2� , �57�

where, due to the translation periodicity, ��i
z�=�, the order

parameter at f =0.
The equation of motion for the Green’s function Gln

f ��� is
given by

dGln
f ���

d�
= 2�����ln��l

z� f + �T��HCR���,�l
+�����n

−�0�� f − fGln
f .

�58�

In order to solve this equation for the Green’s function it
must be linearized. We will use the RPA, in which the fluc-
tuations of �z are ignored and the operator �z is replaced by
its mean value ��z� f—this is the so-called Tyablikov’s
decoupling.17 For example,

�T��l
z����i

+���� j
−�0�� f → ��l

z���� f�T��i
+���� j

−�0�� f

= ��l
z���� fGij

f ��� . �59�

After this decoupling is introduced, Eq. �58� is found to be

dGln
f ���

d�
= 2�����ln��l

z� f − �
�ab

�2��l
z���� f�AG�l+��n

f ���

− BG�l+��n
f− ���� + J2��l+�

z ���� fGln
f ����

− �
�ac

�2��l
z���� f�AG�l+��n

f ��� + B*G�l+��n
f− ����

+ J2��l+�
z ���� fGln

f ���� − fGln
f ��� ,

where ��ab
refers to a summation over the nearest neighbors

of the site l in the ab direction and similarly for ��ac
—see

Fig. 1�b�. Here, all sites l+� belong to the sublattice 2.
We introduce the Fourier transformation in the

momentum-frequency representation for the Green’s func-
tion and the spin operator

Gln
f ��� =

2

N
�
k,m

G12
f �k,�m�eik·�Rl−Rn�e−i�m�, �60�

��l
z���� f =

1


�
k,m

��1
z�k,�m�� fe−ik·Rle−i�m�

= �
k

��k��� + fv1�e−ik·Rl, �61�

where the expansion in Eq. �57� and the linear response to
the uniform perturbation expressed by v1�k�=��k�v1 were

taken into account. In the transformation given by Eqs. �60�
and �61�, the sum over k runs over 1

2N points of the first zone
in the momentum space and �n=2�n / for n�Z are the
Bose Matsubara frequencies. Then, we can write down the
equation for the Green’s function Gln

f ��� in the form

− i�mG12
f �k,�m� = − fG12

f �k,�m� − ZJ2�� + fv2�G12
f �k,�m�

− 2ZAk�� + fv1�G22
f �k,�m�

+ 2ZBk�� + fv1�G22
f−�k,�m� , �62�

where, as before, Z is the coordination number, and we in-
troduce

Ak = A�k, Bk = �Re B��k� + i�Im B��k,

�k =
1

2
�cos kx + cos ky�, �k� =

1

2
�cos kx − cos ky� . �63�

From these we can write down the following two equations:

i�m

2Z�
G12 =

J2

2
G12 + AkG22 − BkG22

− , �64�

i�m

2Z�
G12

�1� =
1

2Z�
G12 +

v2

�

J2

2
G12 +

J2

2
G12

�1�

+
v1

�
AkG22 + AkG22

�1� −
v1

�
BkG22

− − BkG22
�1�−,

�65�

where in all equations we drop the wave vector and fre-
quency dependences for the Green’s functions—that is, G
=G�k ,�m� and G�1�=G�1��k ,�m�.

In the same way we obtain the equations of motion for the
other Green’s functions �see Eq. �54�� within the RPA
scheme. The final systems of equations for zeroth- and first-
order quantities can be written as

	 i�m

2Z�
−

J2

2

G12 = AkG22 − BkG22

− ,

	 i�m

2Z�
+

J2

2

G12

− = − AkG22
− + Bk

*G22,

	 i�m

2Z�
−

J2

2

G22 = AkG12 − BkG12

− −
1

Z
, �66�

	 i�m

2Z�
+

J2

2

G22

− = − AkG12
− + Bk

*G12;

	 i�m

2Z�
−

J2

2

G12

�1� = AkG22
�1� − BkG22

�1�−

+ �v2

�

J2

2
+

v1

�
	 i�m

2Z�
−

J2

2

 +

1

2Z��G12,
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	 i�m

2Z�
−

J2

2

G22

�1� = AkG12
�1� − BkG12

�1�−

+ �v1

�

J2

2
+

v2

�
	 i�m

2Z�
−

J2

2

�G22,

	 i�m

2Z�
+

J2

2

G12

�1�− = − AkG22
�1�− + Bk

*G22
�1�

− �v2

�

J2

2
−

v1

�
	 i�m

2Z�
+

J2

2

 +

1

2Z��G12
− ,

	 i�m

2Z�
+

J2

2

G22

�1�− = − AkG12
�1�− + Bk

*G12
�1�

− �v1

�

J2

2
−

v2

�
	 i�m

2Z�
+

J2

2

�G22

− ;

�67�

	 i�m

2Z�
−

J2

2

G21

�1� = AkG11
�1� − BkG11

�1�−

+ �v1

�

J2

2
+

v2

�
	 i�m

2Z�
−

J2

2

�G12,

	 i�m

2Z�
−

J2

2

G11

�1� = AkG21
�1� − BkG21

�1�−

+ �v2

�

J2

2
+

v1

�
	 i�m

2Z�
−

J2

2

 +

1

2Z��G22,

	 i�m

2Z�
+

J2

2

G21

�1�− = − AkG11
�1�− + Bk

*G11
�1�

− �v1

�

J2

2
−

v2

�
	 i�m

2Z�
+

J2

2

�G12

− ,

	 i�m

2Z�
+

J2

2

G11

�1�− = − AkG21
�1�− + Bk

*G21
�1�

− �v2

�

J2

2
−

v1

�
	 i�m

2Z�
+

J2

2

 +

1

2Z��G22
− ,

�68�

where we have taken into account the relations

G12 = G21, G11 = G22, G11
− = G22

− , G12
− = G21

− . �69�

The poles of the zeroth-order Green’s functions G have to
be the same as the poles found for the first-order ones G�1�.
This can be seen directly by comparing the structure of the
systems of equations for the corresponding quantities: the
system in Eqs. �66� for the zeroth-order functions is identical
with the systems in Eqs. �67� and �68� for the first-order
ones, except for the free terms. The free terms in the first-
order systems are determined by the zeroth-order Green’s
functions; thus, the first-order quantities G�1� can be written

down in terms of the solution for the zeroth-order system of
Eqs. �66� and the as-yet unknown quantities v1 and v2.

To calculate v1,2 we use a relation connecting v and the
Green’s functions G�1��k ,�=0−�. From the definitions in Eq.
�54� and the expansion in Eq. �57� we have

Gii
f �0−� =

1

2
− ��i

z� f =
1

2
− � − fvi, �70�

while the expansion in Eq. �56� leads to

Gii
f �0−� = Gii�0−� + fGii

�1��0−� =
1

2
− � + fGii

�1��0−� . �71�

Thus, we can write down −vi=Gii
�1��0−�, and after Fourier

summation one obtains

− v1 =
2

N
�

k
G11

�1��k,0−� , �72�

− v2 =
2

N
�

k
G22

�1��k,0−� . �73�

The solution of the system in Eqs. �67� gives us the first-
order Green’s function G22

�1��k ,�m� and therefore v2. Simi-
larly, to find v1 we use Eqs. �68�.

The solution of the system of equations in Eqs. �66� for
the zeroth-order Green’s functions turns out to be

G12�k,�n� = −
�

2
�	1 +

J2/2 + Ak

�1�k�

 1

i�n − �1�k�

+ 	1 −
J2/2 + Ak

�1�k�

 1

i�n + �1�k�

− 	1 +
J2/2 − Ak

�2�k�

 1

i�n − �2�k�

− 	1 −
J2/2 − Ak

�2�k�

 1

i�n + �2�k�� ,

G22�k,�n� = −
�

2
�	1 +

J2/2 + Ak

�1�k�

 1

i�n − �1�k�

+ 	1 −
J2/2 + Ak

�1�k�

 1

i�n + �1�k�

+ 	1 +
J2/2 − Ak

�2�k�

 1

i�n − �2�k�

+ 	1 −
J2/2 − Ak

�2�k�

 1

i�n + �2�k�� ,

G12
− �k,�n� = −

�

2
Bk

*� 1

�1�k�	 1

i�n − �1�k�
−

1

i�n + �1�k�

+

1

�2�k�	 1

i�n − �2�k�
−

1

i�n + �2�k�
� ,
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G22
− �k,�n� = −

�

2
Bk

*� 1

�1�k�	 1

i�n − �1�k�
−

1

i�n + �1�k�

−

1

�2�k�	 1

i�n − �2�k�
−

1

i�n + �2�k�
� , �74�

where the spectra for the out-of-plane �1�k� and in-plane
�2�k� modes15 are given by

�1�k� = 2Z��1�k� = 2Z���J2/2 + Ak�2 − �Bk�2,

�2�k� = 2Z��2�k� = 2Z���J2/2 − Ak�2 − �Bk�2. �75�

After substitution of the results in Eqs. �74� into the sys-
tem of equations in Eqs. �67� and �68� and then using the
solutions for G11

�1��k ,�m� and G22
�1��k ,�m�, the results for the

quantities v1 and v2 are found to be

v1 − v2 =
�2C1

1 + 4�2J2C1
, v1 + v2 =

�2C2

1 − 8�2C3
, �76�

where

C1 =
2

N
�

k
2�	1 +

�J2/2�2 − Ak
2 − �Bk�2

�1�k��2�k�

n��1� − n��2�

�2�k� − �1�k�

− 	1 −
�J2/2�2 − Ak

2 − �Bk�2

�1�k��2�k�

n��1� + n��2� + 1

�1�k� + �2�k� � ,

C2 =
2

N
�

k � �J2/2 + Ak�2/2

�1
2�k�sinh2 �1

2

+
�Bk�2�2n��1� + 1�

�1
2�k��1�k�

+
�J2/2 − Ak�2/2

�2
2�k�sinh2 �2

2

+
�Bk�2�2n��2� + 1�

�2
2�k��2�k� � ,

C3 =
2

N
�

k � �J2/2 + Ak�/2

sinh2 �1

2

+
�J2/2 − Ak�/2

sinh2 �2

2
�; �77�

here n��1,2� = �exp��1,2�k�� − 1�−1.

Now let us find the quantities which determine a linear
response to a magnetic field applied to the one of
sublattice—see Eqs. �25� and �26�. The longitudinal z com-
ponents of the susceptibility in the characteristic representa-
tion are given by

�11
�z�z

= � ���1
z� f

�f
�

f=0
= v1, �12

�z�z
= � ���2

z� f

�f
�

f=0
= v2,

�78�

where the expansion of Eq. �57� was used. The transverse x
and y components of the susceptibility tensor are determined
in the terms of Green’s functions as

�11
�����

=
2

N
�
i,i�
�

0



�T��i
�����i�

���0��d� ,

�12
�����

=
2

N
�
i,j
�

0



�T��i
����� j

���0��d� , �79�

where �=x ,y. By substituting the solutions in Eqs. �74� into
the definition in Eqs. �79� for the transverse components of
susceptibility, we easily obtain exactly the same result that
we have already found within our MFA calculations—that is,
Eq. �44�.

Then, using Eqs. �27�–�29� the components of the suscep-
tibility in the initial coordinate system of Eq. �1� are found to
be

�x =
1

4

1

J1 + J2
, �80�

�y =
1

4

sin2�	�
J2 − J3

+ cos2�	��v1 − v2� , �81�

�z =
1

4

cos2�	�
J2 + J3

+ sin2�	��v1 + v2� . �82�

For completeness, we mention that we have also per-
formed the theoretical investigation of this model �1� within
SW theory, and the final result for the components of static
susceptibility turns out to be

�x SW =
1

4

1

J1 + J2
, �83�

�y SW =
1

4

sin2�	�
J2 − J3

+ cos2�	��S2C1��→S, �84�

�z SW =
1

4

cos2�	�
J2 + J3

+ sin2�	��S2C2��→S. �85�

It can be noted that the difference in the results within the
RPA, Eqs. �80�–�82�, and spin-wave theory, Eqs. �83�–�85�,
came from the calculation of the components of the suscep-
tibility in the direction of the sublattice magnetization �that

is, �11
�z�z

and �12
�z�z

�. The spin-wave theory gives unity in the

denominator of the expressions for �11
�z�z

and �12
�z�z

in Eqs.
�76� and S=1/2 instead of the order parameter � everywhere
in the numerator. A similar situation takes place for the anti-
ferromagnetic Heisenberg model within the RPA scheme18

and spin-wave theory.32

We also mention that the transverse components of the
susceptibility in the characteristic representation �44� are
equal within the MFA, RPA, and SW theories.

B. Related thermodynamic quantities

In order for the above RPA theory to be complete, we
need to determine the behavior of the order parameter and
the transition temperature.

The above expressions for the components of susceptibil-
ity, Eqs. �81� and �82�, and for the elementary excitations
�spin waves� given by Eqs. �75� include the as-yet-unknown
value of the order parameter �. From the definition on the
Green’s functions we can obtain
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Gnn�� = 0−� = ��n
−�n

+� =
1

2
− � ,

where Gnn�� = 0−� =
2

N
�

k
G22�k,� = 0−� . �86�

Substituting G22�k ,�� from Eq. �74� and performing the
summation on the Matsubara frequencies, the equation of the
order parameter turns out to be

1

�
=

2

N
�

k
� J2/2 + Ak

�1�k�
�2n��1� + 1� +

J2/2 − Ak

�2�k�
�2n��2� + 1�� .

�87�

Since the order parameter �87� �sublattice magnetization� is
temperature dependent, it follows that the spectrum of el-
ementary excitations �Eq. �75�� is also temperature depen-
dent.

The Néel temperature at which � vanishes within the
adopted RPA approximation is determined by

TN = �1

4

2

N
�

k
	 J2/2 + Ak

�1
2�k�

+
J2/2 − Ak

�2
2�k�


�−1

. �88�

�We note that previous work23 discusses the validity of the
transition temperature derived in this and other approxima-
tions.� By putting �→0 we can find that the z component of
susceptibility �z in Eq. �82�,

��z��→0 =
1

4

cos2�	�
J2 + J3

+ sin2�	�
�TC2��→0

1 − T/TN
, �89�

diverges at the Néel temperature, whereas other components
of susceptibility remain finite as the Néel point is approached
from below.

C. Susceptibility in the paramagnetic case

When the temperature of the system is above the Néel
temperature TN, there still exists short-range magnetic order.
To model such an order18 we introduce a fictitious field h
pointing in the direction of the sublattice magnetization—

that is, the z direction in the characteristic representation. To
this end, the Hamiltonian

Hh = HCR − h�
i

�i
z − h�

j

� j
z �90�

is used, and the limit h→0 is taken after the calculation is
carried out. To obtain the susceptibility above the Néel tem-
perature, it is convenient to introduce an order parameter
defined by

y = lim
h→0

�2Z�/h� . �91�

The calculations for the model are very similar to the ones
above presented. It is easy to show that the paramagnetic
version of the equation of the order parameter in Eq. �87�
leads to

1

y
=

2

N
�

k

1

Z
� 1 + y�J2/2 + Ak�

�1 + y�J2/2 + Ak��2 − y2�Bk�2

+
1 + y�J2/2 − Ak�

�1 + y�J2/2 − Ak��2 − y2�Bk�2� . �92�

The quantity y approaches infinity as the temperature is low-
ered to TN. Indeed, putting y→� in Eq. �92� we find the
temperature at which y diverges, which is nothing but the
Néel temperature.

By a procedure similar to that presented above �that is, the
RPA scheme below TN� the different components of the mag-
netic susceptibility in the paramagnetic phase are found to be

�x =
1

4

1

J1 + J2 + 2/y
, �93�

�y =
1

4

sin2�	�
J2 − J3 + 2/y

+ cos2�	�
y2D1

1 + 8y�1 + yJ2/2�D1
,

�94�

�z =
1

4

cos2�	�
J2 + J3 + 2/y

+ sin2�	�
y2D2

1 − 8y2D3
, �95�

where

D1 =
1

2Z2

2

N�
k

2
�1 + y�J2/2 + Ak���1 + y�J2/2 − Ak�� − y2�Bk�2

��1 + y�J2/2 + Ak��2 − y2�Bk�2���1 + y�J2/2 − Ak��2 − y2�Bk�2�
,

D2 =
1

2Z2

2

N�
k
 �1 + y�J2/2 + Ak��2 + y2�Bk�2

��1 + y�J2/2 + Ak��2 − y2�Bk�2�2 +
�1 + y�J2/2 − Ak��2 + y2�Bk�2

��1 + y�J2/2 − Ak��2 − y2�Bk�2�2� ,

D3 =
1

2Z2

2

N�
k
 1 + y�J2/2 + Ak�

�1 + y�J2/2 + Ak��2 − y2�Bk�2
+

1 + y�J2/2 − Ak�
�1 + y�J2/2 − Ak��2 − y2�Bk�2� . �96�
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By putting y→� we obtain that the components of the sus-
ceptibility �x and �y are continuous at the Néel point,
whereas the z component of the susceptibility diverges in the
y→� limit at the Néel point, the latter result reflecting the
presence of a spontaneous canted ferromagnetic moment in
the z direction.

D. Susceptibility in the T=0 limit

As we will present in Sec. V, the dimensionality of the
parameter space that seems to be relevant to the cuprates is
large, but there are only a few important values that deter-
mine the physical properties of the system. Here we discuss
two key experimentally obtainable quantities and their rela-
tion to the above theory.

It has been reported, using inelastic neutron scattering,
that the out-of-plane ��1� and in-plane ��2� spin-wave gaps
are 5.0 and 2.3 meV, respectively, in the LTO phase of
La2CuO4 crystal.5 Using these results let us predict the ratio
of the components of the susceptibility �y /�x. The zone-
center �k=0� spin-wave gaps are given by

�1 = Z���J2 + J1��J2 − J3�, �2 = Z���J2 − J1��J2 + J3� ,

�97�

and they are real if J2�J1 ,J3. So from these relations we
obtain

�2 � �1 ⇔ J1 
 J3. �98�

Also, in the T=0 limit the y component of the susceptibility
in Eq. �47� is given by

�y MFA =
1

4

sin2�	�
J2 − J3

=
1

4

J2 − J1

J2
2 − J3

2 , then
�y MFA

�x MFA =
J2

2 − J1
2

J2
2 − J3

2 .

�99�

Therefore, within the MFA,

�x MFA 
 �y MFA ⇔ J1 
 J3. �100�

Thus, if �2��1 ��2
�1�, in the limit of zero temperature the
MFA predicts that �y ��x ��y 
�x�.

In the limit of small anisotropy d ,��J the components of
the susceptibility at T=0 within the MFA turn out to be

�x MFA � �z MFA �
1

8J
, �y MFA �

d2

32J2��1 − �3�
,

�101�

while the expressions for the spin-wave gaps are

�1 � Z��2J��1 − �3�, �2 � Z�d/�2. �102�

We can see that the components �x,z are almost independent
of the anisotropy parameters, while the �y component is very
sensitive to the ratio between the antisymmetric d and sym-
metric �1–�3 parameters of anisotropy. Then, the ratio be-
tween the components of the susceptibility is given by

�x,z MFA

�y MFA � 	�1

�2

2

. �103�

It can be noted that within the MFA scheme the different
components of the susceptibility—i.e., �x, �y, and �z—are
determined by the contributions from the transverse compo-
nents of the susceptibility in the characteristic representation.
Indeed, as should be expected, the longitudinal components
of the susceptibility in the CR �see Eq. �38�� are equal to zero
in the T=0 limit. As shown earlier in this paper, in the char-
acteristic representation the RPA and SW theories lead to the
same result for the transverse components of the susceptibil-
ity as the MFA does. Since the longitudinal components in
the CR, given by Eqs. �76� within the RPA, and their simpli-
fied expressions within the SW theory �see Eqs. �84� and
�85�� become negligibly small in the T=0 limit, we predict
that RPA, SW, and MFA theories within a reasonable range
of the model parameters �d ,��J� satisfy the ratio of Eq.
�103�, and the different components of the susceptibility at
T=0 can be approximated by Eq. �101�.

We also note the analogy with the pure 3D Heisenberg
model where, in the limit of zero temperature, all approxi-
mations considered here give the same magnitude for the
transverse components of the susceptibility and zero for the
longitudinal one.18

V. RESULTS OF THE CALCULATIONS

In this section we present the results of a numerical inves-
tigation of the magnetic properties of the system modeled by
the Hamiltonian given by Eq. �1� based on the above-
presented analytical formulas. Specifically, we are interested
in the temperature dependences of the various components of
the susceptibility for different values �specifically, ratios� of
the model parameters. Further, we will numerically demon-
strate the correlation between the magnitudes of the two
spin-wave gaps in the excitation spectrum and the behavior
of the susceptibility components; this relation was discussed
analytically in the previous subsection. Also, and most im-
portantly, we will make clear the role played by quantum
fluctuations by comparing the results of the different ap-
proximation schemes.

In what follows, we will mainly examine one set of pa-
rameters that are suggested from experimental measurements
discussed in the previous subsection, and this will allow us to
“zero in” on a parameter regime. However, since we have
developed the theory for one plane and not a 3D solid, we do
not necessarily expect this set of parameters to be represen-
tative of a system like La2CuO4; instead, as we discussed in
the Introduction to this paper, this approach will allow us to
determine if a one-plane approach is adequate, since, as we
and others have discussed, a true Tc
0 phase transition is
possible for one plane and thus could possibly be sufficient
for this system.

In the present calculations we express all model param-
eters in terms of J. Also, as will be made clear below, instead
of using the set of parameters �1, �2, and �3, we deal with a
combination of parameters �1−�3, �1+�3, and �2. The cho-

sen magnitudes of the model parameters d and �J give the
reported magnitude of gaps in the spectrum,5,33

�o = �1 � 5 meV, �i = �2 � 2.3 meV, �104�

at the temperature T=TN /3 for the superexchange value J
=130 meV.5 This leads to the parameters given by
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d/J = 0.02, ��1 − �3�/J = 0.42 � 10−3, �105�

where, as discussed below, we have set

�1 + �3 = 0, �2 = 0. �106�

A. AFM order parameter, spin-wave excitations, and TN

To examine the different analytical schemes used in the
previous sections, we compare the representative solutions of
the order parameter � within the RPA method, Eq. �87�, and
within the MFA, Eq. �32�. We note that close to TN one finds
that the RPA has the same order parameter critical exponent
�=1/2� as mean-field theory. Indeed, the results shown in
Fig. 3�a� look very similar to the corresponding ones for the
pure 3D quantum Heisenberg antiferromagnet within the
RPA and MFA schemes.17

Since the order parameter � is temperature dependent, it
follows that within the RPA scheme the spin-wave spectrum
�see Eq. �75�� is also temperature dependent. In Fig. 3�b� we
present the behavior of both modes in the excitation spec-

trum at the long-wavelength limit �k=0� �energy gaps� with
respect to the relative temperature �T /TN�; these results com-
pare favorably with the experimental measurements of the
same quantity.5

As discussed above, the transition temperature is essen-
tially independent of �1+�3 and �2. Now let us show that in
contrast to the MFA approach �see Eq. �33��, where TN=J2
�J is almost independent of the anisotropy, the Néel tem-
perature within the RPA analytical scheme �see Eq. �88�� is
very sensitive to model parameters d and �1−�3.

Figure 4 shows the zero-temperature energy gaps and the
Néel temperature as functions of the DM antisymmetric ex-
change interaction d /J within the RPA method. As one can
see, the energy gap �1 is almost independent of the d /J,
while �2 depends almost linearly on the DM interaction d /J
and in fact goes to the zero in the limit d /J→0. As a result,
when d /J=0 the Goldstone mode appears in the spin-wave
spectrum and thermal fluctuations destroy the long-range or-
dering for any T
0. Consequently, the Néel temperature
drops to zero in case of d=0.

In Fig. 5 we present the dependences on the model pa-
rameter ��1−�3� /J. Now, the energy gap �2 is almost inde-

pendent of the parameters of symmetric anisotropy �J and

FIG. 3. �Color online� �a� The order parameter vs T /TN within
the RPA method �black solid line� and the MFA �red dashed line�
and �b� the spin-wave gaps, in units of J, in the spectrum of elemen-
tary excitations vs T /TN within the RPA method. In both of these
figures we have used d /J=0.02, ��1−�3� /J=0.42�10−3, �1+�3

=0, and �2=0.

FIG. 4. �a� The T=0 energy gaps, in units of J, vs the DM
parameter d /J, as well as �b� the Néel temperature TN, in units of J,
vs d /J. In both of these figures, ��1−�3� /J=0.42�10−3, �1+�3

=0, and �2=0.
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thus determined by the DM interaction d /J alone, while the
gap �1 varies strongly with ��1−�3� /J.

As in the above case, in the limit of �1−�3→0 the mode
�2 in the spectrum becomes gapless and, therefore, the tran-
sition temperature to the long-range-ordered state would be
suppressed to zero.

One can understand the above results for the zone-center
excitation spectrum immediately from the the expressions,
Eqs. �102�, in the limit of small anisotropy. Our numerical
results, shown in the previous figures, demonstrate that these
expressions are valid over a large range of parameter values.

B. Parameter regimes

We now summarize our numerical results with regards to
the dependence of various thermodynamic quantities on the
material parameters appearing in the Hamiltonian.

First, we find that the Néel temperature is almost indepen-
dent of the ��1+�3� /J within a reasonable range of model
parameters �see below�.

In fact, in order to argue for the independence of the ther-
modynamic quantities central to this study on certain mate-
rial parameters that appear in the Hamiltonian—viz., �2 and
�1+�3—in Fig. 6 we show two representative plots for the
order parameter and the susceptibility within the RPA

scheme for the constant values of the d and ��=�1−�3
�again in units of J�. That is, in each of the plots in Fig. 6 we
have simultaneously plotted ten data sets each with different
values of �2 and �1+�3, where the parameter ratio �2 has
been varied from the value −103��� up to 103���, and
�1+�3 from the value −102��� to 102��� �all in units of
J�. As one can see, even for such a large range of parameters,
one can hardly see a difference in the absolute values of the
Néel temperature, order parameter, and susceptibility.

Thus, to study the magnetic properties of the system we
can use only the DM interaction d and a combination �1–�3
of the symmetric tensor components as two independent pa-
rameters, and so we conclude �similar to others33,34� that the
system can be studied using �2=0 and �1+�3=0.

In various limits, it can be shown that this result follows
from the above-presented analytical work. The nondiagonal
term �2 of the symmetry anisotropy tensor is involved in all
expressions through a combination in the J4 �Eq. �9��. For the
reasonable anisotropy parameters �that is, ��d�J� the
spins are canted by a very small angle 	�d /J, and as a
result we can neglect the term �2 sin 	�d�2 /J with respect
to d, and hence we can ignore the quantity �2 in all our

FIG. 5. �a� The energy gaps, in units of J, vs ��1−�3� /J and �b�
the Néel temperature, in units of J, as a function of ��1−�3� /J.

FIG. 6. �Color online� �a� The order parameter vs T /J for the
different values of �2 /J and ��1+�3� /J and �b� the susceptibility, in
units of 1 /J, vs T /J for the different values of �2 and �1+�3 dis-
cussed in the test. In these plots we have fixed d /J=0.02 and
�� /J���1−�3� /J=0.42�10−3�.
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formulas. Similarly, �1+�3 is involved in the formulas
through a combination of the J2, J3, and canted angle 	,
where it appeared only as the combination J+ 1

2 ��1+�3�.
Thus, the parameter �1+�3 can be ignored with respect to
the superexchange interaction J �see Eqs. �8� and �9��.

Therefore, one can assert that the model Hamiltonian of
Eq. �1� leads to the same results as, for instance, the model
described by the spin Hamiltonian

H = �
�i,j�

�JSi · S j − ��Si
zSj

z + Dij�Si � S j�� , �107�

where we define ����1−�3.

C. Susceptibility

Now let us consider the main focus of our paper, that
being the behavior of the different components of static uni-
form magnetic susceptibility as a function of temperature.
Our results for �x, for the parameters discussed in the previ-
ous subsections, are shown in Fig. 7 �recall our earlier result
that the MFA and SW theories predict the same
T-independent value for this quantity�. The x component of
the susceptibility below the Néel temperature is temperature
independent and is equal to �1/ �8J� within the MFA �Eq.
�46��, the RPA scheme �Eq. �80��, or spin-wave theory �Eq.
�83��. However, above the ordering temperature, the RPA
and MFA yield different results, with a weak T dependence
within the RPA, while a strong Curie-like falloff is found
within the MFA.

As we will discuss in a future publication, this behavior
changes if one includes four-spin ring exchange or goes be-
yond the Tyablikov RPA decoupling scheme that we employ
in this paper. This is important since the experimental data of
Lavrov et al.6 show a small nonzero slope of �x vs T. Indeed,
a successful comparison with the small slope seen below TN
in experimental data6 necessarily requires that we go beyond

the treatment of spin-wave interactions and/or Hamiltonians
that are included in this paper. We emphasize that the neces-
sity of going beyond the Tyablikov RPA decoupling to obtain
this slope is a manifestation of the presence of strong quan-
tum fluctuations, a theme that will be repeated in our discus-
sion in this and the next section of this paper.

Our results for the y component of the susceptibility, �y,
are shown in Fig. 8.

These plots show that below the ordering temperature the
RPA scheme leads to a good agreement with the MFA
scheme near the TN �0.8TN�T�TN� and good agreement
with the SW theory at low T �that is, for T�TN /2�. Above
the Néel temperature, the RPA and MFA theories lead to very
different results. The MFA method gives an abrupt decrease
of �y to a value that is close to that of the purely transverse
component �x�1/ �8J� �see inset of this figure�, while the
RPA leads to a much more gradual decrease of the value of
�y with the temperature.

The z component of the susceptibility, �z, is shown in
Fig. 9.

We find that at low T, as was also found for �y, the RPA
is in good agreement with spin-wave predictions. Near the

FIG. 7. �Color online� The susceptibility �x, in units of 1 /J,
within the RPA �black solid line� and MFA �red dashed line�, for the
parameter values d /J=0.02 and �� /J=0.42�10−3. Below TN these
theories both predict the same constant value that is independent of
temperature.

FIG. 8. �Color online� �a� The susceptibility �y within the RPA
�black solid line� and MFA �red dashed line� and �b� a comparison
of the RPA �black solid line� and spin-wave �SW� �blue dotted line�
results below TN. As in previous figures, we are using d /J=0.02
and �� /J=0.42�10−3.
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transition temperature, the RPA method leads to a qualita-
tively different behavior of the z component of the suscepti-
bility with respect to both the MFA and spin-wave formal-
isms.

The differences between the MFA vs RPA data shown
above can be understood using the following reasoning.
First, consider below the Néel temperature. The canted mo-
ments which develop are confined to lie in the y-z plane; as
well, they are ferromagnetically ordered in the z direction
�recall that we are studying a single CuO2 plane�. Then, one
can see that within the MFA the weak FM produces a diver-
gence of the z component of the susceptibility only in a very
narrow temperature region close to the Néel point. Since the
MFA does not account for near-neighbor correlations be-
tween the spins, away from the immediate vicinity of TN the
weak FM is ignored and �z behaves like a T-independent
transverse susceptibility �that is, transverse to the ordered AF
moment�. In contrast to this, the z component of the suscep-
tibility calculated within the RPA has a strong temperature
dependence and shows that the effects of quantum fluctua-
tions are important in a wide region below the Néel tempera-

ture. The other component which shows some differences
between the MFA and RPA below the transition is �y, and for
this component it is seen that since the MFA does not include
a reduction of the staggered moment �which is in this direc-
tion� due to quantum fluctuations at low temperatures, linear
spin-wave theory, and not the MFA, agrees with the RPA for
low temperatures.

Further, above the Néel temperature the differences can
be understood as follows. In a MFA �that is TN

MFA�J�, both
components of the susceptibility, �y and �z, are rapidly
changing functions in the immediate vicinity of TN ��T /TN

�0.005� and then have the same behavior as the �x term
further above the transition. This MFA behavior is in no way
similar to that found in the RPA. That is, our results are an
example of the pronounced effects of short-range correla-
tions and quantum fluctuations. The RPA scheme gives a
much lower value of the Néel temperature than MFA does
�TN�0.3J�, but in a broad T region above the Néel point
strong short-range correlations exist, and the RPA includes
the manner in which these fluctuations strongly modify the
susceptibility. Similar reasoning explains the differences in
�x between the MFA and RPA.

For completeness, in Figs. 10–12 we present all compo-
nents of the susceptibility together, within both the MFA and
the RPA, contrasting different values of the physical param-
eters describing the DM interaction. To be specific, in Fig. 10
we show the situation when �1
�2 with the ratio ��1 /�2�2

�4.2 at zero temperature. As a result, we obtain that for T
=0, �y ��x,�z with the same ratio between the x, z, and y
components of susceptibility, �x,z /�y �4.2 �see Sec. IV D�.
By increasing the magnitude of the DM parameter d, due to
the strong dependence of the mode �2 of the d �see Fig. 4�,
we obtain a situation corresponding to �2=�1. Then, as is
seen in Fig. 11, both the MFA and RPA schemes result in
equal values of all components of the susceptibility at low T.
A further increasing of d leads to the situation �2
�1, oppo-
site to the one presented in Fig. 10. In Fig. 12 we show the
susceptibility in the case of the ratio ��2 /�1�2�2.0, and at
T=0 one finds �y 
�x,�z and �y /�x,z�2.0 for T=0. �We note
that for other sets of d, ��, the behavior of the components
of � is determined almost entirely by the ratio of the spin-
wave gaps, �1 /�2. These results agree with our analytical
predictions �see Sec. IV�.�

Then, comparing the z component of the susceptibility
within the RPA �Figs. 10�b�, 11�b�, and 12�b�� we also find
that increasing of the anisotropy parameter d leads to the
broadening T regions where �i� the effects of the quantum
fluctuations are important T�TN and �ii� the strong short-
range correlations exist T
TN.

VI. SUMMARY, CONCLUSIONS, AND DISCUSSION

To summarize, we have presented a theoretical investiga-
tion of a single CuO2 plane of the undoped La2CuO4 crystal
in the low-T orthorhombic phase. The Cu spins in the plane
were modeled by the 2D spin-1 /2 Heisenberg AF with spin-
orbit coupling, the latter represented the antisymmetric and
symmetric DM anisotropies. We have adopted the Green’s
function method within the Tyablikov’s RPA decoupling

FIG. 9. �Color online� The susceptibility �z within �a� the RPA
�black solid line� and MFA �red dashed line�, as well as �b� a com-
parison of �z below the ordering temperature within the RPA �black
solid line� and spin-wave �SW� �blue dotted line� theories. As in
previous plots, we have used d /J=0.02 and �� /J=0.42�10−3.
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scheme to calculate the magnetic susceptibility of such a
model. In order to allow us to accurately model the longitu-
dinal susceptibility within such a level of decoupling of high-
order Green’s functions, we have extended Lee and Liu’s
method18 for the isotropic Heisenberg model to one that in-
cludes a weak canted FM moment in the plane.

We can emphasize several important conclusions from our
results. We have found that the anisotropy introduced into
the problem by the symmetric and antisymmetric DM inter-
actions leads to important changes in the behavior of the
magnetic susceptibility near the transition point. By compar-
ing the MFA and RPA results we conclude that the effects of
quantum fluctuations and the short-range correlations are
very strong in the broad temperature region of near the Néel
temperature. Further, we find that since the RPA and SW
results are quite different near the Néel temperature, the ef-
fects of spin-wave interactions, which are included in an ap-
proximate way in the RPA but not the SW theories, are very
important in this system. This necessarily leads to the ques-
tion, would more advanced decoupling scheme—namely, im-
provements on Tyablikov’s decoupling �e.g., see our Eq.
�59�� or, possibly, the inclusion of nonlinear effects in the
SW theory—lead to qualitatively different results?

Second, we have obtained that the weak ferromagnetism
in the z direction �caused by the DM interaction� leads to an
essential difference between the temperature behaviors of the
transverse �x and �z components of the susceptibility �recall
that the AF moments lie in the y-z plane and are nearly
aligned along the y axis�. We established the correlation be-
tween the ratio of the in- and out-of-plane spin-wave modes
of the excitation spectrum in the long-wavelength limit �k
=0�, which is fixed by the ratio between the d and �1–�3

DM parameters, and the behavior of �x,z vs �y in the zero-
temperature limit. This conclusion is independent of the ana-
lytical method which we used to calculate the susceptibili-
ties, since all methods agree in the low-T regime and could
allow one to make predictions concerning the gaps in the
excitation spectrum based on the data for the susceptibility.

Now we comment on the comparison of our results to the
experimentally observed anisotropies6 that motivated this
work. We can state that, in addition to the known results13–15

that the DM interaction induces the weak ferromagnetism in
the LTP phase and the spin-wave gaps, this interaction is at
least in part responsible for the unusual anisotropy in the
magnetic susceptibility.6 We can mention the most significant
features observed in the experiment that are in qualitative

FIG. 10. �Color online� All three components of the susceptibil-
ity within �a� the MFA and �b� the RPA, for d /J=0.02 and �� /J
=0.42�10−3.

FIG. 11. �Color online� All three components of the susceptibil-
ity within �a� the MFA and �b� the RPA, for d /J=0.041 and
�� /J=0.42�10−3.

K. V. TABUNSHCHYK AND R. J. GOODING PHYSICAL REVIEW B 71, 214418 �2005�

214418-18



agreement with the presented in paper theoretical results: �i�
the absence of any special behavior �anomaly� in the trans-
verse component �x across the Néel temperature, �ii� the ad-
ditional increase of the �y component in the ordered state and
its smooth decrease in a broad temperature region in the
paramagnetic state, and �iii� a significant temperature depen-

dence of the component �z in the broad temperature region
below and above the transition point.

Now we briefly discuss the experimental data which can-
not be explained within the framework of the theory pro-
posed here. First, we have found that the observed ratio be-
tween the x and y components, �x��y �in the T=0 limit�,
takes place only if the spin-wave gap with out-of-plane mode
is less than the in-plane one, �o��i. However, older neutron-
scattering experiments5 find the opposite ratio: the magnitude
for the out-of-plane mode is 5 meV, for the in-plane mode
2.3 meV. Recent Raman work confirms one of these
values.33 So other interactions which affect these gaps must
be important for an accurate explanation of the susceptibility
data. Second, our results cannot explain a T-independent
shift between �x, �y, and �z observed in experiments—an
explanation of this physics is provided in the experimental
paper—namely, that one must include a Van Vleck contribu-
tion which shifts, in a T-independent manner, these compo-
nents of the susceptibility, but we defer our inclusion of this
physics until the second paper in this series of theoretical
studies.

For further improvements of our theoretical modeling of
the La2CuO4 compound, it seems to be important to investi-
gate a 3D model on a body-centered lattice with weak AF
interlayer coupling. It is also possible to extend the 2D
model by considering the ring exchange and the interaction
between the next-nearest-neighbor sites, and we expect that
some of these additional physics can be responsible for the
correct ratio between the spin-wave gaps with respect to the
ratio between �x and �y. In addition, the anisotropic Van
Vleck contribution �orbital susceptibility� and gyromagnetic
�Landé� factor need to be taken into account. We will present
a detailed comparison to these experiments when these other
interactions are included in future publications.
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