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Recently, a method has been proposed to obtain accurate predictions for low-temperature properties of lattice
spin glasses that is practical even above the upper critical dimension,dc=6. This method is based on the
observation that bond-dilution enables the numerical treatment of larger lattices, and that the subsequent
combination of such data at various bond densities into a finite-size scaling ansatz produces more robust
scaling behavior. In the present study we test the potential of such a procedure, in particular, to obtain the
stiffness exponent for the hierarchical Migdal-Kadanoff lattice. Critical exponents for this model are known
with great accuracy and any simulations can be executed to very large lattice sizes at almost any bond density,
effecting an insightful comparison that highlights the advantages—as well as the weaknesses—of this method.
These insights are applied to the Edwards-Anderson model ind=3 with Gaussian bonds.
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I. INTRODUCTION

The exploration of low-temperature properties of disor-
dered systems remains an important and challenging
problem.1 Systems in this class possess a low-temperature
glassy state with a glass transition at some temperatureTg
.0. They are characterized by a complexsfree-denergy land-
scape in configuration space2–4 with a hierarchy of valleys
and barriers whose multi-modal structure impedes the pro-
gression of any dynamics towards equilibration, causing tan-
talizing phenomena, such as trapping and jamming on inter-
mediate time scales, and aging on long time scales. An
understanding of such systems is of paramount importance
as these phenomena are observed for a large class of mate-
rials as well as for biological systems.5

The paradigmatic model for the study of such phenomena
is the Ising spin glass, either on a finite-dimensional lattice
fEdwards-AndersonsEAd model6g or some other random net-
work structure. Disorder effects arise typically via quenched
random bonds, random local fields, or merely the random-
ness of the network itself, each can lead to conflicting con-
straints which leave variables frustrated. It is believed that a
proper understanding of static and dynamic features of EA
may aid a description of the unifying principles expressed in
the wider class of realistic problems.7

Unfortunately, after 30 years of research there is still no
consensus on whether the subtle mean-field picture for Ising
spin glasses derived long ago8–10 has any relevance for real-
world materials at low temperatures.11 Progress towards such
an understanding is slow due to the peculiar structure of the
problem at hand. The intricate multimodal low-energy land-
scape puts the computational effort needed to determine ther-
modynamic observables usually into the class of NP-hard
combinatorial optimization problems12 know from computer
science, for which worst case computational costs increase
faster than any power of the system size.sInterestingly, it is
in this area of computer science itself where the mean-field
theory atT=0 has had a most significant impact so far.13d

Most insights into finite-dimensional systems has thus
been gained through alternative computational approaches to
elucidate low-temperature properties. Aside from methods

designed to expedite some thermodynamically correct algo-
rithm, such as parallel tempering14 or the waiting time
method,15 one focus area has been the use of optimization
heuristics directed toward fully enumerating ground-state
configurations by any means.5,16–20 These ground states
should provide the basis for the thermodynamic behavior of
the system at and nearT=0. But due to the NP hardness,
even heuristic methods become unreliable when system sizes
exceed about<103 variables, often too small to draw safe
conclusions or to sufficiently discriminate between theoreti-
cal ideas.21,22

This fact is illustrated by the determination of the stiffness
exponent, often labeledy or u,7,23 a fundamental quantity
assessing low-temperature energy fluctuations: a positive
value ofy, as found in EA fordù3, denotes the increase in
the energetic costsi.e., “stiffness”d accompanying a growing
number of variables perturbed from their position in the
ground state. The rise in energetic penalty paid for stronger
disturbances signals the presence of an ordered state. In turn,
for systems withyø0 such order is destabilized by arbi-
trarily small fluctuations.

In this paper, we will extract the stiffness exponent from
the response induced through defect interfaces.23 These can
be created by fixing the spins along the two faces of an open
boundary in one lattice direction. The ground state configu-
ration with energyE0 of an instance is first determined for a
random fixing of those boundary spins, then the energyE08 is
obtained for the same instance and the same fixing, but with
all spins reversed on one of the faces. Hence, the interface
energyDE=E08−E0 created by the perturbation on the bound-
ary is sampled, and its distributionPsDEd determined. If a
system is glassy, the typical energy scale involved, here rep-
resented by the width of the distribution,ssDEd
=ÎkDE2l−kDEl2, should grow with the size of the perturba-
tion, say, the linear extend of the boundary,L, as23

ssDEd , Ly. s1d

Accurate determination of this exponent ind=3 has long
been elusive, with values given betweeny<0.1917,23 to
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<0.27.24 While it was save to say thaty.0, its value could
be at best given asy3=0.2s1d. In terms of sorting out theo-
retical models, this is too inaccurate to draw solid
conclusions.22

This limited accuracy originates with trying to fit data
over too small a range of system sizesL. Scaling in this
range is further beset by slowly decaying corrections inL
which make it hard to decide even where scaling sets in.25,26

The remedy proposed then is to possibly extend scaling by
consideringbond-dilutedlattices.27–29As has been argued al-
ready in Ref. 33, as soon as the percolation window for bond
densitiesp.pc has been exceeded at some lattice size, the
long-range properties of the giant component—and hence, of
the spin glass defined on it—are essentially compact, repre-
senting theT=0 fixed point of the fully connected lattice.
This implies that there the exponenty is independent of the
bond densityp. These features of bond-diluted glasses are
summarized in the phase diagram in Fig. 1. The indepen-
dence ofy from p appears to hold also for Gaussian bonds in
d=2,30 where y,0 sno spin glass phased and universality
with respect to bond disorder is violated.26,31,32

While we focus on the defect energy atT=0 here, bond
dilution may also be an effective means to study other
observables.34 For determining T=0 properties, this ap-
proach makes the treatment of larger lattices sizes practical
in as much as exact algorithms can be devised that allow the
elimination of a large number of variables, whose state be-
comes entrained to other variables in a predictable way in the
ground state.35 In this way, systems with more than 106 vari-
ables have been “reduced” to remainder graphs consisting of
no more than a few hundred variables that are amenable to
standard optimization methods.27 Clearly, though, due to
those almost trivial variables, the information contend about
the asymptotic behavior captured by such graphs may be
limited, and a price has to be paid through extended transient
behavior. As we hope to demonstrate here, in the end much is
gained in this method, although at the extremely large lattice
sizes that can be reached with the Migdal-Kadanoff approxi-
mation used here, diminished returns are obtained because of

a lack of knowledge on how scaling corrections vary with
bond density.

As we will recount in Sec. III, Refs. 33 and 36 suggest to
generalize Eq.s1d to

ssDEdL,p , jspdyPS L

jspd
Dy

fS L

jspd
D , s2d

for L@1 and jspd,sp−p*d−n*
@1. The scaling functionf

was chosen to be constant forL@jspd. The limit p→p*

towards theT=0 transition between the spin glass and para-
magnetic regimessee Fig. 1d is interesting in its own right,
and will be investigated further in Ref. 37. Yet, to elucidate
properties of the glassy regime, the “window of opportunity”
for our method appears to be at intermediate bond densities:
p has to be sufficiently smaller than unity for our reduction
algorithm to be efficient, but also sufficientlyabove p* to
attain system sizesL@jspd. Analyzing our numerical data
here suggests that in this window the conditionjspd,sp
−p*d−n*

@1 assumed in Eq.s2d does not hold, makingjspd a
more general function ofp with unknown corrections to its
singular part.

Operationally, we thus propose a naive ansatz for a col-
lapse of the numerical data valid for the asymptotic regime
L@jspd,1 only,

ssDEd = fs`dxy fx = Lsp − p*dn*
g. s3d

Since the numerically accessible data appears to violate
jspd@1, the parametersp* andn* here merely facilitate the
data collapse by fitting a more general functionjspd, and can
not be expected to yield accurate predictions for the critical
values in Eq.s2d. The successful implementation of this an-
satz for the Migdal-Kadanoff hierarchical lattice here lends
credibility to the findings foryd of the EA in Refs. 27 and 28.

Finally, it is remarkable that this approach works substan-
tially better for a discrete ±J bond distribution than for
Gaussian bonds, for which scaling corrections due to a small
jspd, and even due to finite-L transients, are far more signifi-
cant. Just as for the ±J data, the similarity between our
Migdal-Kadanoff and our EA data with Gaussian bonds pre-
sented here is striking. While this issue eventually deserves
more thorough investigation, we can speculate on the origin
of these strong transients. One may remember that ind=1,
ssDEd,L−1 for continuously distributed bonds with finite
Ps0d, while ssDEd,L0 for ±J bonds. The interface may
settle on the extremely weakest within a more widely distrib-
uted set of continuous bonds, while for ±J it mustbreak a
bond of order unity. Similarly, on short ranges in higher di-
mensional lattices, particularly dilute ones, with a Gaussian
distribution peaked atJ=0, the violation of heavy bonds can
be deferredinitially which an extended defect eventually de-
mands on larger scalesL. This naive argument is supported
by the fact that at equalp andL, defect energiesssDEd are
typically somewhat smaller for Gaussian than for ±J bonds,
as will be seen in Fig. 3.

In the next section we introduce the Migdal-Kadanoff hi-
erarchical lattice, followed in Sec. III by a discussion of the
scaling arguments leading to Eq.s2d and to our ansatz in Eq.

FIG. 1. Phase diagram for bond-diluted spin glasses at low tem-
peratures. Lattice spin glasses of dimensiondù3 possess a spin
glass phasesSGd below the glass transition temperatureTg.0. This
phase should persist even for diluted lattices, as long as the perco-
lating cluster of connected spins is compact, i.e., for bond densities
p sufficiently abovepc sRefs. 27, 28, and 33d. Below pc, the col-
lection of small clusters can only respond paramagneticallysPMd
on long length scales for anyTù0. Depending on the details of the
bond distribution, theT=0 transition occurs atp* =pc scontinuous
bondsd or at p* .pc sdiscrete bondsd, respectively determining the
slope of the phase boundaryTgspd at p* .
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s3d used to obtain the stiffness exponent on bond-diluted lat-
tices. Section IV contains our discussion of the Migdal-
Kadanoff data, followed by the application of the gained
insights to the diluted EA with Gaussian bonds in Sec. V.
Finally, Sec. VI contains our conclusions.

II. MIGDAL-KADANOFF HIERARCHICAL LATTICE

To test the scaling ansatz in Eq.s3d for the stiffness ex-
ponent, we consider here the bond-diluted hierarchical lattice
ssee Fig. 2d, obtained in the Migdal-Kadanoff bond-moving
scheme38 for low-dimensional spin glasses. These lattices
have a simple recursive yet geometric structure and are well
studied.25,33,39,40Most importantly, their ground states can be
obtained in polynomial time at any bond density, and we can
discuss our results independent of any systematic bias intro-
duced by a subsequent optimization process that may be re-
quired for more complicated models like EA.35 A most inter-
esting property of these lattices is the curious fact that the
scaling of its defect energy distribution, giving rise to the
stiffness exponent, behaves in all respects very similar to that
measured for actual three-dimensional lattices.7,23,40

To generate a hierarchical lattice, starting from generation
I =0 with a single link, at each subsequent generationI all
links from I −1 are replaced with a new subgraph, as de-
scribed in Fig. 2. The structure of the subgraph arises from
the Migdal-Kadanoff bond-moving scheme ind dimensions,
and has 2d=8 links for d=3 here. Thus a hierarchical lattice
of generationI hass2ddI links sif undilutedd, thus correspond-
ing to a d-dimensional lattice of “length”L=2I and n=2
+2d−1sLd−1d / s2d−1d=OsLdd vertices. While the average
connectivity is,4−22−d, the two root vertices from genera-
tion I =0 themselves obtain in generationI a connectivity of
,2sd−1dsI−1d. In turn,,2dI−1 vertices, 7 in 8 ford=3, are only
two-connected.

The diluted hierarchical lattice percolates when there is a
path between the two root-vertices, representing the bound-
aries of the system. This notion leads to a simple recursion
relation for the percolation threshold by counting the weights
of all diluted subgraphs from Fig. 2 that percolate, i.e., con-
nect right and left vertex. Ind=3 one gets

pI+1 = 4pI
2 − 6pI

4 + 4pI
6 − pI

8, s4d

which has a nontrivial stationary point atpc=0.2818376366.
There can not be long-range correlated behavior, such as spin
glass ordering, for anypøpc. It has been pointed out by Ref.
33 that a spin glass on a hierarchical lattice with ±J bonds
exhibits a critical transition between a paramagnetic and a
spin glass phase for bond densities atp* =0.31032. While
below pc disconnected clusters clearly prevail and prevent
long-range correlations, even forpc,p,p* such correla-
tions remain suppressed due to the cooperative behavior in
the bond structure pervasive in the lattice, leading to cancel-
lations that additionally disconnects subgraphs at some
higher level of the hierarchy. In contrast, for a continuous
bond distribution, such as the Gaussian bonds discussed be-
low, any such cancellations would be unlikely, leading in this
case top* =pc.

FIG. 2. Diagram for the recursive algorithm to calculate spin
glasses on hierarchical lattices. Drawing bondsJI−1 randomly from
a sufficiently large poolPI−1sJd at generationI −1 stopd, a lattice of
generationI is formed, then bond-diluted to densityp, and finally
“reduced” sRef. 35d to an effective bondJI between the root spins
ssquaresd, which is added to the poolPIsJd sbottomd.
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III. DEFECT-ENERGY SCALING FOR p\p*

Following the discussion in Refs. 33 and 36, for bond-
diluted lattices atp→p* we have to generalize the scaling
relation in Eq.s1d for the defect energy to

ssDEdL,p , YspdLyfS L

jspd
D , s5d

whereY,sp−p*dt is an effective surface tension andjspd
,sp−p*d−n*

is the correlation length for the crossover into
glassy behavior. Note that Eq.s5d requires both,L andj, to
be large compared with the unit lattice spacing to avoid fur-
ther scaling corrections. The scaling functionfsxd is defined
to be constant for large argument,L@j@1.

For j@L@1, Eq. s5d requires thatfsxd,xm for x→0 to
satisfy either the vanishing ofs with L in case ofp* =pc
sGaussian bondsd, or its scale invariance at ap* .pc s±J
bondsd. Clearly, due to the tenuous fractal nature of the per-
colating cluster atp* =pc, no long-range order can be sus-
tained, defects possess a vanishing interface, and one may
expect that

ssDEdL,p* , LyP, s6d

whereyPø0.36 To cancel thep-dependence atp=p* , Eq. s5d
requiresy+m=yP and t+mn=0, i.e., t=ny+f, setting f=
−nyP.36 As a result, we obtain Eq.s2d. In contrast, forp*

.pc, the percolating cluster appears compact on scalesL
@ sp* −pcd−n, ands can not vanish for further increasingL.
Yet, neither cans increase atp* , by definition. Hence,s
remains scale invariant, and correspondinglyf andyP vanish
in Eqs.s2d and s6d for ±J bonds.

In the case of continuous bond distributionsPsJd with
finite Ps0d, where p* =pc, spin glass ordering can only be
noticed on scales at least as large as the correlation length
j,sp−pcd−n associated with percolation, suggestingn* =n.
In case of ±J bonds, the cooperative cancellations between
discrete bonds mentioned above further weaken order, lead-
ing to n* .n for theT=0 glass transition atp* . Accordingly,
Ref. 33 findsn=1.2274 andn* =1.5373 for the hierarchical
lattice in d=3.

Finally, at the crossoverj,L, where the rangeL of the
energy excitationsssDEd reaches the percolation length and
spin glass order ensues, Eq.s5d yields

ssDEdjspd,p , sp − p*dtj yfs1d , sp − p*df. s7d

One can associate a characteristic temperature with this
crossover bybssDEdjspd,p,1; for temperatures above this
T=1/b, thermal fluctuation destroy spin glass order. This
suggests a relation between bond density and the glass tran-
sition temperature:

Tgspd , sp − p*df. s8d

Equations8d definesf as the “thermal-percolative crossover
exponent,”36 which specifies the details of the phase bound-
ary nearpc sor p*d in Fig. 1. For the continuous distribution,
wherep* =pc, f would be in general nontrivial, while for ±J
at p* .pc it appears thatf=0, indicating a jump in the phase
boundaryTgspd at p* .

The exponentf could be of importance, since it may be
experimentally accessible41,42 while the relation f=−yPn
provides a simple computational determination in terms of
Eq. s6d and the well-known percolation exponentsn. This
connection will be considered in a forthcoming publication.37

In the following, we will explore some of these relations
numerically for the hierarchical lattice, for which large sizes
L can be obtained. But the central purpose of this paper is to
probe Eq.s3d, which has been used in Refs. 27 and 28 to
provide accurate predictions for the stiffness exponentsyd,
fundamental for describing low-temperature excitations in
spin glasses.

IV. NUMERICAL RESULTS FOR HIERARCHICAL
LATTICES

Our numerical studies on the hierarchical lattice have
been conducted with the algorithm described in Ref. 35. It is
based on the evolution of bond poolsssee Fig. 2d of sizeAI
from generationI to generationI +1, similar to the procedure
already used in Refs. 23 and 43. In our algorithm, though, an
existing bond at generationI is replaced with a new bondsto
keepAI constantd for every k new bonds that are added at
generationI −1. This procedure is legitimate in principle, as
even neighboring subelements in the graph act independently
and only effect each other in a collective sense just as repre-
sented by the bonds replacing them in the next generation.
The danger is that the diversity in the pool of those bonds is
insufficient, leading to creeping spurious correlations and
difficult-to-perceive drifts away from the true values of ob-
servables. Since the size of the pool of bonds has only a
minor effect on the computational effort fork=1, we can
rerun the same calculation repeatedly to a high number of
generations using ever-larger pool sizesAI until the data be-
comes insensitive toAI. We have used this procedure to gen-
erate most of the data in Fig. 3.

Further problems arise when we use this algorithm near
the critical pointp* . There, the bond distribution is torn be-
tween the trivial fix point of vanishing width in the paramag-
netic phase and the true glassy state with subtle, long-range
correlations between bonds of the previous and following
generations, and small fluctuations can severely bias the evo-
lution. At that point, we have to resort to slower regeneration
rates withk.1, or even the exact algorithm for whichk
=2d.

Our numerical studies, as shown in Fig. 3, confirm the
picture described in Sec. III. To induce an interface in the
MK as described in the Introduction we consider only the
leftmost and the rightmost spin in each graph as entire
boundary. This is meaningful, since each of these spins con-
nects toOsLd other spins, see Sec. II. Then, the defect energy
of a lattice at generationI −1 ssizeL=2I−1d is simply stwiced
the value of the bond of generationI replacing that graph
ssee Fig. 2d. In this sense, the defect energyssDEd can be
interpreted as an effective coupling between both sides of the
defect interface;36 if that coupling strengthens with distance
L, the system is in an ordered state, and vice versa.

Note that in Fig. 3 forp,p* the data evolves towards the
p=0 fixed point withssDEd=0, while forp.p* it invariably
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evolves to the p=1 fixed point with scaling behavior
ssDEd,Ly. Figure 3 clearly suggests thatp* =pc=0.2818 for
the continuous Gaussian bond distribution, while the discrete
±J bond distribution favorsp* =0.3103.pc. At p* , s varies
distinctively different withL than even for bond densitiesp
quite near top* . In particular, the behavior ofs at the re-
spectivep* appears to confirm the predictions for the scaling
in Eq. s6d with yP=0 si.e., f=0d for discrete bonds, and a
nontrivial exponent we measure to be aboutyP=−0.9s1d for
Gaussian bonds.

In the following, we want to test the predictive power of
the finite-size scaling ansatz in Eq.s3d as argued on the basis
of Eq. s2d. This ansatz has been applied to the numerical
measurements of the glassy statesp.p*d on large, bond-

diluted lattices as recently proposed in Refs. 27 and 28. In
this scheme, the properties of the zero-temperature fixed
point are determined for a number of intermediate bond-
densitiesp—sufficiently abovep* to be glassy and suffi-
ciently small to achieve large system sizesL. In particular,
Refs. 27 and 28 focused on the defect energy for finite di-
mensional lattices. This procedure should be applicable also
to other observables.

First, we consider ±J bond distributions, which had been
used exclusively in Refs. 27 and 28. In Fig. 4 we plot with-
out any scaling all data we have obtained with the method
above forp=0.35, . . . ,1. It is worth mentioning two features
of that data:s1d scaling corrections for smallerL appear to
change sign at aroundp<0.45, suggesting that those correc-
tions are weakest at intermediate values ofp instead of at
p=1, against expectation.s2d The data forp→1 initially
narrows son this logarithmic scaled for equal increments
sDp=0.1d, but then exhibits an increased gap in the jump
from p=0.9 to p=1. Both of these features have also been
observed for the EA data ind=3.27,28The first feature seems
insignificant here for data extending out toL.105, but the
suppression of scaling corrections becomes extremely help-
ful when the maximal attainableL is small, as for the EA
model. This fact has also been exploited in Ref. 34. The
second feature could be explained with the requirement for
the scaling ansatz ofj,sp−p*d−n*

@1, which may not be
satisfied for anyp too far fromp* . In Ref. 35, similar rapid
variations in an observablesthe overlapd for p→1 have been
observed, although a connection to the variations in the am-
plitude of s here is not clear.

For this discrete bond distribution, the scaling ansatz in
Eq. s2d simplifies, since we can assumeyP=0; see top of Fig.
3. Hence, we fit the data obtained for various bond densities
p.p* in Fig. 4 directly to the form proposed in Eq.s3d,
where the scaling variablex is adjusted to provide the best
data collapse. The unknown scaling functionfsxd has been

FIG. 3. Plot of the widthssDEd of the defect energy distribution
as a function of systems sizeL for various bond fractionsp using
discrete bondsstopd and Gaussian bondssbottomd in the 3d Migdal-
Kadanoff lattice. In each plot, dashed lines from bottom to top refer
to p=0.1,0.2, . . . ,1. Solid lines refer to data withp
=0.28,0.29, . . . ,0.34 on top, andp=0.28, 0.2818, and 0.29 on the
bottom. In both plots, the data points with circles were obtained
using thek=1 implementation from Ref. 35, those with diamonds
using k=2, and those with crosses near the respectivep* required
the exact algorithm. Note that atp* <0.310.pc on top, the slope is
near vanishing, while forp* =pc=0.2818 on the bottom, the slope
indicates a well-pronounced power-law decay.

FIG. 4. Plot of the raw data forssDEd as a function of systems
sizeL for bond fractionsp* ,pø1 using discrete ±J bonds. Some
of this data is already shown in Fig. 3. Of note is that there appears
to be no variation withp in the asymptotic scaling, that scaling
corrections at smallL are least noticeable for intermediatep, and
that there is an anomalous gap between data forp=0.9 andp=1.
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replaced by a fitting constant,fs`d, to capture its leading
asymptotic behavior for largeL.

The advantage of the hierarchical lattice is that we already
know the expected values for the parameters involved
in such a fit, i.e., p* =0.31032, n* =1.5373,33 and
y<0.2552.35,43 Thus, first we can attempt to utilize this
knowledge to collapse the data in Fig. 4 by fixingp* , n* , and
y, only leavingfs`d to be fitted. As can be seen in Fig. 5, the
data collapses exceedingly well even for smallx, as long asp
is not too large. Scaling ensues quickly forx.1, which
would allow for an excellent fit,if one were to exclude data
for p.0.7. Remarkable is the quality of the collapse for data
reaching belowx,1. It reveals a concave shape forfsxd,
which explains the finite-size corrections in Fig. 4: Data with
lower p first rises slowly, then more rapidly for increasingL,
before scaling settles in. In turn, data with higherp immedi-
ately rises rapidly before settling into a slower asymptotic
growth. Data withp near unity rises even more rapidly to
overshoot the collapse in the scaling regime.

Clearly, these observations about the intricacies offsxd
are far too subtle to be of any use in the more typical situa-
tions where we have no prior knowledge of the parameters.
Worse yet, even with that knowledge, corrections due to the
finite size ofj=sp−p*d−n*

in particular appear to prevent a
collapse of the data in much of the asymptotic scaling re-
gime. Yet, it seems obvious that the data forall p.p* and
large enoughL exhibits scaling according to Eq.s1d, provid-
ing information we desire to exploit. The precise value of the
parametersp* and n* are important for the behavior offsxd
nearx,1, but have little effect on the scaling behavior for
x@1. Thus, instead of correcting the fit to extract accurate
values for all parameters, we cut data that does not appear to
scale well. Then, we can collapse the data in the scaling
regime according to Eq.s3d, merely usingp* , n* , andfs`d as
free parameters to facilitate an accurate determination ofy
only.

Figure 6 displays the same data as before, but only data
judged by inspection to be sufficiently scalingsL.1024 at

p=0.35 down toL.8 for p=0.9, see Fig. 4d has been used
for the fit. All data forp=1 has been explicitly excluded due
to the anomalous jump in the amplitude ofs noted in Fig. 4.
These choices are reflected in the collapse: All butp=1 data
combines exceedingly well forx@1, predictingy=0.256s1d,
only 1/2% above the exact value. For data scaling over al-
most 5 decades, one may have expected more accuracy fory,
but slowly decaying scaling corrections,35 and the smallness
of y itself, limit the relative accuracy. The value fory re-
mains quite robust under changes in the data points included
in or excluded from the fit. On the other hand, the fit selects
p* <0.29,n* <1.94, andfs`d<2.1. Note that the fitted value
for n* is larger than the actual value. It is this increase inn*

that facilitates the collapse of the data in the asymptotic re-
gime,x@1. Consequently, the collapse of the data excluded
from the fit atxø1 is somewhat poorsbut still not too bad
hered. This is exactly the approach adopted in Refs. 27 and
28 to extract the best possible estimate fory. Hence, as noted
there, the values for any parameter aside fromy fitted in this
way must be treated with caution.

We can proceed in a similar manner for the bond-diluted
hierarchical lattice with a continuous Gaussian bond distri-
bution. First, we plot the raw data obtained with the algo-
rithm described above in Fig. 7. In this case, finite-size cor-
rections are more pronounced but appear to diminish more
gradually towardsp=1. The scaling arguments from Sec. III
would suggest to fit the data to a form derived from Eq.s2d,

ssDEdL,p

sp − p*df , fs`dxy. s9d

Here, it appears that the scaling collapse involves yet another
parameter, the thermal-percolative crossover exponentf for
the scaling variablex=L /jspd at p→p* =pc. In contrast top*

andn* , which can be determined analytically for the hierar-
chical lattice,f is similarly nontrivial asy itself, and is even
harder to estimate numerically. By definition,f=−nyP and
yP has to be obtained exactly atp=p* , see Eq.s6d, where the

FIG. 5. Collapse of the data from Fig. 4 according to the scaling
ansatz in Eq.s3d, but using the exactly known values forp* , n* , and
y=0.2552. Here, onlyfs`d, an overall amplitude, remains as a free
fitting parameter.

FIG. 6. Collapse of the data from Fig. 4 according to the scaling
ansatz in Eq.s3d. Here, the values forfsxd, p* , n* , and y are all
determined from the fit of data in the scaling regime only, although
all data is displayed.
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algorithm is the most delicate, limiting us toLø211. As
shown in Fig. 3sbottomd, from the data fors at p* we can
extractyP=−0.9s1d. With the percolation exponent,n=1.22,
we obtainf=1.1s1d.

In Fig. 8, we collapse the data from Fig. 7 using Eq.s9d
by fitting fs`d and f, but holdingp* and n* , and y fixed.
Similar to Fig. 5, the collapse proceeds well for data that is
nearx,1 and hasp nearp* . Already for intermediate values
of p, the data spreads widely, suggesting thatjspd is too
small there. We obtain a fitted value off<0.9, not too far
from the determination viayP above.

Again, the focus on properties associated withp* gave us
a good collapse nearx,1, but not about the desired
asymptotic scaling regime fory at x@1. Consequently, we
again exclude all data in the fit that is by inspection of Fig. 7
not yet in that asymptotic regime and proceed with an unre-
stricted fit involving all parameters. The result of such a
collapse is shown in Fig. 9. Now the data collapse is excel-

lent in the asymptotic regime for data of sufficiently largeL
and large enoughp, includingp=1, but poor nearp=p* and
for x&1 for the excluded data. The fitted values here are
p* <0.32, n* <1.20, f<0.51, andy<0.256, again within
1/2% error of the value directly determined atp=1. Surpris-
ingly, even n* is well approximated now while onlyf is
substantially off. In fact, ignoring the correction in the scal-
ing behavior due to the exponentf si.e., f=0d, the data
collapse proceeds even more favorably, givingy=0.2557 but
p* =0.31 andn* <3. Having one less free parameter makes
the data collapse a bit more robust, withn* picking up the
error due to a less adequate scaling ansatz. That a collapse of
the data succeeds even when we ignoref is a reflection of
the fact that in the limit of large argument forf, only two of
the three exponentsy, f, andn* are independent. Equation
s9d reduces tos, fs`dLysp−p*df+yn*

, and settingf=0 leads
us right back to Eq.s3d.

V. EDWARDS-ANDERSON MODEL
WITH GAUSSIAN BONDS

We have already pointed out the striking similarities be-
tween the data for defect energies ond=3 hierarchical lat-
tices here and on cubic lattices in Refs. 27 and 28 for ±J
bonds. We complement this comparison here with a study of
the EA on cubic lattices with Gaussian bonds. Such a study
allows us to probe some of the assertions leading to Eq.s3d.
It also tests the universality ofy with respect to the details of
the bond distribution. The well-known result ford=1 men-
tioned in the Introduction and recent studies ford.1,26,31,32

have shown that there are significant differences in the re-
sults for the stiffness exponent with respect to bond distribu-
tion below the lower critical dimension, wherey,0, while
Ref. 32 has argued that universality should hold wheny.0.
Our findings here, and for the hierarchical lattice above, sup-
port this point.

Unlike for hierarchical lattices, the numerical effort re-
quired to achieve any reasonable system sizeL in the deter-
mination of defect energies on cubic lattices grows exponen-

FIG. 7. Plot of the raw data forssDEd as a function of systems
size L for bond fractionsp* ,pø1 using continuous Gaussian-
distributed bonds. Some of this data is already shown in Fig. 3.

FIG. 8. Collapse of the data from Fig. 7 according to the scaling
ansatz in Eq.s9d, but using the exactly known values forp* andn*

stheny is not neededd. Here, onlyfs`d andf remain as free fitting
parameters.

FIG. 9. Collapse of the data from Fig. 7 according to the scaling
ansatz in Eq.s9d. Here, the values forfsxd, p* , n* , f andy are all
determined from the fit of data in the scaling regime only.
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tially with the number of variables; the problem is NP hard.12

While the method of reducing low-connected variables is
applicable just as well for the Gaussian distribution, our
implementation of the extremal optimization heuristic does
not perform well for these systems. Although it might be
capable to yield reasonably accurate predictions for ground
states themselves, we notice a significant drift in the data for
the defect energy, formed out of the difference between two
closely related ground states, starting with remainder graphs
of sizenù250. As Fig. 10 shows, much of the obtained data,
both for small and largerL, is not scaling and has to be
discarded. We note that the long transients even before any
asymptotic scaling is reached for smallL is again reminis-
cent of the hierarchical lattice as in Fig. 7.

An attempt to collapse the data according to Eq.s9d as
before requires the additional effort in determiningyP from
Eq. s6d. A determination of the defect energy atpc has the
advantage that the exact reduction method almost always
succeeds completely, obviating the application of any opti-
mization and large lattice sizes can be reached.37 Our pre-
liminary studies for systems up toL=100 have yielded an
exponent ofyP=−1.28s2d. The consensus of results for the
correlation exponent ind=3 for percolation seems to ben
=0.86s2d,44 which results in a thermal-to-percolative cross-
over exponent, see Eq.s8d, of f=1.10s4d. Note that while
n,1 anduyPu.1 here, opposite to the hierarchical lattice in
Sec. IV, the values off are indistinguishable within errors.

Similar to Fig. 8, one may try to collapse the data accord-
ing to the scaling ansatz in Eq.s9d by fixing p* , n* , andy to
their best-known values and fitting forfs`d andf. Such a fit
does not converge. We managed only to collapse the data for
p→p* by hand with the best-known value forp* =pc
<0.248,45 but n* <0.75, andf=0.9, somewhat below their
best-known values. The result in Fig. 11, while far less con-
vincing for this limited data set, parallels that in Fig. 8 to a
large extent.

Finally, we setf=0, which reverts Eq.s9d into Eq. s3d,
and eliminate all data that is obviously not scaling. Pursuing

a fit of the remaining data according to Eq.s3d in the
asymptotic regime,x@1, without fixing any parameters, Fig.
12 is obtained. The result is noisy and apparently unsatisfac-
tory: The value ofn<3.1 is as large as for Fig. 9, which
separates this data in the scaling regime for eachp into al-
most disconnected groups. Yet, the fit obtains a value ofy
<0.23, in reasonable agreement with the best-known value
of y=0.24s1d.27,28

Clearly, as for the hierarchical lattice at the end of Sec. IV,
the focus on data withx@1, i.e.,p sufficiently larger thanp*

such thatL@jspd, makes the details of the transition atp
→p* ssuch as the value offd irrelevant for the determination
of y. This suggests Eq.s3d as the appropriate scaling ansatz
to extracty, as proposed in Refs. 27 and 28, even for Gauss-
ian bonds.

FIG. 10. Plot of the raw data forssDEd as a function of systems
sizeL for bond fractionspc=p* ,pø1 using continuous Gaussian-
distributed bonds on a cubic lattice. At nearly eachp, long tran-
sients are followed by an intermediate scaling regime, cut short at
largerL, when numerical inaccuracies result in a systematic drift.

FIG. 11. Collapse of the data from Fig. 10 according to the
scaling ansatz in Eq.s9d. The values for the parameters had to be
fixed by hand atp* =pc<0.248,n* <0.75, andf=0.9.

FIG. 12. Collapse of the data from Fig. 7 according to the scal-
ing ansatz in Eq.s3d, i.e., f=0. Here, the values forfs`d ,p* ,n* ,y
are all determined from the fit of data in the scaling regime only,
although all data from Fig. 7 are shown. Despite the obvious short-
comings of the data, the fitted value ofy<0.23 compares reason-
ably well with the best-known value ofy=0.24s1d sRefs. 27 and
28d, drawn here for referenceslined.
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VI. CONCLUSIONS

We have explored a recently proposed method of collaps-
ing data obtained on bond-diluted lattices to estimate low-
temperature scaling properties for the Edwards-Anderson
model. Using bond-diluted hierarchical lattices from the
Migdal-Kadanoff bond-moving scheme ind=3, for which
many properties atT=0 are known exactly or with high ac-
curacy, the validity of the method is probed. The data ob-
tained for the defect energy of the hierarchical lattice proves
to exhibit the same qualitative features as the—much more
limited—data for the EA, respectively for discrete and con-
tinuous bond disorder.

The scaling ansatz used to collapse the data, most gener-
ally Eq. s2d, was proposed in the neighborhood of aT=0
phase transition at bond densityp* between paramagnetic
and spin glass behavior, which is closely associated with the
bond percolation transition atpc.

33,36 Equations2d requires
both, the divergence of the system sizeL andof the correla-
tion lengthj=sp−p*d−n*

. In contrast, the desired scaling be-
havior is associated with aT=0 fixed-point characteristic of
the entire spin glass regime forL@1, independent ofjspd as
long as L@jspd. In particular, valuable data obtained for
largeL but intermediate values ofp, for which jspd remains
small, would have to be discarded in an ansatz based onp
→p* . Thus, a naive ansatz, Eq.s3d, based on the limitL
@jspd si.e., x→`d in Eq. s2d, exploits the obtained numeri-
cal data optimallysafter data withx&1 is cutd. This ansatz is
“naive” in the sense thatx=Lsp−p*dn*

is not a true scaling
variable, and the obtained values of the fitted parameters do
not correspond to those defined by Eq.s2d. Those parameters
provide useful degrees of freedom in the fit to remedy un-
known corrections injspd, as our discussion here shows. In
fact, Eq.s3d has been used successfully in Refs. 27, 28, and

30, where very robust scaling behavior was extracted for the
desired defect scaling exponenty, but unrecognizable values
have been found forp* andn* . Unknown corrections in par-
ticular prevented a data collapse for data atp=1 there, a fact
closely mirrored by the hierarchical lattice with a discrete
bond distribution here; see Fig. 4.

Clearly, the system sizesL attainable for the hierarchical
lattice are unrealistic for the EA, and the unknown correc-
tions to scaling disfavor any finite size scaling ansatz in com-
parison to the accuracy obtained in a simple extrapolation of
p=1 data.35,43Yet, the striking similarities in the behavior of
the data for defect energies of the hierarchical lattice and EA
should be noted. The Gaussian bond distribution results in
extended transient behavior until scaling is reached, making
it impractical to extract the stiffness exponenty for the EA,
even if an optimization heuristic would be applied that could
handle remainder graphs beyond the limit of<250 spins
used here. Conversely, the crossover at intermediatep for
system size corrections minimizes transient behavior for ±J
bonds, leading to the best data collapse for values ofL real-
istic achievable for the EA. This intermediate window inp is
invariant but narrows ford→`, allowing for reasonable de-
terminations ofyd for as high a dimension asd=7, with
scaling in the data collapse extending over two decades in
d=3 to merely half a decade ind=7.28 These new values for
yd allow for a direct comparison with mean field
predictions.46 Our study here should add some confidence
into those findings.
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