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Obtaining stiffness exponents from bond-diluted lattice spin glasses

S. Boettcher and S. E. Codke
Physics Department, Emory University, Atlanta, Georgia 30322, USA
(Received 18 January 2005; revised manuscript received 23 March 2005; published 9 June 2005

Recently, a method has been proposed to obtain accurate predictions for low-temperature properties of lattice
spin glasses that is practical even above the upper critical dimergie®, This method is based on the
observation that bond-dilution enables the numerical treatment of larger lattices, and that the subsequent
combination of such data at various bond densities into a finite-size scaling ansatz produces more robust
scaling behavior. In the present study we test the potential of such a procedure, in particular, to obtain the
stiffness exponent for the hierarchical Migdal-Kadanoff lattice. Critical exponents for this model are known
with great accuracy and any simulations can be executed to very large lattice sizes at almost any bond density,
effecting an insightful comparison that highlights the advantages—as well as the weaknesses—of this method.
These insights are applied to the Edwards-Anderson modet B with Gaussian bonds.
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I. INTRODUCTION designed to expedite some thermodynamically correct algo-

The exploration of low-temperature properties of disor-1ithm, such as parallel temperiigor the waiting time
dered systems remains an important and challenging‘eth_c’f_ﬂ5 one focus area has been the use of optimization
problem! Systems in this class possess a low-temperaturBeuristics directed toward fully enumerating ground-state
glassy state with a glass transition at some temperdiyre configurations by any meafis®?® These ground states
>0. They are characterized by a compléee energy land-  should provide the basis for the thermodynamic behavior of
scape in configuration sp&cé with a hierarchy of valleys the system at and ned=0. But due to the NP hardness,
and barriers whose multi-modal structure impedes the proeven heuristic methods become unreliable when system sizes
gression of any dynamics towards equilibration, causing tanexceed about=10® variables, often too small to draw safe
talizing phenomena, such as trapping and jamming on intersonclusions or to sufficiently discriminate between theoreti-
mediate time scales, and aging on long time scales. Asal ideas’:??
understanding of such systems is of paramount importance This fact is illustrated by the determination of the stiffness
as these phenomena are observed for a large class of magxponent, often labelegt or ¢,/2% a fundamental quantity
rials as well as for biological systems. assessing low-temperature energy fluctuations: a positive

The paradigmatic model for the study of such phenomenaalue ofy, as found in EA ford= 3, denotes the increase in
is the Ising spin glass, either on a finite-dimensional latticghe energetic codi.e., “stiffness’) accompanying a growing
[Edwards-AndersofEA) modef] or some other random net- number of variables perturbed from their position in the
work structure. Disorder effects arise typically via quenchedground state. The rise in energetic penalty paid for stronger
random bonds, random local fields, or merely the randomélisturbances signals the presence of an ordered state. In turn,
ness of the network itself, each can lead to conflicting confor systems withy<0 such order is destabilized by arbi-
straints which leave variables frustrated. It is believed that drarily small fluctuations.
proper understanding of static and dynamic features of EA In this paper, we will extract the stiffness exponent from
may aid a description of the unifying principles expressed irthe response induced through defect interf#€&hese can
the wider class of realistic problems. be created by fixing the spins along the two faces of an open

Unfortunately, after 30 years of research there is still ndooundary in one lattice direction. The ground state configu-
consensus on whether the subtle mean-field picture for Isingation with energyE, of an instance is first determined for a
spin glasses derived long &g&° has any relevance for real- random fixing of those boundary spins, then the enétgis
world materials at low temperaturg&sProgress towards such obtained for the same instance and the same fixing, but with
an understanding is slow due to the peculiar structure of thall spins reversed on one of the faces. Hence, the interface
problem at hand. The intricate multimodal low-energy land-energyAE=E;—E, created by the perturbation on the bound-
scape puts the computational effort needed to determine theay is sampled, and its distributidA(AE) determined. If a
modynamic observables usually into the class of NP-hargystem is glassy, the typical energy scale involved, here rep-
combinatorial optimization problertisknow from computer resented by the width of the distributiong(AE)
science, for which worst case computational costs increase,(AE?-(AE)?, should grow with the size of the perturba-
faster than any power of the system sideterestingly, itis  tion, say, the linear extend of the bounddry,a$?
in this area of computer science itself where the mean-field
theory atT=0 has had a most significant impact so*fr. o(AE) ~ LY. (1)

Most insights into finite-dimensional systems has thus
been gained through alternative computational approaches fsccurate determination of this exponent @d+3 has long
elucidate low-temperature properties. Aside from methoddeen elusive, with values given betwegr=0.19"23 to
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FIG. 1. Phase diagram for bond-diluted spin glasses at low tem?/aS chosen to be constant fae¢(p). The limit p—p

peratures. Lattice spin glasses of dimensibn3 possess a spin towards theT=0 transition between the spin glass and para-
glass phaséSG) below the glass transition temperatdig>0. This ~ Magnetic regimésee Fig. 1is interesting in its own right,
phase should persist even for diluted lattices, as long as the perc@Nd Will be investigated further in Ref. 37. Yet, to elucidate
lating cluster of connected spins is compact, i.e., for bond densitieBroperties of the glassy regime, the “window of opportunity”

p sufficiently abovep, (Refs. 27, 28, and 33Below p,, the col- ~ for our method appears to be at intermediate bond densities:
lection of small clusters can only respond paramagnetid&) p has to be sufficiently smaller than unity for our reduction
on long length scales for arfy= 0. Depending on the details of the algorithm to be efficient, but also sufficientgbove p to
bond distribution, thél=0 transition occurs ap’ =p, (continuous  attain system sizek> &(p). Analyzing our numerical data
bonds or at p* > p, (discrete bonds respectively determining the here suggests that in this window the conditiéip)~ (p

slope of the phase boundafy(p) atp’. -p’)™" >1 assumed in Eq2) does not hold, making(p) a

~0.2724 While it was save to say that>0, its value could More general function g with unknown corrections to its
be at best given ag;=0.21). In terms of sorting out theo- Singular part.
retical models, this is too inaccurate to draw solid Operationally, we thus propose a naive ansatz for a col-
conclusiong? lapse of the numerical data valid for the asymptotic regime
This limited accuracy originates with trying to fit data L> £&(p)~1 only,
over too small a range of system sizies Scaling in this X
range is further beset by slowly decaying correctiond.in o(AE)=f(2)xY [x=L(p-p)"]. (3)
which make it hard to decide even where scaling set§4h. _ _ _
The remedy proposed then is to possibly extend scaling by!"C® the numerically ficcesslble data appears to violate
consideringrond-dilutedattices2’-2°As has been argued al- ¢(P)>1, the parameters’ and»" here merely facilitate the
ready in Ref. 33, as soon as the percolation window for bondlata collapse by fitting a more general functiip), and can
densitiesp> p, has been exceeded at some lattice size, th80t be expected to yield accurate predictions for the critical
long-range properties of the giant component—and hence, gfalues in Eq.(2_). The successfu_l |mple_mentat|_on of this an-
the spin glass defined on it—are essentially compact, repréatz for the Migdal-Kadanoff hierarchical lattice here lends
senting theT=0 fixed point of the fully connected lattice. Ccredibility to the findings foy, of the EAin Refs. 27 and 28.
This implies that there the exponepis independent of the ~ Finally, it is remarkable that this approach works substan-
bond densityp. These features of bond-diluted glasses ardially better for a discrete & bond distribution than for
summarized in the phase diagram in Fig. 1. The indepenGaussian bonds, for which scaling corrections due to a small
dence ofy from p appears to hold also for Gaussian bonds iné(p), and even due to finite-transients, are far more signifi-
d=23° wherey<0 (no spin glass phasend universality ~cant. Just as for the J-data, the similarity between our
with respect to bond disorder is violat&tfl:32 Migdal-Kadanoff and our EA data with Gaussian bonds pre-
While we focus on the defect energy B0 here, bond sented here is striking. While this issue eventually deserves
dilution may also be an effective means to study othefmore thorough investigation, we can speculate on the origin
observabled* For determiningT=0 properties, this ap- Of these strong transients. One may remember thalt=if,
proach makes the treatment of larger lattices sizes practic@(AE)~ L™ for continuously distributed bonds with finite
in as much as exact algorithms can be devised that allow thB(0), while o(AE)~L° for +J bonds. The interface may
elimination of a large number of variables, whose state besettle on the extremely weakest within a more widely distrib-
comes entrained to other variables in a predictable way in theted set of continuous bonds, while fod # mustbreak a
ground staté® In this way, systems with more than®ari-  bond of order unity. Similarly, on short ranges in higher di-
ables have been “reduced” to remainder graphs consisting @éfensional lattices, particularly dilute ones, with a Gaussian
no more than a few hundred variables that are amenable @istribution peaked at=0, the violation of heavy bonds can
standard optimization methods.Clearly, though, due to be deferrednitially which an extended defect eventually de-
those almost trivial variables, the information contend aboutmands on larger scalds This naive argument is supported
the asymptotic behavior captured by such graphs may by the fact that at equad andL, defect energies(AE) are
limited, and a price has to be paid through extended transiertypically somewhat smaller for Gaussian than fdrBonds,
behavior. As we hope to demonstrate here, in the end much &s will be seen in Fig. 3.
gained in this method, although at the extremely large lattice In the next section we introduce the Migdal-Kadanoff hi-
sizes that can be reached with the Migdal-Kadanoff approxierarchical lattice, followed in Sec. Il by a discussion of the
mation used here, diminished returns are obtained because $faling arguments leading to E®) and to our ansatz in Eq.
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(3) used to obtain the stiffness exponent on bond-diluted lat-
tices. Section IV contains our discussion of the Migdal- U
Kadanoff data, followed by the application of the gained < \ \ >
insights to the diluted EA with Gaussian bonds in Sec. V.

Finally, Sec. VI contains our conclusions. S~

Il. MIGDAL-KADANOFF HIERARCHICAL LATTICE .llllllllllllmlllllllllllllllml.

To test the scaling ansatz in E@) for the stiffness ex-
ponent, we consider here the bond-diluted hierarchical lattice
(see Fig. 2, obtained in the Migdal-Kadanoff bond-moving
schemé® for low-dimensional spin glasses. These lattices
have a simple recursive yet geometric structure and are well
studied?>32:3%40\Most importantly, their ground states can be
obtained in polynomial time at any bond density, and we can
discuss our results independent of any systematic bias intro-
duced by a subsequent optimization process that may be re-
quired for more complicated models like BAA most inter-
esting property of these lattices is the curious fact that the
scaling of its defect energy distribution, giving rise to the
stiffness exponent, behaves in all respects very similar to that
measured for actual three-dimensional lattic&%s*°

To generate a hierarchical lattice, starting from generation
=0 with a single link, at each subsequent generatiafl
links from I-1 are replaced with a new subgraph, as de-
scribed in Fig. 2. The structure of the subgraph arises from
the Migdal-Kadanoff bond-moving schemedndimensions,
and has 2=8 links ford=3 here. Thus a hierarchical lattice
of generatiorl has(2%)' links (if undiluted), thus correspond-
ing to a d-dimensional lattice of “length'L.=2" and n=2
+20-1(L9-1)/(29-1)=0O(LY) vertices. While the average
connectivity is~4-2"9, the two root vertices from genera-
tion 1=0 themselves obtain in generatiba connectivity of
~2@=D0-D "In turn, ~291 vertices, 7 in 8 fod=3, are only
two-connected.

The diluted hierarchical lattice percolates when there is a
path between the two root-vertices, representing the bound- B
aries of the system. This notion leads to a simple recursion
relation for the percolation threshold by counting the weights
of all diluted subgraphs from Fig. 2 that percolate, i.e., con-
nect right and left vertex. lnl=3 one gets

¢<>.¢<>¢

Pi+1 = 4p7 - 6p; + 4p; - pf, (4)

which has a nontrivial stationary point pt=0.2818376366.
There can not be long-range correlated behavior, such as spin
glass ordering, for ang=< p... It has been pointed out by Ref.
33 that a spin glass on a hierarchical lattice with Bonds .IIIIIIIIIllIlllIIlIlIIlIllIlllIIlI.
exhibits a critical transition between a paramagnetic and a
spin glass phase for bond densitiespat0.31032. While
below p. disconnected clusters clearly prevail and prevent
long-range correlations, even fgr,<p<p" such correla-
tions remain suppressed due to the cooperative behavior in
the bond structure pervasive in the lattice, leading to cancel- £ 2 piagram for the recursive algorithm to calculate spin

lations that additionally disconnects subgraphs at somgjasses on hierarchical lattices. Drawing bodds randomly from
higher level of the hierarchy. In contrast, for a ContinUOUSa Sufficienﬂy |arge poopl_l(J) at generation—]_ (top)l a lattice of
bond distribution, such as the Gaussian bonds discussed t@neraﬂorﬂ is formed, then bond-diluted to densipy and finally
low, any such cancellations would be unlikely, leading in this‘reduced” (Ref. 39 to an effective bond, between the root spins
case top’ =p,. (squarek which is added to the pod?¥(J) (bottom.

-l
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Ill. DEFECT-ENERGY SCALING FOR p—p’ The exponentp could be of importance, since it may be
experimentally accessil#fe*? while the relation ¢p=-ypv
provides a simple computational determination in terms of
Eqg. (6) and the well-known percolation exponents This
connection will be considered in a forthcoming publicatién.

L In the following, we will explore some of these relations
g(_p) ' ©) numerically for the hierarchical lattice, for which large sizes

L can be obtained. But the central purpose of this paper is to

where Y~ (p—p’)' is an effective surface tension agth)  probe Eq.(3), which has been used in Refs. 27 and 28 to
~(p-p")™ is the correlation length for the crossover into provide accurate predictions for the stiffness exponggts
glassy behavior. Note that E¢p) requires bothl and¢, to ~ fundamental for describing low-temperature excitations in
be large compared with the unit lattice spacing to avoid fur-Spin glasses.
ther scaling corrections. The scaling functiti) is defined

Following the discussion in Refs. 33 and 36, for bond-
diluted lattices atp— p" we have to generalize the scaling
relation in Eq.(1) for the defect energy to

o(AB) p~ y(p)Lyf<

to be constant for large argument> £> 1. IV. NUMERICAL RESULTS FOR HIERARCHICAL
For £&>L>1, Eq.(5) requires thaff(x) ~x* for x—0 to LATTICES
satisfy either the vanishing of with L in case ofp =p
(Gaussian bondsor its scale invariance at g’ >p. (+J Our numerical studies on the hierarchical lattice have

bonds. Clearly, due to the tenuous fractal nature of the perbeen conducted with the algorithm descriped in Re_f. 35. ltis
colating cluster ap =p,, no long-range order can be sus- based on the evolution of bond podiee Fig. 2 of size A

tained, defects possess a vanishing interface, and one m&@m generatior to generatiori +1, similar to the procedure
expect that already used in Refs. 23 and 43. In our algorithm, though, an

existing bond at generatidnis replaced with a new bondo

o(AB) pr ~ L7, (6) keep A, constank for every k new bonds that are added at
generation —1. This procedure is legitimate in principle, as
even neighboring subelements in the graph act independently
and only effect each other in a collective sense just as repre-
sented by the bonds replacing them in the next generation.
The danger is that the diversity in the pool of those bonds is
insufficient, leading to creeping spurious correlations and
difficult-to-perceive drifts away from the true values of ob-
servables. Since the size of the pool of bonds has only a
minor effect on the computational effort fde=1, we can
rerun the same calculation repeatedly to a high number of

enerations using ever-larger pool siZgauntil the data be-

whereyp < 0.3¢ To cancel thep-dependence ai=p’, Eq. (5)
requiresy+u=yp and t+ur=0, i.e., t=vy+¢, setting ¢=
-1yp.3% As a result, we obtain EgZ2). In contrast, forp®
>p., the percolating cluster appears compact on schles
>(p -py) ", ando can not vanish for further increasirg
Yet, neither cano increase afp’, by definition. Henceo
remains scale invariant, and correspondinglgindyp vanish
in Egs.(2) and(6) for £J bonds.

In the case of continuous bond distributioR§J) with
finite P(0), wherep =p,, spin glass ordering can only be

ncitl(cefj o)rlvscales iai Igavi';tﬁs Iarrgelz zsnthe correlt?;*lon leng mes insensitive td,. We have used this procedure to gen-
§~(p—pc)" associate percolation, SU9gesting=v. o516 most of the data in Fig. 3.

In case of 4 bonds, .the cooperative cancellations between Further problems arise when we use this algorithm near
discrete bonds mentioned above further weaken order, leagky ritical pointp”. There, the bond distribution is torn be-

ing to v* > v for the T=0 glass transition gb". Accordingly, tween the trivial fix poi i gt
. _ . . ; point of vanishing width in the paramag-
:Qef. 33 f:jn_dgv—l.2274 andy =1.5373 for the hierarchical netic phase and the true glassy state with subtle, long-range
attl':(?e Ilrll B .h L wh h £ th correlations between bonds of the previous and following
inally, at the crossovef~L, where the range of the generations, and small fluctuations can severely bias the evo-
energy excitations(AE) reaches the percolation length and lution. At that point, we have to resort to slower regeneration

spin glass order ensues, H§) yields rates withk>1, or even the exact algorithm for whidh
~ (0= )NEYF(1) ~ (D-Dp")? =24
748w~ (P=PVEHD ~ (P-p)" {0 Our numerical studies, as shown in Fig. 3, confirm the
One can associate a characteristic temperature with thisicture described in Sec. lll. To induce an interface in the
crossover byBo(AE)y ,~1; for temperatures above this MK as described in the Introduction we consider only the
T=1/p8, thermal fluctuation destroy spin glass order. Thisleftmost and the rightmost spin in each graph as entire
suggests a relation between bond density and the glass trameundary. This is meaningful, since each of these spins con-
sition temperature: nects toO(L) other spins, see Sec. Il. Then, the defect energy
T.(0) ~ (p=p)* ®) of a lattice at generatioh-1 (sizeL=2'"1) is simply (twice)
olP P=P)" the value of the bond of generatidnreplacing that graph
Equation(8) defines¢ as the “thermal-percolative crossover (see Fig. 2 In this sense, the defect energyAE) can be
exponent,?® which specifies the details of the phase bound-nterpreted as an effective coupling between both sides of the
ary nearp. (or p) in Fig. 1. For the continuous distribution, defect interfacé® if that coupling strengthens with distance
wherep” =p,, ¢ would be in general nontrivial, while fork L, the system is in an ordered state, and vice versa.
atp’ > p. it appears thatp=0, indicating a jump in the phase Note that in Fig. 3 fop<p" the data evolves towards the
boundaryTy(p) atp". p=0 fixed point witha(AE)=0, while forp>p it invariably
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p=0.70 & p=0.37 re
p=0.60 = p=0.36 r

10
p=0.50 v+ p=0.35 H& | _

G(AE)

1 10 100 : 1000 10000 100000

' ' ' ' ' FIG. 4. Plot of the raw data fas(AE) as a function of systems

B sizeL for bond fractionsp” <p<1 using discrete * bonds. Some
of this data is already shown in Fig. 3. Of note is that there appears
to be no variation withp in the asymptotic scaling, that scaling
corrections at small are least noticeable for intermedigte and
that there is an anomalous gap between datg#0.9 andp=1.

diluted lattices as recently proposed in Refs. 27 and 28. In
this scheme, the properties of the zero-temperature fixed
point are determined for a number of intermediate bond-
densities p—sufficiently abovep” to be glassy and suffi-
ciently small to achieve large system siZesin particular,
Refs. 27 and 28 focused on the defect energy for finite di-
. mensional lattices. This procedure should be applicable also
s 10 to other observables.
®) log,(L) First, we consider & bond distributions, which had been
used exclusively in Refs. 27 and 28. In Fig. 4 we plot with-

FIG. 3..Plot of the WidthT(AE) of the defect energy distribytion out any scaling all data we have obtained with the method
as a function of systems S|1e_for various bonq fractlonﬁ_usmg above forp=0.35, ..., 1. It is worth mentioning two features
discrete bondétop) and Gaussian bondbottom in the 3 Migdal- ¢ that data:(1) scaling corrections for smalldr appear to
Kadarlof'f lattice. In each plqt, da_shed lines from bottom to tpp referchange sign at aroun~ 0.45, suggesting that those correc-
o p=01,02,...,1. Solid lines refer to ddata W'tmh tions are weakest at intermediate valuespohstead of at
=0.28,0.29, ...,0.34 on top, amjzo_.28, O.'281.8‘ and 0.29 on the p=1, against expectation2) The data forp—1 initially
bottom. In both plots, the data points with circles were obtained ; . : .
using thek=1 implementation from Ref. 35, those with diamonds narri)ws (on this IoQam.hmIC Sc.abefor equal m.cremer.]ts
usingk=2, and those with crosses near the respeqtiveequired (Ap=0.1), but then exhibits an increased gap in the jump
the exact algorithm. Note that pt ~0.310> p, on top, the slope is  T0M P=0.9 top=1. Both of these features have also been
near vanishing, while fop"=p,=0.2818 on the bottom, the slope OPserved for the EA data |d|:3.27'2.8The first feature seems
indicates a well-pronounced power-law decay. insignificant here for data extending out lto>10°, but the

suppression of scaling corrections becomes extremely help-

evolves to thep=1 fixed point with scaling behavior ful when the maximal attainable is small, as for the EA
o(AE) ~ LY. Figure 3 clearly suggests thait=p.=0.2818 for ~model. This fact has also been exploited in Ref. 34. The
the continuous Gaussian bond distribution, while the discretéecond feature could be explained with the requirement for
+J bond distribution favorg =0.3103>p.. At p’, o varies  the scaling ansatz of~ (p—p’)”™” >1, which may not be
distinctively different withL than even for bond densitigs  satisfied for anyp too far fromp”. In Ref. 35, similar rapid
quite near top". In particular, the behavior of at the re- variations in an observablghe overlap for p— 1 have been
spectivep” appears to confirm the predictions for the scalingobserved, although a connection to the variations in the am-
in Eq. (6) with yp=0 (i.e., ¢=0) for discrete bonds, and a plitude of o here is not clear.
nontrivial exponent we measure to be abgpt-0.91) for For this discrete bond distribution, the scaling ansatz in
Gaussian bonds. Eq. (2) simplifies, since we can assume=0; see top of Fig.

In the following, we want to test the predictive power of 3. Hence, we fit the data obtained for various bond densities
the finite-size scaling ansatz in E®) as argued on the basis p>p" in Fig. 4 directly to the form proposed in E¢3),
of Eqg. (2). This ansatz has been applied to the numericalvhere the scaling variable is adjusted to provide the best
measurements of the glassy stgpe>p’) on large, bond- data collapse. The unknown scaling functitx) has been

e
& [-0”
=]
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FIG. 5. Collapse of the data from Fig. 4 according to the scaling FIG._6. Collapse of the data from Fig. 4 a*cco*rding to the scaling
ansatz in Eq(3), but using the exactly known values fof, v, and ~ @nsatz in Eq(3). Here, the values fof(x), p, v, andy are all
y=0.2552. Here, only(e), an overall amplitude, remains as a free determlr_led _from the fit of data in the scaling regime only, although
fitting parameter. all data is displayed.

replaced by a fitting constanf(«), to capture its leading p=0.35 down toL > 8 for p=0.9, see Fig. ®#has been used
asymptotic behavior for large. for the fit. All data forp=1 has been explicitly excluded due
The advantage of the hierarchical lattice is that we alreadyo the anomalous jump in the amplitude®hoted in Fig. 4.
know the expected values for the parameters involvedrhese choices are reflected in the collapse: Alljpat data
in such a fit, ie., p'=0.31032, »'=1.5373% and combines exceedingly well for> 1, predictingy=0.2561),
y=~0.2552%% Thus, first we can attempt to utilize this only 1/2% above the exact value. For data scaling over al-
knowledge to collapse the data in Fig. 4 by fixipg v, and  most 5 decades, one may have expected more accuragy for
y, only leavingf(«) to be fitted. As can be seen in Fig. 5, the pyt slowly decaying scaling correctiofsand the smallness
data collapses exceedingly well even for smalis long ap  of y itself, limit the relative accuracy. The value fgrre-
is not too large. Scaling ensues quickly fer-1, which  mains quite robust under changes in the data points included
would allow for an excellent fitif one were to exclude data in or excluded from the fit. On the other hand, the fit selects
for p>0.7. Remarkable is the quality of the collapse for datap” ~0.29, " =~ 1.94, andf(») =~ 2.1. Note that the fitted value
reaching belowx<1. It reveals a concave shape ffi),  for 4" is larger than the actual value. It is this increase’in
which explains the finite-size corrections in Fig. 4: Data withthat facilitates the collapse of the data in the asymptotic re-
lower p first rises slowly, then more rapidly for increasibg  gime, x> 1. Consequently, the collapse of the data excluded
before scaling settles in. In turn, data with higipgmmedi-  from the fit atx<1 is somewhat poofbut still not too bad
ately rises rapidly before settling into a slower asymptoticher. This is exactly the approach adopted in Refs. 27 and
growth. Data withp near unity rises even more rapidly to 28 to extract the best possible estimateyforence, as noted
overshoot the collapse in the scaling regime. there, the values for any parameter aside frofitted in this
Clearly, these observations about the intricacied(®  way must be treated with caution.
are far too subtle to be of any use in the more typical situa- We can proceed in a similar manner for the bond-diluted
tions where we have no prior knowledge of the parametershierarchical lattice with a continuous Gaussian bond distri-
Worse yet, even with that knowledge, corrections due to théution. First, we plot the raw data obtained with the algo-
finite size ofé=(p-p")™ in particular appear to prevent a rithm described above in Fig. 7. In this case, finite-size cor-
collapse of the data in much of the asymptotic scaling refections are more pronounced but appear to diminish more
gime. Yet, it seems obvious that the data &rp>p" and  gradually towardg=1. The scaling arguments from Sec. IlI
large enough. exhibits scaling according to E¢l), provid- ~ would suggest to fit the data to a form derived from E),
ing information we desire to exploit. The precise value of the

parameter” and v" are important for the behavior dfx) U(AE)L,Q ~ (o)W 9)
nearx~ 1, but have little effect on the scaling behavior for (p-p)? '

x>1. Thus, instead of correcting the fit to extract accurate

values for all parameters, we cut data that does not appear tdere, it appears that the scaling collapse involves yet another

scale well. Then, we can collapse the data in the scalinggarameter, the thermal-percolative crossover expopeior

regime according to Ed3), merely usingp”, v, andf(«) as  the scaling variable=L/&(p) atp— p’ =p,. In contrast tq"

free parameters to facilitate an accurate determination of and ", which can be determined analytically for the hierar-

only. chical lattice,¢ is similarly nontrivial asy itself, and is even
Figure 6 displays the same data as before, but only datharder to estimate numerically. By definitiop=-vyp and

judged by inspection to be sufficiently scalifig>1024 at Yp has to be obtained exactly ptp’, see Eq(6), where the
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L Lip-p)
FIG. 7. Plot of the raw data far(AE) as a function of systems FIG. 9. Collapse of the data from Fig. 7 according to the scaling

Si.ZG.L for bond fractionsp*<p<1 uging continuous Qaus_sian- ansatz in Eq(g) Here, the values fof(x), p*7 V*, ¢ andy are all
distributed bonds. Some of this data is already shown in Fig. 3. determined from the fit of data in the scaling regime only.

algorithm is the most delicate, limiting us to<2. As
shown in Fig. 3(bottom), from the data foror at p° we can
extractyp=—0.91). With the percolation exponent=1.22,
we obtaing=1.1(1).

In Fig. 8, we collapse the data from Fig. 7 using E®).
by fitting f(e¢) and ¢, but holdingp” and v, andy fixed.
Similar to Fig. 5, the collapse proceeds well for data that i
nearx~ 1 and hagp nearp*..AIready for int_ermediatPT values ing behavior due to the exponest (i.e., $=0), the data
of p, the data spreads widely, suggesting tt) is 100  (g|japse proceeds even more favorably, givisg.2557 but
small there. We obtain a fitted value @f~0.9, not too far p'=0.31 andy' =~3. Having one less free parameter makes
from the determination vigp above. the data collapse a bit more robust, with picking up the

Again, the focus on properties associated vitlgave Us  error due to a less adequate scaling ansatz. That a collapse of
a good collapse neak~1, but not about the desired ihe gata succeeds even when we ignéris a reflection of
asymptotic scaling regime for at x>1. Consequently, We the fact that in the limit of large argument féy only two of
again exclude all data in the fit that is by inspection of Fig. 7ine three exponentg ¢, and " are independent. Equation

not yet in that asymptotic regime and proceed with an unre; e E N Y Y o
stricted fit involving all parameters. The result of such afjgs) :%c:]l:cbe;CI(Q:O ég(c:;;‘ (p=p) » and setting$=0 leads

collapse is shown in Fig. 9. Now the data collapse is excel-

lent in the asymptotic regime for data of sufficiently lalge
and large enoughp, includingp=1, but poor neap=p" and

for x<1 for the excluded data. The fitted values here are
p'=0.32, "' =1.20, $=~0.51, andy~=0.256, again within
1/2% error of the value directly determinedpat 1. Surpris-
ingly, even v’ is well approximated now while only is
Ssubstantially off. In fact, ignoring the correction in the scal-

p=1.00 & =037 | 4 3 ' ' V. EDWARDS-ANDERSON MODEL

p=0.90 r&+  p=0.36 r&1 | WITH GAUSSIAN BONDS
p=0.80 p=0.35 HH
p=0.70 &= p=0.34 &
p=0.60 &+ p=0.33 =x
p=0.50 rv+ p=0.32
p=0.40 r= p=0.31
p=0.39 +a- K0-2552
© 4o || +p=0.38 &

We have already pointed out the striking similarities be-
tween the data for defect energies @n3 hierarchical lat-
tices here and on cubic lattices in Refs. 27 and 28 far +
bonds. We complement this comparison here with a study of
1 the EA on cubic lattices with Gaussian bonds. Such a study
allows us to probe some of the assertions leading to(8g.

It also tests the universality gfwith respect to the details of
the bond distribution. The well-known result fd=1 men-
tioned in the Introduction and recent studies dor 1,26:31.32
have shown that there are significant differences in the re-
sults for the stiffness exponent with respect to bond distribu-
tion below the lower critical dimension, wheye<0, while
L(p-p*)"* Ref. 32 has argued that universality should hold wierD.

Our findings here, and for the hierarchical lattice above, sup-

FIG. 8. Collapse of the data from Fig. 7 according to the scalingPort this point.

0.1 1 10 100 1000 10000

ansatz in Eq(9), but using the exactly known values fpt and v* .Unlike for .hierarchical lattices, the numgrical effort re-
(theny is not needed Here, onlyf(e) and ¢ remain as free fitting quired to achieve any reasonable system kize the deter-
parameters. mination of defect energies on cubic lattices grows exponen-
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25 30

FIG. 10. Plot of the raw data far(AE) as a function of systems FIG. 11. Collapse of the data from Fig. 10 according to the
sizeL for bond fractiongp.=p’ <p=1 using continuous Gaussian- scaling ansatz in Eq9). The values for the parameters had to be
distributed bonds on a cubic lattice. At nearly eaghlong tran-  fixed by hand ap’=p.~0.248,1"~0.75, and$=0.9.
sients are followed by an intermediate scaling regime, cut short at

largerL, when numerical inaccuracies result in a systematic drift. 5 it of the remaining data according to E() in the

tially with the number of variables; the problem is NP h&td. asymptotip regimex> 1, Wit_hout.fixing any parameters, F.ig.
While the method of reducing low-connected variables is12 is obtained. The result is noisy and apparently unsat_lsfac-
applicable just as well for the Gaussian distribution, ourlOry: The value ofy=3.1 is as large as for Fig. 9, which
implementation of the extremal optimization heuristic doesSeparates this data in the scaling regime for gaahto al-

not perform well for these systems. Although it might be Most disconnected groups. Yet, the fit obtains a valug of
capable to yield reasonably accurate predictions for ground®0-23, in reasonable agreement with the best-known value
states themselves, we notice a significant drift in the data fo®f y=0.241).2"%

the defect energy, formed out of the difference between two Clearly, as for the hierarchical lattice at the end of Sec. 1V,
closely related ground states, starting with remainder graphthe focus on data witk> 1, i.e.,p sufficiently larger tharp’

of sizen=250. As Fig. 10 shows, much of the obtained data,such thatL > &(p), makes the details of the transition @t
both for small and larget, is not scaling and has to be — p" (such as the value af) irrelevant for the determination
discarded. We note that the long transients even before anyf y. This suggests Eq3) as the appropriate scaling ansatz

asymptotic scaling is reached for smallis again reminis-  to extracty, as proposed in Refs. 27 and 28, even for Gauss-
cent of the hierarchical lattice as in Fig. 7. ian bonds.

An attempt to collapse the data according to E).as
before requires the additional effort in determinipgfrom

= Tp=030 ——  p=0.40 v

Eq. (6). A determination of the defect energy gt has the DAt e heos o d=3
advantage that the exact reduction method almost always p=0.32 =~ p=0.50 e~
. L. : p=0.33 ~B~  p=0.55 e~
succeeds completely, obviating the application of any opti- P0.34 M pe0.60 e
mization and large lattice sizes can be reacHe@ur pre- p=035 o p=0.70 &~

liminary studies for systems up t0o=100 have yielded an 22333 b E:ggg :
exponent ofyp=-1.282). The consensus of results for the p=1.00 +&-
correlation exponent il=3 for percolation seems to be 1}
=0.862),* which results in a thermal-to-percolative cross-
over exponent, see E@), of ¢=1.104). Note that while
v<1 and|yp|>1 here, opposite to the hierarchical lattice in
Sec. IV, the values o® are indistinguishable within errors.
Similar to Fig. 8, one may try to collapse the data accord-
ing to the scaling ansatz in E(Q) by fixing p*, v*, andy to 00001 0.007 0.01 o1 ]
their best-known values and fitting féfc) and ¢. Such a fit L(p-p')"*
does not converge. We managed only to collapse the data for
p—p by hand with the best-known value fop'=p; FIG. 12. Collapse of the data from Fig. 7 according to the scal-
~0.248' but " ~0.75, and$=0.9, somewhat below their ing ansatz in Eq(3), i.e., $=0. Here, the values foi(),p", v,y
best-known values. The result in Fig. 11, while far less congre all determined from the fit of data in the scaling regime only,
vincing for this limited data set, parallels that in Fig. 8 to aaithough all data from Fig. 7 are shown. Despite the obvious short-
large extent. comings of the data, the fitted value p#&0.23 compares reason-
Finally, we set¢=0, which reverts Eq(9) into Eq. (3), ably well with the best-known value of=0.241) (Refs. 27 and
and eliminate all data that is obviously not scaling. Pursuing8), drawn here for referendgine).
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VI. CONCLUSIONS 30, where very robust scaling behavior was extracted for the

We have explored a recently proposed method of Co"apS(_jesired defect scaling expongptbut unrecognizable values
ing data obtained on bond-diluted lattices to estimate lowlave been found fop" and v . Unknown corrections in par-
temperature scaling properties for the Edwards-Andersoficular prevented a data collapse for dat@atl there, a fact
model. Using bond-diluted hierarchical lattices from theClosely mirrored by the hierarchical lattice with a discrete
Migdal-Kadanoff bond-moving scheme =3, for which ~ Pond distribution here; see Fig. 4. _ _
many properties at=0 are known exactly or with high ac- Clearly, the system sizds attainable for the hierarchical
curacy, the validity of the method is probed. The data oblattice are unrealistic for the EA, and the unknown correc-
tained for the defect energy of the hierarchical lattice provedions to scaling disfavor any finite size scaling ansatz in com-
to exhibit the same qualitative features as the—much mor8arson tost?se accuracy obtained in a simple extrapolation of
limited—data for the EA, respectively for discrete and con-P=1 data?>**Vet, the striking similarities in the behavior of
tinuous bond disorder. the data for defect energies of the hierarchical lattice and EA

The scaling ansatz used to collapse the data, most gene°fb°U|d be noted. The Gaussian bond distribution results in
ally Eq. (2), was proposed in the neighborhood’ offz0 €xtended transient behavior until scaling is reached, making
phase transition at bond densify between paramagnetic 't impractical to extract the stiffness exponentor the EA,
and spin glass behavior, which is closely associated with thVen if an optimization heuristic would be applied that could
bond percolation transition at,.333¢ Equation(2) requires handle remainder graphs beyond the limit ®R50 spins

both, the divergence of the system sizand of the correla-  Used here. Conversely, the crossover at intermediafter
tion length¢=(p-p*)~"". In contrast, the desired scaling be- SYStEM Size corrections minimizes transient behavior fbr +

havior is associated with =0 fixed-point characteristic of bonds, leading to the best data collapse for valuels wfal-
. . .o P istic achievable for the EA. This intermediate windowpiiis
the entire spin glass regime foe> 1, independent of(p) as

. . invariant but narrows fod— o, allowing for reasonable de-
long asL>&(p). In particular, valuable data obtained for . 9

I but i di I ¢ hich ) terminations ofyy for as high a dimension ad=7, with
argeL but intermediate values g, for which é(p) remains  sajing in the data collapse extending over two decades in

small, would have to be discarded in an ansatz basep on y-3 g merely half a decade =728 These new values for
—P . Thus, a naive ansatz, E(B), based on the limiL 50w for a direct comparison with mean field

>&(p) (i.e., x—) in Eq. (2), exploits the obtained numeri- pregictions® Our study here should add some confidence
cal data optimallyafter data withx<1 is cud. This ansatzis jnto those findings.

“naive” in the sense that=L(p-p")” is not a true scaling
variable, and the obtained values of the fitted parameters do
not correspond to those defined by E2). Those parameters
provide useful degrees of freedom in the fit to remedy un- S.B. would like to thank A. Bray and M. Moore for help-
known corrections iré(p), as our discussion here shows. In ful discussions. This work was supported by NSF Grant No.
fact, Eq.(3) has been used successfully in Refs. 27, 28, anddMR-0312510.

ACKNOWLEDGMENTS

*Electronic address: www.physics.emory.edu/faculty/boettcher

1Spin Glasses and Random Figl@slited by A. P. YoungWorld
Scientific, Singapore, 1997

2Landscape Paradigms in Physics and Biolpgdited by H.
Frauenfeldeet al. (Elsevier, Amsterdam, 1997

3pP. Sibani and J. Dall, Eur. Phys. J. 3, 233(2003.

4S. Boettcher and P. Sibani, cond-mat/0406543publishedl

SNew Optimization Algorithms in Physjcsdited by H. Rieger and
A. Hartmann(Springer, Berlin, 2004

6S. F. Edwards and P. W. Anderson, J. Phys. F: Met. PBy865
(1975.

7K. H. Fischer and J. A. Hert5Spin Glasse$Cambridge Univer-
sity Press, Cambridge, England, 1991

8D. Sherrington and S. Kirkpatrick, Phys. Rev. Le85, 1792
(1975.

9G. Parisi, J. Phys. AL3, L115 (1980.

10M. Mezard, G. Parisi, and M. A. Virasor&pin Glass Theory and

14E. Marinari and G. Parisi, Europhys. Lett9, 451 (1992.

153, Dall and P. Sibani, Comput. Phys. Commum.1, 260 (2007).

16K. F. Pal, Physica A233 60 (1996; Physica A223 283(1996.

17A. K. Hartmann, Phys. Rev. 59, 84 (1999.

18M. Palassini and A. P. Young, Phys. Rev. Le, 5126(1999.

195, Boettcher and A. G. Percus, Phys. Rev. L886, 5211(2007).

20A. A. Middleton, Phys. Rev. B89, 055701R) (2004).

2lF Krzakala and O. C. Martin, Phys. Rev. Le&5, 3013(2000.

22M. Palassini and A. P. Young, Phys. Rev. L85, 3017(2000.

237, J. Bray and M. A. Moore, J. Phys. @7, L463 (1984.

24A. C. Carter, A. J. Bray, and M. A. Moore, Phys. Rev. Leg8,
077201(2002.

5B, Drossel and M. A. Moore, Eur. Phys. J. &1, 589 (2007).

26A. K. Hartmann and A. P. Young, Phys. Rev. &, 180404R)
(2002.

27s. Boettcher, Eur. Phys. J. B8, 83 (2004.

283, Boettcher, Europhys. Let67, 453(2004.

Beyond(World Scientific, Singapore, 1987
1D, S. Fisher and D. A. Huse, Phys. Rev. Lei6, 1601(1986.
12F, Barahona, J. Phys. A5, 3241(1982.
13\M. Mezard, G. Parisi, and R. Zecchina, Scier®7, 812(2002.

29T=0 phase transitions on dilute lattices have been studied in
many contexts before, for instance, for the Ising model by M. J.
Stephen and G. S. Grest, Phys. Rev. L88, 567 (1977, or for
guantum spin models, see B. K. Chakrabarti, A. Dutta, and P.

214409-9



S. BOETTCHER AND S. E. COOKE PHYSICAL REVIEW B1, 214409(2009

Sen,Quantum Ising Phases and Transitions in Transverse IsinggSA. A. Migdal, Sov. Phys. JETRI2, 743(1975; L. P. Kadanoff,

Models(Springer, Berlin, 1996 Ann. Phys.(N.Y.) 100, 359 (1976.
%0S. Boettcher and A. K. Hartmann, cond-mat/0503486pub- 395 Kirkpatrick, Phys. Rev. BL5, 1533(1977.
lished. 40B, \W. Southern and A. P. Young, J. Phys.1D, 2179(1977.

81C. Amoruso, E. Marinari, O. C. Martin, and A. Pagnani, Phys.
Rev. Lett. 91, 087201(2003.
82].-P. Bouchaud, F. Krzakala, and O. C. Martin, Phys. Re%83

410. Beckman, E. Figueroa, K. Gramm, L. Lundgren, K. V. Rao,
and H. S. Chen, Phys. Sc25, 726 (1982.
42H. Maletta and W. Felsch, Phys. Rev. &), 1245(1979.

224404(2003. 43 .
A, J. Bray and S. Feng, Phys. Rev. 35, 8456 (1987). TiQ?SS'zTZ%Z;A' J. Bray, and M. A. Moore, Phys. Rev. L&,
34T, Jorg, cond-mat/041032@inpublishedl 7
353, Boettcher, Eur. Phys. J. B3, 439 (2003. 44p. H. L. Martins and J. A. Plascak, Phys. Rev.6#, 046119
36J. R. Banavar, A. J. Bray, and S. Feng, Phys. Rev. 158t.1463 (2003. _

(1987. 4C. D. Lorenz and R. M. Ziff, Phys. Rev. B7, 230(1998.
37S, Boettcher and E. Marchettinpublisheil 46S. Boettcher, cond-mat/040718npublished

214409-10



