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We use real replicas within the Thouless, Anderson, and Palmer construction to investigate stability of
solutions with respect to uniform scalings in the phase space of the Sherrington-Kirkpatrick model. We show
that the demand of homogeneity of thermodynamic potentials leads in a natural way to a thermodynamically
dependent ultrametric hierarchy of order parameters. The derived hierarchical mean-field equations appear
equivalent to the discrete Parisi RSB scheme. The number of hierarchical levels in the construction is fixed by
the global thermodynamic homogeneity expressed as generalized de Almeida-Thouless conditions. A physical
interpretation of a hierarchical structure of the order parameters is gained.
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I. INTRODUCTION

The mean-field model for spin glasses introduced by
Sherrington and Kirkpatrick1 is a paragon for complex sta-
tistical systems. Although very simple in its formulation, the
model offers almost inconceivable richness of the phase
space of its solutionssd. This richness is manifested in the
replica-symmetry breakingsRSBd solution introduced by Pa-
risi within the replica trick.2 Since then, a lot of supporting
arguments reaching from numerical simulations3 over ana-
lytic thermodynamic approaches without the replica trick4 to
rigorous mathematical constructions5 have been accumulated
in favor of accuracy and exactness of the Parisi RSB solution
of the Sherrington-KirkpatricksSKd model. In spite of the
amassed evidence indicating to the RSB character of the
eventual solution of the SK model, we have not yet fully
understood in physical terms the origin of the RSB ansatz
with its ultrametric hierarchical structure of order param-
eters.

The replica-symmetry-breaking solution of Parisi was
proposed as a means formaximizationof the averaged free
energy as a functional of the averaged order parameters in
the limit of zero number of mathematical replicas. Analytic
continuation from integer to noninteger numbers of replicas
less than one is, however, not trivial and unique. The maxi-
mum principle seems to provide a way how to single out a
particular analytic continuation. Although the Parisi ansatz
provides an internally consistent solution numerically repro-
ducing the results from Monte Carlo simulations,6 it is not
evident whether it leads to the absolute maximum of the free
energy. Moreover, even when observed empirically on sim-
pler solutions of the SK model that more stable solutions
have higher averaged free energy, there is no general physi-
cal law from which we could derive the maximum principle
for the averaged free energy. On the other hand, a supremum
from all possible choices of the Parisi order parametersqsxd,
xP f0,1g was proved to lead to an exact averaged free en-
ergy of the SK model.7 The RSB scheme hence has a deeper
meaning and there must be a fundamental physical principle
from which one could derive the RSB solution without ad-
ditional physically unjustified ansatzes.

The aim of this paper is to demonstrate that the maximum
principle in the Parisi solution can be replaced by minimiza-
tion of inhomogeneity of thermodynamic potentials in a suc-
cessive way toward a globally thermodynamically homoge-
neous solution. Thermodynamic homogeneity is a
fundamental property needed for the existence of a unique
thermodynamic limit of statistical systems. It is a conse-
quence of scale invariance of the limit of volumeV of the
system to infinity. That is, large volumesV andaV of ther-
modynamically homogeneous systems must produce the
same thermodynamics, i.e., the same densities of extensive
thermodynamic variables. Only in thermodynamically homo-
geneous systems the thermodynamic limit does not depend
on the shape and the boundary conditions of large finite vol-
umes.

We find it useful to apply specific scalings of extensive
variables of mean-field, long-range models represented by
replications of the phase space. We employ real replicas of
the spin variables and demand that the thermodynamics in
the replicated phase space be independent of the number of
introduced equivalent replicas. The independence of the re-
sulting averaged free energy density on the number of real
replicas is investigated by studying stability of thermody-
namic potentials with respect to perturbations induced by
infinitesimal homogeneous interactions between different
replicas. Thermodynamic potentials are stable if linear re-
sponse to the interparticle interaction remains finite and the
spin replicas decouple in the equilibrium state after switch-
ing off the external inter-replica interaction.

The role of real replicas in this approach is similar to the
role of mathematical replicas in the replica trick. They are
used to represent integer powers of the partition sum. Unlike
the replica trick the number of real replicas will not be lim-
ited to zero. Alike the replica trick we will need to continue
analytically the averaged replicated free energy from integer
numbers of real replicas to arbitrary positive numbers to test
thermodynamic homogeneity locally. For this purpose we
will need to assume a symmetry of the averaged replica-
dependent order parameters, Legendre conjugates to the
inter-replica interaction. To find a physical motivation for a
selection of a particular symmetry, we use the thermody-
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namic approach of Thouless, Anderson, and PalmersTAPd.
In this approach we are endowed with a set of thermody-
namic mean-field parameters, local magnetizationsmi. They
are supposed to determine equilibrium thermodynamic states
at fixed configurations of spin-spin couplings. If the full set
mi , i =1, . . . ,N determines the thermodynamic state uniquely,
the replica symmetric ansatz applies as in the high-
temperature phase. If not and the set of local magnetizations
does not contain full information about equilibrium states,
the system is thermodynamically inhomogeneous and further
knowledge of the system is needed. We propose in this paper
a systematic way how to retrieve the missing information
about the structure of degenerate states described by a set of
local magnetizations. Our construction leads in a rather di-
rect way to an ultrametric structure of the order parameters in
the sreald replica indices and to a hierarchical averaged free
energy equivalent to the discrete RSB solution of Parisi.

II. THERMODYNAMIC HOMOGENEITY AND
AVERAGING OF REPLICATED TAP FREE ENERGIES

A. Thermodynamic homogeneity and
replications of the phase space

Homogeneity of thermodynamic potentials is one of basic
principles of statistical mechanics. Thermodynamic homoge-
neity in systems with short-range interactions is usually
expressed as the Euler condition for thermodynamic
potentials sfree energyd aFsT,V,N, . . . ,Xi , . . .d
=FsT,aV,aN, . . . ,aXi , . . .d, wherea is an arbitrary positive
number andXi exhaust all extensive variables. Only if the
Euler homogeneity is fulfilled we are able to factorize the
volume from extensive variables, come over to densities, and
define the thermodynamic limit uniquely and independently
of the shape and boundary conditions of finite volumes.
Thermodynamic homogeneity can be rephrased as a scale
invariance of entropySsEd=kB ln GsEd=kB/n ln GsEdn for ar-
bitrary positiven. This definition extends also to mean-field
slong-ranged models. We hence use the latter form of ther-
modynamic homogeneity applied to the averaged free energy
of the SK model.

Assuming thermodynamic homogeneity we can write the
averaged free energy asF=−1/bnklnsTr e−bHdnlav. If the
scaling factorn is a positive integer we can equivalently
represent the discrete multiplication of the phase space via
replicating the dynamical variables in the partition sum
sfolding of the phase spaced, fTr exps−bHdgn

=Trn expsoa=1
n oki j lJijSi

aSj
ad. Each replicated spin variableSi

a

is treated independently, i.e., the trace operator Trn operates
on then-times replicated phase space. Calculation of the free
energy in the expanded phase space amounts to evaluation of
the free energy of the replicated Hamiltonian. This multipli-
cation of the number of dynamical variables is called real
replicas and has been occasionally used, mostly to illustrate
the meaning of the overlap order parameters in the Parisi
RSB construction.8–10 Note that replicating the phase vari-
ablesn times is not the same operation in long-range models
as a scaling of the volumeV→aV. The spin-spin couplings,
that are in short-range models intensive variables, depend in

long-range models on the volume as well and are to be
scaled, in the SK model asJij →Jij /Îa, to compensate for
additional couplings in the inflated volume. Replicating of
the phase space seems a more suitable and simpler tool for
investigating thermodynamic homogeneity of mean-field
models than direct scalings of the phase space with all new
spins coupled to the old ones. When we replicate the original
phase space we completely decouple the new replicated spins
from the original ones and do not thereby change the nor-
malization of the spin-spin couplings. Moreover, replication
of phase variables is more suitable for investigating stability
with respect to perturbations induced by interactions between
different replicas without breaking translational invariance.

Real replicas are also of principal importance for the ther-
modynamic construction of a mean-field theory of spin
glasses, since they offer a space for new symmetry-breaking
fields. The real replicas are independent when introduced.
We break their independence by switching on ashomoge-
neousd infinitesimal interaction between the replicas that we
denotemab. We then add a small interacting partDHsmd
=oioa,bmabSi

aSi
b to the replicated spin Hamiltonian. The av-

eraged free energy per replica of the system with weakly
interacting replicas reads

Fnsmd = − kBT
1

nKln Tr expS− bo
a

Ha − bDHsmdDL
av

.

s1d

The inter-replica interactionsmab.0 play the role of
symmetry-breaking fields in the SK model. They induce new
order parameters in the response of the system to this field
that need not vanish in the low-temperature phase, when the
linear response theory breaks down. They allow to disclose
the degeneracy when mean-field solutions do not represent
unique pure equilibrium states. The inter-replica interactions
are unphysicalsnot measurabled and hence to restore the
physical situation we must switch off these fields at the end.
If the system is homogeneous we must end up with an
identity

d

dn
lim
m→0

Fnsmd ; 0. s2d

This quantification of thermodynamic homogeneity, thermo-
dynamic independence of the scaling parametern, will lead
us in the construction of a stable solution of the SK model.

B. Averaging of the replicated TAP free energy

Thermodynamic homogeneity can be investigated in the
SK model either in the replica trick or in the thermodynamic
TAP approach. Thermodynamic homogeneity in the replica
trick is equivalent to scale invariance of the limit of the num-
ber of mathematical replicas to zero, i.e., the result should be
invariant with respect to scalings of the replica indexn
→an.11 We prefer to use here the thermodynamic TAP ap-
proach so that to demonstrate that the RSB scheme is neither
part of the replica trick nor a consequence of the limit of the
number of mathematical replicas to zero. We also find the
TAP approach more appropriate for finding a physical inter-
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pretation of the role of the replicated spins. They are used to
lift degeneracy in the determination of equilibrium thermo-
dynamic states from the mean-field local magnetizations.

The TAP free energy can suitably be represented as

F = o
i

mihi −
1

4o
i,j

bJij
2s1 − mi

2ds1 − mj
2d −

1

2o
i,j

Jijmimj

−
1

b
o

i

ln 2 coshfbsh + hidg. s3d

We introduced fluctuating internal magnetic fieldshi as
variational parameters making free energys3d together with
the local magnetizationsmi extremal. The stationarity equa-
tions for the internal magnetic fields and for the local mag-
netizations readhi =o jJijmj −mio jbJij

2s1−mj
2d, mi =tanhfbsh

+hidg, respectively. We can now try to solve these TAP equa-
tions for mi ,hi on finite lattices with fixed configurations of
spin-spin couplingsJij . We are then confronted with a
plethora of metastable solutions that are difficult to handle.
Instead of individual solutions we can better deal with the
so-called complexity of the TAP equations, being propor-
tional to the total number of solutions.12

The existence of many metastable solutions of the TAP
equations generally hinders direct averaging over the random
configurations of the spin-spin couplings. If the direct
method is used, that is if we remain within the linear re-
sponse theory with the fluctuation-dissipation theorem valid,
we end up with the SK solution.13,14 Mézard et al.15 pro-
posed the so-called cavity method to include ensembles of
statistically weighted TAP solutions into the averaging pro-
cess and succeeded in going beyond the SK solution toward
the Parisi RSB scheme.

In this paper we want to avoid any special ansatzes about
the structure or the distribution of the TAP solutions and to
remain entirely within the direct averaging scheme with the
ergodic and fluctuation-dissipation theorems obeyed. The
fluctuation-dissipation theorem, expressed in the TAP con-
struction asxii =s1−mi

2d /T, strictly holds only if the indi-
vidual TAP solutions determine unique thermodynamic
states. It was shown by Plefka that this is the case if 1
ùb2s1−2kmi

2lav+kmi
4lavd.16 We, however, know that this

condition is violated in the low-temperature phase, which led
Plefka to modifications of the TAP equations.17

We in principle follow an analogous way to Plefka and
assume that local magnetizations determined from the TAP
equations do not contain exhaustive information about the
equilibrium thermodynamic states. We modify the TAP equa-
tions and connect violation of the Plefka condition with vio-
lation of thermodynamic homogeneity. We introduce real
replicas into the TAP approach to substantiate this. We use
the TAP free energy withn equivalent spin replicas on each
site. Real replicas were introduced into the TAP approach
from a different motivation by the author years ago.18 The
result, a generalized TAP free energy withn replicas with
switched off inter-replica interactions,mab=0, can then be
overtaken from Ref. 18. It reads

Fn =
1

n
o
a=1

n Fo
i

mi
aShi

a + bJ2o
b=1

a−1

xabmi
bD +

bJ2N

2 o
b=1

a−1

sxabd2

−
1

4o
i,j

bJij
2f1 − smi

ad2gf1 − smj
ad2g −

1

2o
i,j

Jijmi
amj

aG
−

1

bn
o

i

ln Tr expSb2J2o
a,b

n

xabSi
aSi

b + bo
a=1

n

sh + hi
adSi

aD .

s4d

Here mi
a are local magnetizations andhi

a are local internal
magnetic fields. They are configurationally dependent varia-
tional variables determined from stationarity equations. Pa-
rametersxab, aÞb, are overlap susceptibilities and are glo-
bal stranslationally invariantd variational variables, Legendre
conjugates to the symmetry breaking fieldsmab. They are the
genuine order parameters in the spin glass phase of the SK
model in this construction. At the saddle point we havexab

=N−1oiskSi
aSi

blT−kSi
alTkSi

blTd.
Free energyFn from Eq. s4d is averaged over thermal

fluctuations for one configuration of spin-spin couplingsJij .
To perform averaging over the randomness in the spin-spin
couplings we must decide whether the solutions of the rep-
licated TAP equations, stationarity equations derived from
free energys4d, determine unique equilibrium thermody-
namic states or not. If not, we must surmise the internal
structure of equilibrium states represented by a set of local
magnetizations and averaged overlap susceptibilities. It can
be done only via an ansatz. The pure states in spin glasses
are, however, peculiar in that respect that they cannot be
singled out by external symmetry-breaking fields. To avoid
application of any unjustified ansatzes, we assume that the
solutions of the replicated TAP equations do represent unique
thermodynamic states as it is the case in the high-
temperature phase. It means that replication of the phase
space serves as a replacement of symmetry breaking fields.
Replicating the phase space enables us to extend the high-
temperature properties, that is the replica symmetric ansatz,
to low temperatures in analogy to the ferromagnet in an ex-
ternal magnetic field. Then the linear response, ergodic and
fluctuation-dissipation theorems hold and we can use the
same averaging of the replicated TAP free energy as used to
derive the SK solution from the TAP free energy.

Even with the assumption of uniqueness of equilibrium
states in the replicated phase space the averaging of the rep-
licated free energys4d cannot be performed explicitly. We
first must quantify thermodynamic equivalence of the repli-
cated spin variables. Since the replicated spin variables were
introduced in the TAP approach to deal with a possible de-
generacy of solutions of the TAP equations properly, we as-
sume the following thermodynamic equivalence of real rep-
licas motivated by the paramagnetic solution:

mi
a ; kSi

alT = mi . s5d

There is no apparent reason for breaking this equivalence in
the spin glass phase, since each copy of the spin variables
shares the same external macroscopic parameters determin-
ing the thermodynamic state. Equations5d expresses the fact
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that each TAP solution with local magnetizationsmi repre-
sents on averagen thermodynamic states labeled by the rep-
lica index a. The different thermodynamic states are indis-
tinguishable at the level of local magnetizations. Since the
replicated spin variables are distinct, their local overlap sus-
ceptibility is not, however, determined from the fluctuation-
dissipation theorem and enters the free energy as a varia-
tional parameter. Equivalence of spin replicas, Eq.s5d, leads
then to independence of local magnetic fieldshi

a and the sum
of the averaged overlap susceptibilitiesobxab of the replica
index a. With this conclusion we can write down an explicit
representation of the averaged free energy density withn
equivalent real replicas

fn =
bJ2

4
S1

n
o
aÞb

n

fsxabd2 + 2qxabg − s1 − qd2D
−

1

bn
E

−`

` dh

Î2p
e−h2/2 ln Tr expSb2J2o

a,b

n

xabSaSb

+ bh̄o
a=1

n

SaD . s6d

We denoted the fluctuating magnetic fieldh̄=h+hÎq. The
averaged order parameters are at the saddle pointq
=kkSalT

2lav andxab=kkSaSblTlav−q.
The trace in the averaged free energy densitys6d cannot

be evaluated explicitly. To do so we must know the matrix of
the overlap susceptibilitiesxab reflecting the structure of
thermodynamic states indistinguishable in the TAP equa-
tions. Mathematically it means to find the most general struc-
ture of matrix xab with the constraint thatobxab does not
depend ona. Since we do not know how such a structure
should look, we must make a choice and check onlya pos-
teriori, whether our choice has led to a consistent solution.
We use an iterative construction with successive replications
of the phase space accompanied by the replica-symmetric
ansatz for the overlap susceptibilities at each step. We repli-
cate the system so many times until a thermodynamically
homogeneous solution satisfying Eq.s2d is reached.

C. Analytic continuation and local
and global thermodynamic homogeneity

The mean-fieldssaddle-pointd equations forxab derived
from the averaged free energy densitys6d are identical for all
pairs of the replica indicessabd ,aÞb. There is no apparent
symmetry breaking force in the replica space andxab=x is
evidently a possible solution. We choose this simplest,
replica-symmetric solution so that we can evaluate the aver-
aged free energy explicitly. This replica-symmetric choice
corresponds physically to a situation where the TAP solu-
tions comprise of equivalent distinguishable thermodynamic
states with the same overlap susceptibilitysdistanced be-
tween each pair of different states. Hence no internal struc-
ture of equilibrium states is assumed.

It is straightforward to evaluate the averaged free energy
density fn with the ansatzxab=x. We employ the Hubbard-

Stratonovich transformation to decouple the replicated spins
and end up with

fnsq,xd = −
b

4
s1 − qd2 +

b

4
sn − 1dxs2q + xd +

b

2
x

−
1

bn
E

−`

`

Dh lnE
−`

`

Dlh2 coshfbsh + hÎq

+ lÎxdgjn, s7d

where we used an abbreviation for the Gaussian differential
Df;dfe−f2/2/Î2p. We setJ=1 and use this energy scale
throughout the rest of the paper.

The averaged free energy density, Eq.s7d, however, ap-
parently depends onn whenever the order parameterx.0. It
is the case in the spin-glass phase below the de Almeida-
ThoulesssATd instability line. Free energys7d has the form
identical with the Parisi one-step RSB solution, wheren
plays the role of the parameter dividing the replica space in
the RSB ansatz.2 We can easily analytically continue the
right-hand sidesrhsd of Eq. s7d to all real numbers. The in-
tegral representation in Eq.s7d is well defined and analytic
for nP s−` ,`d.

There are two observations we can make from the analy-
sis of free energys7d. First, at any value ofn the overlap
susceptibility is positive below the AT line. It indicates that
the SK solutionsx=0d becomes thermodynamically inhomo-
geneous. Second, we are unable to find parametersq,x for
which free energys7d would ben independent and hence the
TAP solutions indeed do not describe unique thermodynamic
states in the low-temperature phase. Our modification of the
TAP free energy becomes nontrivial.

Free energys7d is not globally thermodynamically homo-
geneous, since it depends on the scaling parametern. We
can, however, optimize the solution in that we demand that
the deviations from the thermodynamic homogeneity be
minimal. This is achieved if at least thermodynamic homo-
geneity is obeyed locally, that is, if

]fnsq,xd
]n

= 0. s8d

This equation determines an optimal parameternopt for
which the free energy is locally thermodynamically homoge-
neous. We show later on that Eq.s8d has always a solution
with nopt.0. Free energys7d together with the optimization
condition s8d exactly deliver the thermodynamics of the Pa-
risi one-step RSB. Monasson and later Mézard proposed in
Refs. 19 and 20 a similar approach to the thermodynamics of
structural glasses, the so-called cloned liquid. The local ho-
mogeneity, Eq.s8d, was interpreted there as vanishing of
complexity.

Satisfying thermodynamic homogeneity locally for the
optimal parameternopt is generally insufficient. We in fact
should construct a theory being globally thermodynamically
homogeneous. To check whether free energys7d can for any
n be globally thermodynamically homogeneous we must per-
form a further scaling of extensive variables via replicating
the spin variables in Eq.s6d. We do so by replacingn→nn
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and testing homogeneity of the free energyfn with respect to
the n-times enlargedsreplicatedd phase space. With the new
scaling we must replicate each spin variableSa to sSada and
transform the matrix of overlap susceptibilities to a super
matrix xab→ sxabdab wherea,b=1, . . . ,n anda ,b=1, . . . ,n.
With this replication we allow that the local spin variablesSa

may still be insufficient to determine unique thermodynamic
states. Since all spin variablesSa are thermodynamically
equivalent, they must split into new states labeled by the new
replica indexa identically.

The mean-field equations forsxabdab again contain a
replica-symmetric solutionx1=sxabdab for aÞb and x2

=sxabdaa for aÞb. This symmetric solution assumes that the
local TAP magnetizationmi can be represented byn compos-
ite states each of which containsn pure states. Two pure
states are distinguished by the overlap susceptibilityx2 if
they peel off from the same parental spinSa and byx1 if they
stem from two different parental spinsSa, Sb, aÞb.

It follows from the presented construction thatx1ùx2.
The free energy now generally depends onn,n and x1,x2.
We obtain explicitly

fn,nsq,x1,x2d = −
b

4
s1 − qd2 +

b

2
x1 +

b

4
fsn − 1dx1s2q + x1d

+ nsn − 1dx2s2q + x2dg

−
1

bnn
E Dh ln E Dl2SE Dl1h2 coshfbsh

+ hÎq + l1
Îx1 − x2 + lÎx2dgjnDn

, s9d

which again is equivalent to the Parisi 2RSB free energy.
Free energyfn,n from Eq.s9d is independent ofn and reduces
to fn from Eq. s7d if and only if x2=0.

When this “second level” free energyfn,n depends onn it
can be optimized so that it is locally thermodynamically ho-
mogeneous. The result can be subject to a further scaling of
extensive variables in order to verify whether the resulting
thermodynamic potential is globally homogeneous. We can
proceed with the hierarchicalsmultiplicatived scalings ac-
companied with the replica-symmetric ansatz about the
structure of the newly generated overlap susceptibilities so
long until the free energy becomes a thermodynamically ho-
mogeneous function, i.e., the free energy does not depend on
the last scaling parameter. It is evident that with each trans-
formation we generate just one scaling parameterml and one
block-off-diagonal matrix of the overlap susceptibilityxl.

III. HIERARCHICAL MEAN-FIELD THEORY

A. Hierarchical free energy

After performingK scaling transformationssreplications
of spin variablesd we end up withK geometric parameters
m1,m2, ¯ ,mK=n as well asK overlap susceptibilities
x1ùx2ù ¯xKù0 characterizing the phase space of the or-
der parameters. At each stepshierarchical leveld of this con-
struction we use the Hubbard-Stratonovich transformation to
linearize the newly introducedsreplicatedd spin variables in
free energys6d. If we definem0=1 andxK+1=0 we can rep-
resent the averaged free energy density withK hierarchical
scaling transformations in the following form:

fKsq,hxj;hmjd = −
b

4
s1 − qd2 +

b

4o
l=1

K

sml − ml−1dxls2q + xld +
b

2
x1 −

1

bn
E

−`

` dh

Î2p
e−h2/2 lnFE

−`

` dlK

Î2p
e−lK

2/2

3X¯E
−`

` dl1

Î2p
e−l1

2/2H2 coshFbSh + hÎq + o
l=1

K

ll
Îxl − xl+1DGJm1

¯ CmK/mK−1G . s10d

In this expressionq and xl, l =1, . . . ,K are physical order
parameters and are determined from the saddle-point equa-
tions. The numbersml, l =1, . . . ,K are formally external geo-
metric parameters determining the replica-symmetry break-
ing scheme of the matrixxab from Eq.s6d. They parametrize
successive scalingssreplicationsd of extensive variables that
would not change thermodynamically homogeneous solu-
tions.

It is evident that the averaged free energy densitys10d can
be uniquely analytically continued to arbitrary non-negative
numbersm1, . . . ,mK=n, since it is represented by analytic
functions for all non-negative variablesml, l =1, . . . ,K. In the
analytically continued function, the geometric parametersml
need no longer be integers and either they need not form an
ascending sequence.

To find out whether a specific choice of geometric param-
etersml can lead to a thermodynamically homogeneous so-
lution we must understand how the free energy depends on
these parameters. We obtain from the structure of the rhs of
Eq. s10d the following identities:

fKsq,hxj;hm,mK = mK−1jd = fK−1sq,hxj;hmjd, s11ad

fKsq,hxj;hm,mK = 0jd = fK−1sq + xK,hx;xi = xi − xKj;hmjd,

s11bd

fKsq,hx,xi = xi+1j;hmjd = fK−1sq,hxj;hmjd. s11cd

The solutions in the first and third cases are degenerate. The
averaged free energy densityfK does not depend onxK in Eq.
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s11ad and it is independent ofmi in Eq. s11cd. Further on, if
mKùmK−1 then fKø fK−1. We hence can conclude that iffK
does dependon mK, i.e., it is inhomogeneous, the averaged
free energy displays a localmaximumfor some valuemK
P s0,mK−1d. Free energyfKsq,hxj ; hmjd is independent ofn
=mK if and only if xK=0.

That is, we can find such a parametermK at which the
averaged free energy densityfKsq,hxj ; hmjd reaches a local
saddle point for the given values ofm1, . . . ,mK−1 with re-
spect to variations of the parametermK. Consequently, we
can add the geometric parameters characterizing the structure
of the phase space to the variational parameters. If the solu-
tion does not obey the global homogeneity condition
]fKsq,hxj ; hmjd /]mK;0, the local homogeneity condition
]fKsq,hxj ; hmjd /]mK=0 then minimizes deviations from the
global thermodynamic homogeneity. It immediately follows
from Eqs.s11d that this stationarity point is alocal maximum.
We fix in this way any new geometric parameter emerging in
the hierarchical construction and achieve a theory with a
thermodynamically determined ultrametric structure. Notice,
that both sets of parametersx1, . . . ,xK andm1, . . . ,mK form
sequences of decreasing numbers from intervalf0, 1g. It is
easy to verify that a substitutionqab=q+xab in Eq. s10d re-
covers the Parisi RSB solution withK discrete hierarchies.21

B. Hierarchical stationarity equations

To simplify the analysis of properties of the hierarchical
free energy and the stationarity equations determining the
variational parametersxl and ml we rewrite the rhs of Eq.
s10d in a recursive way. We define a sequence of partition
functions

Zl = SE
−`

`

DllZl−1
ml D1/ml

s12d

with the initial condition Z0=coshfbsh+hÎq+ol=1
K ll

ÎDxl

+lÎDxdg. We denoted Dxl =xl −xl+1 and Dx;xK+1=x
−ol=1

K Dxl. We singled out the scaling parametern from the
other geometric parameters. The averaged free energy den-
sity can then alternatively be represented as

fK
n sq,x,Dx1, . . . ,DxK;m1, . . . ,mKd

= −
b

4
s1 − q − xd2 +

b

4
nDxs2q + Dxd −

1

b
ln 2

+
b

4o
l=1

K

mlDxlF2Sq + x − o
i=1

l−1

DxiD − DxlG
−

1

b
E

−`

`

Dh lnSE
−`

`

DlZK
nD1/n

s13d

with q, x, Dxl, l =1, . . . ,K and ml, l =1, . . . ,K as order pa-
rameters to be determined from stationarity equations. The
number of hierarchiesK used in the free energy should
be chosen so thatfK

n does not depend on the scaling
parametern.

To represent the mean-field equations we introduce a set
of hierarchical density matrices in the space of fluctuating

random fieldsll. We definerlsh ,l ;lK , . . . ,lld=Zl
ml / kZl

mllll
and rsh ,ld=Zn / kZnll with Z=kZK

mKllK

1/mk. We further intro-
duce short-hand notations t; tanhfbsh+hÎq+lÎDx
+ol=1

K ll
ÎDxldg and ktllsh ,l ;lK , . . . ,ll+1d=krl¯ kr1tll1

¯ lll
with kXslldlll

=e−`
` Dll Xslld.

With the above definitions we can write down the station-
arity equations for the physical order parameters,

qsn,Kd = kkrktlKll
2lh, s14ad

xsn,Kd = kkrkt2lKlllh − kkrktlKll
2lh, s14bd

Dxlsn,Kd = kkrkktll−1
2 lKlllh − kkrkktll

2lKlllh, s14cd

and for the geometric ones

mlsn,Kd =
4

b2

kkrkln Zl−1lKlllh − kkrkln ZllKlllh

kkrkktll−1
2 lKlllh

2 − kkrkktll
2lKlllh

2 , s15d

where indexl =1, . . . ,K. A thermodynamically homogeneous
solution is obtained ifx=ol=1

K Dxl and the remaining 2K+1
order parameters do not depend onn.

C. Stability conditions

Averaged free-energy densitys13d defines a solution of
the SK model withK hierarchical levels labeled by a scaling
parametern. A globally thermodynamically homogeneous
averaged free energy may not depend onn. This happens if
x=ol=1

K Dxl. This condition of global thermodynamic homo-
geneity is satisfied if an inequality

1 ù b2KK1 − t2 + o
l=1

K

mlsktll−1
2 − ktll

2dL
K

2L
h

s16ad

is fulfilled. This inequality, however, does not represent the
only stability condition for a multilevel hierarchical free en-
ergy. A hierarchical solution withK levels is stable if it does
not decay into a solution withK+1 hierarchies. A new order
parameterDx may emerge so thatDxl .Dx.Dxl+1 for ar-
bitrary l. That is, the new order parameter peels off fromDxl
and shifts the numeration of the order parameters fori . l in
the existingK-level solution. To guarantee that this does not
happen and that the averaged free energy depends on no
more geometric parameters thanm1, . . . ,mK we must fulfill a
set ofK generalized AT stability criterions that for our hier-
archical solution read forl =1,2, . . . ,K−1,

1 ù b2KKK1 − t2 + o
i=1

l

misktli−1
2 − ktli

2dL
l

2L
K

L
h

.

s16bd

There is also a condition that the new order parameter
emerges as the largest difference, that isDx.Dx1. So that
neither this instability takes place we must fulfill

1 ù b2kks1 − t2d2lKlh. s16cd

Actually, it is sufficient to take into account only a single
stability condition, namely that with the maximal right-hand
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side of Eqs.s16d. Which of these right-hand sides is maximal
depends on the particular choice of the optimal geometric
parametersm1, . . . ,mK minimizing thermodynamic inhomo-
geneity of the hierarchical solution with lower numbers of
hierarchical levels.

D. Physical interpretation of the order parameters from the
hierarchical free energy

The hierarchical free energy, Eq.s13d, is equivalent to the
Parisi discrete RSB solution withK hierarchies. Hence the
resulting stationarity equations, Eqs.s14d and s15d, coincide
with the stationarity equations derived from theK-step RSB
free energy when we make a substitutionqab=q+xab. The
derived numbers must be the same. The meaning and a
physical interpretation of the order parameters in both ap-
proaches may, however, be different. Different interpreta-
tions of the role of the order parameters, in particular of the
geometric ones, originate from the way the hierarchical free
energys13d was derived. The RSB free energy was derived
in an effort to maximize the averaged free energy within the
replica trick and the discrete schemes13d was used as an
intermediate step toward its eventual form—the limitK
→` and continuously distributed order parametersqsxd, x
P f0,1g. The physical interpretation of the Parisi RSB solu-
tion is then based on this continuous limit.4 The present ap-
proach does not provide justification for the continuous limit
and the physical meaning of the order parameters in the hi-
erarchical free energy must be sought within the discrete
scheme.

The hierarchical free energy was derived by replica-
symmetric averaging of the TAP free energy extended to a
replicated phase space. Real replicas in the thermodynamic
TAP approach were introduced to include control over ther-
modynamic homogeneity. Thermodynamic homogeneity is
tightly connected with uniqueness of equilibrium states de-
termined by mean-field local magnetizations calculated from
the TAP equations. The TAP equations define a unique ther-
modynamic state if the solution reacts to all possible pertur-
bations identically and no possible internal structure of the
solution can be revealed. We showed that by replicating the
phase space we indeed reveal an internal structure of the
TAP solutions.

It is clear from the construction itself that the overlap
susceptibilitiesxab measure the interaction strength with
which different copies of spins thermodynamically influence
each other. That is, the thermal averaging of one spin copy
depends on the values of spins in the other copies ifxab

.0. We cannot separate individual replicas although only
one spin replica represents the physical system under consid-
eration. The nonreplicated original phase variables together
with temperature and the chemical potential are hence insuf-
ficient to describe entirely the equilibrium thermodynamic
states. To get rid of the dependence of thermodynamic states
on boundary or initial conditions we must average over all
initial/boundary values and external variables that influence
the thermodynamics of the investigated system. In long-
range, completely connected models the degeneracy in solu-
tions of the mean-field equations is reflected in the depen-

dence on the initial spin configurations. We simulated this
dependence in our approach with replicas of the spin vari-
ables subject to the same thermal equilibration.

If a mean-field solution is thermodynamically inhomoge-
neous, thermal equilibration depends on the initial spin con-
figuration. Dependence of the thermodynamic state on the
initial spin configuration from which we start equilibration
may have a nontrivial form. It is reflected in our approach in
the matrixxab. The replica-symmetric ansatz,xab=x, means
that all the initial spin configurations are equivalent and that
there is only a single “mean” strength with which they affect
the resulting equilibrium state. The replica symmetric ansatz
is the most natural first guess motivated by the high-
temperature phase but need not lead to a thermodynamically
homogeneous solution. The dependence of the equilibrium
states on their initial configurations should be chosen so as to
reach a globally homogeneous solution. To achieve this goal
we apply successive replications using only the simplest,
replica-symmetric ansatz from the high-temperature solution
at each stage. This construction seems to be more transparent
than an unjustified replica symmetry-breaking ansatz. More-
over, the iterative construction offers an appealing physical
interpretation of the geometric order parameters used in the
hierarchical solutions13d.

To understand the role of the geometric parameters let us
first take the 1RSB free energys7d. The interacting part of
the averaged TAP free energy density reads

−
N

bV
ln Z0sb,hd → −

1

bnV
lnSE DlZ0sb,h + lÎxdnDN

.

s17d

We can see that the replicated spins influence the original
spins by making the internal magnetic field dynamically ran-
dom. The replicated free energy then behaves as if effec-
tively nN spins of the original system enclosed in the volume
nV were affected by the replicated spins outside the system
under consideration. The internal magnetic field changes due
to the existence of replicated spins toh→h+lÎx. The inte-
gral over the fluctuating variablel stands for averaging over
the replicatedsexternald spins. The averaging over the repli-
cated spins is dynamicalsannealedd, in contrast to the
quenchedsstaticd averaging over the random configurations
of the spin exchange. The parametern is then kind of a
chemical potential governing the exchange between the ac-
tive and additional replicated spin configurations. It must be
chosen so as the external replicated spins minimally influ-
enced the final equilibrium state of our original system.

Adding more geometric order parameters with 1.m1
. ¯ .mK.0 in the full hierarchical free energy means that
the true equilibrium states are hierarchically dependent on
the initial spin configurations or they depend on the history
of quasiequilibrium states they went through during thermal
averaging. When the thermodynamic equilibrium of the
original system depends on configurations of replicated spins
we must include the replicated spins into our global thermo-
dynamic system. In this merge we compose the total number
of N spins from m1N from the original system ands1
−m1dN from the replicated one. The parameterm1 is to be
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chosen so as to minimize the impact of the replicated spins
on the original ones. Only the original spins, however, rep-
resent active variables, while the replicated ones form kind
of a thermal bath. We must include the bath explicitly into
thermal equilibration of the active spin variables, since the
latter are affected by the former. The bath spins affect the
thermodynamics of the active spins via the overlap suscepti-
bility x1 modifying their internal magnetic field. We further
replicate theN spin variables in the whole volume and test
whether ourm1N active spins interacting with the bath with
the overlap susceptibilityx1 are affected by this replication.
If yes, we must include the new replicated spins into thermal
averaging. We denotex2 the strength with which the new
ssecond leveld replicas affect the internal magnetic field of
the active spins. The bath spinssfirst level replicasd are then
affected by the new spin replicas in the same way as the
first-level replicas act on the active spins, that is via an over-
lap susceptibilityx1.x2. The optimal restructuring of spins
in the whole system is such that onlym2N spins belong to the
active ones,m1N are from the first-level bath and the rest of
s1−m1dN spins are the new replicated spins, second-level
bath. The parametersm1 andm2 are dynamically determined
from minimization of the impact of the newly replicated
spins on the active ones. We continue with wrapping the
active spin variables in successively replicated ones so long
until we reach independence of the active spins on phase-
space replications. The hierarchical construction converges
toward a globally homogeneous solution ifx1. .x2. ¯

.xK→0, or xK+1=0 at a finite number of hierarchiesK.
Alternatively we can interpret the free energys13d as a

solution with a multitude of equivalent equilibrium thermo-
dynamic states. Each state extends on average over a portion
mKN of the whole spin space. The states are organized hier-
archically with on averagesmK−1−mKd /mK nearest neighbors
with the overlap susceptibilityxK, smK−2−mK−1d /mK next
nearest neighbors with the overlap susceptibilityxK−1, and so
on. The lastKth level is characterized bys1−m1d /mK neigh-
bors with the overlap susceptibilityx1. The total number of
equilibrium states then statistically is 1/mK. It is clear that
pure states cannot be singled out and separated from their
neighbors. Only the whole complex of hierarchically ar-
ranged states can be thermodynamically homogeneous and
form an independent system with a well-defined thermody-
namic limit.

IV. CONCLUSIONS

We used the basic physical principle of thermodynamic
homogeneity and derived with the aid of real replicas in the
thermodynamic TAP approach a hierarchical representation
for the averaged free energy of the SK model. The hierarchi-
cal free energys13d was derived via successive replications
of the phase space with the replica symmetric ansatz for the
introduced order parameters—overlap susceptibilities. Real
replicas proved to be a suitable tool for treating situations
when the TAP order parameters, local magnetizations, do not
describe unique thermodynamic states. Real replicas enable
one to lift the degeneracy of the TAP approach and provide
for a larger phase space within which a thermodynamically

homogeneous solution can be found. The replica symmetric
ansatz reflects an assumption of no internal structuresmetricd
of the thermodynamic states corresponding to a given set of
local magnetizations from the TAP equations. This is the
most naturalsminimald choice when we do not know the
actual structure and organization of equilibrium states. Suc-
cessive scalings in the phase space and the property of global
thermodynamic homogeneity then lead to a selection of a
nontrivial, ultrametric structure of thermodynamic states. We
apply so many scalings of extensive variablesshierarchical
levelsd until the global thermodynamic homogeneity is
achieved.

The averaged free energys13d derived in this way is
equivalent to the Parisi discrete RSB solution. It contains a
set of averaged physical parametersq, xl, l =1, . . . ,K and a
set of geometric parametersml, l =1, . . . ,K. The geometric
parameters are turned variational ones by the demand of lo-
cal thermodynamic homogeneity at each step of the hierar-
chical construction. The principle of local thermodynamic
homogeneity replaces the maximum principle in the Parisi
RSB construction. The homogeneity is reached successively
by demanding stability with respect to scalings of extensive
variables. Each hierarchical level thenminimizesdeviations
from the global homogeneity and hence the instability of the
solution. The maximum principle of Parisi emerges as a con-
sequence of minimization of thermodynamic inhomogeneity
of intermediate solutions and the form of stationarity equa-
tions for the SK model. However, it does not mean that the
absolute maximum of the averaged free energy should be the
equilibrium solution. The maximum principle holds only for
thermodynamically inhomogeneous states. The free energy
should still be minimal among thermodynamically homoge-
neous states.

We were able to derive the discrete Parisi RSB scheme
from a physical principle of thermodynamic homogeneity
but we do not find justification for its continuous version
characterized by a nonlinear differential equation. The con-
tinuous version emerges in the limitK→` by assuming in-
finitesimal smallness of the overlap susceptibilities,xl
=Dl /K and infinitesimal differences in the geometric param-
etersml /ml+1=1+dl /K. In the continuous limit of the RSB
scheme the geometric parameters are no longer determined
thermodynamically, they cover intervalf0, 1g. Only an order-
parameter functionqsxd for xP f0,1g is to be determined
variationally. In the discrete scheme the geometric order pa-
rameters form a discrete set and are determined thermody-
namically from Eq.s15d for l =1,2, . . . ,K. These equations
are an essential part of the hierarchical solution and are of
particular importance at low temperatures. Only with ther-
modynamically determined geometric parameters we are
able to improve upon the SK free energy at zero temperature.
At low temperatures, new variational parametersxl =bml are
to be introduced and used instead ofml. Moreover, the ther-
modynamically shaped ultrametric structure of equilibrium
states in the discrete scheme leads to tangible nonlinear ef-
fects. They get lost in the continuous limit. To decide
whether the discrete or continuous versions of the Parisi so-
lution with K=` holds in the SK model, one must evaluate
the discrete scheme near the spin-glass transition point,
which has not yet been done. Work on the comparison of
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discrete and continuous versions of the RSB near the critical
temperature is in progress.

Thermodynamic inhomogeneity of the SK solution in the
real-replica approach was attributed to ambiguity of solu-
tions of the TAP equations in the determination of pure equi-
librium states. Although real replicas offer a way how to
identify this degeneracy, they do not allow for separation of
individual pure states. That is why an organization of ther-
modynamic states cannot be determined without an ansatz.
We hence cannot find a fully ansatz-free solution of the SK
model. Successive scaling transformations with the replica
symmetric ansatz allow the system to arrange equilibrium
states so that thermodynamic inhomogeneity at intermediate
states is minimal. It recovers the Parisi discrete RSB scheme,
but we cannot claim that this is the only thermodynamically
homogeneous solution. At present, we cannot even prove
that the fullsinfinite leveld solution is indeed thermodynami-
cally homogeneous, that is, it fulfills stability conditions
s16d. Nevertheless, the proposed construction seems to offer
a rather straightforward way based on basic principles of
statistical mechanics to reach the discrete RSB solution with
stability conditions and an appealing physical interpretation.

To conclude, we demonstrated that the discrete RSB so-
lution of the SK model is not a consequence of the replica

trick and the limit of the number of replicas to zero. Using
real replicas we showed that the averaged free energy is an
analytic function of the number of replicas on the positive
axis. The thermodynamically formed ultrametric hierarchical
structure withK levels of the order parameters in the SK
model was shown to emerge due to thermodynamic inhomo-
geneity of the replica-symmetric solutions with less thanK
hierarchies. Thermodynamic homogeneity of the averaged
free energy with respect to scalingssreplicationsd of the
phase volume is imposed at each hierarchical level. When
not fulfilled, the free energy depends on the geometric scal-
ing factor that is then chosen to minimize the inhomogeneity.
It appears that in the SK model this minimization leads to
maximization of the free energy. The number of hierarchical
levels needed in this construction is fixed by the global ho-
mogeneity condition, Eq.s16ad.
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