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Stability of solutions of the Sherrington-Kirkpatrick model
with respect to replications of the phase space
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We use real replicas within the Thouless, Anderson, and Palmer construction to investigate stability of
solutions with respect to uniform scalings in the phase space of the Sherrington-Kirkpatrick model. We show
that the demand of homogeneity of thermodynamic potentials leads in a natural way to a thermodynamically
dependent ultrametric hierarchy of order parameters. The derived hierarchical mean-field equations appear
equivalent to the discrete Parisi RSB scheme. The number of hierarchical levels in the construction is fixed by
the global thermodynamic homogeneity expressed as generalized de Almeida-Thouless conditions. A physical
interpretation of a hierarchical structure of the order parameters is gained.
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[. INTRODUCTION The aim of this paper is to demonstrate that the maximum
principle in the Parisi solution can be replaced by minimiza-
The mean-field model for spin glasses introduced byon of inhomogeneity of thermodynamic potentials in a suc-
Sherrington and Kirkpatrickis a paragon for complex sta- cessive way toward a globally thermodynamically homoge-
tistical systems. Although very simple in its formulation, the neous  solution. Thermodynamic homogeneity is a
model offers almost inconceivable richness of the phas@undamental property needed for the existence of a unique
space of its solutio). This richness is manifested in the thermodynamic limit of statistical systems. It is a conse-
replica-symmetry breakin@RSB) solution introduced by Pa- quence of scale invariance of the limit of voluriveof the
risi within the replica trické Since then, a lot of supporting system to infinity. That is, large volumasand aV of ther-
arguments reaching from numerical simulatboser ana-  modynamically homogeneous systems must produce the
lytic thermodynamic approaches without the replica ftitk ~ same thermodynamics, i.e., the same densities of extensive
rigorous mathematical constructidrisave been accumulated thermodynamic variables. Only in thermodynamically homo-
in favor of accuracy and exactness of the Parisi RSB solutiogeneous systems the thermodynamic limit does not depend
of the Sherrington-KirkpatricKSK) model. In spite of the on the shape and the boundary conditions of large finite vol-
amassed evidence indicating to the RSB character of thgmes.
eventual solution of the SK model, we have not yet fully  we find it useful to apply specific scalings of extensive
understood in physical terms the origin of the RSB ansatzariables of mean-field, long-range models represented by
with its ultrametric hierarchical structure of order param-replications of the phase space. We employ real replicas of
eters. the spin variables and demand that the thermodynamics in
The replica-symmetry-breaking solution of Parisi wasthe replicated phase space be independent of the number of
proposed as a means foraximizationof the averaged free introduced equivalent replicas. The independence of the re-
energy as a functional of the averaged order parameters gulting averaged free energy density on the number of real
the limit of zero number of mathematical replicas. Analytic replicas is investigated by studying stability of thermody-
continuation from integer to noninteger numbers of replicashamic potentials with respect to perturbations induced by
less than one is, however, not trivial and unique. The maxiinfinitesimal homogeneous interactions between different
mum principle seems to provide a way how to single out aeplicas. Thermodynamic potentials are stable if linear re-
particular analytic continuation. Although the Parisi ansatzsponse to the interparticle interaction remains finite and the
provides an internally consistent solution numerically repro-spin replicas decouple in the equilibrium state after switch-
ducing the results from Monte Carlo simulatidhi,is not  ing off the external inter-replica interaction.
evident whether it leads to the absolute maximum of the free The role of real replicas in this approach is similar to the
energy. Moreover, even when observed empirically on simrole of mathematical replicas in the replica trick. They are
pler solutions of the SK model that more stable solutionsused to represent integer powers of the partition sum. Unlike
have higher averaged free energy, there is no general physhe replica trick the number of real replicas will not be lim-
cal law from which we could derive the maximum principle jted to zero. Alike the replica trick we will need to continue
for the averaged free energy. On the other hand, a supremughalytically the averaged replicated free energy from integer
from all possible choices of the Parisi order paramet€xs,  numbers of real replicas to arbitrary positive numbers to test
xe[0,1] was proved to lead to an exact averaged free enthermodynamic homogeneity locally. For this purpose we
ergy of the SK model.The RSB scheme hence has a deepewill need to assume a symmetry of the averaged replica-
meaning and there must be a fundamental physical principldependent order parameters, Legendre conjugates to the
from which one could derive the RSB solution without ad- inter-replica interaction. To find a physical motivation for a
ditional physically unjustified ansatzes. selection of a particular symmetry, we use the thermody-
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namic approach of Thouless, Anderson, and PalffaP). long-range models on the volume as well and are to be
In this approach we are endowed with a set of thermodyscaled, in the SK model asjﬂ\]ij/\‘@, to compensate for
namic mean-field parameters, local magnetizationsThey  additional couplings in the inflated volume. Replicating of
are supposed to determine equilibrium thermodynamic statate phase space seems a more suitable and simpler tool for
at fixed configurations of spin-spin couplings. If the full setinvestigating thermodynamic homogeneity of mean-field
m,i=1,... N determines the thermodynamic state uniquely,models than direct scalings of the phase space with all new
the replica symmetric ansatz applies as in the highspins coupled to the old ones. When we replicate the original
temperature phase. If not and the set of local magnetizatiorgghase space we completely decouple the new replicated spins
does not contain full information about equilibrium states,from the original ones and do not thereby change the nor-
the system is thermodynamically inhomogeneous and furthenalization of the spin-spin couplings. Moreover, replication
knowledge of the system is needed. We propose in this pap@f phase variables is more suitable for investigating stability
a systematic way how to retrieve the missing informationwith respect to perturbations induced by interactions between
about the structure of degenerate states described by a setdifferent replicas without breaking translational invariance.
local magnetizations. Our construction leads in a rather di- Real replicas are also of principal importance for the ther-
rect way to an ultrametric structure of the order parameters imodynamic construction of a mean-field theory of spin
the (rea) replica indices and to a hierarchical averaged freeglasses, since they offer a space for new symmetry-breaking
energy equivalent to the discrete RSB solution of Parisi. fields. The real replicas are independent when introduced.
We break their independence by switching orthamoge-
neous infinitesimal interaction between the replicas that we

[l. THERMODYNAMIC HOMOGENEITY AND denote . We then add a small interacting pakH(w)
AVERAGING OF REPLICATED TAP FREE ENERGIES :2i2a<bﬂabsa$b to the replicated spin Hamiltonian. The av-
A. Thermodynamic homogeneity and eraged free energy per replica of the system with weakly
replications of the phase space interacting replicas reads

Homogeneity of thermodynamic potentials is one of basic _ 1 .
principles of statistical mechanics. Thermodynamic homoge- Fulw) =~ kBT,, InTr exp(— ,8% H® - 'BAH('““))
neity in systems with short-range interactions is usually
expressed as the Euler condition for thermodynamic (1)

potentials  (free  energy  aF(T,V,N,....Xi,...)  The inter-replica interactionsu?®>0 play the role of
=F(T,aV,aN,...,aX;,...), wherea is an arbitrary positive  symmetry-breaking fields in the SK model. They induce new
number andX; exhaust all extensive variables. Only if the order parameters in the response of the system to this field
Euler homogeneity is fulfilled we are able to factorize thethat need not vanish in the low-temperature phase, when the
volume from extensive variables, come over to densities, anfinear response theory breaks down. They allow to disclose
define the thermodynamic limit uniquely and independentlythe degeneracy when mean-field solutions do not represent
of the shape and boundary conditions of finite volumesynique pure equilibrium states. The inter-replica interactions
Thermodynamic homogeneity can be rephrased as a scalge unphysical(not measurableand hence to restore the
invariance of entrop(E) =kg In I'(E)=kg/ v In I'(E)"for ar-  physical situation we must switch off these fields at the end.

bitrary positiver. This definition extends also to mean-field |f the system is homogeneous we must end up with an
(long-rangeé models. We hence use the latter form of ther-identity

modynamic homogeneity applied to the averaged free energy

of the SK model. i lim F(x) =0 )
Assuming thermodynamic homogeneity we can write the dv u—o " '

averaged free energy as=-1/Bw(In(TrePH)"),,. If the

scaling factorv is a positive integer we can equivalently

av

This quantification of thermodynamic homogeneity, thermo-
-gynamic independence of the scaling parametewill lead

replicating the dynamical variables in the partition sumUs in the construction of a stable solution of the SK model.

(folding of the phase spage [Trexp-gH)]” _ _

=Tr, exp(zgzlzm >Jij$a§a)_ Each replicated spin Variabﬁa B. Averaging of the replicated TAP free energy

is treated independently, i.e., the trace operatgroperates Thermodynamic homogeneity can be investigated in the
on thev-times replicated phase space. Calculation of the fre&K model either in the replica trick or in the thermodynamic
energy in the expanded phase space amounts to evaluation AP approach. Thermodynamic homogeneity in the replica
the free energy of the replicated Hamiltonian. This multipli- trick is equivalent to scale invariance of the limit of the num-
cation of the number of dynamical variables is called realber of mathematical replicas to zero, i.e., the result should be
replicas and has been occasionally used, mostly to illustrat@variant with respect to scalings of the replica index
the meaning of the overlap order parameters in the Parisi-an.*! We prefer to use here the thermodynamic TAP ap-
RSB constructiod~2° Note that replicating the phase vari- proach so that to demonstrate that the RSB scheme is neither
ablesv times is not the same operation in long-range modelgart of the replica trick nor a consequence of the limit of the
as a scaling of the volumé— «V. The spin-spin couplings, number of mathematical replicas to zero. We also find the
that are in short-range models intensive variables, depend iFAP approach more appropriate for finding a physical inter-
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pretation of the role of the replicated spins. They are usedto  ; * al BIN a-1
lift degeneracy in the determination of equilibrium thermo- F,= =2 [ >, md| 72+ B2, x*mP | + > (x)?
dynamic states from the mean-field local magnetizations. Va1 | i b=1 2 b=

The TAP free energy can suitably be represented as

1 1
"2 AL O = () - 5 2, m?m?]

1 1
F=2mp- 52 B3 (L-m)(L-m) -S> Jmm v v
ST g P VT g m —ﬁ—lvE InTreXP(/BZJZE Xab5a3b+/32(h+n?)$a)-
i a<b a=1

1
- E’E In 2 costiBh + 7)]. €) (4)

Here m? are local magnetizations angf* are local internal
magnetic fields. They are configurationally dependent varia-

We introduced fluctuating internal magnetic fields as  tional variables determined from stationarity equations. Pa-
variational parameters making free enef@y together with  rametersy2, a# b, are overlap susceptibilities and are glo-
the local magnetizationsy extremal. The stationarity equa- bal (translationally invariantvariational variables, Legendre
tions for the internal magnetic fields and for the local mag-conjugates to the symmetry breaking fiele®. They are the
netizations ready=3;J;m-m=;83;(1-m?), m=taniA(h  genuine order parameters in the spin glass phase of the SK
+17;)], respectively. We can now try to solve these TAP equamodel in this construction. At the saddle point we hg#
tions form;, 7 on finite lattices with fixed configurations of =N13,(S)+—(SH(P)7).
spin-spin couplingsJ;. We are then confronted with a  Free energyF, from Eq. (4) is averaged over thermal
plethora of metastable solutions that are difficult to handlefluctuations for one configuration of spin-spin couplinys
Instead of individual solutions we can better deal with theTo perform averaging over the randomness in the spin-spin
so-called complexity of the TAP equations, being propor-couplings we must decide whether the solutions of the rep-
tional to the total number of solutiort3. licated TAP equations, stationarity equations derived from

The existence of many metastable solutions of the TARree energy(4), determine unique equilibrium thermody-
equations generally hinders direct averaging over the randomamic states or not. If not, we must surmise the internal
configurations of the spin-spin couplings. If the directstructure of equilibrium states represented by a set of local
method is used, that is if we remain within the linear re-magnetizations and averaged overlap susceptibilities. It can
sponse theory with the fluctuation-dissipation theorem validpe done only via an ansatz. The pure states in spin glasses
we end up with the SK solutiol:** Mézard et al™® pro-  are, however, peculiar in that respect that they cannot be
posed the so-called cavity method to include ensembles afingled out by external symmetry-breaking fields. To avoid
statistically weighted TAP solutions into the averaging pro-application of any unjustified ansatzes, we assume that the
cess and succeeded in going beyond the SK solution towargblutions of the replicated TAP equations do represent unique
the Parisi RSB scheme. thermodynamic states as it is the case in the high-

In this paper we want to avoid any special ansatzes abouémperature phase. It means that replication of the phase
the structure or the distribution of the TAP solutions and tospace serves as a replacement of symmetry breaking fields.
remain entirely within the direct averaging scheme with theReplicating the phase space enables us to extend the high-
ergodic and fluctuation-dissipation theorems obeyed. Theemperature properties, that is the replica symmetric ansatz,
fluctuation-dissipation theorem, expressed in the TAP conto low temperatures in analogy to the ferromagnet in an ex-
struction asy; =(1-m?)/T, strictly holds only if the indi-  ternal magnetic field. Then the linear response, ergodic and
vidual TAP solutions determine unique thermodynamicfluctuation-dissipation theorems hold and we can use the
states. It was shown by Plefka that this is the case if Isame averaging of the replicated TAP free energy as used to
= BA(1-2mP),+(mP),) .18 We, however, know that this derive the SK solution from the TAP free energy.
condition is violated in the low-temperature phase, which led Even with the assumption of uniqueness of equilibrium
Plefka to modifications of the TAP equatiotTs. states in the replicated phase space the averaging of the rep-

We in principle follow an analogous way to Plefka and licated free energy4) cannot be performed explicitly. We
assume that local magnetizations determined from the TAFirst must quantify thermodynamic equivalence of the repli-
equations do not contain exhaustive information about theated spin variables. Since the replicated spin variables were
equilibrium thermodynamic states. We modify the TAP equadintroduced in the TAP approach to deal with a possible de-
tions and connect violation of the Plefka condition with vio- generacy of solutions of the TAP equations properly, we as-
lation of thermodynamic homogeneity. We introduce realsume the following thermodynamic equivalence of real rep-
replicas into the TAP approach to substantiate this. We uskcas motivated by the paramagnetic solution:
the TAP free energy withv equivalent spin replicas on each = (S)r=m 5)
site. Real replicas were introduced into the TAP approach ! T
from a different motivation by the author years dfdlhe  There is no apparent reason for breaking this equivalence in
result, a generalized TAP free energy withreplicas with  the spin glass phase, since each copy of the spin variables
switched off inter-replica interactiong2°=0, can then be shares the same external macroscopic parameters determin-
overtaken from Ref. 18. It reads ing the thermodynamic state. Equati(®) expresses the fact
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that each TAP solution with local magnetizatioms repre-  Stratonovich transformation to decouple the replicated spins
sents on average thermodynamic states labeled by the rep-and end up with
lica indexa. The different thermodynamic states are indis-

tinguishable at the level of local magnetizations. Since the - B _2.B _ B
replicated spin variables are distinct, their local overlap sus- h(a.x) 4(1 " 4(V Dx(2a+ + 2X
ceptibility is not, however, determined from the fluctuation- 1 o

dissipation theorem and enters the free energy as a varia- - _f p,]mf D2 coship(h+ ﬂ\’a
tional parameter. Equivalence of spin replicas, &, leads Bv) . —

then to independence of local magnetic fielfisand the sum 1w

of the averaged overlap susceptibilitiBgy®° of the replica MO (7)

indexa. With this conclusion we can write down an explicit yhere we used an abbreviation for the Gaussian differential
representation of the averaged free energy density with Dq&qu’)e“’ﬁz’zl\f'ﬁ. We setJ=1 and use this energy scale

equivalent real replicas throughout the rest of the paper.
B2 ( 12 ) The averaged free energy density, Ef), however, ap-

f = [(@®)2+ 2gx%°] - (1 - )2 parently depends omwhenever the order parameter- 0. It
Y4

Vith is the case in the spin-glass phase below the de Almeida-
g ) Thouless(AT) instability line. Free energy7) has the form
1 (% dyg identical with the Parisi one-step RSB solution, where
= Bhal/ApRTLV) 212 ab p )
gyJ o InTr exp(,B 9> XSS plays the role of the parameter dividing the replica space in
the RSB ansatz.We can easily analytically continue the

— right-hand side(rhs) of Eq. (7) to all real numbers. The in-

S Sa>' g dlrhs of Eq. (7)
a=1

o 27T a<b

© tegral representation in Eq7) is well defined and analytic
for ve (-, ©),

We denoted the fluctuating magnetic fieheth+ 77\“"5- The There are two observations we can make from the analy-

averaged order parameters are at the saddle pgint sis of free energy7). First, at any value ol the overlap
=()2),., and =S )., ~q susceptibility is positive below the AT line. It indicates that
- T/av - av .

the SK solution(y=0) becomes thermodynamically inhomo-
fgeneous. Second, we are unable to find parameteysor
which free energy7) would bev independent and hence the
TAP solutions indeed do not describe unique thermodynamic
states in the low-temperature phase. Our modification of the
TAP free energy becomes nontrivial.

Free energy7) is not globally thermodynamically homo-
geneous, since it depends on the scaling parametdye
can, however, optimize the solution in that we demand that

We use an iterative construction with successive replicationgTe 'dewatlo'ns. from' the 'Fhermodynam|c homoggne|ty be

of the phase space accompanied by the replica-symmetrw'mmal' This is achieved if at least thermodynamic homo-
e geneity is obeyed locally, that is, if

ansatz for the overlap susceptibilities at each step. We repl

cate the system so many times until a thermodynamically

homogeneous solution satisfying HE) is reached.

The trace in the averaged free energy den@jycannot
be evaluated explicitly. To do so we must know the matrix o
the overlap susceptibilitieg® reflecting the structure of
thermodynamic states indistinguishable in the TAP equa
tions. Mathematically it means to find the most general struc
ture of matrix y®° with the constraint thak,x® does not
depend ona. Since we do not know how such a structure
should look, we must make a choice and check anlyos-
teriori, whether our choice has led to a consistent solution

it (a.x) _

o 0. (8

This equation determines an optimal parametgy; for
which the free energy is locally thermodynamically homoge-
neous. We show later on that E@) has always a solution
The mean-field(saddle-point equations fory®® derived  with vopt= 0. Free energy7) together with the optimization
from the averaged free energy densiy are identical for all  condition (8) exactly deliver the thermodynamics of the Pa-
pairs of the replica indicegb),a+b. There is no apparent risi one-step RSB. Monasson and later Mézard proposed in
symmetry breaking force in the replica space aft=y is  Refs. 19 and 20 a similar approach to the thermodynamics of
evidently a possible solution. We choose this simpleststructural glasses, the so-called cloned liquid. The local ho-
replica-symmetric solution so that we can evaluate the avemogeneity, Eq.(8), was interpreted there as vanishing of
aged free energy explicitly. This replica-symmetric choicecomplexity.
corresponds physically to a situation where the TAP solu- Satisfying thermodynamic homogeneity locally for the
tions comprise of equivalent distinguishable thermodynamioptimal parametew, is generally insufficient. We in fact
states with the same overlap susceptibiliistance be-  should construct a theory being globally thermodynamically
tween each pair of different states. Hence no internal strudaomogeneous. To check whether free endifjycan for any
ture of equilibrium states is assumed. v be globally thermodynamically homogeneous we must per-
It is straightforward to evaluate the averaged free energyorm a further scaling of extensive variables via replicating
density f, with the ansatz?°=y. We employ the Hubbard- the spin variables in Eq6). We do so by replacing— nv

C. Analytic continuation and local
and global thermodynamic homogeneity
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and testing homogeneity of the free enefgyith respectto  which again is equivalent to the Parisi 2RSB free energy.
the n-times enlargedreplicated phase space. With the new Free energy, , from Eq.(9) is independent ofi and reduces
scaling we must replicate each spin variaB¥to (S*)2 and  to f, from Eq.(7) if and only if y,=0.
transform the matrix of overlap susceptibilities to a super When this “second level” free enerdy,, depends om it
matrix y2°— (y*#)2® wherea,b=1, ... v ande,8=1,...n.  can be optimized so that it is locally thermodynamically ho-
With this replication we allow that the local spin variabs mogeneous. The result can be subject to a further scaling of
may still be insufficient to determine unique thermodynamicextensive variables in order to verify whether the resulting
states. Since all spin variable® are thermodynamically thermodynamic potential is globally homogeneous. We can
equivalent, they must split into new states labeled by the newroceed with the hierarchicaimultiplicative) scalings ac-
replica indexa identically. companied with the replica-symmetric ansatz about the

The mean-field equations fofy*#)2° again contain a structure of the newly generated overlap susceptibilities so
replica-symmetric solutiony;=(x*#)2® for a#b and x, long until the free energy becomes a thermodynamically ho-
=(x*B)2for a# B. This symmetric solution assumes that theMogeneous function, i.e., the free energy does not depend on
local TAP magnetizatiom; can be represented bycompos-  the last scaling parameter. It is evident that with each trans-
ite states each of which contaimspure states. Two pure formation we generate just one scaling parameteand one
states are distinguished by the overlap susceptibjfityif ~ block-off-diagonal matrix of the overlap susceptibiligy.
they peel off from the same parental sfgthand byy; if they
stem from two different parental spir®, &, a+b.

It follows from the presented construction thgt= y».
The free energy now generally dependsrow and x4, xo. A. Hierarchical free energy
We obtain explicitly

Ill. HHERARCHICAL MEAN-FIELD THEORY

After performingK scaling transformationgeplications

B , B B of spin variables we end up withK geometric parameters
fun(@xuxe) == (1 -7+ Zxi + Z[(V = Dx1(29+ x1) m<m,<---<mg=v as well asK overlap susceptibilities
X1=x2= ' xk =0 characterizing the phase space of the or-
+v(n=1)x2(29+ x2)] der parameters. At each stégerarchical level of this con-

1 struction we use the Hubbard-Stratonovich transformation to
- j Dyln ID)\Z(J DA {2 coship(h linearize the newly introduce(eplicated spin variables in
pvn free energy(6). If we definemy=1 andy.;=0 we can rep-
_ _ n resent the averaged free energy density Withierarchical

+ g+ )\l\e"Xl -x2t M')(z)]}”> ) (9 scaling transformations in the following form:

o0

K
1 dn _ ) R
@ Lam) == 21 -2+ ES (m - menx@a+ ) + By - — | -Le21n f LTRLE
4 413 2 Bv) _\2m o \ 27

® N 5 K my my/m—q
x(f =21 2 cos ,B(h+ n\'q+2)\|\x|—)(|+1> ) : (10
—w \ 27 =1

In this expressiormy and y;, =1, ... K are physical order To find out whether a specific choice of geometric param-

parameters and are determined from the saddle-point equatersm, can lead to a thermodynamically homogeneous so-
tions. The numbersy, 1=1, ... K are formally external geo- lution we must understand how the free energy depends on
metric parameters determining the replica-symmetry breakthese parameters. We obtain from the structure of the rhs of
ing scheme of the matrix®® from Eq.(6). They parametrize Eq. (10) the following identities:

successive scalingseplicationg of extensive variables that

would not change thermodynamically homogeneous solu- fe(a Ixb {mmg = me4}) = fea(a,{xd:{mb), (118
tions.

It is evident that the averaged free energy dendify can f(a,{x}: {mme = 0) = fi_a(q + x. {0 xi = xi = xh:{mp),
be uniquely analytically continued to arbitrary non-negative (11b)

numbersm,, ... ,mx=w, since it is represented by analytic
functions for all non-negative variables, 1=1, ... K. In the — - - .
analytically continued function, the geometric paramenars (@D xi = Xieah M) = Fia(@, 0 mD. (110
need no longer be integers and either they need not form afhe solutions in the first and third cases are degenerate. The
ascending sequence. averaged free energy densftydoes not depend oy in Eq.
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(119 and it is independent afy in Eq. (110. Further on, if  random fields\;. We definep/(7,\; g, ... ,\) = Zm'/<Zm'>A
mg =My, thenfy<fx_;. We hence can conclude thatfif  and p(5,\)=2"/(2"), with Z= <ZmK>;|\-/mk We further |ntro-
?oes depen«izjn mIK, ie., |It |sai|1nhomog?neous the ia\veragedduce short hand notatlonst—tanl[ﬂ(h+77\q+)\\AX
ree energy displays a locahaximumfor some valuemy +3K Ax)] and () (7,0 ) Nap) = (pgthy )

. o =1NINAXI i\, Ko 1+1) =P \p1ix N
e (0,mg_y). Free energyfx(q,{x};{m}) is independent o W|th X, = = [ D\ X(\). 1

=my if and only if yx=0. , L . .
That is, we can find such a parameteg at which the _W|th the. above defmmon_s we can write down the station
arity equations for the physical order parameters,

averaged free energy density(q,{x};{m}) reaches a local

saddle point for the given values afi, ... ,m¢_; with re- q(v,K) =<<P<t>|<>i>m (143
spect to variations of the parametey. Consequently, we
can add the geometric parameters characterizing the structure Y1, K) = (o), - <<P<t>|<>f>7,, (14b)

of the phase space to the variational parameters. If the solu-
tion does not obey the global homogeneity condition _ 2
(g, {x};{m})/om«=0, the local homogeneity condition Axi(v,K) = (plDiZDk) = ({07 My (140
Jf(d,{x}:{m})/dmc=0 then minimizes deviations from the and for the geometric ones

global thermodynamic homogeneity. It immediately follows

from Egs.(11) that this stationarity point is lpcal maximum (1K) = 4 (pdIn Z, -, = KpdIn Zpn)
We fix in this way any new geometric parameter emerging in ! B> (oD = {pHDNONS
the hierarchical construction and achieve a theory with a

thermodynamically determined ultrametric structure. Notice Where index=1, ... K. A thermodynamically homogeneous
that both sets of parametegs, ... ,xx andm,, ..., my form solution is obtamed ify==(,Ax; and the remaining R+1
sequences of decreasing numbers from inteEOaIl]. Itis  order parameters do not dependmn

easy to verify that a substitutiog®=q+ x®® in Eq. (10) re-
covers the Parisi RSB solution with discrete hierarchies.

(15

C. Stability conditions

Averaged free-energy densityt3) defines a solution of
B. Hierarchical stationarity equations the SK model withK hierarchical levels labeled by a scaling
To simplify the analysis of properties of the hierarchical Parameterr. A globally thermodynamically homogeneous
free energy and the stationarity equations determining thgveraged free energy may not dependrofThis happens if
variational parameterg, andm we rewrite the rhs of Eq.  x=Zit;Ax. This condition of global thermodynamic homo-
(10) in a recursive way. We define a sequence of partitiordeneity is satisfied if an inequality

functions K 2
= Um 1= { 1-2+ 2 m((7, - <t>.2>> > (163
Z| = (f D7\|Zm1) (12) I=1 K/ »

is fulfilled. This inequality, however, does not represent the
with_the initial condition Zy= coshB(h+ mq+2I 1)\,\AX, only stability condition for a multilevel hierarchical free en-
+MAX)] We denoted Axi=xi—xi+1 and Axy=xx,;=x  ©€rgy. Ahierarchical solution witk levels is stable if it does
EI 1Ax. We singled out the scaling parametefrom the not decay into a solution witK+1 hierarchies. A new order
other geometric parameters. The averaged free energy deparameterdy may emerge so thaky;>Ax> Ay, for ar-

sity can then alternatively be represented as bitrary |. That is, the new order parameter peels off fram
and shifts the numeration of the order parameters folr in
fe(ax, Axa, - Axic My, - M) the existingK-level solution. To guarantee that this does not
B B 1 happen and that the averaged free energy depends on no
=-S(1-q-x?+=vAx(2q+Axy)-=1In2 more geometric parameters tham, ... ,m¢ we must fulfill a
4 4 B set of K generalized AT stability criterions that for our hier-
B K I-1 archical solution read far=1,2,... K-1,
"‘ZE mAx| 2 q+X—21AXi Axi
-

- | 2
- ; 1 1>Bz<<<1—t2+2mi(<t>?_1—<t>?)> > > :
_%f D’?'”(J WK) (13 - Kl

—0

(16b)

with g, x, Ay, 1=1,... K andm, 1=1,... K as order pa- There is also a condition that the new order parameter
rameters to be determined from stationarity equations. Themerges as the largest difference, thadjg>Ax;. So that
number of hierarchie used in the free energy should neither this instability takes place we must fulfill
be chosen so thafy does not depend on the scaling > 22
parameter. K 1= (L =t9%)- (160

To represent the mean-field equations we introduce a s&ctually, it is sufficient to take into account only a single
of hierarchical density matrices in the space of fluctuatingstability condition, namely that with the maximal right-hand
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side of Eqs(16). Which of these right-hand sides is maximal dence on the initial spin configurations. We simulated this
depends on the particular choice of the optimal geometriclependence in our approach with replicas of the spin vari-
parametersmn, ...,m¢g minimizing thermodynamic inhomo- ables subject to the same thermal equilibration.
geneity of the hierarchical solution with lower numbers of If a mean-field solution is thermodynamically inhomoge-
hierarchical levels. neous, thermal equilibration depends on the initial spin con-
figuration. Dependence of the thermodynamic state on the
o ) initial spin configuration from which we start equilibration
D. Physical interpretation of the order parameters from the may have a nontrivial form. It is reflected in our approach in
hierarchical free energy the matrixy2°. The replica-symmetric ansatg2®=y, means
The hierarchical free energy, E@.3), is equivalent to the that all the initial spin configurations are equivalent and that
Parisi discrete RSB solution witl hierarchies. Hence the there is only a single “mean” strength with which they affect
resulting stationarity equations, Eq44) and(15), coincide  the resulting equilibrium state. The replica symmetric ansatz
with the stationarity equations derived from tiestep RSB is the most natural first guess motivated by the high-
free energy when we make a substitutigi=q+ y2°. The  temperature phase but need not lead to a thermodynamically
derived numbers must be the same. The meaning and Rpmogeneous solution. The dependence of the equilibrium
physical interpretation of the order parameters in both apstates on their initial configurations should be chosen so as to
proaches may, however, be different. Different interpretareach a globally homogeneous solution. To achieve this goal
tions of the role of the order parameters, in particular of theve apply successive replications using only the simplest,
geometric ones, originate from the way the hierarchical fre¢eplica-symmetric ansatz from the high-temperature solution
energy(13) was derived. The RSB free energy was derivedat each stage. This construction seems to be more transparent
in an effort to maximize the averaged free energy within thethan an unjustified replica symmetry-breaking ansatz. More-
replica trick and the discrete scheniE3) was used as an OVver, the iterative construction offers an appealing physical
intermediate step toward its eventual form—the linit  interpretation of the geometric order parameters used in the
—o and continuously distributed order parametg¢s), x  hierarchical solutior(13).
€[0,1]. The physical interpretation of the Parisi RSB solu-  To understand the role of the geometric parameters let us
tion is then based on this continuous lirhithe present ap- first take the 1RSB free enerdy). The interacting part of
proach does not provide justification for the continuous limitthe averaged TAP free energy density reads
and the physical meaning of the order parameters in the hi- N
erarchical free energy must be sought within the discrete _N In Zy(3,h) — _ 1 |n<J D)\ZO(B,hH\\;)”) _
scheme. Bv BV
The hierarchical free energy was derived by replica- (17)
symmetric averaging of the TAP free energy extended to a
replicated phase space. Real replicas in the thermodynamitfe can see that the replicated spins influence the original
TAP approach were introduced to include control over therspins by making the internal magnetic field dynamically ran-
modynamic homogeneity. Thermodynamic homogeneity islom. The replicated free energy then behaves as if effec-
tightly connected with uniqueness of equilibrium states dedtively vN spins of the original system enclosed in the volume
termined by mean-field local magnetizations calculated fromvV were affected by the replicated spins outside the system
the TAP equations. The TAP equations define a unique thetnder consideration. The internal magnetic field changes due
modynamic state if the solution reacts to all possible perturto the existence of replicated spinste- h+)\\X The inte-
bations identically and no possible internal structure of thegral over the fluctuating variabbe stands for averaging over
solution can be revealed. We showed that by replicating théhe replicatedexternal spins. The averaging over the repli-
phase space we indeed reveal an internal structure of theted spins is dynamicalannealegl in contrast to the
TAP solutions. guenchedstatig averaging over the random configurations
It is clear from the construction itself that the overlap of the spin exchange. The parameteiis then kind of a
susceptibilities y?® measure the interaction strength with chemical potential governing the exchange between the ac-
which different copies of spins thermodynamically influencetive and additional replicated spin configurations. It must be
each other. That is, the thermal averaging of one spin copghosen so as the external replicated spins minimally influ-
depends on the values of spins in the other copieg?¥f enced the final equilibrium state of our original system.
>0. We cannot separate individual replicas although only Adding more geometric order parameters with> i,
one spin replica represents the physical system under consid-- -+ >mx >0 in the full hierarchical free energy means that
eration. The nonreplicated original phase variables togethghe true equilibrium states are hierarchically dependent on
with temperature and the chemical potential are hence insuthe initial spin configurations or they depend on the history
ficient to describe entirely the equilibrium thermodynamicof quasiequilibrium states they went through during thermal
states. To get rid of the dependence of thermodynamic stateseraging. When the thermodynamic equilibrium of the
on boundary or initial conditions we must average over alloriginal system depends on configurations of replicated spins
initial/boundary values and external variables that influenceve must include the replicated spins into our global thermo-
the thermodynamics of the investigated system. In longdynamic system. In this merge we compose the total number
range, completely connected models the degeneracy in solef N spins from myN from the original system andl
tions of the mean-field equations is reflected in the depen-m;)N from the replicated one. The parametsy is to be
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chosen so as to minimize the impact of the replicated spinkomogeneous solution can be found. The replica symmetric
on the original ones. Only the original spins, however, rep-ansatz reflects an assumption of no internal strudimeric)
resent active variables, while the replicated ones form kindf the thermodynamic states corresponding to a given set of
of a thermal bath. We must include the bath explicitly intolocal magnetizations from the TAP equations. This is the
thermal equilibration of the active spin variables, since themost natural(minimal) choice when we do not know the
latter are affected by the former. The bath spins affect th@ctual structure and organization of equilibrium states. Suc-
thermodynamics of the active spins via the overlap susceptessive scalings in the phase space and the property of global

bility x, modifying their internal magnetic field. We further thermodynamic homogeneity then lead to a selection of a
replicate theN spin variables in the whole volume and test nontrivial, ultrametric structure of thermodynamic states. We

whether ourmyN active spins interacting with the bath with apply so many scalings of extensive variablararchical

the overlap susceptibility, are affected by this replication. ;’ieg/fﬁ?veléntil the global thermodynamic homogeneity is
If yes, we must include the new replicated spins into therma ‘ . . . .
averaging. We denotg, the strength with which the new The averaged free energil3) derived in this way is

(second leval replicas affect the internal magnetic field of equivalent to the Pari'si discrete RSB solution. It contains a
P 9 set of averaged physical parametgrsy, I=1,... K and a

the active spins. The ba_th spiff_irst Ievel replicagare then oot of geometric parametens, 1=1, ... K. The geometric
affected by the new spin replicas in the same way as thgarameters are turned variational ones by the demand of lo-
first-level replicas act on the active spins, that is via an overgy| thermodynamic homogeneity at each step of the hierar-
lap susceptibilityy; > x,. The optimal restructuring of spins chjcal construction. The principle of local thermodynamic
in the whole system is such that omtyN spins belong to the  homogeneity replaces the maximum principle in the Parisi
active onesmN are from the first-level bath and the rest of RSB construction. The homogeneity is reached successively
(1-myN spins are the new replicated spins, second-leveby demanding stability with respect to scalings of extensive
bath. The parameters; andm, are dynamically determined variables. Each hierarchical level thetinimizesdeviations
from minimization of the impact of the newly replicated from the global homogeneity and hence the instability of the
spins on the active ones. We continue with wrapping thesolution. The maximum principle of Parisi emerges as a con-
active spin variables in successively replicated ones so longequence of minimization of thermodynamic inhomogeneity
until we reach independence of the active spins on phasef intermediate solutions and the form of stationarity equa-
space replications. The hierarchical construction convergegons for the SK model. However, it does not mean that the
toward a globally homogeneous solution §. >x>>---  absolute maximum of the averaged free energy should be the
>xk— 0, or xk+1=0 at a finite number of hierarchié& equilibrium solution. The maximum principle holds only for
Alternatively we can interpret the free ener@d3) as a  thermodynamically inhomogeneous states. The free energy
solution with a multitude of equivalent equilibrium thermo- should still be minimal among thermodynamically homoge-
dynamic states. Each state extends on average over a portigaous states.
mgN of the whole spin space. The states are organized hier- Wwe were able to derive the discrete Parisi RSB scheme
archically with on averagém_,—m)/my nearest neighbors from a physical principle of thermodynamic homogeneity
with the overlap susceptibilityvk, (Mg-,—Mg-1)/Mx next  but we do not find justification for its continuous version
nearest neighbors with the overlap susceptibjity;, and so  characterized by a nonlinear differential equation. The con-
on. The lasKth level is characterized byl —-m;)/my neigh-  tinuous version emerges in the linkt— e by assuming in-
bors with the overlap susceptibility;. The total number of finitesimal smallness of the overlap susceptibilitieg,
equilibrium states then statistically is rh. It is clear that =A;/K and infinitesimal differences in the geometric param-
pure states cannot be singled out and separated from thetersm/m,;=1+4/K. In the continuous limit of the RSB
neighbors. Only the whole complex of hierarchically ar-scheme the geometric parameters are no longer determined
ranged states can be thermodynamically homogeneous atitermodynamically, they cover intervid, 1]. Only an order-
form an independent system with a well-defined thermodyparameter functiomy(x) for xe[0,1] is to be determined
namic limit. variationally. In the discrete scheme the geometric order pa-
rameters form a discrete set and are determined thermody-
namically from Eq.(15) for 1=1,2,... K. These equations
are an essential part of the hierarchical solution and are of
We used the basic physical principle of thermodynamicparticular importance at low temperatures. Only with ther-
homogeneity and derived with the aid of real replicas in themodynamically determined geometric parameters we are
thermodynamic TAP approach a hierarchical representatioable to improve upon the SK free energy at zero temperature.
for the averaged free energy of the SK model. The hierarchiAt low temperatures, new variational parametgrsgm, are
cal free energy(13) was derived via successive replicationsto be introduced and used insteadngf Moreover, the ther-
of the phase space with the replica symmetric ansatz for thevodynamically shaped ultrametric structure of equilibrium
introduced order parameters—overlap susceptibilities. Redtates in the discrete scheme leads to tangible nonlinear ef-
replicas proved to be a suitable tool for treating situationsects. They get lost in the continuous limit. To decide
when the TAP order parameters, local magnetizations, do nathether the discrete or continuous versions of the Parisi so-
describe unique thermodynamic states. Real replicas enabligtion with K=o holds in the SK model, one must evaluate
one to lift the degeneracy of the TAP approach and providehe discrete scheme near the spin-glass transition point,
for a larger phase space within which a thermodynamicallywhich has not yet been done. Work on the comparison of

IV. CONCLUSIONS
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discrete and continuous versions of the RSB near the criticdtick and the limit of the number of replicas to zero. Using
temperature is in progress. real replicas we showed that the averaged free energy is an
Thermodynamic inhomogeneity of the SK solution in theanalytic function of the number of replicas on the positive
real-replica approach was attributed to ambiguity of solu-axis. The thermodynamically formed ultrametric hierarchical
tions of the TAP equations in the determination of pure equi-structure withK levels of the order parameters in the SK
librium states. Although real replicas offer a way how to model was shown to emerge due to thermodynamic inhomo-
identify this degeneracy, they do not allow for separation ofgeneity of the replica-symmetric solutions with less théan
individual pure states. That is why an organization of ther-hierarchies. Thermodynamic homogeneity of the averaged
modynamic states cannot be determined without an ansatiree energy with respect to scalingeeplications of the
We hence cannot find a fully ansatz-free solution of the SKphase volume is imposed at each hierarchical level. When
model. Successive scaling transformations with the replicaot fulfilled, the free energy depends on the geometric scal-
symmetric ansatz allow the system to arrange equilibriuning factor that is then chosen to minimize the inhomogeneity.
states so that thermodynamic inhomogeneity at intermediatié appears that in the SK model this minimization leads to
states is minimal. It recovers the Parisi discrete RSB schemepaximization of the free energy. The number of hierarchical
but we cannot claim that this is the only thermodynamicallylevels needed in this construction is fixed by the global ho-
homogeneous solution. At present, we cannot even proveogeneity condition, Eq.163.
that the full(infinite leve) solution is indeed thermodynami-
cally homogeneous, that is, it fulfills stability conditions
(16). Nevertheless, the proposed construction seems to offer
a rather straightforward way based on basic principles of The work on this problem was supported in part by Grant
statistical mechanics to reach the discrete RSB solution wittNo. IAA1010307 of the Grant Agency of the Academy of
stability conditions and an appealing physical interpretationSciences of the Czech Republic and the ESF Programme
To conclude, we demonstrated that the discrete RSB sdSPHINX. The author thanks Lenka Zdeborova for fruitful
lution of the SK model is not a consequence of the replicadiscussions.
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