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We study the emergence of diffusion for a quantum particle moving in a finite and translationally invariant
one-dimensional subsystem described by a tight-binding Hamiltonian with a single energy band and interacting
with its environment by an interaction energy proportional to some coupling parameter. We show that there
exists a crossover between a nondiffusive relaxation regime for small sizes or low values of the coupling
parameter and a diffusive regime above a critical size or for higher values of the coupling parameter. In the
nondiffusive regime, the relaxation is characterized by oscillations decaying at rates independent of the size
and proportional to the square of the coupling parameter and the temperature of the environment. In the
diffusive regime, the damped oscillations have disappeared and the relaxation rate is inversely proportional to
the square of the size. The diffusion coefficient is proportional to the square of the energy bandwidth of the
subsystem and inversely proportional to the temperature of the environment and the square of the coupling
parameter. The critical size where the crossover happens is obtained analytically.
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I. INTRODUCTION

Atoms, molecules, or spins coupled to their environment
undergo decay processes in the populations and coherences
of their quantum states.1–6 In the weak-coupling limit, the
rates of decay are given by Fermi’s golden rule and vanish as
the square of the coupling parameter. On the other hand,
there exist other irreversible processes such as the diffusion
of particles. In this case, their random walk results from the
perturbations of the environment hindering the ballistic mo-
tion of the particles. The pioneering work by Einstein in
1905 has shown that diffusion is intimately related to con-
duction or mobility.7 Since then, diffusion has been studied
in classical8–11 as well as quantum systems.12–27Diffusion is
sustained in large spatially extended systems but is absent in
such small systems as atoms where simple decay processes
prevail. We may thus wonder how the transport property of
diffusion can emerge as the size of the system increases. This
question is of special importance in nanoscience which pro-
vides us with systems of intermediate sizes between the at-
oms and macroscopic systems. Examples of nanosystems
sustaining transport of electric charges are the one-
dimensional molecular chains such as conducting polymers28

and carbon nanotubes,29 which may form closed loops of
different sizes. This raises the question of the minimum size
above which diffusion can appear in such nanosystems.

The purpose of the present paper is to understand how
diffusion can emerge in closed-loop molecular chains as their
size increases. The vehicle of our study is a model in which
a quantum particle moves along a one-dimensional chain
forming a closed loop. This motion is described by a tight-
binding Hamiltonian with one energy band and which is
coupled to a fast thermal environment in the subsystem-plus-
reservoir approach. This model is invariant under spatial
translations along the one-dimensional chain, which allows
us to recover the transport property of diffusion in the large-

system limit. In the weak-coupling limit, this model has the
advantage of being described by a quantum master equation
which is exactly solvable.

The plan of the paper is the following. Our translationally
invariant model is defined in Sec. II. The dynamics of this
system is ruled by a Redfield quantum master equation.2–6As
explained in Sec. III, the long-time evolution can be studied
in terms of the eigenvalues and the associated eigenstates of
the Redfield superoperator. This provides us with a criterion
for the emergence of diffusion in the system and allows us to
determine the size where diffusion appears. We show in Sec.
IV that diffusion dominates the long-time dynamics for sizes
larger than a minimum one or, equivalently, if the coupling
parameter is large enough. Conclusions are drawn in Sec. V.

II. DEFINING THE SYSTEM

A. Subsystem

Let us consider a quantum particle moving in a one-
dimensional periodic potential. Such translationally invariant
subsystems are known to present an energy spectrum with a
band structure. We suppose that the lower-energy band does
not overlap with the higher-energy bands. We denoteDEband
the energy spacing between the lower band in the spectrum
and the next one at higher energies. We assume that the
thermal fluctuationskBT, due to the coupling to the environ-
ment, are small compared toDEband. The subsystem dynam-
ics is therefore restricted to the lower-energy band. In this
case, the motion of the quantum particle only occurs by the
tunneling of the particle through the potential barriers sepa-
rating the lattice sites. This subsystem can be described by
the Hamiltonian
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2
N3N

, s1d

represented in the site basisull, where l takes the valuesl
=0,1, . . . ,N−1. N is the length of the chain. We have here
chosen periodicsBorn–van Karmand boundary conditions
because the chain is supposed to form a closed loop.

Such a Hamiltonian, often called tight-binding or Hückel
Hamiltonian, is a simple model of a spatially periodic sub-
system and has therefore a wide range of applications. The
tight-binding Hamiltonian is for instance commonly used in
solid-state physics to describe the electronic band structure
of weakly interacting solids7 and in polymer physics to de-
scribe electronic conduction along the polymer backbone or
polymer optical properties,28 as well as to understanding the
conduction properties of carbon nanotubes.29 This Hamil-
tonian describes a process of quantum tunneling from site to
site. The parameterA is given in terms of the overlap be-
tween the wave functions localized at the sites and is propor-
tional to the quantum amplitude of tunneling.

The stationary Schrödinger equation of the tight-binding
Hamiltonian is given by

Ĥsukl = ekukl, s2d

where the eigenvalues are

ek = E0 − 2A cosk
2p

N
s3d

and the eigenvectors

kl ukl =
1

ÎN
eilk2p/N, s4d

with k=0,1, . . . ,N−1. The closure relation is given by

1

N
o
l=0

N−1

eil sk−k8d2p/N = dkk8. s5d

Accordingly, the energy spectrum of the Hamiltonians1d
contains a single energy band of width 4A and the motion of
the particle would be purely ballistic without coupling to a
fluctuating environment.

B. Coupling to the environment

We now suppose that the subsystem is embedded in a
large environment.

The Hamiltonian of the total system composed of the one-
dimensional chain and its environmentsor heat bathd is given
by

Ĥtot = Ĥs + Ĥb + lo
l

ŜlB̂l , s6d

whereĤb is the environment Hamiltonian,Ŝl the subsystem

coupling operators,B̂l the environment coupling operators,
and l the coupling parameter which measures the intensity
of the interaction between the subsystem and its environ-
ment. We adopt the convention that"=1.

The reduced dynamics for the density matrixr̂std
=Trbr̂totstd of the subsystem is known to obey a Redfield
quantum master equation for weak coupling to the
environment.2–6 This equation can be systematically derived
from the complete von Neumann equation for the total sys-
tem by second-order perturbation theory and its validity has
been abundantly tested in many different contexts.30–32 On
time scales longer than the correlation time of the environ-
ment, the Redfield quantum master equation is Markovian
and reads

dr̂

dt
= L̂ˆ Redr̂ = − ifĤs,r̂g

+ l2o
l

sT̂lr̂Ŝl + Ŝl
†r̂T̂l

† − ŜlT̂lr̂ − r̂T̂l
†Ŝl

†d + Osl3d,

s7d

whereL̂ˆ Red is called the Redfield superoperator and

T̂l ; o
l8
E

0

`

dt all8stde−iĤstŜl8e
iĤst. s8d

The correlation function of the environment which contains
all the necessary information to describe the coupling of the
subsystem to its environment is given by

all8std = Trbr̂b
eqeiĤbtB̂le

−iĤbtB̂l8, s9d

where r̂b
eq is the canonical equilibrium state of the environ-

ment.
Let us now specify the interaction of the subsystem with

its environment. We define the subsystem coupling operators
as

kl8uŜlul9l = dll8dll9. s10d

These operators are diagonal in the site basis of the sub-
system taking the unit value if the particle is located on the
site l and zero otherwise.

Now, we need to specify the correlation functions. We
assume in our model that the correlation time of the environ-
mentstb=1/vbd is short compared to the shortest time scale
of the subsystemsts=p /2Ad. Furthermore, we suppose that
the range of the spatial correlations of the environment fluc-
tuations is shorter than the distance between two neighboring
lattice sites of the subsystem:all8std.astddll8. We can
therefore rewrite Eq.s8d as
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T̂l . ŜlE
0

`

dt astd ; Q Ŝl . s11d

If we also assume that the environment is Ohmic and that its
temperature is large enough so that the thermal timetth
=1/kBT is shorter than its correlation timetb, we find that
the constantQ characterizing the interaction of the sub-
system with the environment is proportional to the tempera-
ture:

Q = pKkBT, s12d

ssee Appendix Ad.
Accordingly, under the assumptions

tth ! tb ! ts, s13d

the Redfield equation of our model takes the final form

dr̂

dt
= L̂ˆ Redr̂ = − ifĤs,r̂g

+ l2Qo
l

s2Ŝlr̂Ŝl − Ŝl
2r̂ − r̂Ŝl

2d + Osl3d. s14d

It can easily be verified by projecting this equation onto the
site basis that it is translationally invariantsshifting all the
site indices appearing in the projected equation by a constant
does not modify the equationd. Furthermore, this equation
preserves the complete positivity of the density matrix be-
cause it has the Lindblad form33 which is the result of a
coupling with delta correlation functions.6

III. DIAGONALIZING THE REDFIELD SUPEROPERATOR

The eigenvaluessn and associated eigenstatesr̂n of the
Redfield superoperator are defined by

L̂ˆ Red r̂n = sn r̂n, s15d

wheren is a set of parameters labeling the eigenstates. Be-
cause the Redfield superoperator is not anti-Hermitian, its
eigenvalues can be complex numbers with a nonzero real
part. The eigenvalue problem of the Redfield superoperator
is important because the time evolution of the quantum mas-
ter equation can then be decomposed onto the basis of the
eigenstates as

r̂std = eL̂
ˆ

Redtr̂s0d = o
n=1

N2

cns0desntr̂n. s16d

The dynamics is therefore given by a linear superposition of
exponential or oscillatory exponential functions of time,
which describes the relaxation toward the stationary equilib-
rium state. Since the reduced density matrix of the subsystem
hasN2 elements, there is a total ofN2 eigenvalues and asso-
ciated eigenstates.

A. Bloch theorem for the density matrix

Since the system is invariant under spatial translations, we
can apply the Bloch theorem to the eigenstates of the Red-

field superoperator. Thanks to this theorem, the state space of
the superoperator can be decomposed into independent su-
peroperators acting onto decoupled sectors associated with a
Bloch number, also called the wave number.7 We emphasize
that the Bloch theorem is here applied to density matrices
instead of wave functions.

Let us define the superoperatorT̂ˆ a of the spatial transla-
tion by a sites along the systemsa is an integerd as

o
m,m8

sT̂ˆ adll8,mm8rmm8
n = rl+a,l8+a

n , s17d

where we use the notation

kl ur̂ul8l = rll8. s18d

This superoperator must have the group property

T̂ˆ aT̂ˆ a8 = T̂ˆ a8T̂
ˆ

a = T̂ˆ a+a8. s19d

Because of the translational symmetry of the system, the
translation superoperators commute with the Redfield super-
operator:

T̂ˆ aL̂ˆ Redr̂std = L̂ˆ RedT̂ˆ ar̂std. s20d

Therefore, the Redfield superoperator and the translation su-
peroperators have a basis of common eigenstates. Iftsad
denotes the eigenvalues of the translation superoperator, we
have that

T̂ˆ a r̂n = tsadr̂n = eiqar̂n, s21d

whereq is the Bloch number, also called the wave number.
In the site basis, Eq.s21d becomes

rl+a,l8+a
n = eiqarll8

n . s22d

A useful consequence is that

rll8
n = eiqlr0,l8−l

n . s23d

In order to determine the allowed values of the Bloch num-
ber, we write by using Eq.s4d such that

rll8
n =

1

N
o
k,k8

kkur̂nuk8leislk−l8k8d2p/N s24d

and

rl+1,l8+1
n =

1

N
o
k,k8

kkur̂nuk8leislk−l8k8d2p/Neisk−k8d2p/N. s25d

Due to Eq.s22d, we also have

rl+1,l8+1
n = eiqrll8

n . s26d

Multiplying both sides of Eqs.s25d and s26d by kl8uk-l
3kk9ull, taking the sumol,l8 of it, and identifying them, we
get
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eiqkkur̂nuk8l = eisk−k8d2p/Nkkur̂nuk8l. s27d

Now, we notice that ifqÞ sk−k8d2p /N, then kkur̂nuk8l=0.
Using finally the periodicity

rl+N,l8
n = rll8

n , s28d

rl,l8+N
n = rll8

n , s29d

we find with Eq.s22d that the Bloch number takes the values

q = j
2p

N
, wherej = 0,1, . . . ,N − 1. s30d

Accordingly, the Redfield superoperator can be block-
diagonalized intoN independent blocks, which each contains
N eigenvalues as we shall see in the following.

B. Simplifying the problem

We will now formulate the eigenvalue problem of the
Redfield superoperator in each sector labeled by a given
wave numberq.

For this purpose, we project Eq.s15d onto the site basis
using the explicit expressions14d of the Redfield superopera-
tor. We get

snrll8
n = − iAs− rl−1,l8

n − rl+1,l8
n + rl,l8−1

n + rl,l8+1
n d

+ 2l2Qsdll8 − 1drll8
n . s31d

Using Eq.s23d and replacingl8− l by l, we get

ssn + 2Ql2dr0l
n = 2ASsin

q

2
Dse−iq/2r0,l+1

n − eiq/2r0,l−1
n d

+ 2Ql2r00
n d0l . s32d

Making the change of variable

r0l
n = i−leisq/2dl f l , s33d

we obtain the simpler eigenvalue equation

mnf l = d0l f l − ibsf l−1 + f l+1d, s34d

where

mn =
sn

2Ql2 + 1 s35d

and

b =
A

Ql2 sin
q

2
. s36d

C. Spectrum of Redfieldian eigenvalues

We can write the expressions34d in matrix form swe no
longer write the indexn to simplify the notationd

mfW = ŴfW , s37d

wherem are the eigenvalues,fW=sf0, . . . ,fN−1d the eigenvec-

tors of sizeN, andŴ the N3N matrix

1
1 − ib − ibi−NeiNq/2

− ib 0 − ib

− ib 0 − ib

� � �

− ib 0 − ib

− ib 0 − ib

− ibiNe−iNq/2 − ib 0

2 , s38d

where the matrix elements in the off-diagonal corners guar-
antee the periodic boundary conditionss28d and s29d. We
have therefore thatf l = f l+N.

The complete spectrum of theN2 eigenvalues of the Red-
field superoperator has been calculated by the numerical di-
agonalization of Eq.s38d and is depicted in Fig. 1 as a func-
tion of the wave numberq.

In Fig. 1sad, we depict the spectrum in the caseA/Ql2

,
1
2. In this case, we observe two families of eigenvalues. A

branch containing a single eigenvalue for each value of the
wave numberq and connected tom=1 when the wave num-
ber vanishes. According to Eq.s35d, the valuem=1 corre-
sponds to the eigenvalues=0 of the stationary equilibrium

state. Moreover, this branch is seen in Fig. 1sad to approach
m=1 with a quadratic dependence on the wave numberq as

ssDd = − Dq2 + Osq4d. s39d

As confirmed by the following analysis, this behavior shows
that these eigenvalues are responsible for diffusion in the
system andD is the diffusion coefficient which can be cal-
culated analytically as shown here below.

Beside theN eigenvalues of the branch of diffusion, we
also find many other eigenvalues, preciselyN2−N of them,
which are located slightly above the plane Rem=0 with a
nonvanishing imaginary part for most of them. Here, Eq.
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s35d shows that the real part of these eigenvalues is given by

RessCd . − 2Ql2. s40d

Therefore, these eigenvalues describe decays at rates which
are approximately equal to 2Ql2. Since they behave asl2,
they can be explained by Fermi’s golden rule. The eigenval-
ues with a nonvanishing imaginary part are associated with
damped oscillations. The imaginary parts are essentially the
Bohr frequencies of the Hamiltonian subsystems1d. We may

thus interpret most of these eigenvalues as responsible for
the process of decoherence of the quantum coherences. Since
they have larger decay rates than the eigenvalues of the dif-
fusive branch, they correspond to faster transients so that the
long-time dynamics will be dominated in the case of Fig.
1sad by diffusion, as shown in the following.

On the other hand, ifA/Ql2.
1
2, the diffusive eigenvalues

disappear for some value of the wave number, as observed in
Fig. 1sbd. For very large values ofA/Ql2.

1
2, the diffusive

branch of the spectrum is reduced to the sole eigenvalue at
q=0, as seen in Fig. 1scd. In this case, diffusion has disap-
peared from the spectrum which only contains eigenvalues
associated with damped oscillatory behaviorscoherent eigen-
valuesd. Hence diffusion can be supposed to have disap-
peared when its last nonzero eigenvalue has disappeared as
in Fig. 1scd. This happens if the parameterA/Ql2 is large
enough, as observed in Fig. 1. In order to obtain the precise
value of this crossover, we need analytical expressions for
the eigenvalues. This is the purpose of the next subsection.

D. Analytical expressions for the eigenvalues

The eigenvalues of the diffusive branch are obtained by
going back to the eigenvalue equations34d and assuming that
the diffusive eigenvector satisfiesf l = f−l.

If l =0 in Eq. s34d and usingf1= f−1, we get

1 − m

2
= ib

f1

f0
. s41d

For l Þ0, Eq. s34d gives

f l

f l−1
=

− ib

m + ib
f l+1

f l

. s42d

Using Eqs.s41d and s42d, we obtain by recurrence the con-
tinuous fraction

1 − m

2
= ib

− ib

m + ib
− ib

m + ib
− ib

m + ¯

. s43d

Defining x;s1−md /2, Eq. s43d becomes

x = ib
− ib

m + x
. s44d

By solving x2+mx−b2=0, we finally find that

m = msDd = Î1 − s2bd2, s45d

which is real if b,1/2. According to Eq.s35d, the corre-
sponding eigenvalue of the Redfield superoperator is given
by

ssDd = − 2Ql2 + 2Ql2Î1 − s2bd2. s46d

The dependence on the wave number is given by Eq.s36d as

FIG. 1. Complete spectrum of the eigenvaluesmqu related to the
eigenvalues of the Redfield superoperator by Eq.s50d. The system
size is hereN=21. In sad, A/Ql2=0.4. In sbd, A/Ql2=0.7. In scd,
A/Ql2=10.
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ssDd = − 2Ql2 + 2Ql2Î1 −S 2A

Ql2 sin
q

2
D2

, s47d

with the wave numberq taking the discrete valuess30d. We
notice that possible finite-size corrections are exponentially
small in the chain lengthN and negligible.34 Expanding Eq.
s47d in powers of the wave number, we find the dispersion
relation s39d of diffusion with the diffusion coefficient

D =
A2

Ql2 . s48d

This result shows that the diffusion coefficient of the present
model is proportional to the square of the width 4A of the
energy band and inversely proportional to the constants12d
characterizing the interaction of the subsystem with its envi-
ronment and the square of the coupling parameterl. The
diffusion coefficient increases as the coupling to the environ-
ment vanishes. Indeed, in the absence of coupling, the quan-
tum particle follows a ballistic motion on the chain and the
diffusion coefficient is infinite in this limit. The environment
hinders the ballistic motion by its thermal fluctuations. As
shown in Appendix B, the diffusion coefficient is inversely
proportional to the temperature and the conductivity of the
model inversely proportional to the square of the temperature
as expected.

Beside the diffusive eigenvalue, there exist the other fam-
ily of eigenvalues responsible for simple decay processes. To
derive the other family of eigenvalues, we assume instead
that the eigenvectors of Eq.s34d takes the formf l =eiul and
that the diagonal elementl = l8=0 which is equal to unity is
negligible. This assumption is confirmed numerically and has
also been verified analytically.34 Accordingly, the corre-
sponding eigenvalues are given by

msCd = 2ib cosu, s49d

whereu is a real number. Therefore, we now have that

ssCd = − 2Ql2 + i4Ql2b cosu s50d

or, equivalently,

ssCd = − 2Ql2 + i4A sin
q

2
cosu, s51d

in terms of the wave numberq given by Eq.s30d. Since this
family containsN2−N eigenvalues, the angleu also takes
aboutN discrete values. We see that these eigenvalues have a
real part giving damping rates equal to 2Ql2 independently
of the wave numberq, as numerically observed with Eq.
s40d. Since Eq.s51d is the result of the approximation that
the diagonal elementl = l8=0 is neglected, we should expect
corrections depending on the chain lengthN. These finite-
size corrections are responsible for the fine structures seen in
Fig. 1.34 Moreover, the eigenvaluess51d have a nonzero
imaginary part corresponding to damped oscillatory behavior
in the dynamics. They therefore describe the short-time de-
cay of the quantum coherences of the subsystem. These ei-
genvalues characterize the decoherence of the quantum dy-
namics on the chain and are denoted by the superscriptsCd in

reference to their role in the decay of the quantum coher-
ences.

We notice that the damping rates of the coherent eigen-
valuess51d are larger than or equal to those of the diffusive
eigenvaluess47d, as observed in Fig. 1. According to Eq.
s12d, the damping rates of the coherent eigenvalues are, con-
trary to the diffusive rates, proportional to the temperature of
the environment and to the square of the coupling parameter.

The theoretical analysis here above provides us with ana-
lytical expressions for the two families of eigenvalues seen
in the previous numerical analysis. They also explain the
crossover between the diffusive and the nondiffusive regimes
seen in Fig. 1.

E. Crossover between the diffusive and nondiffusive regimes

We see in Fig. 1sad that the diffusive eigenvaluess47d
exist for all the values of the wave numberq in the case
A/Ql2,

1
2, which impliesb,

1
2. However, ifA/Ql2.

1
2, the

diffusive eigenvalues disappear as expected for the values of
the wave number corresponding tob.

1
2. This situation is

observed in Fig. 1sbd. According to Eq.s47d, the critical
value of the wave number where the diffusive branch meets
the other family of coherent eigenvalues is equal to

qc = 2 arcsin
Ql2

2A
. s52d

If this critical wave number is smaller than the smallest non-
vanishing discrete values30d allowed by the finiteness of the
chain, the diffusive branch of the spectrum is reduced to the
sole eigenvalueq=0, as seen in Fig. 1scd. Consequently, the
crossover between the diffusive and nondiffusive regimes
happens at

qc =
2p

N
. s53d

Hence the diffusive branch disappears when the value ofb
for the first nonzero eigenvalue corresponding toq=2p /N is
larger than the critical valuebc= 1

2. This happens when the
coupling parameter exceeds the critical value given by

lc =Î2A

Q
sin

p

N
.

N.5Î2Ap

QN
. s54d

This condition can be translated in terms of the critical size
of the chain,

Nc =
p

arcsin
Ql2

2A

.
2pA

Ql2 , s55d

below which diffusive behavior no longer exists and the re-
laxation is only controled by simple decay processes with
rates approximately given by 2Ql2. We point out that the
diffusion always exists in the infinite-system limitsN→`d in
which caselc can be arbitrarily small. The critical sizes55d
is proportional to the width 4A of the energy band and in-
versely proportional to the temperature according to Eq.
s12d. The higher the temperature, the smaller are the chains
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where the crossover from simple decay to diffusion happens.
We notice that a similar crossover would also exist in a

finite open chain with reflecting boundary conditions at its
two ends.

IV. DYNAMICAL ANALYSIS

We have described in the last section the crossover be-
tween the nondiffusive and diffusive regimes in terms of the
spectrum of the Redfield superoperator. We now need to dis-
cuss the dynamical implications of our spectral analysis.

A. Theoretical predictions

The spectrum of the Redfield superoperator determines
the full dynamics of the subsystem interacting with its envi-
ronment. In fact, projecting Eq.s16d in the site basis and
using the Bloch propertys22d, we can write

rll8std = o
q,u

esqu t+ilqcqus0dr0,l8−l
qu . s56d

We see that the imaginary part of the eigenvaluessqu will
generate oscillations in the dynamics and that the real part of
these eigenvalues will cause a damping. The contribution to
the long-time dynamics from the modes of the Redfield su-
peroperator corresponding to the eigenvaluessqu which have
a large real part is very small. Only the modes corresponding
to eigenvalues with a small real part will significantly con-
tribute to the long-time dynamics and therefore to the trans-
port property of the system. Here, we mainly want to focus
on the long-time dynamics.

As pointed out in Sec. III E, the subsystem evolves in a
nondiffusive regime if the chain is small enoughl,lc. In
this regime, there is no diffusive eigenvalue so that the long-
time dynamics is dominated by the eigenvaluess51d describ-
ing the decay of the quantum coherences. The relaxation
rates associated with these eigenvalues are given by their real
part, as seen in Sec. III C. Since these eigenvalues have a
nonvanishing imaginary part, the slowest modes relax expo-
nentially but with oscillations. These damped oscillations are
reminiscent of a similar behavior in the spin-boson model.1

We can thus interpret these damped oscillations as due to the
damping of the quantum coherences.

For a sufficiently large chainl.lc, these damped oscil-
lations disappear because the eigenvalues of the Redfield su-
peroperator with the smallest real part are now the diffusive
eigenvaluess47d. In this case, the lowest relaxation rate is
given by Eq.s39d with the diffusion coefficients48d,

ssDd . − Dq2 = − DS2p

N
D2

= −
4p2A2

Ql2N2 , s57d

because the wave number of the slowest nontrivial mode
takes the valueq=2p /N and is inversely proportional to the
lengthN of the chain. The signature of the diffusive regime
is therefore that the relaxation rate scales asN−2.

This behavior is consistent with the famous Einstein rela-
tion for the definition of the diffusion coefficient. Indeed, we
can define the position operator of the subsystemx̂ by

kl ux̂ul8l = ldll8. s58d

The variance of the position is therefore given by

kx̂2lstd = o
l=0

N−1

l2rllstd, s59d

where, using Eq.s56d,

rllstd = o
q,u

aqus0desqu t+ilq , s60d

with the newly defined coefficientsaqus0d=cqus0dr00
qu. In the

long-time limit and for a large enough chain, only the diffu-
sive eigenvaluesssDd of spectrum will significantly contribute
to the dynamics and one can write

rllstd =
t→`

o
qu

aqus0desqu t+ilq , s61d

where squ=−Dq2. Using qj = j2p /N, Dq=qj+1−qj =2p /N,
and fsqjd=Naqju

s0d, we get

rllstd =
t→` 1

2p
o
j=0

N−1

Dqfsqjde−Dqj
2t+ilq j , s62d

which becomes in the limit of an arbitrarily large chain

rllstd =
N,t→` 1

2p
E

−`

+`

dq fsqde−Dq2t+ilq . s63d

If we choose an initial condition of the density function cen-
tered on a given site,fsqd=1, and

rllstd =
N,t→` e−l2/4Dt

Î4pDt
. s64d

Finally, we recover the well-known Einstein relation for the
diffusion coefficient:

kx̂2lstd =
N,t→`

2Dt. s65d

This demonstration is also a justification for calling diffusive
the eigenvaluess47d.

B. Numerical results

The previous theoretical predictions are confirmed by the
numerical integration of the Redfield equation.

Let us define the quantity we compute. Equations56d can
be written as

rllstd = o
qu

esqut+ilqaqus0d, s66d

whereaqus0d=cqus0dr00
qu. If we introduce

r̃sq8,td = o
l=0

N−1

rllstde−ilq8, s67d

we find using Eq.s5d that
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r̃sq8,td = No
u

aq8us0desq8u t. s68d

The evolving quantity we have computed is

uXstdu = ur̃sq1,tdu, s69d

where we recall thatq1=2p /N. We consider that the sub-
system has initial conditions given by

rll8s0d = dll8dl0. s70d

This means thatou aqus0d=1/N. The quantityXstd is initially
equal to unityfXs0d=1g and tends to zero after long times
fXs`d=0g in an exponential way determined by the smallest
nonvanishing real part of the eigenvaluessq1u.

Figures 2sad and 2sbd depict the relaxation curves ofuXstdu
for different values of the coupling parameterl but to the
same chain sizeN. In order to determine the regime, we use
two different scalings with respect to the time. Figure 2sad

has the scalingl2t, which is characteristic of the nondiffu-
sive regime. Instead, Fig. 2sbd has the scalingt / slNd2, which
is characteristic of the diffusive regime. Therefore, the
curves clustering in Fig. 2sad correspond to values of the
coupling parameter such thatl,lc sin the nondiffusive re-
gimed and they relax with damped oscillations at rates given
by Eq. s40d. On the other hand, the curves clustering in Fig.
2sad correspond to values of the coupling parameter such that
l.lc sin the diffusive regimed and they relax exponentially
without oscillations at a rate given by Eq.s57d.

Figure 3 depicts the relaxation curves for chains of differ-
ent sizesN but the same value of the coupling parameter.
Here, the chain is in the diffusive regime as evidenced by the
clustering of the different curves with the time scaling
t / slNd2. This figure numerically demonstrates the property
of diffusion for l.lc or N.Nc.

An important remark is that the time scaling of the non-
diffusive regime is naturally expected from perturbation
theory. Indeed, according to perturbation theory, the relax-
ation rates are proportional to the square of the coupling
parameterl. This is consistent with the fact that the Redfield
quantum master equation is obtained by second-order pertur-
bation theory in the coupling parameter from the complete
von Neumann equation for the subsystem interacting with its
environment. It is quite remarkable that the time scaling of
the relaxation is completely different in the diffusive regime
where the relaxation rate depends on the inverse of the
square of the coupling parameter.

In Figs. 4–6 we have represented the time evolution of
the probabilityP=rllstd to occupy a given site of the sub-
system for three different values of the coupling parameter.
In Fig. 4, the coupling parameter is zero and the time evolu-
tion of the subsystem is purely Hamiltonian. The wave
packet follows a ballistic motion along the chain which
forms a closed loop due to the periodic boundary conditions.
At long times, the evolution presents wavy interferences
showing the coherent character of the dynamics in this un-
coupled case. In Fig. 5, the coupling parameter is such that
the subsystem relaxes in the nondiffusive regime. The dy-

FIG. 2. sColor onlined Crossover between the nondiffusive and
diffusive regimes for a chain of sizeN=20 and parametersE0=0,
A=0.1, andQ=1. The crossover occurs around the critical value
lc=0.177 given by Eq.s54d. sad The quantityuXstdu versus the res-
caled timel2t in order to identify the nondiffusive regime.sbd The
quantity uXstdu versus the rescaled timet / slNd2 in order to identify
the diffusive regime. As predicted, the nondiffusive regime mani-
fests itself if l,lc=0.177 and the diffusive regime ifl.lc

=0.177. The quantityuXstdu is defined in Eq.s69d.

FIG. 3. sColor onlined The quantityuXstdu defined by Eq.s69d
versus the rescaled timet / slNd2 for various sizesN=20–50 of the
chain. The parameters areE0=0, A=0.1, Q=1, andl=0.3. Here,
the system is always in the diffusive regime becauseN.Nc=6.73.
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namics still presents wavy interferences, but they are damped
by the dissipation to the environment. We notice that the
center of the wave packet still travels along the chain but it is
damped. Finally, in Fig. 6, the coupling parameter is now
such that the subsystem relaxes in the diffusive regime. The
dynamics of the subsystem is no longer coherent and the
wavy interferences have disappeared. In this case, the center
of the wave packet no longer moves along the chain but that
it spreads diffusively.

V. CONCLUSIONS

In the present paper, we have shown how the transport
property of diffusion can emerge in a quantum chain inter-
acting with a thermal environment. For this purpose, we have
considered a simple model in which a tight-binding Hamil-
tonian with a single energy band is coupled to a thermal
environment. The coupling is characterized by correlation
functions which decay on time scales longer than the thermal
time scale, but shorter than the subsystem time scale. The
reduced dynamics of the subsystem is described by a Red-

FIG. 4. sColor onlined Representation of the time evolution of
the probabilityP=rllstd to occupy a given site of the subsystem.
The initial conditions correspond to a Gaussian wave packet of
standard deviation 2 centered on the sitel =25. The parameter val-
ues are:N=50, E0=0, A=0.1,Q=1, and thereforelc=0.1121. The
system is isolatedsl=0d and the time evolution is thus a pure
Hamiltonian multiperiodic dynamics. The center of the wave packet
travels ballistically around the chain which forms a closed loop.

FIG. 5. sColor onlined Representation of the time evolution of
the probabilityP=rllstd to occupy a given site of the subsystem.
The situation is the same as in Fig. 4, except that the system is now
interacting with its environment with the coupling parameterl
=0.05. The system therefore relaxes in the nondiffusive regimesl
,lc=0.1121d and the time evolution is a damped multiperiodic
dynamics. However, the center of the wave packet keeps traveling
ballistically around the chain.
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field quantum master equation which takes, for such environ-
ments, a Lindblad form. Thanks to the invariance under spa-
tial translations, we can apply the Bloch theorem to the
density matrix of the subsystem. In this way, we succeeded
in diagonalizing the Redfield superoperator. The eigenvalues
control the time evolution of the subsystem and its relaxation
to the thermodynamic equilibrium. Two kinds of eigenvalues
were obtained: the eigenvalues giving the dispersion relation
of diffusion along the one-dimensional subsystem and other
eigenvalues which describe the decay of the quantum
coherences—i.e., the process of decoherence in the sub-
system.

The properties of the system depend on the lengthN of
the one-dimensional chain, on the width 4A of the energy
band of the unperturbed tight-binding Hamiltonian, and on
the intensityQ of the environmental noise multiplied in the
combinationQl2 with the square of the coupling parameter
l of perturbation theory.

We discovered that, for a finite chain, there are two re-
gimes depending on the chain lengthN and the physical
parametersA andQl2.

For finite chains smaller than a critical sizeNc given by
Eq. s55d, there is a nondiffusive regime characterized by a
time evolution with oscillations damped by decay rates pro-
portional toQl2. The oscillations come from the time evo-
lution of the quantum coherences at the Bohr frequencies.
They are damped due to the coupling with the environment.
This nondiffusive regime exists if the coupling parameter is
smaller than a critical value which is inversely proportional
to the square root of the chain sizeN, l,lc=OsN−1/2d.

Longer chains evolve in the diffusive regime with a
monotonic decay on long times at a rate controled by a dif-
fusion coefficient. In this regime, the slower relaxation mode
relaxes exponentially in time with the scalingt / slNd2.

In the limit of an infinite chainN→` and for a nonvan-
ishing coupling parameterQl2, the nondiffusive regime dis-
appears and the system always diffuses.

According to Eq.s48d, the diffusion coefficient is propor-
tional to the square of the width 4A of the energy band and
inversely proportional to the intensityQl2 of the environ-
mental noise. We are thus in the presence of a mechanism of
diffusion in which the quantum tunneling of the particle from
site to site is perturbed by the environmental fluctuations.
For an Ohmic coupling to the environment, the constantQ is
proportional to the temperature and therefore the diffusion
coefficient is inversely proportional to the temperature. By
using Einstein’s relation between the diffusion coefficient
and the conductivity, this latter is inversely proportional to
the square of the temperature as it is the case in many
circumstances.28,35,36In this regard, the model used as a ve-
hicle of the present study present many typical features of
quantum diffusion and conductivity.

In conclusion, we believe that the crossover between the
nondiffusive and diffusive regimes we have obtained in the
present paper is a general phenomenon of a whole class of
quantum systems sustaining transport of quantum particles or
charges such as molecular wires or carbon nanotubes in the
form of closed loops. The present results provide an under-
standing of the emergence of diffusion out of quantum co-
herent behavior as the size of the loop increases.

APPENDIX A: TEMPERATURE DEPENDENCE OF THE
ENVIRONMENT CORRELATION FUNCTION

As a consequence of the quantum fluctuation-dissipation
theorem, the environment correlation function can be ex-
pressed in terms of the spectral strengthJsvd according to

astd =E
0

`

dv JsvdScoth
v

2kBT
cosvt − i sinvtD .

sA1d

The Fourier transform of the environment correlation func-
tion, which is given by

FIG. 6. Representation of the time evolution of the probability
P=rllstd to occupy a given site of the subsystem. The situation is
the same as in Fig. 5, but the coupling between the system and its
environment is strongersl=0.15d. The system here relaxes in the
diffusive regimesl.lc=0.1121d. The multiperiodicity has disap-
peared, the center of the wave packet does not move, and a diffu-
sive spreading of the wave packet can be observed.
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ãsvd =E
−`

+` dt

2p
eivtastd, sA2d

is therefore related to the spectral strength by

ãsvd =
1

2
sgnsvdJsuvudScoth

v

2kBT
+ 1D , sA3d

where sgnsvd denotes the sign ofv. Empirical forms for the
spectral strength are often used in the literature1,17 such as

Jsuvud = Kuvuge−uvu/vb, sA4d

wherevb is a cutoff frequency andK a constant. The envi-
ronment is called Ohmic ifg=1, sub-Ohmic ifg,1, and
super-Ohmic ifg.1. The correlation timetb, defined as the
time over which the environment correlation function decays
to zero, is given by the inverse of the cutoff frequency by
tb=1/vb.

If one assumes that the thermal time of the environment
tth=1/kBT is shorter than the correlation timetb, simplifica-
tions occur. The imaginary part of the environment correla-
tion function becomes negligible compared to its real part
and Eq.sA1d becomes

astd . 2kBTE
0

`

dv
Jsvd

v
cosvt. sA5d

Notice that the environment correlation function is now sym-
metric in timeastd=as−td. The Fourier transform of the cor-
relation functionsA3d reduces to

ãsvd . kBT
Jsuvud

uvu
. sA6d

Notice that the zero-frequency limit of the Fourier transform
of the correlation function,

lim
v→0

ãsvd = lim
v→0

KkBTuvug−1, sA7d

is well defined and nonvanishing only in the case of an
Ohmic spectral strengthg=1.

As a consequence, the time integral of the correlation
function defined by Eq.s11d is equal to

Q ;
1

2
E

−`

+`

dt astd = pãs0d = pKkBT sA8d

and is therefore proportional to the temperature.

APPENDIX B: TEMPERATURE DEPENDENCE OF THE
DIFFUSION COEFFICIENT AND THE CONDUCTIVITY

Using Eqs.s12d and s48d, the diffusion coefficient of the
present model can be written with its explicit temperature
dependence:

D =
A2

pKl2kBT
. sB1d

The conductivitys can also be obtained using Einstein’s
relation

D =
s

e2S ]m

]n
D

T
, sB2d

wheree is the electric charge of the carriers,n their density,
and m their chemical potential. Assuming a low density of
carriers, the chemical potential depends on the density ac-
cording to

m = m0sTd + kBT ln
n

n0 , sB3d

so that the conductivity is given by

s =
e2n

kBT
D =

e2A2n

pKl2skBTd2 . sB4d

Therefore, the conductivity decreases asT−2 with the tem-
perature. We notice that similar dependences are also ob-
tained for the electric conductivity in conducting polymers28

and in Fermi liquids.35,36 This inverse power law is due to
the existence of a single conduction band in the model. The
transport is therefore confined in this band and no thermally
activated transport process can occur. The diffusive transport
phenomenon can be viewed as the result of the tunneling of
the particle through the potential barriers of the system. This
tunneling is more and more affected as the temperature in-
creases.

We expect that a crossover would occur to a regime where
the diffusion coefficient has a temperature dependence of
Arrhenius type if one considered a system with at least two
conduction bands. In such systems, we should find that a
crossover between the quantum tunneling regime and a ther-
mally activated transport regime whenkBT becomes compa-
rable to the energy spacing between the two
bands.12,17,23,24,26,27
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