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Emergence of diffusion in finite quantum systems
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We study the emergence of diffusion for a quantum particle moving in a finite and translationally invariant
one-dimensional subsystem described by a tight-binding Hamiltonian with a single energy band and interacting
with its environment by an interaction energy proportional to some coupling parameter. We show that there
exists a crossover between a nondiffusive relaxation regime for small sizes or low values of the coupling
parameter and a diffusive regime above a critical size or for higher values of the coupling parameter. In the
nondiffusive regime, the relaxation is characterized by oscillations decaying at rates independent of the size
and proportional to the square of the coupling parameter and the temperature of the environment. In the
diffusive regime, the damped oscillations have disappeared and the relaxation rate is inversely proportional to
the square of the size. The diffusion coefficient is proportional to the square of the energy bandwidth of the
subsystem and inversely proportional to the temperature of the environment and the square of the coupling
parameter. The critical size where the crossover happens is obtained analytically.
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[. INTRODUCTION system limit. In the weak-coupling limit, this model has the
advantage of being described by a quantum master equation
Atoms, molecules, or spins coupled to their environmentwhich is exactly solvable.

undergo decay processes in the populations and coherencesThe plan of the paper is the following. Our translationally
of their quantum state's® In the weak-coupling limit, the invariant model is defined in Sec. Il. The dynamics of this
rates of decay are given by Fermi’s golden rule and vanish asystem is ruled by a Redfield quantum master equatibAs
the square of the coupling parameter. On the other hangyplained in Sec. Iil, the long-time evolution can be studied
there exist other irreversible processes such as the diffusio terms of the eigenvalues and the associated eigenstates of
of particles. In this case, their random walk results from thehe Redfield superoperator. This provides us with a criterion
perturbations of the environment hindering the ballistic mo-¢g. e emergence of diffusion in the system and allows us to
tion of the particles. The pioneering work by Einstein in yeermine the size where diffusion appears. We show in Sec.
1905_’ has ShOW_f? t?at_ diffusion |s_|nt|r_nately related to €ONy/ that diffusion dominates the long-time dynamics for sizes
duction or mobility! Since then, diffusion has been studied larger than a minimum one or, equivalently, if the coupling

in classicar* as well as quantum systert#s=" Diffusion is rameter is large enough. Conclusions are drawn in Sec. V.
sustained in large spatially extended systems but is absent s 9 gn. T

such small systems as atoms where simple decay processes
prevail. We may thus wonder how the transport property of
diffusion can emerge as the size of the system increases. This

question is of special importance in nanoscience which pro- Il. DEEINING THE SYSTEM
vides us with systems of intermediate sizes between the at-
oms and macroscopic systems. Examples of nanosystems A. Subsystem

sustaining transport of electric charges are the one-
dimensional molecular chains such as conducting polythers Let us consider a quantum particle moving in a one-
and carbon nanotubé&$,which may form closed loops of dimensional periodic potential. Such translationally invariant
different sizes. This raises the question of the minimum sizesubsystems are known to present an energy spectrum with a
above which diffusion can appear in such nanosystems. band structure. We suppose that the lower-energy band does
The purpose of the present paper is to understand howot overlap with the higher-energy bands. We derXig, g
diffusion can emerge in closed-loop molecular chains as theithe energy spacing between the lower band in the spectrum
size increases. The vehicle of our study is a model in whicland the next one at higher energies. We assume that the
a quantum particle moves along a one-dimensional chaithermal fluctuation&gT, due to the coupling to the environ-
forming a closed loop. This motion is described by a tight-ment, are small compared tXE,,,,4 The subsystem dynam-
binding Hamiltonian with one energy band and which isics is therefore restricted to the lower-energy band. In this
coupled to a fast thermal environment in the subsystem-pluszase, the motion of the quantum particle only occurs by the
reservoir approach. This model is invariant under spatiatunneling of the particle through the potential barriers sepa-
translations along the one-dimensional chain, which allowsating the lattice sites. This subsystem can be described by
us to recover the transport property of diffusion in the large-the Hamiltonian
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0 -A E -A 0 O A . I
: .O ) ) . whereHy, is the environment Hamiltoniarg§ the subsystem

He= S : (D) . ~ . .
coupling operatorsB, the environment coupling operators,
0 0 -AE -A O and A the coupling parameter which measures the intensity
0O 0 ... 0 -A E -A of the interaction between the subsystem and its environ-
A 0O .. 0 0 -AE ment. We adopt the convention thiat 1. A
0/ NxN The reduced dynamics for the density matrixt)
represented in the site badls, wherel takes the values  =Trypi(t) Of the subsystem is known to obey a Redfield

=0,1,... N-1. N is the length of the chain. We have here quantum master equation for weak coupling to the

chosen periodic(Born—van Karman boundary conditions —environmeng=® This equation can be systematically derived

because the chain is supposed to form a closed loop. from the complete von Neumann equation for the total sys-
Such a Hamiltonian, often called tight-binding or Hiickel tem by second-order perturbation theory and its validity has

Hamiltonian, is a simple model of a spatially periodic sub-been abundantly tested in many different contékt¥ On

system and has therefore a wide range of applications. Thigne scales longer than the correlation time of the environ-

tight-binding Hamiltonian is for instance commonly used in ment, the Redfield quantum master equation is Markovian

solid-state physics to describe the electronic band structur@nd reads

of weakly interacting solidsand in polymer physics to de-

scribe electronic conduction along the polymer backbone or dp 3 . .~ .

polymer optical propertie¥ as well as to understanding the dt Lre = ~1[Hsp]

conduction properties of carbon nanotub&ghis Hamil- o .

tonian describes a process of quantum tunneling from site to +N\2D (TipS + S'pT - STip-pT/S) + 09,

site. The parameteA is given in terms of the overlap be- I

tween the wave functions localized at the sites and is propor- (7)

tional to the quantum amplitude of tunneling.

The stationary Schrédinger equation of the tight-binding 2 ,
Hamiltonian is given by where Lgqis called the Redfield superoperator and

HJk) = &k, @) 1= | dray(nehsd,efs, 8
4 0
where the eigenvalues are I

5 The correlation function of the environment which contains
&=Eg- zAcosk—W (3) all the necessary information to describe the coupling of the
N subsystem to its environment is given by

and the eigenvectors

a) /(T) = TrbZ)EaeiHbTé|e_iHbTé| 1y (9)
1 .
— Ik27/N ~aq - . A .
(k)= \TNG' ; (4) wherepg@is the canonical equilibrium state of the environ-
ment.
with k=0,1, ... N-1. The closure relation is given by ~ Let us now specify the interaction of the subsystem with
its environment. We define the subsystem coupling operators
1 N-1 as
=N dlikk)2aiN_ 5 5
Ng Sk (5) ..
ISy = 81 &y (10)

Accordingly, the energy spectrum of the Hamiltoniéh) , ) . )
contains a single energy band of widtA and the motion of These operators are dlagongl in the site _ba5|s of the sub-
the particle would be purely ballistic without coupling to a System taking the unit value if the particle is located on the

fluctuating environment. site| and zero otherwise. , ,
Now, we need to specify the correlation functions. We

assume in our model that the correlation time of the environ-

ment(7,=1/wy,) is short compared to the shortest time scale
We now suppose that the subsystem is embedded in @f the subsystenizs=/2A). Furthermore, we suppose that

large environment. the range of the spatial correlations of the environment fluc-
The Hamiltonian of the total system composed of the onetuations is shorter than the distance between two neighboring

dimensional chain and its environment heat bathis given  lattice sites of the subsystemy,(7)=a(7)&,. We can

by therefore rewrite Eq(8) as

B. Coupling to the environment
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~ o~ [ N field superoperator. Thanks to this theorem, the state space of
T = SJ dra(71)=Q S. (11)  the superoperator can be decomposed into independent su-
0 peroperators acting onto decoupled sectors associated with a
If we also assume that the environment is Ohmic and that it§loch number, also called the wave numb#ve emphasize
temperature is large enough so that the thermal ttme that the Bloch theorem is here applled to density matrices
=1/kgT is shorter than its correlation tims, we find that ~instead of wave functions. A
the constantQ characterizing the interaction of the sub- | ot ys define the superopera@; of the spatial transla-

system with the environment is proportional to the temperasjgn, by a sites along the systefa is an integer as
ture:

Q= 7KkgT, (12) > (T Pt = Plaar+as 17
(see Appendix A mm
Accordingly, under the assumptions where we use the notation
tth< Tb< Ts» (13) <||2)||,>:p||/. (18)
the Redfield equation of our model takes the final form This superoperator must have the group property
dp 2 .~ 22 a2 2
dt - Lred = iHsP] T = Tu o= Tosar (19

translation superoperators commute with the Redfield super-

) » o ) . operator:
It can easily be verified by projecting this equation onto the

site basis that it is translationally invariaghifting all the N A

site indices appearing in the projected equation by a constant TeLred(V) = Lredap(D). (20)

does not modify the equatipnFurthermore, this equation Therefore, the Redfield superoperator and the translation su-
preserves the complete positivity of the density matrix beperoperators have a basis of common eigenstates(alf
cause it has the Lindblad foffhwhich is the result of a genotes the eigenvalues of the translation superoperator, we

+220> (23%5 —ASZIAJ—f)ASZ) +00\%. (14 Because of the translational symmetry of the system, the
|

coupling with delta correlation functiorfs. have that

Ill. DIAGONALIZING THE REDFIELD SUPEROPERATOR ’:fa p’=ra)p’= eiqaf)v, (21)

eSS B0T 1. uhareqs e Bhch e, 5o calle the wavs e
Lread” =5, P, 19 Phratrsa= €%} (22

wherev is a set of parameters labeling the eigenstates. Bea useful consequence is that

cause the Redfield superoperator is not anti-Hermitian, its _

eigenvalues can be complex numbers with a nonzero real Py :éq'pgvl,_l. (23
part. The eigenvalue problem of the Redfield superoperator

is important because the time evolution of the quantum magh order to determine the allowed values of the Bloch num-
ter equation can then be decomposed onto the basis of tter, we write by using Eq4) such that

eigenstates as

v l -~ ! i —1"’
: > Py = NE (K[p"|K’ ye/tkt"kD2aN (24
: e b’ kK’
p(t) = e°redp(0) = 2 ¢,(0)e™p". (16)
- and

The dynamics is therefore given by a linear superposition of 1
exponential or oscillatory exponential functions of time, Pletirel= =3 (3K Yk KD2mNG koK 2eiN (25
which describes the relaxation toward the stationary equilib- ’ "

rium state. Since the reduced density matrix of the subsystem
hasN? elements, there is a total & eigenvalues and asso- Due to Eq.(22), we also have

ciated eigenstates. .
p|V+l’|/+l=elqp|1|j/- (26)

A. Bloch theorem for the density matrix Multiplying both sides of Egs(25) and (26) by <|/|k///>

Since the system is invariant under spatial translations, we<(k"|l), taking the sunX, . of it, and identifying them, we
can apply the Bloch theorem to the eigenstates of the Redyet
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(koK) = €K 2K K. (27)
Now, we notice that ifq# (k—k’)27/N, then (k|p*|k’)=0.

PHYSICAL REVIEW B1, 214302(2005

v H q —i 14 i 14
(s, + 2Q\?)pg = ZA(SW‘ 5) (€"%pg 11— €¥2pg)_0)

Using finally the periodicity + 2QN\2pgo o (32
Plani =Pl (28)  Making the change of variable
py =i71e@2, (33)
Priven =P (29 we obtain the simpler eigenvalue equation
we find with Eq.(22) that the Bloch number takes the values 1= St =i B(Fg + fag), (34)
2
q=jWW, wherej=0,1, ... N-1. (30)  Where
SV
Accordingly, the Redfield superoperator can be block- My = 2002 +1 (39)
diagonalized intdN independent blocks, which each contains
N eigenvalues as we shall see in the following. and
B. Simplifying the problem p= sin 9. (36)
We will now formulate the eigenvalue problem of the (O 2

Redfield superoperator in each sector labeled by a given
wave numbeq.

For this purpose, we project E¢L5) onto the site basis
using the explicit expressiail4) of the Redfield superopera-
tor. We get

C. Spectrum of Redfieldian eigenvalues

We can write the expressidi34) in matrix form (we no
longer write the index’ to simplify the notatioh
S =~ 1A= Py = Plagyr F Py ¥ P pran)

uf = WA, (37)

+2°Q(41r ~ Doy (31) where u are the eigenvaluef,:(fo, ...,fno1) the eigenvec-
Using Eq.(23) and replacind’ -1 by I, we get tors of sizeN, andW the Nx N matrix
|
1 -ip - ipiTNgNI2
-ip 0 -iB
-ig 0 ~-ip
: , (39
-iB 0 ~-iB
-ig 0 -iB
_ |,B| Ne—iNq/Z _ |,8 0

where the matrix elements in the off-diagonal corners guarstate. Moreover, this branch is seen in Fi¢a)*o approach
antee the periodic boundary conditiof®8) and (29). We  u=1 with a quadratic dependence on the wave nungoes
have therefore thaf =f,y.

The complete spectrum of th? eigenvalues of the Red-
field superoperator has been calculated by the numerical di-
agonalization of Eq(38) and is depicted in Fig. 1 as a func- As confirmed by the following analysis, this behavior shows
tion of the wave numbeq. that these eigenvalues are responsible for diffusion in the

In Fig. 1(a), we depict the spectrum in the cadéQ\?  system and is the diffusion coefficient which can be cal-
< % In this case, we observe two families of eigenvalues. Aculated analytically as shown here below.
branch containing a single eigenvalue for each value of the Beside theN eigenvalues of the branch of diffusion, we
wave numben and connected tp=1 when the wave num- also find many other eigenvalues, precissf~N of them,
ber vanishes. According to E¢35), the valueu=1 corre-  which are located slightly above the plane f2e0 with a
sponds to the eigenvalue=0 of the stationary equilibrium nonvanishing imaginary part for most of them. Here, Eq.

sP =-Dg?+0O(q). (39
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thus interpret most of these eigenvalues as responsible for
the process of decoherence of the quantum coherences. Since
they have larger decay rates than the eigenvalues of the dif-
fusive branch, they correspond to faster transients so that the
long-time dynamics will be dominated in the case of Fig.
1(a) by diffusion, as shown in the following.

On the other hand, i/Q\2> % the diffusive eigenvalues
disappear for some value of the wave number, as observed in
Fig. 1(b). For very large values 04\/Q)\2>%, the diffusive
branch of the spectrum is reduced to the sole eigenvalue at
g=0, as seen in Fig.(&). In this case, diffusion has disap-
peared from the spectrum which only contains eigenvalues
associated with damped oscillatory behaymherent eigen-
valueg. Hence diffusion can be supposed to have disap-
peared when its last nonzero eigenvalue has disappeared as
in Fig. 1(c). This happens if the parametér/ Q\? is large
enough, as observed in Fig. 1. In order to obtain the precise
value of this crossover, we need analytical expressions for
the eigenvalues. This is the purpose of the next subsection.

D. Analytical expressions for the eigenvalues

The eigenvalues of the diffusive branch are obtained by
going back to the eigenvalue equati@4) and assuming that
the diffusive eigenvector satisfiés=f_,.

If 1=0 in Eq.(34) and usingf,=f_;, we get

1_7“ =ip :—; (41)
Forl#0, Eq.(34) gives
N8B (42)
fi- w+ip f'f—”
|

Using Eqgs.(41) and (42), we obtain by recurrence the con-
tinuous fraction

-

iB 5 . (43

FIG. 1. Complete spectrum of the eigenvalygg related to the
eigenvalues of the Redfield superoperator by 66). The system

Definingx=(1-u)/2, Eq.(43) becomes

size is hereN=21. In (a), A/Q\2=0.4. In (b), A/Q\2=0.7. In (c), X=iB— A _ (44)
A/QN\?=10. M+ X
By solving x>+ ux—32=0, we finally find that
(35) shows that the real part of these eigenvalues is given byy X+ pux=p y
p=u®=11-(2p)?, (45)

Res© = - 2Q\2. (40)

] ) which is real if 3<1/2. According to Eq(35), the corre-
Therefore, _these eigenvalues des_crlbe decays at rates WhlgBonding eigenvalue of the Redfield superoperator is given
are approximately equal toQ@\2. Since they behave a¢g,
they can be explained by Fermi’s golden rule. The eigenval-
ues with a nonvanishing imaginary part are associated with
damped oscillations. The imaginary parts are essentially the
Bohr frequencies of the Hamiltonian subsystéith We may  The dependence on the wave number is given by(88).as

s = - 202+ 2Q0A1 - (2B)2. (46)
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2A q\? reference to their role in the decay of the quantum coher-
sP=- 2Q)\2 + ZQ)\Z 1- & sinE , (47) ences.

We notice that the damping rates of the coherent eigen-
with the wave numbeq taking the discrete valug80). We  values(51) are larger than or equal to those of the diffusive
notice that possible finite-size corrections are exponentiallgigenvalues47), as observed in Fig. 1. According to Eg.
small in the chain lengtiN and negligiblé** Expanding Eq.  (12), the damping rates of the coherent eigenvalues are, con-
(47) in powers of the wave number, we find the dispersiontrary to the diffusive rates, proportional to the temperature of

relation (39) of diffusion with the diffusion coefficient the environment and to the square of the coupling parameter.
The theoretical analysis here above provides us with ana-

D= A_2 (48) lytical expressions for the two families of eigenvalues seen

QA% in the previous numerical analysis. They also explain the

) o - crossover between the diffusive and the nondiffusive regimes
This result shows that the diffusion coefficient of the presenteen in Fig. 1.

model is proportional to the square of the widtA 4f the
energy band and inversely proportional to the constaBt
characterizing the interaction of the subsystem with its envi-
ronment and the square of the coupling paramateihe We see in Fig. (a that the diffusive eigenvaluegt?7)
diffusion coefficient increases as the coupling to the environexist for all the values of the wave numberin the case
ment vanishes. Indeed, in the absence of coupling, the quai/QA?< % which impliesp< % However, ifA/Q\2> % the
tum particle follows a ballistic motion on the chain and thediffusive eigenvalues disappear as expected for the values of
diffusion coefficient is infinite in this limit. The environment the wave number corresponding @> 3. This situation is
hinders the ballistic motion by its thermal fluctuations. Asobserved in Fig. (b). According to Eq.(47), the critical
shown in Appendix B, the diffusion coefficient is inversely value of the wave number where the diffusive branch meets
proportional to the temperature and the conductivity of thethe other family of coherent eigenvalues is equal to
model inversely proportional to the square of the temperature
as expected.

Beside the diffusive eigenvalue, there exist the other fam-
ily of eigenvalues responsible for simple decay processes. T
derive the other family of eigenvalues, we assume instea
that the eigenvectors of E34) takes the formf;=€? and
that the diagonal elemehtl’=0 which is equal to unity is
negligible. This assumption is confirmed numerically and ha
also been verified analyticalf. Accordingly, the corre-
sponding eigenvalues are given by

E. Crossover between the diffusive and nondiffusive regimes

)\2
g:.=2 arcsin(g—A. (52

this critical wave number is smaller than the smallest non-
vanishing discrete valug0) allowed by the finiteness of the
chain, the diffusive branch of the spectrum is reduced to the
éole eigenvalug=0, as seen in Fig.(t). Consequently, the
crossover between the diffusive and nondiffusive regimes
happens at

2

w'© = 2ipB cosé, (49) %=y

(53
where is a real number. Therefore, we now have that . _
Hence the diffusive branch disappears when the valug of
s© = - 20N% +i4QN\?B cosl (500 for the first nonzero eigenvalue corresponding|t2m/N is
larger than the critical valueczé. This happens when the

or, equivalently, coupling parameter exceeds the critical value given by

. .. Q N>5
S(C):—ZQ)\2+|4As|n§ cosé, (51) A= AT AT (54)

Q7N ON’

in terms of the wave numbey given by Eq.(30). Since this  This condition can be translated in terms of the critical size
family containsN?-N eigenvalues, the anglé also takes of the chain,

aboutN discrete values. We see that these eigenvalues have a

real part giving damping rates equal t@%° independently _ T 27A

1 i NC_ = 1 (55)
of the wave numben, as numerically observed with Eq. QN2 Q\?
(40). Since Eq.(5)) is the result of the approximation that afCS'“a

the diagonal element=1’'=0 is neglected, we should expect

corrections depending on the chain lendgth These finite- below which diffusive behavior no longer exists and the re-
size corrections are responsible for the fine structures seen iaxation is only controled by simple decay processes with
Fig. 134 Moreover, the eigenvalueg1) have a nonzero rates approximately given by@\2. We point out that the
imaginary part corresponding to damped oscillatory behaviodiffusion always exists in the infinite-system linjll — o) in

in the dynamics. They therefore describe the short-time dewhich case\x. can be arbitrarily small. The critical siZ&5)

cay of the quantum coherences of the subsystem. These é& proportional to the width A of the energy band and in-
genvalues characterize the decoherence of the quantum dyersely proportional to the temperature according to Eq.
namics on the chain and are denoted by the supergjpn (12). The higher the temperature, the smaller are the chains
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where the crossover from simple decay to diffusion happens. Ay =18 (58)
We notice that a similar crossover would also exist in a _ o _

finite open chain with reflecting boundary conditions at itsThe variance of the position is therefore given by

two ends. N-1

&)t = 2 1Py (), (59)
IV. DYNAMICAL ANALYSIS 1=0

We have described in the last section the crossover bevyhere, using Eq(56),

tween the nondlffusw_e and diffusive regimes in terms of th_e o= aq(,(O)esqﬂ““q, (60)
spectrum of the Redfield superoperator. We now need to dis- 0.0

cuss the dynamical implications of our spectral analysis. ) ) o P
with the newly defined coefficients,,(0) =c,4(0)pds. In the

long-time limit and for a large enough chain, only the diffu-
A. Theoretical predictions sive eigenvalues® of spectrum will significantly contribute

The spectrum of the Redfield superoperator determine® the dynamics and one can write

the full dynamics of the subsystem interacting with its envi- tso0 _
ronment. In fact, projecting Eq16) in the site basis and o) = > agy(0)e%e tla, (61)
using the Bloch property22), we can write a6
() = t+ilg a6 where s;;=-Dg? Using q;=j27/N, Ag=0j.,—0;=27/N,
pi(t) q%esq” Cqe(0)pg) - (56) andf(q;)=Na,,(0), we get
We see that the imaginary part of the eigenvalggswill toe q NI oy
generate oscillations in the dynamics and that the real part of pu(t) = ZTE Aqgf(qye Dajtria;, (62)
j=0

these eigenvalues will cause a damping. The contribution to
the long-time dynamics from the modes of the Redfield suyyhich becomes in the limit of an arbitrarily large chain
peroperator corresponding to the eigenvalsigsvhich have

a large real part is very small. Only the modes corresponding N, 1 (™ D2+l

to eigenvalues with a small real part will significantly con- pu(t) = ;j dq f(g)e ™9, (63
tribute to the long-time dynamics and therefore to the trans- -

port property of the system. Here, we mainly want to focusif we choose an initial condition of the density function cen-

t—o0

on the long-time dynamics. tered on a given sitef(q)=1, and
As pointed out in Sec. Il E, the subsystem evolves in a
nondiffusive regime if the chain is small enough<\.. In Nt o-12/4Dt
this regime, there is no diffusive eigenvalue so that the long- pu(t) = Tt (64)

time dynamics is dominated by the eigenval(&b describ-
ing the decay of the quantum coherences. The relaxatiopinally, we recover the well-known Einstein relation for the
rates associated with these eigenvalues are given by their regffusion coefficient:

part, as seen in Sec. Il C. Since these eigenvalues have a

nonvanishing imaginary part, the slowest modes relax expo- o N'tjw

nentially but with oscillations. These damped oscillations are &9 = 2Dt (65)
reminiscent of a similar behavior in the spin-boson mddel. This demonstration is also a justification for calling diffusive
We can thus interpret these damped oscillations as due to thRe eigenvalue$47).

damping of the quantum coherences.

For a sufficiently large chain >\, these damped oscil-
lations disappear because the eigenvalues of the Redfield su-
peroperator with the smallest real part are now the diffusive The previous theoretical predictions are confirmed by the
eigenvalueg47). In this case, the lowest relaxation rate is numerical integration of the Redfield equation.

B. Numerical results

given by Eq.(39) with the diffusion coefficient48), Let us define the quantity we compute. Equatibf) can
) ) be written as
©) 5 2 Am’A
sV =-Dg*=-D|— | =-—5. (57)
N QAN

pu(t) = X e%ttidg (0), (66)
qé

because the wave number of the slowest nontrivial mode ) .
takes the valug=2/N and is inversely proportional to the Whereag,(0)=cq,(0)pgo. If we introduce
lengthN of the chain. The signature of the diffusive regime

N-1
is therefore that the relaxation rate scaleNa$ ~ —ilg’
This behavior is consistent with the famous Einstein rela- p(q’,t) = g pi(e™, (67)
tion for the definition of the diffusion coefficient. Indeed, we
can define the position operator of the subsyskelny we find using Eq(5) that

214302-7



M. ESPOSITO AND P. GASPARD PHYSICAL REVIEW B1, 214302(2005

1 I T
0.011- ‘ 4
> 0.0001[ | i > 0.0001 [
—= A=0.1
b ot 1 coN=20
—3 ;\:8:2 3 5N =30
ey ; TN
0.000001 77 %203, @] 0.000001 = | _ _ R am
—-exp[-2(1-2/N)X1] | ‘ | | |
0 2 4 6 8 10 0 10 20 30 40
At t/ (WY
I FIG. 3. (Color onling The quantity|X(t)| defined by Eq.(69)
versus the rescaled timié(AN)? for various sizesN=20-50 of the
: chain. The parameters akg=0, A=0.1, Q=1, andA=0.3. Here,
0.01f the system is always in the diffusive regime becaNseN.=6.73.
= has the scaling\?t, which is characteristic of the nondiffu-
1 : sive regime. Instead, Fig(i® has the scaling/ (\N)?, which
= 00001~ ———b is characteristic of the diffusive regime. Therefore, the
bl v 2 curves clustering in Fig. (3) correspond to values of the
E [l coupling parameter such that<\; (in the nondiffusive re-
0.000001 [ |77 2203, gime) and they relax with damped oscillations at rates given
- - expl—4ATHONY] by Eqg.(40). On the other hand, the curves clustering in Fig.
s I - 2(a) correspond to values of the coupling parameter such that

N>\ (in the diffusive regimgand they relax exponentially
t/ ()»N)2 without oscillations at a rate given by EG?7).
Figure 3 depicts the relaxation curves for chains of differ-
_FIG. 2. (C_:olor onling Crossover between the nondiffusive and ent sizesN but the same value of the coupling parameter.
diffusive regimes for a chain of sizd=20 and parametef§,=0,  Here, the chain is in the diffusive regime as evidenced by the
A=0.1, andQ=1. The crossover occurs around the critical Valueclustering of the different curves with the time scaling

N\e=0.177 given by Eq(54). (@) The quantity|X(t)| versus the res- t/()\N)Z his fi :
i i k ) A : T gure numerically demonstrates the property
2,
caled time\“t in order to identify the nondiffusive regiméh) The of diffusion for A >\, or N> N,

quantity|X(t)| versus the rescaled tini¢(AN)? in order to identify An important remark is that the time scaling of the non-

the diffusive regime. As predicted, the nondiffusive regime mani-d.ff . - : turall ted f turbati

fests itself if \<\.=0.177 and the diffusive regime k>, f: USIVeI :jeglgne IS n; uraily expeg e. rohm per Er allon

=0.177. The quantityX(t)| is defined in Eq(69). t eory. Indeed, according to perturbation theory, the re ax-
ation rates are proportional to the square of the coupling

parametel. This is consistent with the fact that the Redfield

20,6 =N, ag (0)ee ", (680  quantum master equation is obtained by second-order pertur-
6 bation theory in the coupling parameter from the complete
The evolving quantity we have computed is von_Neumann e_quatipn for the subsystem inte_racting v_vith its
environment. It is quite remarkable that the time scaling of
IX(®)|=[p(gyt)], (69  the relaxation is completely different in the diffusive regime

where the relaxation rate depends on the inverse of the
square of the coupling parameter.

In Figs. 4-6 we have represented the time evolution of

pu(0) = 81 8. (70)  the probabilityP=p,(t) to occupy a given site of the sub-

) ) S system for three different values of the coupling parameter.
This means thak ; ag4(0)=1/N. The quantityX(t) is initially | Fig. 4, the coupling parameter is zero and the time evolu-
equal to unity[X(0)=1] and tends to zero after long times tjon of the subsystem is purely Hamiltonian. The wave
[X()=0] in an exponential way determined by the smallestpacket follows a ballistic motion along the chain which
nonvanishing real part of the eigenvaligs,. forms a closed loop due to the periodic boundary conditions.

Figures 2a) and Zb) depict the relaxation curves pf(t)] At long times, the evolution presents wavy interferences
for different values of the coupling parameterbut to the  showing the coherent character of the dynamics in this un-
same chain sizdl. In order to determine the regime, we use coupled case. In Fig. 5, the coupling parameter is such that
two different scalings with respect to the time. Figuf@2 the subsystem relaxes in the nondiffusive regime. The dy-

where we recall thatg;=27/N. We consider that the sub-
system has initial conditions given by
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FIG. 4. (Color onling Representation of the time evolution of FIG. 5. (Color online Representation of the time evolution of
the probability P=py(t) to occupy a given site of the subsystem. the probabilityP=p,(t) to occupy a given site of the subsystem.
The initial conditions correspond to a Gaussian wave packet ofhe situation is the same as in Fig. 4, except that the system is now
standard deviation 2 centered on the $#@5. The parameter val- interacting with its environment with the coupling parameker
ues areN=50, Ey=0, A=0.1,Q=1, and therefora.=0.1121. The  =0.05. The system therefore relaxes in the nondiffusive regime
system is isolatedA=0) and the time evolution is thus a pure <\.=0.1121 and the time evolution is a damped multiperiodic
Hamiltonian multiperiodic dynamics. The center of the wave packedynamics. However, the center of the wave packet keeps traveling
travels ballistically around the chain which forms a closed loop. ballistically around the chain.

V. CONCLUSIONS
namics still presents wavy interferences, but they are damped In the present paper, we have shown how the transport
by the dissipation to the environment. We notice that _th_eproperty of diffusion can emerge in a quantum chain inter-
center of the wave packet still travels along the chain but it iSycting with a thermal environment. For this purpose, we have
damped. Finally, in Fig. 6, the coupling parameter is nowconsidered a simple model in which a tight-binding Hamil-
such that the subsystem relaxes in the diffusive regime. Thgynian with a single energy band is coupled to a thermal
dynamics of the subsystem is no longer coherent and thenvironment. The coupling is characterized by correlation
wavy interferences have disappeared. In this case, the cent®ihctions which decay on time scales longer than the thermal
of the wave packet no longer moves along the chain but thaime scale, but shorter than the subsystem time scale. The
it spreads diffusively. reduced dynamics of the subsystem is described by a Red-
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(a) The properties of the system depend on the lemytbf
the one-dimensional chain, on the widtlA 4f the energy
band of the unperturbed tight-binding Hamiltonian, and on
the intensityQ of the environmental noise multiplied in the
combinationQ\? with the square of the coupling parameter
\ of perturbation theory.

We discovered that, for a finite chain, there are two re-
gimes depending on the chain lengthand the physical
parametersA and Q\2.

For finite chains smaller than a critical sidg given by
Eq. (55), there is a nondiffusive regime characterized by a
time evolution with oscillations damped by decay rates pro-
portional toQ\?. The oscillations come from the time evo-
lution of the quantum coherences at the Bohr frequencies.
They are damped due to the coupling with the environment.
This nondiffusive regime exists if the coupling parameter is
smaller than a critical value which is inversely proportional
to the square root of the chain sikg A <\.=O(N*?).

Longer chains evolve in the diffusive regime with a
monotonic decay on long times at a rate controled by a dif-
fusion coefficient. In this regime, the slower relaxation mode
relaxes exponentially in time with the scalibgAN)2.

In the limit of an infinite chainN— < and for a nonvan-
ishing coupling parameted\?, the nondiffusive regime dis-
appears and the system always diffuses.

According to Eq.(48), the diffusion coefficient is propor-
tional to the square of the widthAdof the energy band and
inversely proportional to the intensit9\? of the environ-
mental noise. We are thus in the presence of a mechanism of
diffusion in which the quantum tunneling of the particle from
site to site is perturbed by the environmental fluctuations.
For an Ohmic coupling to the environment, the cons@ui
proportional to the temperature and therefore the diffusion
coefficient is inversely proportional to the temperature. By
using Einstein’s relation between the diffusion coefficient
and the conductivity, this latter is inversely proportional to
the square of the temperature as it is the case in many
circumstance&®3°3¢|n this regard, the model used as a ve-
hicle of the present study present many typical features of

qguantum diffusion and conductivity.
10 20 30 40 50 . '
/ In conclusion, we believe that the crossover between the
nondiffusive and diffusive regimes we have obtained in the

FIG. 6. Representation of the time evolution of the probability present paper is a general phenomenon of a whole class of
P=p,(t) to occupy a given site of the subsystem. The situation isquantum systems sustaining transport of quantum particles or
the same as in Fig. 5, but the coupling between the system and itsharges such as molecular wires or carbon nanotubes in the
environment is strongeih=0.15. The system here relaxes in the form of closed loops. The present results provide an under-
diffusive regime(A>\.=0.1121. The multiperiodicity has disap- standing of the emergence of diffusion out of quantum co-

peared, the center of the wave packet does not move, and a diffirerent behavior as the size of the loop increases.
sive spreading of the wave packet can be observed.

500

400

300

200

100

) ) ) ) APPENDIX A: TEMPERATURE DEPENDENCE OF THE
field quantum master equation which takes, for such environ- ENVIRONMENT CORRELATION FUNCTION

ments, a Lindblad form. Thanks to the invariance under spa- ] o
tial translations, we can apply the Bloch theorem to the As a consequence of the quantum fluctuation-dissipation
density matrix of the subsystem. In this way, we succeedetheorem, the environment correlation function can be ex-
in diagonalizing the Redfield superoperator. The eigenvaluegressed in terms of the spectral strendth) according to
control the time evolution of the subsystem and its relaxation oc

to the thermodynamic equilibrium. Two kinds of eigenvalues a(t) = f dw J(w)<coth
were obtained: the eigenvalues giving the dispersion relation 0

of diffusion along the one-dimensional subsystem and other (A1)
eigenvalues which describe the decay of the quantum

coherences—i.e., the process of decoherence in the subhe Fourier transform of the environment correlation func-
system. tion, which is given by

w

2k T

coswt —1i sin wt).
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G —Jﬁcﬂém t A2 o=~ _ (B1)
i()= | 5 e, (A2) = T
relation
)= 5 sortwlal) coth o= 1), ag)
a(w =5 gnw)J(|w T ) Dzé(a—ﬂ) ' (B2)
an ),

where sgfw) denotes the sign ab. Empirical forms for the

spectral strength are often used in the literdtiifsuch as ~ Wheree s the electric charge of the carrierstheir density,
and u their chemical potential. Assuming a low density of

J(|o|) = K|w| el (A4)  carriers, the chemical potential depends on the density ac-

where w, is a cutoff frequency an& a constant. The envi- cording to

ronment is called Ohmic ify=1, sub-Ohmic ify<1, and 0 n

super-Ohmic ify>1. The correlation time, defined as the u=p(T) +kgTIn o’ (B3)
time over which the environment correlation function decays

to zero, is given by the inverse of the cutoff frequency byso that the conductivity is given by

Th= l/wb. ) ) e2n e2A2n
If one assumes that the thermal time of the environment o=——D=————5. (B4)
t,=1/kgT is shorter than the correlation timeg, simplifica- kgT KN A(kgT)

tions occur. The imaginary part of the environment Correla"rherefore the conductivity decreasesTag with the tem-
tion function becomes negligible compared to its real partperature. We notice that similar dependences are also ob-
and Eq.(A1) becomes tained for the electric conductivity in conducting polyntérs
* ) and in Fermi liquids'®>=® This inverse power law is due to
a(t) = ZkBTf do—— coswt. (A5)  the existence of a single conduction band in the model. The
0 @ transport is therefore confined in this band and no thermally

Notice that the environment correlation function is now Sym_activated transport process can occur. The diffusive transport

metric in timea(t) = a(~t). The Fourier transform of the cor- Phenomenon can be viewed as the result of the tunneling of
relation function(A3) reduces to the particle through the potential barriers of the system. This

tunneling is more and more affected as the temperature in-
- J(| o) creases.
a(w) = kgT lw| (AB) We expect that a crossover would occur to a regime where
_ o _ the diffusion coefficient has a temperature dependence of
Notice that the zero-frequency limit of the Fourier transform arrhenius type if one considered a system with at least two
of the correlation function, conduction bands. In such systems, we should find that a
lim &(w) = lim KkgT]e|?, (A7) crossover between the quantum tunneling regime and a ther-
00 w00 mally activated transport regime wh&gT becomes compa-

) . . . rable to the ener spacin between the two
is well defined and nonvanishing only in the case of an,,,qsl217.23,24.2627 S g

Ohmic spectral strengtl=1.
As a consequence, the time integral of the correlation

function defined by Eq(11) is equal to ACKNOWLEDGMENTS
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