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A translation invariantN-polaron system is investigated at arbitrary electron-phonon coupling strength, using
a variational principle for path integrals for identical particles. An upper bound for the ground-state energy is
found as a function of the number of spin up and spin down polarons, taking the electron-electron interaction
and the Fermi statistics into account. The resulting addition energies and the criteria for multipolaron formation
are discussed.
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I. INTRODUCTION

Thermodynamic and optical properties of interacting
many-polaron systems are intensely investigated because
they might play an important role in physical phenomena in
high-Tc superconductorsssee, e.g., Refs. 1 and 2, and refer-
ences thereind. In particular, numerous experiments on the
infrared optical absorption of high-Tc materialsssee, e.g.,
Refs. 3–8d reveal features that are associated with large
polarons.6,8,9

For the case of weak electron-phonon coupling strength, a
suitable variational approximation to the ground-state energy
of an interacting many-polaron gas was already developed in
Ref. 10 using a many-body canonical transformation for fer-
mions in interaction with a phonon field. The static structure
factor of the electron gas is the key ingredient of this theory.
Based on the approach of Ref. 10, a many-body theory for
the optical absorption at a gas of interacting polarons was
developed.11 The resulting optical conductivity turns out to
be in fair agreement with the experimental “d band” by Lupi
et al.6 in the optical-absorption spectra of cuprates.

At arbitrary electron-phonon coupling strength, the many-
body problemsincluding electron-electron interaction and
Fermi statisticsd in the N-polaron theory is not well devel-
oped. Within the random-phase approximation, the optical
absorption of an interacting polaron gas was studied in Ref.
12, taking over the variational parameters of Feynman’s po-
laron model,13 which, however, are derived for a single po-
laron without many-body effects. For a dilute arbitrary-
coupling polaron gas, the equilibrium properties14,15 and the
optical response16 have been investigated using the path-
integral approach taking into account the electron-electron
interaction but neglecting the Fermi statistics. Recently, the
formation of many-polaron clusters was investigated in Ref.
17 using the Vlasov kinetic equations.18 However, this ap-
proach also does not take into account the Fermi statistics of
electrons, and therefore it is valid only for sufficiently high
temperatures.

The path integral treatment19–21 of the quantum statistics
of indistinguishable particlessbosons or fermionsd provides a
sound basis for including the many-body effects in a system
of interacting polarons.22 This approach was used23–25 for

calculating the ground-state energy and the optical conduc-
tivity spectra at arbitrary electron-phonon coupling strength
for a finite number of interacting polarons in a parabolic
confinement potential. However, the translation invariant po-
laron gas was not yet investigated within this approach.

In the present work, the ground-state properties of a trans-
lation invariantN-polaron system are theoretically studied in
the framework of the variational path-integral method for
identical particles, using a further development of the model
introduced in Refs. 23–25. In Sec. II, the variational path-
integral method and the chosen model system are described.
In Sec. III, we discuss the numerical results for the ground-
state energy of a translation invariantN-polaron system.
Section IV is a summary of the obtained results with
conclusions.

II. VARIATIONAL PATH-INTEGRAL METHOD
FOR AN N-POLARON SYSTEM

A. The many-polaron system

In order to describe a many-polaron system, we start from
the translation invariantN-polaron Hamiltonian
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wherem is the band mass,e is the electron charge,vLO is the
longitudinal opticalsLOd phonon frequency, andVk are the
amplitudes of the Fröhlich electron-LO-phonon interaction

Vk = i
"vLO

k
S4pa

V
D1/2S "

2mvLO
D1/4

,

a =
e2

2"vLO
S2mvLO

"
D1/2S 1

e`

−
1

e0
D , s2d

PHYSICAL REVIEW B 71, 214301s2005d

1098-0121/2005/71s21d/214301s13d/$23.00 ©2005 The American Physical Society214301-1



of course with the electron-phonon coupling constanta.0,
the high-frequency dielectric constante`.0, and the static
dielectric constante0.0, and consequently
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which is an important physical condition on the relative
strength of the Coulomb interaction as compared to the
electron-phonon coupling, as stressed in the earlier bipolaron
work.27 In the expressions3d, H* is the effective Hartree

H* =
e2

e`aB
* , aB

* =
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me2/e`

, s4d

whereaB
* is the effective Bohr radius. The partition function

of the system can be expressed as a path integral over all
electron and phonon coordinates. The path integral over the
phonon variables can be calculated analytically.26 Feynman’s
phonon elimination technique for this system is well known
and leads to the partition function, which is a path integral
over the electron coordinates only:

Z = 1pk
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wherer̄ =hr 1, . . . ,r Nj denotes the set of electron coordinates,
andrDr̄ denotes the path integral over all the electron coor-
dinates, integrated over equal initial and final points, i.e.,

R eSDr̄ ;E dr̄E
r̄ s0d=r̄

r̄ sbd=r̄

eSDr̄ std.

Throughout this paper, imaginary time variables are used.
The effective action for theN-polaron system is retarded and
given by
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Note that the electrons are fermions. Therefore the path in-
tegral for the electrons with parallel spin has to be interpreted
as the required antisymmetric projection of the propagators
for distinguishable particles.

Below we use units in which"=1, m=1, andvLO=1. The
units of distance and energy are thus the effective polaron
radiusf" / smvLOdg1/2 and the LO-phonon energy"vLO.

B. Variational principle

For distinguishable particles, it is well known that the
Jensen-Feynman inequality13,26 provides a lower bound on
the partition functionZ sand consequently an upper bound on
the free energyFd

Z = R eSDr̄ = SR eS0Dr̄DkeS−S0l0

ù SR eS0Dr̄DekS− S0l0 with kAl0 ;
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b
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for a system with real actionS and a real trial actionS0. The
many-body extensionsRef. 19, p. 4476d of the Jensen-
Feynman inequality, discussed in more detail in Ref. 22, re-
quiressof coursed that the potentials be symmetric with re-
spect to all particle permutations, and that the exact
propagator as well as the model propagator are defined on
the same state space. This means that both the exact and the
model propagator are antisymmetric for fermionsssymmetric
for bosonsd at any time. The path integrals in Eq.s7d thus
have to be interpreted in terms of an antisymmetric state
space. Within this interpretation we consider the following
generalization of Feynman’s trial action:
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with the variational frequency parametersv, w, andv. Be-
cause the coordinates of the fermions enter Eq.s9d only
through the differencesr jstd−r lssd, this trial action is trans-
lation invariant.

Using the explicit forms of the exacts6d and the trials9d
actions, the variational inequalitys8d takes the form
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and it is clear that the minimization automatically implies
v2ùw2.

In the zero-temperature limitsb→`d, we arrive after
some lengthy algebra at the following upper bound for the
ground-state energyE0sN↑ ,N↓d of a translation invariant
N-polaron system

E0sN↑,N↓d ø EvarsN↑,N↓uv,w,vd,
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whereEFsNd is the energy ofN spin-polarized fermions con-
fined to a parabolic potential with the confinement frequency
v, ECisN↑s↓dd is the Coulomb energy of the electrons with
parallel spins,EC↑↓sN↑ ,N↓d is the Coulomb energy of the
electrons with opposite spins,EaisN↑s↓dd is the electron-
phonon energy of the electrons with parallel spins, and
Ea↑↓sN↑ ,N↓d is the electron-phonon energy of the electrons
with opposite spins. The key steps in the derivation and the
resulting analytical expressions for the terms of Eq.s11d can
be found in the Appendix.

III. DISCUSSION OF RESULTS

In the present section we summarize and discuss the main
results of the numerical minimization ofEvarsN↑ ,N↓ uv ,w,vd
with respect to the three variational parametersv, w, andv.
The Fröhlich constanta and the Coulomb parameter

a0 ;
U
Î2

;
a

1 − h
with

1

h
=
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«`

s12d

characterize the strength of the electron-phonon and of the
Coulomb interaction, obeying the physical conditionaùa0
fsee Eq.s3dg. The optimal values of the variational param-

etersv, w, andv are denotedvop, wop, andvop, respectively.
The optimal value of the total spin was always determined
by choosing the combinationsN↑ ,N↓d for fixed N=N↑+N↓,
which corresponds to the lowest valueE0sNd of the varia-
tional functional

E0sNd ; min
N↑

EvarsN↑,N − N↑uvop,wop,vopd. s13d

In Figs. 1–3 we present the ground-state energy per polaron
spanelad, the addition energyspanelbd, the optimal values of
the variational parametersspanelcd, and the total spinspanel
dd, as a function of the number of polarons. The addition
energy is determined by the formula

DsNd ; E0sN + 1d − 2E0sNd + E0sN − 1d. s14d

In Fig. 1 we consider a highly polar system witha=a0
=7. The optimal valuevop ssee panelcd for the confinement
frequencyv is strictly positivesat least forNø31d. There-
fore the results of Fig. 1 are related to multipolaron states
analogous to those investigated in Ref. 28. This interpreta-
tion is confirmed by the fact thatssee panela of Fig. 1d the
ground-state energy per polaron forN=2 is lower than that
for N=1. For N.2, the ground-state energy per polaron is
an increasing function ofN, which means that the effective
electron-phonon coupling weakens due to screening when
the number of polarons increases.

The addition energyspanelb of Fig. 1d oscillates, taking
local maxima at evenN and local minima at oddN. This
oscillating behavior reflects the trend of a stable multipo-
laron state to have the minimal possible spin. This trend is an
analog of the pairing of electrons in a superconducting state.
For evenN ssee paneld of Fig. 1d the total spinS is equal to
zero. For oddN, one electron remains nonpaired andS
=1/2. Therefore one intuitively expects that the states with
S=0 are energetically favorable as compared to states with
S=1/2, andhenceDsNd for odd N is lower thanDsNd for
evenN. The plot of the addition energies in panelb of Fig. 1
confirms this expectation. Furthermore, pronounced maxima
in DsNd correspond to closed-shell systems withN
=2,8,20, . . ..
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The optimal values of the variational parametersspanelc
of Fig. 1d reveal a general trend to decrease as a function of
N, except the parameterv, which has a peak atN=2. This
peak, as well as the minimum ofE0sNd /N at N=2, shows
that the two-polaron state in the extremely strong-coupling
regime is especially stable with respect to the other multipo-
laron states withN.2. The dependence of the parameterv
on N starts fromN=2 because the one-polaron variational
functional does not depend onv.

In Fig. 2, the ground-state energy, the additional energy,
the variational parameters, and the total spin forN-polaron
systems are plotted fora=3, a0=4.5, andh=1/3. In this
regime, the optimal value for the confinement frequencyv is
vop=0 spanel cd. Therefore, in this regime, as well as at
weaker electron-phonon coupling strengths,N.1 polarons
do not form a multipolaron state. The addition energy, as
seen from panelb of Fig. 2, has no oscillations or peaks in
the case whenN polarons do not form a multipolaron state. It
should be noted that in the case whenvop=0, we deal with a
finite numberN of polarons in an infinite volume. So, at
vop=0 the many-body effects, related to the electron-electron
interaction and to the Fermi statistics, are vanishingly small.
The dependence of the ground-state energy of the total spin
of a many-polaron system is just one of these many-body
effects. As a consequence, the ground-state energy within the
present model atvop=0 does not depend on the total spin.
For this reason, there is no paneld in Fig. 2.

Figures 1 and 2 represent two mutually opposite cases
swith vÞ0 and withvop=0 for all N under considerationd.

Figure 3 describes the case when the regime withvopÞ0
sfor Nø16d changes to the regime withvop=0 sfor Nù17d.
As seen from panela of Fig. 3, the ground-state energy for
Nø16 behaves similarly to that calculated fora=a0=7
spanela of Fig. 1d, with the following distinction: fora0/a
=1.01 sa=7d it appears thatuE0sNd /NuN=2. uE0sNd /NuN=1,
while for a0/a=1 sa=7d, uE0sNd /NuN=2, uE0sNd /NuN=1. As
seen from panelc of Fig. 3, when an extra polaron is added
to N=16 polarons, the optimal value forv switches to zero,
and therefore the multipolaron state transforms to the ground
state ofN independent polarons. WhenN changes fromN
=16 to N=17, the ground-state energy per polaron slightly
jumps down and is practically constant with further increas-
ing N. The transition from a multipolaron state to a state ofN
independent polarons is clearly revealed in the dependence
of the addition energy on the number of polaronsspanelb of
Fig. 3d. At N=16, DsNd has a pronounced minimum, which
is a manifestation of the transition from a multipolaron
ground state to a ground state ofN independent polarons.

The total spin, as seen from paneld of Fig. 3, takes its
minimal possible value forNø13, while for Nù14, the
ground state is spin-polarized. So, the transition from the
ground state with the minimal possible spin to the spin-
polarized ground state with increasingN precedes the
breakup of a multipolaron state. ForNù17, in the same way
as in the casesa=3,a0=4.5d, the variational ground-state
energy of anN-polaron system does not depend on the total
spin.

In Fig. 4, the “phase diagrams” analogous to that of Ref.
27 are plotted for anN-polaron system in bulk withN=2, 3,

FIG. 1. sColor onlined The ground-state energy per polaronsad, the addition energysbd, the optimal values of variational parametersscd,
and the total spinsdd as a function ofN for a translation invariantN-polaron system witha=7, a0=a.
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5, and 10. The area wherea0øa is the nonphysical region.
For a.a0, each sector between a curve corresponding to a
well-definedN and the line indicatinga0=a shows the sta-
bility region wherevopÞ0, while the white area corresponds
to the regime withvop=0. When comparing the stability re-
gion for N=2 from Fig. 4 with the bipolaron “phase dia-
gram” of Ref. 27, the stability region in the present work
starts from the valueac<4.1 sinstead ofac<6.9 in Ref. 27d.
The width of the stability region within the present model is
also larger than the width of the stability region within the
model of Ref. 27. Also, the absolute values of the ground-
state energy of a two-polaron system given by the present
model are smaller than those given by the approach
of Ref. 27.

The difference between the numerical results of the
present work and of Ref. 27 is due to the following distinc-
tion between the used model systems. The model system of
Ref. 27 consists of two electrons interacting with two ficti-
tious particles and with each other through quadratic interac-
tions. But the trial Hamiltonian given by Eq.s6d of Ref. 27 is
not symmetric with respect to the permutation of the elec-
trons. It is only symmetric under the permutation of the pairs
“electron+fictitious particle.” As a consequence, this trial
system is only applicable if the electrons are distinguishable,
i.e., have opposite spin. In contrast to the model of Ref. 27,
the model used in the present paper is described by the trial
action s9d, which is fully symmetric with respect to the per-
mutations of the electrons, as is required to describe identical

particles. Up to now we have been unable to construct such a
model with two retardation sources. As a consequence, the
trial model of Ref. 27 is superior to our model for describing
two polarons because it has more variational parameters, but
its applicability is limited to two polarons. The generaliza-
tion of the model of Ref. 27 toN.2 is currently under
investigation.

The “phase diagrams” forN.2 demonstrate the existence
of stable multipolaron statesssee Ref. 28d. As distinct from
Ref. 28, here the ground state of anN-polaron system is
investigated supposing that the electrons are fermions. As
seen from these figures, forN.2, the stability region for a
multipolaron state is narrower than the stability region for
N=2, and its width decreases with increasingN. The critical
valueac for the electron-phonon coupling constant increases
with increasingN. From this behavior we can deduce a gen-
eral trend, which explains the behavior of the ground-state
energy and related quantities as a function ofN shown in
Fig. 3. For fixed values ofa andh, the width of the stability
region for a multipolaron state is a decreasing function of the
number of electrons. Therefore for anysa ,hd there exists a
critical number of electronsN0sa ,hd such that a multipo-
laron state exists forNøN0sa ,hd and does not exist forN
.N0sa ,hd. For example, for theN-polaron system described
in Fig. 1,N0 is at least larger than 20. For the system shown
in Fig. 2, N0=1, and for the system in Fig. 3,N0=16. If we
add electrons to anN-polaron system one by one, the multi-
polaron state breaks up when the number of electrons ex-
ceeds a critical valueN0sa ,hd.

FIG. 2. sColor onlined The ground-state energy per polaronsad, the addition energysbd, and the optimal values of variational parameters
scd as a function ofN for a translation invariantN-polaron system witha=3, a0=1.5a.
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In order to analyze the consequences of the Fermi statis-
tics for the ground-state properties of anN-polaron system,
we compare the ground-state energies calculated with and
without the Fermi statistics. In Table I the results are pre-
sented for the ground-state energy per particle in units of the
one-polaron strong-coupling energyE1,

EN =
E0sNd
NE1

SE1 ;
1

3p
a2D , s15d

with a=10, h=0 for three cases: the many-body path-
integral approach of the present work with fermion statistics
sEN

sFdd, the same approach for distinguishable particlessEN
sddd,

and the strong-coupling approach of Ref. 28, which also does
not take into account the Fermi statisticssEN

sd,scdd.
As seen from Table I, the ground-state energy per particle

for N identical polaronsEN
sFd is higher than that forN distin-

guishable polaronsEN
sdd. Furthermore,EN

sFd increases whereas
EN

sdd decreases with an increasing number of polarons. Note,
however, thatEN

sdd,EN
sd,scd for the considered values ofa and

h, which means that the path-integral variational method
provides better results for theN-polaron ground-state energy

FIG. 3. sColor onlined The ground-state energy per polaronsad, the addition energysbd, the optimal values of variational parametersscd,
and the total spinsdd as a function ofN for a translation invariantN-polaron system witha=7, a0=1.01a.

FIG. 4. sColor onlined The “phase diagrams” of a translation
invariant N-polaron system. The gray area is the nonphysical re-
gion, for which a.a0. The stability region for each number of
electrons is determined by the equationac,a,a0.

TABLE I. The polaron characteristic energyEN calculated using
different methods.

N EN
sFd EN

sdd EN
sd,scd

2 −1.349 −1.349 −1.148

3 −1.308 −1.415 −1.241

4 −1.296 −1.468 −1.308

5 −1.279 −1.508 −1.361

6 −1.272 −1.536 −1.404
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than the strong-coupling approach28 sat least foraø10d.
Another consequence of the Fermi statistics is the depen-

dence of the polaron characteristics and of the total spin of
an N-polaron system on the parameterssa ,a0,Nd. In Fig. 5
we present the ground-state energy per particle, the confine-
ment frequencyvop, and the total spinS as a function of the
coupling constanta for a0/a=1.05 and for a different num-
ber of polarons. The ground-state energy turns out to be a
continuous function ofa, while vop andS reveal jumps. For
all considered numbers of polaronsN.2, there is a region of
a in which S takes its maximal value, whilevopÞ0. When
lowering a, this spin-polarized state with parallel spins pre-
cedes the transition from the regime withvopÞ0 to the re-
gime with vop=0 sthe breakup of a multipolaron stated. For
N=2 sthe case of a bipolarond, we see from Fig. 5 that the
ground state has a total spinS=0 for all values ofa, i.e., the
ground state of a bipolaron is a singlet. This result is in
agreement with earlier investigations of the large-bipolaron
problemssee, e.g., Ref. 31d.

IV. CONCLUSIONS

Using the extension of the Jensen-Feynman variational
principle to the systems of identical particles, we have de-

rived a rigorous upper bound for the free energy of a trans-
lation invariant system ofN interacting polarons. In the zero-
temperature limit, the variational free energy provides the
variational functional for the ground-state energy of the
N-polaron system. The developed approach is valid for an
arbitrary coupling strength. The resulting ground-state en-
ergy is obtained taking into account the Fermi statistics of
electrons.

For sufficiently high values of the electron-phonon cou-
pling constant and of the ratio 1/h=«0/«`, the system ofN
interacting polarons can form a stable multipolaron ground
state. When this state is formed, the total spin of the system
takes its minimal possible value. The larger the number of
electrons, the narrower the stability region of a multipolaron
state becomes. So, when adding electrons one by one to a
stable multipolaron state, it breaks up for a definite number
of electronsN0, which depends on the coupling constant and
on the ratio of the dielectric constants. This breakup is pre-
ceded by the change from a spin-mixed ground state with a
minimal possible spin to a spin-polarized ground state with
parallel spins.

For a stable multipolaron state, the addition energy re-
veals peaks corresponding to closed shells. AtN=N0, the
addition energy has a pronounced minimum. These features
of the addition energy, as well as the total spin as a function
of the number of electrons, might be resolved experimentally
using, e.g., capacity and magnetization measurements.
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APPENDIX: MATHEMATICAL DETAILS

1. Generalization of the Hellman-Feynman theorem

For the averages of the quadratic terms in Eq.s10d, we
can derive a generalization of the Hellman-Feynman theorem
for the case where we have astriald action but no Hamil-
tonian. Indeed, sinceF0=−1/b ln Z0 it follows that

d

dg
F0 = −

1

b

d

dg
ln Z0 = −

1

b

1

Z0

d

dg
Z0 = −

1

b
KdS0

dg
L

0

sA1d

for any parameterg in the trial action. Taking the derivative
of S0 fEq. s9dg with respect tov andv then gives

E
0

bKo
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N

fr jstd − r lstdg2L
0

dt = −
2N

v
KdS0

dv
L

0
=

2Nb

v

dF0
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,

FIG. 5. sColor onlined The ground-state energy per particlesad,
the optimal valuevop of the confinement frequencysbd, and the
total spinscd of a translation invariantN-polaron system as a func-
tion of the coupling strengtha for a0/a=1.05. The vertical dashed
lines in the panelc indicate the critical valuesac separating the
regimes ofa.ac, where the multipolaron ground state withvop

Þ0 exists, anda,ac, wherevop=0.
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dsdt =
4Nb

wv
SdF0

dv
+

v
v

dF0

dv
D ,

and therefore the variational inequality becomes

FsbuN↑,N↓d ø F0sbuN↑,N↓d −
1

2
v

dF0sbuN↑,N↓d
dv

−
1

2

v2 − w2

v

dF0sbuN↑,N↓d
dv

+
U

2b
E

0

bK o
j ,l=1,Þ j

N
1

ur jstd − r lstduL
0

dt

−
1

2b
E

0

b E
0

b

o
k

uVku2Ko
j ,l=1

N

eikfr jstd−r lssdgL
0

coshvLOS1

2
b − ut − suD

sinh
1

2
bvLO

dsdt. sA2d

2. Correlation and density functions

In order to calculate the Coulomb and the electron-phonon energiesfthe terms in the second and third lines of Eq.sA2d,
respectivelyg, we only need the pair correlation functiongF and the two-point correlation functionCF for fermions that we
define as

gFsr,buN↑,N↓d =
1

NsN − 1d o
j ,l=1;jÞl

N

kdsr − r j + r ldl0, sA3d

CFsq,t,buN↑,N↓d =
1

N2 o
j ,l=1

N

ke−iq·r lstdeiq·r js0dl0, sA4d

wherek¯l0 denotes a path-integral average with the action functionalS0. After a separation of the center-of-mass motionssee
Ref. 25d, these correlation functions take the form

gFsr,buN↑,N↓d =
1

N

1

N − 1 o
j ,l=1;jÞl

N

kdsr − r j + r ldlF, sA5d

CFsq,t,buN↑,N↓d

= CFsq,t,buN↑,N↓dexp3−
q2

N1w2tsb − td
2v2b

+
v2 − w2

v3

sinhS1

2
vtDsinhS1

2
vsb − tdD

sinhS1

2
vbD −

sinhS1

2
vtDsinhS1

2
vsb − tdD

v sinhS1

2
vbD 24

sA6d

with

CFsq,t,buN↑,N↓d =
1

N2 o
j ,l=1

N

ke−iq·r lstdeiq·r js0dlF, sA7d

wherek¯lF denotes a path-integral average with the action
functional

SF = −
1

2
E

0

b

o
j=1

N FSdr jstd
dt

D2

+ v2r j
2stdGdt sA8d

for N=N↑+N↓ independent fermions in a 3D parabolic po-
tential with the confinement frequencyv. We shall also use
the density function

ñFsq,buN↑,N↓d =
1

N
o
j=1

N

ke−iq·r jlF. sA9d

The functionssA5d, sA7d, and sA9d were already derived
beforessee Refs. 25, 29, and 30d.

Both the Coulomb energy and the electron-phonon energy
in Eq. sA2d are effectively Coulomb terms but with two im-
portant differences. First, the standard Coulomb repulsion
between the electrons is static, whereas the effective Cou-
lomb attraction due to the polaron effect is retarded. A direct
consequence of this difference is that the center of mass
plays no role in the Coulomb repulsion, whereas it is essen-
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tial in the retarded contribution. Second, the self-interaction
has to be excluded from the Coulomb repulsion, whereas it
contributes in the electron-phonon contribution. This is the
main reason why we treat the Coulomb repulsion via the pair
correlation functionsin real spaced, and the retarded interac-
tion with the two-point correlation functionCFsk ,t ,b uNd
si.e., in wave-number spaced. In principle we have the choice
to handle both terms either in real space or in wave-number
space.

Having the definitions of the pair correlation function and
the two point correlation function in mind, we thus obtain for
the free energysperforming the angular integrations at onced

FsbuN↑,N↓d ø F0sbuN↑,N↓d −
1

2
v

dF0sbuN↑,N↓d
dv

−
1

2

v2 − w2

v

dF0sbuN↑,N↓d
dv

+ 2pUE
0

`

rNsN − 1dgFsr,buN↑,N↓ddr

−
Î2a

p
E

0

b/2E
0

`

N2CFsq,t,buN↑,N↓ddq

3

coshS1

2
b − tD

sinhS1

2
bD dt. sA10d

For the ground-state energysb→`d we thus find

E0sN↑,N↓d ø EvarsN↑,N↓uv,w,vd,

where the variational functional is

EvarsN↑,N↓uv,w,vd

= E0sN↑,N↓d −
1

2
v

dE0sN↑,N↓d
dv

−
1

2

v2 − w2

v

dE0sN↑,N↓d
dv

+ 2pUE
0

`

rNsN − 1dgFsr,b → `uN↑,N↓ddr

−
Î2a

p
E

0

` E
0

`

N2CFsq,t,b → `uN↑,N↓ddqe−tdt. sA11d

Here,E0 is the ground-state energy corresponding to the trial
action, given by

E0sN↑,N↓d =
3

2
sv − w − vd + EFsN↑d + EFsN↓d, sA12d

whereEFsNd is the ground-state energy ofN fermions with
parallel spins and with energy levelsen= sn+ 3

2
dv:

EFsNd =
1

8
LsL + 2dsL + 1d2v + sN − NLdSL +

3

2
Dv,

sA13d

L denotes the lowest partially filled or empty level, and

NL =
1

6
LsL + 1dsL + 2d

is the number of fermions in the fully occupied levels. Filling
out E0 in Evar we thus obtain

EvarsN↑,N↓uv,w,vd

=
3

4

sv − wd2

v
−

3

4
v +

1

2
EFsN↑d +

1

2
EFsN↓d

+ 2pUE
0

`

rNsN − 1dgFsr,b → `uN↑,N↓ddr

−
Î2a

p
E

0

` E
0

`

N2CFsq,t,b → `uN↑,N↓ddqe−tdt,

sA14d

where the factor 1/2 in front ofEF is a consequence of the
subtractionEF− 1

2vsdEF /dvd, not surprising because of the
virial theorem for harmonic oscillators. The term34sv
−wd2/v is precisely the same as in Feynman’s treatment of
the polaron, but of course the values ofv and w will be
different if many-particle effects will be taken into account.

We now splitgF and CF for a mixture of fermions with
different spin projections into the parts corresponding to par-
allel and opposite spins. The case ofN↑ electrons with spin
up andN↓ electrons with spin down can be found after some
reflection in terms of the spin-polarized quantities:

NñFsq,buN = N↑ + N↓d = N↑ñFsq,buN↑d + N↓ñFsq,buN↓d,

sA15d

NsN − 1dgFsr,buN↑,N↓d

= N↑sN↑ − 1dgFsr,buN↑d + N↓sN↓ − 1dgFsr,buN↓d

+
2N↑N↓
s2pd3 E eiq·r ñFsq,buN↑dñFsq,buN↓ddq, sA16d

N2CFsq,t,buN↑,N↓d = N↑
2CFsq,t,buN↑d + N↓

2CFsq,t,buN↓d

+ 2N↑N↓ñFsq,buN↑dñFsq,buN↓d.

sA17d

3. Coulomb and electron-phonon energies

Using Eqs. sA15d–sA17d in the variational functional
sA11d, we arrive at the expression with three Coulomb terms
and three electron-phonon terms as follows:
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EvarsN↑,N↓uv,w,vd =
3

4

sv − wd2

v
−

3

4
v +

1

2
EFsN↓d +

1

2
EFsN↓d

+ ECisN↑d + ECisN↓d + EC↑↓sN↑,N↓d

+ EaisN↑d + EaisN↓d + Ea↑↓sN↑,N↓d
sA18d

with the contributions

ECisNd = 2pNsN − 1dUE
0

`

rgFsr,b → `uNddr, sA19d

EC↑↓sN↑,N↓d = 4pN↑N↓UE
0

`

r
1

s2pd3 E eiq·r ñF

3sq,b → `uN↑dñFsq,b → `uN↓ddqdr,

sA20d

EaisNd = −
Î2a

p
N2E

0

` E
0

`

e−q2/2sN↑+N↓dfsw2/v2dt+sv2−w2d/v3s1−e−vtd−s1−e−vtd/vg−tCFsq,t,b → `uNddqdt, sA21d

Ea↑↓sN↑,N↓d = −
2Î2a

p
N↑N↓E

0

`

dqE
0

`

dte−q2/2sN↑+N↓dfsw2/v2dt+sv2−w2d/v3s1−e−vtd−s1−e−vtd/vg−tñFsq,b → `uN↑dñFsq,b → `uN↓d.

sA22d

The integrations overq and overr in Eqs.sA19d–sA22d are
performed using the explicit form of the density and corre-
lation functionsfsee Eq.sA25dg

ñFsq,b → `uNd =
1

N
o
k=0

L

nksqdf1skub → `,Nd, sA23d

CFsq,t,b → `uNd =
1

N2o
k=0

L

o
k8=L

`

Mkk8sqd

3esk−k8dvtff1skub → `,Nd

− f2sk,k8ub → `,Ndg, sA24d

gFsr,b → `uNd

=
1

NsN − 1d
1

s2pd3 E dqeiq·ro
k=0

L

o
k8=L

`

Mkk8sqd

3ff1skub → `,Nd − f2sk,k8ub → `,Ndg sA25d

with the matrix elements

nksqd = expS−
q2

4v
DLk

s2dS q2

2v
D , sA26d

Mkk8sqd = e−q2/2vS q2

2v
Dk.−k,

o
j=0

k,

s j + 1d
sk, − jd!
sk. − jd!

3FLk,−j
sk.−k,dS q2

2v
DG2Sk, ; minsk,k8d

k. ; maxsk,k8d
D ,

sA27d

whereLk
sadsxd are the Laguerre polynomials, and with one-

particle and two-particle distribution functions

f1skub → `,Nd =5
1, k , L

0, k . L

N − NL

NL+1 − NL
, k = L,6 sA28d

f2sk,k8ub → `,Nd

=5
f1skub → `,Ndf1sk8ub → `,Nd, k Þ k8

1, k = k8 , L

0, k = k8 . L

N − NL

NL+1 − NL

N − NL − 1

NL+1 − NL − 1
, k = k8 = L.6

sA29d

Using Eqs.sA23d–sA29d, after performing integrations we
arrive at the following formulas for the Coulomb and
electron-phonon energiessA19d–sA22d.

sid The Coulomb energy for opposite spins is given by the
expression

EC↑↓sN↑,N↓d = UÎ2v

p
o
k=0

L↑

o
l=0

L↓
s− 1dk+l1k −

1

2

k
21k + l −

1

2

l
2

3 FSL↑ + 2

k + 3
D +

N↑ − NL↑
NL↑+1 − NL↑

SL↑ + 2

k + 2
DG

3 FSL↓ + 2

l + 3
D +

N↓ − NL↓
NL↓+1 − NL↓

SL↓ + 2

l + 2
DG .

sA30d
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sii d The Coulomb energy for parallel spins is

ECisNd = UÎ v

2p
o
k=0

L

o
l=0

L

s− 1dk+l1k −
1

2

k
21k + l −

1

2

l
2

3 FSL + 2

k + 3
DSL + 2

l + 3
D +

N − NL

NL+1 − NL
SL + 2

k + 2
DSL + 2

l + 3
D

+
N − NL

NL+1 − NL
SL + 2

l + 2
DSL + 2

k + 3
D

+
N − NL

NL+1 − NL

N − NL − 1

NL+1 − NL − 1
SL + 2

k + 2
DSL + 2

l + 2
DG

− UÎ v

2p
o
k=0

L

o
k8=0

L

f2sk,k8ub → `,Nd

3o
l=0

k,

o
j=0

l

s− 1dl+j1 j −
1

2

j
21k. − k, + l + j −

1

2

l + k. − k,

2
3Sk. + 2

k, − l
DS2sl + k. − k,d

l − j
D .

siii d The electron-phonon energy for opposite spins is

Ea↑↓sN↑,N↓d = − 2aÎv

p
E

0

`

dte−to
k=0

L↑

o
l=0

L↓
s− 1dk+l1k −

1

2

k
21k + l −

1

2

l
2

f2vPstd + 1gk+l+1/2

3FSL↑ + 2

k + 3
D +

N↑ − NL↑
NL↑+1 − NL↑

SL↑ + 2

k + 2
DGFSL↓ + 2

l + 3
D +

N↓ − NL↓
NL↓+1 − NL↓

SL↓ + 2

l + 2
DG sA31d

with the function

Pstd ;
1

2sN↑ + N↓d
Sw2

v2 t +
v2 − w2

v3 s1 − e−vtd −
1 − e−vt

v
D . sA32d

sivd Finally, the electron-phonon energy for parallel spins takes the form

EaisNd = −
Î2a

p
E

0

`

dte−tEaisN,td, sA33d

where the time-dependent functionEaisN,td is a sum of three terms:

EaisN,td = Eai
s0dsN,td +

N − NL

NL+1 − NL
Eai

s1dsN,td +
N − NL

NL+1 − NL

N − NL − 1

NL+1 − NL − 1
Eai

s2dsN,td. sA34d

The termsEai
s jdsN,td can be written down in two equivalent alternative forms. The first form is relevant for the numerical

calculation in the region of small and intermediate values ofsvtd,

Eai
s0dsN,td =Îpv

2
1o

j=0

L−1
f2scoshvt − 1dg jSL + 2

j + 3
D1 j −

1

2

j
2

f2vPstd + 1 −e−vtg j+1/2

− o
j=1

L−1

sejvt + e−jvtd o
n=0

L−j−1

o
m=0

n
s− 1dn+mS L + 2

j + n + 3
DS2s j + nd

n − m
D1m−

1

2

m
21 j + n + m−

1

2

j + n
2

f2vPstd + 1g j+n+m+1/2

− o
j=0

L−1

o
n=0

j

s− 1d j+n

S 2j

j − n
DSL + 2

j + 3
D1 j −

1

2

j
21 j + n −

1

2

n
2

f2vPstd + 1g j+n+1/2
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+ o
j=0

L−1

o
n=0

L−1
s− 1d j+nSL + 2

j + 3
DSL + 2

n + 3
D1 j −

1

2

j
21 j + n −

1

2

n
2

f2vPstd + 1g j+n+1/2
2 , sA35d

Eai
s1dsN,td =Îpv

2
1o

j=0

L
f2scoshvt − 1dg jSL + 2

j + 2
D1 j −

1

2

j
2

f2vPstd + 1 −e−vtg j+1/2

− o
j=1

L

sejvt + e−jvtdo
n=0

L−j

o
m=0

n
s− 1dn+mS L + 2

j + n + 2
DS2s j + nd

n − m
D1m−

1

2

m
21 j + n + m−

1

2

j + n
2

f2vPstd + 1g j+n+m+1/2

+ 2o
j=0

L−1

o
n=0

L
s− 1d j+nSL + 2

j + 3
DSL + 2

n + 2
D1 j −

1

2

j
21 j + n −

1

2

n
2

f2vPstd + 1g j+n+1/2
2 , sA36d

Eai
s2dsN,td =Îpv

2
1− o

j=0

L

o
n=0

j

s− 1d j+n

S 2j

j − n
DSL + 2

j + 2
D1 j −

1

2

j
21 j + n −

1

2

n
2

f2vPstd + 1g j+n+1/2

+ o
j=0

L

o
n=0

L
s− 1d j+nSL + 2

j + 2
DSL + 2

n + 2
D1 j −

1

2

j
21 j + n −

1

2

n
2

f2vPstd + 1g j+n+1/2
2 . sA37d

The second form is relevant for intermediate and large values ofsvtd,

Eai
s0dsN,td =Îpv

2
1o

j=1

`

e−jvto
n=0

L−1

o
m=0

n
s− 1dn+mSL + j + 2

n + j + 3
DS2sn + jd

n − m
D1m−

1

2

m
21 j + n + m−

1

2

j + n
2

f2vPstd + 1g j+n+m+1/2

− o
j=1

L−1

e−jvt o
n=0

L−j−1

o
m=0

n
s− 1dn+mS L + 2

n + j + 3
DS2sn + jd

n − m
D1m−

1

2

m
21 j + n + m−

1

2

j + n
2

f2vPstd + 1g j+n+m+1/2

+ o
n=0

L−1

o
m=0

L−1
s− 1dn+mSL + 2

n + 3
DSL + 2

m+ 3
D1n −

1

2

n
21n + m−

1

2

m
2

f2vPstd + 1gn+m+1/2
2 , sA38d
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Eai
s1dsN,td =Îpv

2
1o

j=0

`

e−jvto
n=0

L

o
m=0

n
s− 1dn+mSL + j + 2

n + j + 2
DS2sn + jd

n − m
D1m−

1

2

m
21 j + n + m−

1

2

j + n
2

f2vPstd + 1g j+n+m+1/2

− o
j=1

L

e−jvto
n=0

L−j

o
m=0

n
s− 1dn+mS L + 2

n + j + 2
DS2sn + jd

n − m
D1m−

1

2

m
21 j + n + m−

1

2

j + n
2

f2vPstd + 1g j+n+m+1/2

+ 2o
n=0

L

o
m=0

L−1
s− 1dn+mSL + 2

n + 2
DSL + 2

m+ 3
D1n −

1

2

n
21n + m−

1

2

m
2

f2vPstd + 1gn+m+1/2
2 . sA39d
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