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Variational path-integral treatment of a translation invariant many-polaron system
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A translation invarianN-polaron system is investigated at arbitrary electron-phonon coupling strength, using
a variational principle for path integrals for identical particles. An upper bound for the ground-state energy is
found as a function of the number of spin up and spin down polarons, taking the electron-electron interaction
and the Fermi statistics into account. The resulting addition energies and the criteria for multipolaron formation
are discussed.
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[. INTRODUCTION calculating the ground-state energy and the optical conduc-
tivity spectra at arbitrary electron-phonon coupling strength
for a finite number of interacting polarons in a parabolic
@nfinement potential. However, the translation invariant po-
aron gas was not yet investigated within this approach.

In the present work, the ground-state properties of a trans-
lation invariantN-polaron system are theoretically studied in
the framework of the variational path-integral method for
identical particles, using a further development of the model
8.9 Sntroduced in Refs. 23-25. In Sec. II, the variational path-
polarons® _ integral method and the chosen model system are described.

For the case of weak electron-phonon coupling strength, &, sec. |11, we discuss the numerical results for the ground-
suitable variational approximation to the ground-state energ¥ate energy of a translation invariaNkpolaron system.

of an interacting many-polaron gas was already developed iBection IV is a summary of the obtained results with
Ref. 10 using a many-body canonical transformation for ferconclusions.

mions in interaction with a phonon field. The static structure
factor of the electron gas is the key ingredient of this theory.
Based on the approach of Ref. 10, a many-body theory for Il. VARIATIONAL PATH-INTEGRAL METHOD
the optical absorption at a gas of interacting polarons was FOR AN N-POLARON SYSTEM
developed! The resulting optical conductivity turns out to
be in fair agreement with the experimentdland” by Lupi
et al® in the optical-absorption spectra of cuprates. In order to describe a many-polaron system, we start from
At arbitrary electron-phonon coupling strength, the many-the translation invariani-polaron Hamiltonian
body problem(including electron-electron interaction and
Fermi statistics in the N-polaron theory is not well devel-

Thermodynamic and optical properties of interacting
many-polaron systems are intensely investigated becau
they might play an important role in physical phenomena in
high-T, superconductorésee, e.g., Refs. 1 and 2, and refer-
ences therein In particular, numerous experiments on the
infrared optical absorption of highi; materials(see, e.g.,
Refs. 3-8 reveal features that are associated with larg

A. The many-polaron system

I ) . . N 2 NN
oped. Within the random-phase approximation, the optical v b1 ¢
absorption of an interacting polaron gas was studied in Ref. H= ng 2m " 221 ,3‘;1 eoolrj r " % hroodd
12, taking over the variational parameters of Feynman’s po- N
laron modek3 which, however, are derived for a single po- ior
laron without many-body effects. For a dilute arbitrary- * E%Vkake‘ I+H.C. ], (@)

coupling polaron gas, the equilibrium propertfe® and the
optical responsé have been investigated using the path-
integral approach taking into account the electron-electrofivheremis the band mass is the electron chargey, o is the
interaction but neglecting the Fermi statistics. Recently, thdongitudinal optical(LO) phonon frequency, and, are the
formation of many-polaron clusters was investigated in Refamplitudes of the Frohlich electron-LO-phonon interaction
17 using the Vlasov kinetic equatiofsHowever, this ap-

proach also does not take into account the Fermi statistics of 7 4 2/ 4 1/4
. . .. . . [O])e) YIes

electrons, and therefore it is valid only for sufficiently high V=i " ( ) ( ) ,

temperatures. v 2Mayo

The path integral treatméfit?! of the quantum statistics
of indistinguishable particledosons or fermionsprovides a 1o
sound basis for including the many-body effects in a system e <2meo> <l 1) P

of interacting polaron This approach was us&d?® for @= 2hw o\ h €& &
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of course with the electron-phonon coupling constantO, Below we use units in which=1,m=1, andw, o=1. The
the high-frequency dielectric constaat> 0, and the static units of distance and energy are thus the effective polaron
dielectric constang,>0, and consequently radius[#/(mw o)]1*? and the LO-phonon energyw, o.
1/2 * 1/2
¢ - ﬁ(%) oo a\2< ( H ) —uU, (3 B. Variational principle
€ m @0 ,

For distinguishable particles, it is well known that the
Jensen-Feynman inequali$yf® provides a lower bound on

which is an important physical condition on the relative
P bhy éhe partition functiorZ (and consequently an upper bound on

strength of the Coulomb interaction as compared to th ¢
electron-phonon coupling, as stressed in the earlier bipolaro We ree energy)
work.2” In the expressiori3), H" is the effective Hartree

@ ) 52 Z= 3@ eSDr = (3@ eSODT><e&S(J)O
H exa*B’ % méele,’ @
jg A()edDr
Wherea; is the effective Bohr radius. The partition function = (35 esopr—) &S~ %o with (A)g=——, (7)
of the system can be expressed as a path integral over all 3geSDDr
electron and phonon coordinates. The path integral over the
phonon variables can be calculated analyticillgeynman’s
phonon elimination technique for this system is well known
and leads to the partition function, which is a path integral (S-S
over the electron coordinates only: e PF = g BFoeS- o] E < Fo- TO (8)

el/28hoL0 -
Z= 1;[ 1 jg eDr, ®) for a system with real actio8 and a real trial actioig,. The
ZsthIBthO many-body extensior(Ref. 19, p. 447p of the Jensen-
Feynman inequality, discussed in more detail in Ref. 22, re-
_ quires(of course that the potentials be symmetric with re-
wherer ={r,, ... ,ry} denotes the set of electron coordlnates,spect to all particle permutations, and that the exact
andgﬁDI’ denOteS the path |ntegra| over all the electron Coor'propagator as We” as the mode| propagator are def|ned on
dinates, integrated over equal initial and final points, i.e., the same state space. This means that both the exact and the
model propagator are antisymmetric for fermigagmmetric
. _(rB=r for bosonsg at any time. The path integrals in E() thus
ﬂgeSDr = J dr j e>Dr(7) have to be interpreted in terms of an antisymmetric state
rO)=r space. Within this interpretation we consider the following
generalization of Feynman’s trial action:
Throughout this paper, imaginary time variables are used.
The effective action for th&l-polaron system is retarded and

given by o - f < (drd T)> +w2+ZVN2_Uz
N @ 0 J =1 T
m< (dri(7) (7))2 1 ) N
S=- — - — |dr W2
f (221( * 2j§::1I=12,#j foo|rj(7)—r|(7)| X > [rj(7) —r|(7)]2) f f
N jl=1 jl=1
J f Ezl [VifZe i COShW<%B_|T—o'|>
1 X[ri(7) - r(o)? 1 dodr (9
coshﬁwLo(Eﬁ— |7— 0'|) sinhE,Bw
X 1 dodr. (6)
sinhE,Bhw,_o

with the variational frequency parametersw, and w. Be-
cause the coordinates of the fermions enter &.only
Note that the electrons are fermions. Therefore the path inthrough the differences(7)-r (o), this trial action is trans-
tegral for the electrons with parallel spin has to be interpretedation invariant.

as the required antisymmetric projection of the propagators Using the explicit forms of the exa¢6) and the trial(9)
for distinguishable particles. actions, the variational inequality) takes the form
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and it is clear that the minimization automatically implies
vi=w2
In the zero-temperature limi¢(8— «), we arrive after

etersv, w, andw are denoted,,, Wy, andw,, respectively.

The optimal value of the total spin was always determined

by choosing the combinatio(N;,N,) for fixed N=N;+N,,

some lengthy algebra at the following upper bound for thewhich corresponds to the lowest val&(N) of the varia-
ground-state energ¥’N;,N,) of a translation invariant tional functional

N-polaron system
E%(N;,N)) < E,a(N N o, W, ),

with

3

- —w

4
+Eg(Ny) + Eg)(N)) + Ecp (N,N)
+Eq(Ny) + Eg(N)) + By (N, N)),
(11

3(v—-w)?
Evar(Ni N o W) =5

1 1
+ EEF(Nl) + EEF(NL)

EON) = n:lin Epar(N1,N = N [vopWop, wop) . (13)
T

In Figs. 1-3 we present the ground-state energy per polaron
(panela), the addition energgpanelb), the optimal values of

the variational parametefpanelc), and the total spiripanel

d), as a function of the number of polarons. The addition
energy is determined by the formula
A(N) =EN+1) - 2E%N) + E9(N - 1). (14

In Fig. 1 we consider a highly polar system widh= «

wherele(N) is the energy oN spin-polarized fermions con- =7 The gptimal valuew,, (see panet) for the confinement
fined to a parabolic potential with the confinement frequencyrequencyw is strictly positive(at least forN<31). There-

, E¢i(Ny())) is the Coulomb energy of the electrons with fore the results of Fig. 1 are related to multipolaron states
parallel spins,Ec; (N;,N)) is the Coulomb energy of the analogous to those investigated in Ref. 28. This interpreta-
electrons with opposite sping,(N;)) is the electron- tion is confirmed by the fact thdsee paneh of Fig. 1) the
phonon energy of the electrons with parallel spins, andyround-state energy per polaron fdr2 is lower than that
E.(N;,N)) is the electron-phonon energy of the electronsfor N=1. ForN>2, the ground-state energy per polaron is

with opposite spins. The key steps in the derivation and th@n increasing function oi, which means that the effective

resulting analytical expressions for the terms of Bd) can
be found in the Appendix.

Ill. DISCUSSION OF RESULTS

In the present section we summarize and discuss the mal
results of the numerical minimization & ,(N;,N |v,w, )
with respect to the three variational parameters/, and w.
The Frohlich constané and the Coulomb parameter

(12)

characterize the strength of the electron-phonon and of th
Coulomb interaction, obeying the physical conditieer ag
[see Eqg.(3)]. The optimal values of the variational param-

electron-phonon coupling weakens due to screening when
the number of polarons increases.

The addition energypanelb of Fig. 1) oscillates, taking
local maxima at everN and local minima at oddN. This
oscillating behavior reflects the trend of a stable multipo-
lﬁron state to have the minimal possible spin. This trend is an
analog of the pairing of electrons in a superconducting state.
For evenN (see panetl of Fig. 1) the total spinrSis equal to
zero. For oddN, one electron remains nonpaired aBd
=1/2. Therefore one intuitively expects that the states with
S=0 are energetically favorable as compared to states with
S=1/2, andhenceA(N) for odd N is lower thanA(N) for
evenN. The plot of the addition energies in paiedf Fig. 1
eonfirms this expectation. Furthermore, pronounced maxima
in A(N) correspond to closed-shell systems witk
=2,8,20,....
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FIG. 1. (Color online The ground-state energy per polar@, the addition energyb), the optimal values of variational parametécs
and the total spirfd) as a function ol for a translation invariani-polaron system withe=7, ag=«.

The optimal values of the variational parametgranelc  Figure 3 describes the case when the regime wigh+ 0
of Fig. 1) reveal a general trend to decrease as a function offor N< 16) changes to the regime with,,=0 (for N=17).

N, except the parameter, which has a peak dtl=2. This  As seen from panek of Fig. 3, the ground-state energy for
peak, as well as the minimum &°N)/N at N=2, shows N=<16 behaves similarly to that calculated far=ay=7
that the two-polaron state in the extremely strong-couplingpanela of Fig. 1), with the following distinction: forag/
regime is especially stable with respect to the other multipo=1.01 (e=7) it appears that E°(N)/N|n=2> E°(N)/N|n=1,
laron states wittN> 2. The dependence of the paramater While for ag/a=1 (a=7), E%N)/N|y-< E%N)/N|y=1. As
on N starts fromN=2 because the one-polaron variational S€en from panet of Fig. 3, when an extra polaron is added
functional does not depend an to N=16 polarons, the optimal value fer switches to zero,

In Fig. 2, the ground-state energy, the additional energyand therefore the multipolaron state transforms to the ground
the variational parameters, and the total spin Nepolaron ~ State ofN independent polarons. Whew changes fromN
systems are plotted for=3, ap=4.5, andy=1/3. Inthis - 16 ©0N=17, the ground-state energy per polaron slightly
regime, the optimal value for the confinement frequendg ~ JUMPS down and is practically constant with further increas-
0o,=0 (panel ¢). Therefore, in this regime, as well as at ing N. The transition fro.m a multipolaron state to a statdof
wepaker electron-phonon coupling strengths> 1 polarons mdependgnt polarons is clearly revealed in the dependence
do not form a multipolaron state. The addition energy, a of the addition energy on the number of polarépanelb of

¢ o of Fig. 2. h i ke | ﬁzig. 3. At N=16, A(N) has a pronounced minimum, which
fﬁen rom k?al’: ? 'g'd’ affno osc aI;pnsl or peflts Ilrl is a manifestation of the transition from a multipolaron
€ case wheh polarons do notlorm a muftipolaron state. ground state to a ground state findependent polarons.

should be noted that in the case wheg=0, we deal with a The total spin, as seen from parbof Fig. 3, takes its
finite numberN of polarons in an infinite volume. So, at \inimal possible value foN<13, while for N=14, the
wop=0 the many-body effects, related to the electron-electrogy.oung state is spin-polarized. So, the transition from the
interaction and to the Fermi statistics, are vanishingly Sma”ground state with the minimal possible spin to the spin-
The dependence of the ground-state energy of the total spifblarized ground state with increasiny precedes the
of a many-polaron system is just one of these many-bod¥reakup of a multipolaron state. FNi=17, in the same way
effects. As a consequence, the ground-state energy within thg in the caséa=3,ay=4.5, the variational ground-state
present model ai,,=0 does not depend on the total spin. energy of anN-polaron system does not depend on the total
For this reason, there is no parkin Fig. 2. spin.

Figures 1 and 2 represent two mutually opposite cases In Fig. 4, the “phase diagrams” analogous to that of Ref.
(with @ # 0 and withw,,=0 for all N under consideration 27 are plotted for aiN-polaron system in bulk wittN=2, 3,
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FIG. 2. (Color online The ground-state energy per polar@n, the addition energyb), and the optimal values of variational parameters
(c) as a function oN for a translation invariani-polaron system withe=3, ag=1.5¢.

5, and 10. The area whetg=< « is the nonphysical region. particles. Up to now we have been unable to construct such a
For a> ap, each sector between a curve corresponding to aodel with two retardation sources. As a consequence, the
well-definedN and the line indicatingy,=a shows the sta- trial model of Ref. 27 is superior to our model for describing
bility region wherew,,# 0, while the white area corresponds two polarons because it has more variational parameters, but
to the regime withw,,=0. When comparing the stability re- its applicability is limited to two polarqns. The generaliza-
gion for N=2 from Fig. 4 with the bipolaron “phase dia- tion of the model of Ref. 27 tdN>2 is currently under

gram” of Ref. 27, the stability region in the present work investigation. - ) _
starts from the value,,~ 4.1 (instead ofa,~ 6.9 in Ref. 27. The “phase diagrams” fdd>2 demonstrate the existence

The width of the stability region within the present model is ©f Stable multipolaron stateisee Ref. 28 As distinct from

also larger than the width of the stability region within the _Ref. 28, here the ground state of &hpolaron system is

model of Ref. 27. Also, the absolute values of the ground.Nvestigated supposing that the electrons are fermions. As
state energy of a two-polaron system given by the prese een from these figures, foi>2, the stability region for a

model are smaller than those aiven by the aporoac ultipolaron state is narrower than the stability region for
9 y PP 'N:Z, and its width decreases with increasigThe critical

of Ref. 27_' , value a,, for the electron-phonon coupling constant increases
The difference between the numerical results of theyi increasingN. From this behavior we can deduce a gen-
present work and of Ref. 27 is due to the following distinc- 14| trend, which explains the behavior of the ground-state
tion between the used model systems. The model system %fnergy and related quantities as a functionNohown in
Ref. 27 consists of two electrons interacting with two ficti- Fig. 3. For fixed values oft and 5, the width of the stability
tious particles and with each other through quadratic interacregion for a multipolaron state is a decreasing function of the
tions. But the trial Hamiltonian given by E¢6) of Ref. 27is  number of electrons. Therefore for afy, 7) there exists a
not symmetric with respect to the permutation of the eleccritical number of electron®Ny(a, ) such that a multipo-
trons. It is only symmetric under the permutation of the pairsaron state exists foN<N,(«, ) and does not exist foN
“electron+fictitious particle.” As a consequence, this trial > Ny(«, 5). For example, for thé-polaron system described
system is only applicable if the electrons are distinguishablein Fig. 1, N, is at least larger than 20. For the system shown
i.e., have opposite spin. In contrast to the model of Ref. 27in Fig. 2, N,=1, and for the system in Fig. 8l,=16. If we
the model used in the present paper is described by the trigldd electrons to aN-polaron system one by one, the multi-
action (9), which is fully symmetric with respect to the per- polaron state breaks up when the number of electrons ex-
mutations of the electrons, as is required to describe identicaleeds a critical valuély(«a, 7).
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FIG. 3. (Color online The ground-state energy per polar@), the addition energyb), the optimal values of variational parametéck
and the total spirtd) as a function oiN for a translation invarianh-polaron system wittw=7, ap=1.01a.

In order to analyze the consequences of the Fermi statis- EO(N)< 1 2) (15)

tics for the ground-state properties of BiApolaron system, En= NE E,= ;ra
we compare the ground-state energies calculated with and !
without the Fermi statistics. In Table | the results are pre-

sented for the ground-state energy per particle in units of th&ith =10, =0 for three cases: the many-body path-

one-polaron strong-coupling energy,

integral approach of the present work with fermion statistics
(EKF)), the same approach for distinguishable particﬁé\gj),

14 and the strong-coupling approach of Ref. 28, which also does
not take into account the Fermi statist((iﬁ"sc)).
12k As seen from Table I, the ground-state energy per particle
______ xfg B for N identical polaronﬂf) is higher than that foN distin-
______ N;S ’ guishable polarong(Nd). Furthermore;‘:ﬂ:) increases whereas
o s N=10 ,',/«.'/ Sﬁ) decreases with an increasing number of polarons. Note,
7 however, thaE\"’ < E\>*° for the considered values afand
g sl // = 7, which means that the path-integral variational method
g provides better results for thé-polaron ground-state energy
7
6 //' TABLE I. The polaron characteristic energy; calculated using
el different methods.
4t (F) (d) (ds0)
N EN En e
4 6 8 10 2 -1.349 -1.349 -1.148
¢ 3 -1.308 -1.415 -1.241
FIG. 4. (Color online The “phase diagrams” of a translation 4 -1.296 -1.468 -1.308
invariant N-polaron system. The gray area is the nonphysical re5 -1.279 -1.508 -1.361
gion, for which a> ay. The stability region for each number of ¢ -1.272 -1.536 ~1.404

electrons is determined by the equatief< a < ay.
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rived a rigorous upper bound for the free energy of a trans-
lation invariant system df interacting polarons. In the zero-
temperature limit, the variational free energy provides the
variational functional for the ground-state energy of the
N-polaron system. The developed approach is valid for an
arbitrary coupling strength. The resulting ground-state en-
ergy is obtained taking into account the Fermi statistics of
electrons.

For sufficiently high values of the electron-phonon cou-
pling constant and of the ratio £¢y/ e, the system oN
interacting polarons can form a stable multipolaron ground
state. When this state is formed, the total spin of the system
takes its minimal possible value. The larger the number of
electrons, the narrower the stability region of a multipolaron
state becomes. So, when adding electrons one by one to a

EYN (in units o )

O (in units o ;)

3l stable multipolaron state, it breaks up for a definite number
of electronsNy, which depends on the coupling constant and
on the ratio of the dielectric constants. This breakup is pre-
: ceded by the change from a spin-mixed ground state with a
it i g minimal possible spin to a spin-polarized ground state with

05_ 6 7 8 o 10 parallel spins.
@ For a stable multipolaron state, the addition energy re-

veals peaks corresponding to closed shells.NAtN,, the
addition energy has a pronounced minimum. These features
of the addition energy, as well as the total spin as a function
of the number of electrons, might be resolved experimentally
using, e.g., capacity and magnetization measurements.

FIG. 5. (Color onling The ground-state energy per parti¢t,
the optimal valuew,, of the confinement frequencip), and the
total spin(c) of a translation invariani-polaron system as a func-
tion of the coupling strengtl for g/ a=1.05. The vertical dashed
lines in the panet indicate the critical valueg. separating the
regimes ofa> ac, where the multipolaron ground state withy,

# 0 exists, andv < a, wherewopzo. ACKNOWLEDGMENTS
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coupling constant for ap/ «=1.05 and for a different num-

ber of polarons. The ground-state energy turns out to be a

continuous function ok, while w,, andSreveal jumps. For

all considered numbers of polaroNs> 2, there is a region of 1. Generalization of the Hellman-Feynman theorem

a in which S takes its maximal value, while,,# 0. When ) )

lowering «, this spin-polarized state with parallel spins pre- For the averages of the quadratic terms in Ed), we

cedes the transition from the regime with,# 0 to the re- ~ can derive a generalization of the Hellman-Feynman theorem

gime with w,,=0 (the breakup of a multipolaron staté=or for 'the case Whgre we have(HlaI)_ action but no Hamil-

N=2 (the case of a bipolargnwe see from Fig. 5 that the tonian. Indeed, sincB,=-1/81n Z, it follows that

ground state has a total spa*0 for all values ofe, i.e., the

ground state of a bipolaron is a singlet. This result is in d 1d 11d 1<d50>
BZydy™® ™ B 0

. . . . . _hi _F - In Z - —
agreement with earlier investigations of the large-bipolaron dy ° Bdy 0 dy

APPENDIX: MATHEMATICAL DETAILS

problem(see, e.g., Ref. 31
(A1)
IV. CONCLUSIONS
Using the extension of the Jensen-Feynman variationdr any parametew in the trial action. Taking the derivative
principle to the systems of identical particles, we have deof S [Eqg. (9)] with respect tow andv then gives

B N
[RATERES: dr=—@<d—s’> - Mo,
0 jl=1 w d(l) 0 w d(,()

0
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1
coshw(—ﬁ—|r—a|>

B ) 2 4N,B(dFo v@)
]|1J f <J|1[r(7) ()] >o o1 dodr= dv wdw/’

h_
sin 2,8\/\/
and therefore the variational inequality becomes
1 dRyAINLN)  102-wPdRo(BINN) | U (7 ! 1
F(BINy.N,) = Fo(BINy.N,) - o( BIN; Y o(BIN;,N|) LU 1
dw 2 v dv 2B j1=1,%] |rj(7)_rl(7)|
1
B COSthO(Eﬁ_ |7- a'|)
- 2i f E V2 E gklrin(@)] dodr. (A2)
ﬂ 0 =L 0 SinhEﬁ&)Lo

2. Correlation and density functions

In order to calculate the Coulomb and the electron-phonon endithiegerms in the second and third lines of E42),
respectively, we only need the pair correlation functiga and the two-point correlation functio@g for fermions that we
define as

9e(r, BIN;,N)) = N(N 1. |§ |<5(r ri+r)o, (A3)
jI=1j#
Ce(0,7,8IN;,N) = E (gm0, (A4)

Jll

where(- --)o denotes a path-integral average with the action functiGnpafter a separation of the center-of-mass motisee
Ref. 25, these correlation functions take the form

Nﬁ“%#@(r —ri+r)e, (A5)

5 ) sin 107’)5“’]"(1-1)(,8—7')) sinfu(lw’r)Sinh(}w(,B—T))
| wHB-17 vi-w? 2 2 2 2

CF(qv TUB|NT1 Nl)

=Cr(a,78IN;,Nex N 03 + 3 (1 - 1
smh(;;ﬂ) wsmh(zwﬁ)
(A6)
|
with 1N
N Ae(a, BIN;,N)) = N]Zl ("M (A9)

Ce(q,7,8IN;,N)) = E (e1MdaTiO) (A7)
]I 1
where(---)¢ denotes a path-integral average with the aCt'o%2%3(22523@525@\22 ::(;j}g,gg) were already derived

functional Both the Coulomb energy and the electron-phonon energy

1 (8N dr.(7))? in Eq. (A2) are effectively Coulomb terms but with two im-
SF:_EJ > [(jg) +w2r'2(7)}d7 (A8) portant differences. First, the standard Coulomb repulsion
0 between the electrons is static, whereas the effective Cou-
for N=N;+N, independent fermions in a 3D parabolic po- lomb attraction due to the polaron effect is retarded. A direct
tential with the confinement frequeney. We shall also use consequence of this difference is that the center of mass

the density function plays no role in the Coulomb repulsion, whereas it is essen-

=1
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tial in the retarded contribution. Second, the self-interaction 1 3
has to be excluded from the Coulomb repulsion, whereas it ~ Er(N)= g'—(l— +2)(L+ 1?0+ (N- NL)<L + 5)“’
contributes in the electron-phonon contribution. This is the
main reason why we treat the Coulomb repulsion via the pair (A13)
correlation function(in real spacg and the retarded interac- . .
tion with the two-point correlation functio€x(k , 7, 8| N) L denotes the lowest partially filled or empty level, and
(i.e., in wave-number spagédn principle we have the choice
to handle both terms either in real space or in wave-number N, = }L(L +1D(L+2)
space. 6

Having the definitions of the pair correlation function and
the two point correlation function in mind, we thus obtain for is the number of fermions in the fully occupied levels. Filling
the free energyperforming the angular integrations at opce OutEg in E,, we thus obtain

E,(Ny, N [0,W, 0
1, AN N N for W,

F(BIN;,N)) < Fg(BIN:,N,|) - -w)?
(BIN;,N)) < Fo(BIN,N)) do :§M—§w 1 (N)+}]E] o)
4 v 4 272
_ }UZ_WZdFo(BlNT,Nl)
2 v dv +277Uf IN(N = 1)ge(r, 8 — |N;,N))dr
e 0
+ quUf rN(N = 1)ge(r, BIN;, N )dr By
0 -2 f J N?Cr(q, 7,8 — »|N;,N,)dge dr,
\r2a B2 )
f f N*Cr(a, 7, 8IN;,N|)dg (A14)
1 where the factor 1/2 in front ofg is a consequence of the
cos E'B_ 4 subtractionEF—%w(dEF/dw), not surprising because of the
X 1 dr. (A10)  virial theorem for harmonic oscillators. The terfi(v
sml—(zﬂ) -w)?/v is precisely the same as in Feynman’s treatment of

the polaron, but of course the values wfand w will be
different if many-particle effects will be taken into account.

For the ground-state energg— ) we thus find We now splitgr and Cr for a mixture of fermions with
different spin projections into the parts corresponding to par-
EO(NT N)) (N, Nllv W, ) allel and opposite spins. The caseMyf electrons with spin
’ = bvar 1

up andN, electrons with spin down can be found after some

reflection in terms of the spin-polarized quantities:
where the variational functional is

NRe(q, BIN =N; + N|) =NTie(q, BN;) + N|Tie(q, BIN)),

Evar(NT!N“U’W!w) (A15)
CE(NN )_1 dEy(N;,N) 102w’ dEg(N;,N))
Bk do 2 v dv N(N - )ge(r, BIN;,N))
+277Uf IN(N - 1)ge(r, 8 — [N;,N,)dr =Ni(Ny = Dge(roAIND + N (N, = Dge(r, AN
0

2N:N -
5 - —T—L f €9 Rc(q, BN))F(q, BN )dg,  (A16)
\ af f NZCF(q,'TB—) OO|NT’ l)dqe TdT (All)

N*Ce(a, 7,BINi,N)) = N%CF(qa 7,B|N;) + Nf‘CF(qy 7,BIN))

Here,E, is the ground-state energy corresponding to the trial + 2N;N Ae(q, BIN)TE(9, BIN)) .
action, given by (A17)

3
= )+ +
EO(NT’ l) (U W= ) FF(NT) FF(Nl) (A12) 3. Coulomb and electron-phonon energies

. . ' Using Egs. (A15)—(Al7) in the variational functional
whereEg(N) is the ground-state energy df fermions with  (A11), we arrive at the expression with three Coulomb terms
parallel spins and with energy Ieveé§=(n+%)w: and three electron-phonon terms as follows:

214301-9
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3(v w)? 3
var(NT! L|U W, 0) = 4 _Zw"'

+E¢)(N;) + Eq)(N)) + E¢; | (N,N))
+E(Ny) + Ey(N) +Egp ((N;,N))
(A18)

1 1
SN + ST (N

with the contributions

E,(N)= - Vz_asz f e OT2NPN W2 (0P wP) o317 ) ~(1-€ D w)-7( £(q,7, 8 — =|N)dqdr,

2y Za
Ear (Ns,N) =—

The integrations oveq and overr in Egs.(A19)—(A22) are
performed using the explicit form of the density and corre-

lation functions[see Eq(A25)]
L

1
Ae(q,8— <|N) = NE n(@)f1 (K B — ,N),

k=0

(A23)

2 E Mg (Q)

kOk'

Ce(g,7,8— »|N) =

Xe(k—k')wr[fl(kLB — oo,N)

= fo(kK'|B— =, N)], (A24)

Gr(r. B — =|N)
1 1q-r
TNIN-1) (2 >3J daet kEOKE (@
X[f(KB— =,N) ~ fo(k K| — <, N)]  (A25)

with the matrix elements

2 2
n(q) = exp(— j—w)L(f)(;—w), (A26)
q/zw( )k> < - i)!
My (Q) =e o % (k Zi)
{L<k> k<)( )} <k< = min(k,k’) )
ke ke = max(k,k’)
(A27)

where L<k“)(x) are the Laguerre polynomials, and with one-

PHYSICAL REVIEW Br1, 214301(2009

Ecy(N) = 27N(N - 1)UF rge(r, 8 — =|N)dr, (A19)
0

© 1 .
ECN(NT’Nl):A’WNTNlUJO rwje'q'np

X(tu - OO|NT)ﬁF(q!B - °°|N¢)dqdr,
(A20)

(A21)

NT j dqf dre” q/Z(NT"'Nl)[ w2/02)7-+ —w /v 1-e7VN—~(1-€" wf)/w]— (q ,3—>°°|N )nF(q B_’OC|NL)

(A22)

particle and two-particle distribution functions

1, k<L

4 N 0, k>L
— 00 =
1kf = N- N,

NL+1 - NL ,

(A28)
k=L,

ok K| B — o N)

(1B = NEK|B - o), k%K
1, k=k' <L

= 0, k=k' >L

N-N, N-N -1

NLNL+1_NL_1,

\ NL+1_
(A29)
Using Eqs(A23)—(A29), after performing integrations we
arrive at the following formulas for the Coulomb and
electron-phonon energié&19)—(A22).

(i) The Coulomb energy for opposite spins is given by the
expression

LTL

1
EE( 1)k _E

T k=0 1=0 Kk |
% (LT+2>+ NT_NLI (LT+2>
k+3 NLT+1_ NLT k+2

% (Ll+2>+ Nl_NL (Ll+2>
|+3 NLl+l_ NLl |+2 '

(A30)

1
k+1-—-
Eci (N;,N)=U 2
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(ii) The Coulomb energy for parallel spins is
-U E E fak K |B— =,N)
L L K 1 Kl 1 Tk=0 k=0
® -z _=
Ec(N)=U ETE 2 (=D 2 2 ke | o1 1
k=0 1=0 K | «SS (- 1) 175 k>—k<+|+J—E
x[(L+2><L+2>+ N- N, (L+2)<L+2> =0 j=0 j | +ke — ke
k+3/\1+3 N1 =N \k+2/\1+3 <k>+2><2(|+k>—k<)>
L NN <L+2><L+2> ke = I —j '
NL+1_NL |+2 k+3
N-N, N-N -1 <L+2>(L+2)}
N+ =N N =N - 1\k+2/\1+2 (iii) The electron-phonon energy for opposite spins is
|
1 1
k== || k+l-=
(_ 1)k+| 2 2
. Ly L
) k |
E,i (N;,N)=-2 \/: dre™”
HH( 1 l) @ ,n.fo g}g [sz(T) + 1]k+|+1/2
k+3 NLT+1_NLT k+2 I +3 NLl+1_NLl | +2
with the function
O e 1- e‘wf>
P(N=——"—"— + 2 1-€e77)- : A32
(7) 2(NT+Ni)< —T ( ") " (A32)
(iv) Finally, the electron-phonon energy for parallel spins takes the form
T~
1’2 «
Eq(N) ==~ f dre "Ey(N,7), (A33)
m™ Jo
where the time-dependent functi&y, (N, 7) is a sum of three terms:
N N-N. N-N. -1
Ea(N, D =EQ(N,7) + —E(alu)(N 7)+ L L~ EA(N, 7). (A34)
Np+g = Np Nisog =N N =N -1

The termsE(”(N 7) can be written down in two equivalent alternative forms. The first form is relevant for the numerical
calculation in the region of small and intermediate valuegug),

1
(L+2\j-=
[2(coshwT—-1)]| . 2
E(O) N - 77(1) ‘
aH( ) \/ 2 12:2) [Za)P(T) +1 _e—wr]]+1/2
1 1
)n+m( L+2 ><Z(j +n)> m—E j+n+m—§
L-1 L-j-1 n j+n+3 n-m - o
_ eja)7'+ ](u .
E ( e nzo mz_o [20P(7) + 1]J+n+m+1/2
2j L+2 i— 1- i+n- }
A3 D) R
L-1 ] j—-n/\j+3 .
> (- 1)i*n ] n
j=0 n=0 [20P(7) + 1]*™1/2

214301-11



BROSENS, KLIMIN, AND DEVREESE PHYSICAL REVIEW Br1, 214301(2009

L+2 L+2 -—} '+n_}
(—1)“”(. )( ) =2 >
L-1L-1 j+3/\n+3

+ > J n | a3

EE= [20P(n) + 1702

1
o(coshar— 1 J.(|_+2> i-35
L[(cos w7=1)] (2

E(l) N,7) = Tw |
al (N, 7) 2 ].2::‘) [20P(n) + 1 _e—m]1+1/2

. 1\/. 1
(_1)n+m<.L+2 )(2(J+n)) m_é ]+n+m—§
L L-j n j+n+2/\ n-m

SIICHETILOIIDY m j+n

=1 n=0 m=0 [20P(7) + 1]itmm+112

L+2 L+2 -—} '+n_}
(—1)“”(. )( )J 2 || 2

L-1 L j+3/\n+2 ) ]
+2> > J , (A36)

j=0 n=0 [2wP(7) + 1]j+n+1/2

1

1
2j L+2\|j—— i _=
<_])<_+>12 j+|’12
[T L J j-n/\j+2 J .
E(2) N,7) = Twy _1j+n |
all ( T) 2 Jgo n§::0( ) [Z(DP(T) + 1]J+r‘l+1/2

few2\(Le2\[j-2[j+n-2
(= 2 2
L j+2/\n+2

+ > > J n . A37)

j=0 n=0 [2wP(7) + 1]*M1/2

The second form is relevant for intermediate and large valués of,

_1n+m<L+j+2>(2(”+J)) m—% j+n+m—%

S 5SS n+j+3/An-m m j+n
E(O) N, 7) = 7w e—j(m- .
aH( 7) 2 ]2::1 nzza rr?::O [2wP(7) + 1]]+n+m+1/2
L+2 \(2m+)\[m-2|[j+n+m-1
(_ 1)n+m( . )( J ) 2 ] >
S eSS nrirs/inom m j+n
— e—jwr '
ng n2=0 Eo [20P(7) + 1] M2
1 1
L+2 L+2 n—— n+m-—
(_ 1)n+m 2 2
L-1L-1 n+3/\m+3 ] -
= : (A38)

[20P(7) + 1] 12

n=0 m=0
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1 1
(—1)”+m<L+j+2>(2(n+j)> m=3 j+n+m—5
o L n n+j+2/\ n-m - .
E(l) N, = ﬂ e—ja)q' |
all ( 7) N 2 ].2:%) nzzémgo [ZwP(T)+1]J+n+m+1/2
. 1\/. 1
_1n+m< L+2 >(2(”+l)) m-_ [ j+n+m->
L L=j n n+j+2 n-m o
— e—j(m' .
igl n§=‘6 mzzo [2wP(7) + 1]jtmmel2
1 1
L+2 L+2 n—--— n+m--—-
(_1)n+m 2 >
L L1 n+2/\m+3 . -
"2 ' A39
nzomzo [2wP(7) + 1]™m+/2 (A39)
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