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Ab initio electronic-structure calculations, based on the density-functional theory and the full-potential
linear-muffin-tin-orbital method, were used to predict crystal-sructure phase stabilities and elastic constants of
beryllium under compression. Specific energies, pressures, elastic constants, and Debye temperatures for three
crystal structures, hcp, bcc, and fcc, were calculated over a wide volume range. In agreement with experiments
and previous theoretical calculations, the hcp ground state is obtained at ambient conditions and the bcc ground
state is found at high pressure and ambient temperature, with the predicted hcp→bcc phase transition at about
2.7 Mbar. A possible phase diagram of beryllium, including hcp, bcc, and fcc phases is constructed in the �P ,T�
plane.
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I. INTRODUCTION

The interest to beryllium �Be� arises from the fact that
despite its simple atomic structure this material exhibits a
number of unusual physical properties. Under ambient con-
ditions, Be crystals have a hcp structure with the axial ratio
c /a=1.568 that significantly differs from the ideal value
equal to 1.633. High Debye temperature �1440 K� and very
small Poisson’s ratio �0.05� of hcp Be suggest that the be-
havior of valence electrons deviates substantially from that
of near free electrons. At 1530 K Be transforms into the bcc
structure which melts at 1560 K. The negative slope of the
hcp→bcc phase boundary �dThcp→bcc /dP�0� under com-
pression points to the possibility of a hcp→bcc transition at
high pressure and ambient temperature. Uncertainty in the
value of Debye temperature for Be added another intrigue. In
Ref. 1, a value of 897 K is recommended although it is much
lower than 1440 K �Ref. 2� used earlier. According to re-
cently published data,3 Debye temperature at ambient condi-
tions is equal to 1453 K. These differences are of great im-
portance for the analysis of results obtained in ab initio
calculations because the value of Debye temperature reflects
the zero-point contribution to the total energy.

So it is no wonder that Be attracts attention of many sci-
entists. The features of the electron distribution in Be were
theoretically studied in Refs. 4 and 5. It was found that the
electronic structure of Be was quite different from that of
other divalent metals. The macroscopic properties of Be
crystals at ambient pressure were studied using most known
methods of electronic structure calculations.6–15 The general
inference is that results obtained with the ab initio methods
reasonably agree with one another and with experiment but
poorly agree with calculations based on the model potentials.

The number of theoretical papers devoted to the macro-
scopic properties of Be under pressure is much fewer, and
most of them are devoted to the determination of the se-
quence of polymorphous transitions under pressure.
Calculations16–19 show that the structural transition in Be at
T=0 K is possible in the pressure range of 1–2 Mbar. The
cited works used LMTO-ASA,16 ab initio pseudopotentials,17

ASW,18 and FPLMTO,19 and the calculations were made in

the local density approximation without gradient corrections.
The authors of Refs. 16 and 18 predict that the hcp→bcc
transition occurs, while those of Ref. 17 report that under
pressure both the structures, bcc and fcc, are more favored
than hcp. However, the accuracy of calculations17 was not
sufficient to determine the relative stability of these struc-
tures. In Ref. 19, the crystal structure stability among the
hcp, bcc, and orthorhombic �distorted hcp� structures was
studied as a function of compression. The bcc structure was
found to be energetically stable at pressures above 1.8 Mbar.

A number of experiments were made to locate the hcp
→bcc transition at ambient temperature. In spite of first op-
timistic results,20–22 later experiments23–26 failed to find this
transition at pressures up to 1.71 Mbar.

And finally, in the recent paper27 it is predicted that the
shear modulus of all metals, including Be, vanishes at high
pressure and absolute zero temperature and crystalline mate-
rial becomes liquid.

In this paper we investigate the electronic structure and
elastic properties of hcp, bcc, and fcc Be under pressure on
the basis of one of the advanced methods of ab initio elec-
tronic structure calculations—FPLMTO.28 Using the modi-
fied Debye model29 to estimate the contribution of zero-point
vibrations and thermal terms to Be thermodynamic func-
tions, we determine the pressure of the hcp→bcc transition
at ambient temperature and construct a possible phase dia-
gram of Be in the �P ,T� plane solely on the basis of ab initio
calculations. We also calculate elastic constants for three Be
structures as functions of relative volume, and check the
hypothesis27 that the shear modulus of Be crystals vanishes
at high pressures.

II. DETAILS OF CALCULATIONS

We used the density-functional theory and the full-
potential linear-muffin-tin-orbital method �FP-LMTO�28 in
the calculations reported here. The exchange-correlation
functional in form offered in Ref. 30 with the gradient
corrections31 was used. This form of the exchange-
correlation functional was chosen to describe the properties
of Be crystals under ambient conditions as accurately as pos-
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sible. All electrons were included into a fully hybridized en-
ergy panel. The basis set comprised augmented linear
muffin-tin orbitals with s, p, and d momenta. We used eight
centers of linearization for basis functions in the muffin-tin
spheres and three tail energies in the interstitial region.28 The
values of these parameters for different specific volumes
were chosen with a special automatic algorithm that allowed
for a pressure dependence of the crystal energy spectrum. In
the prism-shaped Brillouin zone a mesh for integration over
k space with the linear tetrahedron method was constructed
by dividing each edge into the same number of parts. The
calculations were made with a 23�23�23 mesh for all
structures, both equilibrium and distorted. As a result of our
effort aimed to choose the inner parameters of the FP-LMTO
method,28 we have succeeded to calculate the specific energy
of the crystal accurately to 0.1 mRy/cell for all considered
compressions. This means that changes in the inner param-
eters of the method, including the parameters that define the
quality of the basis, can reduce the calculated unit cell en-
ergy by no more than 0.1 mRy. That value does not coincide
with the absolute error in the total energy �relative to the
exact local density approximation �LDA�/GGA result�. The
energy convergence criterion that defines the number of it-
erations of the self consistent loop, was taken to be
10−3 mRy/cell. The pressure versus volume dependence at
T=0 K was calculated by differentiation of an analytical ex-
pression which approximated the specific energy-volume de-
pendence. To calculate pressure at a point of the V /V0 mesh,
we approximated specific energy over the interval containing
four neighbor points, using the formula proposed in Ref. 32.
Elastic constants for crystals under pressure were calculated
with a method described in detail in Ref. 29.

III. RESULTS

The specific energy of each phase was calculated at 17
volume points between V /V0=1.1 and V /V0=0.3. Here V0
=54.75 �a .u.�3 /atom is the specific volume of Be at ambient
pressure and room temperature, calculated from the experi-

mental lattice parameters:33 a=2.2850 Å, c=3.5847 Å. The
equilibrium value of the axial ratio c /a for each specific
volume of hcp Be was found from the condition of specific
energy minimum as a function of c /a at constant volume.
Figure 1 shows the obtained pressure dependence of the ratio
c /a in comparison with experimental results. It is seen that
the calculated and experimental data agree satisfactorily.

To evaluate the accuracy of our calculations, we calcu-
lated some Be parameters under ambient conditions. They
are given in Tables I and II with corresponding experimental
results. The contribution of lattice thermal vibrations to the
calculated quantities at T=298 K were defined using the De-
bye model.29 As seen from Tables I and II, the calculated
quantities are in good agreement with experiment.

As shown in Ref. 29, for elastic constants at P�0, it is

natural to use the quantities C̃ij, that are related to the elastic
constants Cij, traditionally defined as

Cij =
1

V
� �2E�V,��m��

��i � � j
�

��m=0�
, �1�

via the following relations:

C̃ii = Cii − P, i = 1,2,…,6;

TABLE I. Experimental and calculated equilibrium volumes,
V0, ratio c /a, bulk modulus B0, and pressure derivative of bulk
modulus B0� for hcp Be under ambient conditions.

T=298 K
experiment

T=0 K
calculation

without
zero-point
vibrations

T=298 K
calculation

with
zero-point
vibrations

V0 ,
�a.u.�3

atom
54.75,a 54.78b 53.46 54.44

c /a 1.569,a 1.568b 1.573

B0, Mbar 1.1,c 1.14,d 1.18,e 1.19f 1.22 1.14

B0� 4.6,c 3.52,e 3.48f 3.306 4.34

aFrom Ref. 33, static.
bFrom Ref. 34, static.
cFrom Ref. 35, static.
dFrom Ref. 36, static.
eFrom Ref. 37, shock.
fFrom Ref. 38, shock.

FIG. 1. The calculated axial ratio c /a as a function of pressure
for hcp Be �solid line� compared with experimental data: triangle—
Ref. 21, open circle—Ref. 25, filled circle—Ref. 26.

TABLE II. Calculated elastic constants Be at T=0 K, V=V0.
The corresponding experimental results has obtained at ambient
temperature �295 K� �see Ref. 3�.

Elastic constants
�Mbar� Experiment

Calculation without
zero-point vibrations

C11 2.936 3.008

C33 3.567 3.595

C44 1.662 1.602

C12 0.268 0.141

C13 0.140 0.071
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C̃ij = Cij, i = 1,2,3; j = 4,5,6;

C̃12 = C12 + P, C̃13 = C13 + P, C̃23 = C23 + P;

C̃45 = C45, C̃46 = C46, C̃56 = C56. �2�

Here �i are Lagrangian strains. If use C̃ij instead of Cij, the
usual Born conditions of mechanical stability remain valid

for any pressure.29 Tables III and IV contain C̃ij as functions
of relative volume for hcp, bcc, and fcc Be at T=0 K.

It is of interest to note that according to our calculations,
bcc Be becomes mechanically unstable somewhere on an
interval 1.05�V /V0�1.10. Accuracy of our calculations is
not sufficient to confidently determine the value of V /V0 at
which the mechanical stability is lost but it is clear that this
occurs at a density, which is a little lower than the ambient
one. The elastic properties of bcc Be dramatically change
near this boundary and, as a consequence, the contribution of
nuclei thermal vibrations to the crystal thermodynamic func-
tions changes. In our opinion this is the reason why the slope
of the hcp→bcc phase boundary �dT /dP� of the Be crystal is
so sharply negative at small compressions. This can be
proved by the following estimation. The change in the tem-
perature of the hcp→bcc transition, caused by the change in
the Debye temperature of the bcc structure at constant pres-
sure, can be written, accurately to linear terms, as

�Thcp→bcc =

� �Gbcc

��D
�

P,T
��D

bcc

� �Ghcp

�T
�

P,�D

− � �Gbcc

�T
�

P,�D

. �3�

It is also possible to show that in Debye model

� �G

��D
�

P,T
� 0. �4�

Furthermore, our calculations show that near the hcp→bcc
transition line

� �Ghcp

�T
�

P,�D

� � �Gbcc

�T
�

P,�D

. �5�

So, one can expect that the sharp decrease of Debye tempera-
ture of the bcc structure near ambient pressure, caused by the
loss of mechanical stability by this structure at small nega-
tive pressures, will result in a sharp increase of the hcp
→bcc transition temperature, and just this is observed in
experiment.

Using data contained in Tables III and IV and the method
offered in Ref. 29, we calculated Debye temperature as a
function of relative volume for the three Be structures. The
results are presented in Table V.

We also calculated the 300 K isotherm for hcp Be. It is
shown in Fig. 2 along with data from static and shock
experiments.21,25,26,37 As seen from Fig. 2, the calculated iso-

TABLE III. Second-order elastic constants for hcp Be at different relative volumes.

V /V0 C̃11 �Mbar� C̃33 �Mbar� C̃44 �Mbar� C̃12 �Mbar� C̃13 �Mbar�

1.1 2.320 2.805 1.370 -0.030 -0.046

1.0 3.008 3.595 1.602 0.141 0.071

0.8 5.044 6.162 2.269 1.065 0.496

0.6 9.451 11.69 3.419 3.331 1.779

0.5 13.74 17.56 4.375 6.174 3.140

0.4 21.25 27.63 5.739 11.96 6.178

0.3 36.86 48.86 7.807 24.78 14.00

TABLE IV. Second-order elastic constants for bcc and fcc Be at different relative volumes.

V /V0 C̃11
bcc �Mbar� C̃12

bcc �Mbar� C̃44
bcc �Mbar� C̃11

fcc �Mbar� C̃12
fcc �Mbar� C̃44

fcc �Mbar�

1.10 1.620 0.333 0.659

1.05 1.131 0.785 1.412

1.00 1.468 0.908 1.852 2.027 0.600 1.458

0.90 2.055 1.300 2.518 2.630 1.010 2.360

0.80 2.915 1.864 3.123 3.501 1.599 3.091

0.70 4.202 2.731 4.003 4.783 2.479 4.036

0.60 6.235 4.145 5.235 6.772 3.926 5.314

0.50 9.693 6.617 7.111 10.12 6.472 7.320

0.40 16.44 11.31 10.15 16.35 11.45 10.62

0.30 30.89 22.11 15.47 29.77 22.85 16.40
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therm is in good agreement with data from Refs. 21 and 25.
It satisfactorily agrees with the experimental data26 up to 0.7
Mbar, however, progressively disagrees for higher pressures.
The agreement between theoretical and experimental results
may be better if take into account the corrections to the ruby
pressure scale, proposed in Ref. 39. As shown in Ref. 39, the
correction increases experimental pressures in samples, espe-
cially those above 1 Mbar. The paper39 provides aluminum
compression data obtained with and without the proposed
corrections to the ruby scale. Figure 3 shows these data and
results of our calculations on the pressure-volume depen-
dence for fcc Al.29 It is seen that the experimental results
obtained with the corrected ruby scale are in excellent agree-
ment with our calculations. It seems reasonable to expect
that the agreement between calculated and experimental re-
sults for Be will also be better if use the corrected ruby scale.
As for the isotherm obtained from the experimental shock
compression data,37 it is seen to noticeably deviate from both
static data25,26 and our results at pressures above 0.5 Mbar.
As noticed in Ref. 25, this may be a result of inaccuracy in
the Gruneisen parameter used in experimental data process-
ing.

Using the elastic constants obtained, we calculated shear
moduli G for the three structures of Be polycrystal with the
formula

G = 1
2 �GV + GR� . �6�

Here GV and GR are polycrystal shear moduli obtained by

averaging the single-crystal elastic constants C̃ij as proposed
by Voigt41 and Reuss,42 respectively. GV is the upper bound
for the polycrystal shear modulus and GR is the lower one.
Formulas for GV and GR under pressure can be found in Ref.
43.

Figures 4, 5, and 6 show the polycrystal shear modulus G

and single-crystal shear moduli �= �C̃11− C̃12� /2 and ��

= C̃44 for the three Be structures as functions of pressure at
T=0 K. It is seen that none of the moduli becomes zero to at
least 10 Mbar.

The author of Ref. 27 discusses possible melting of crys-
tals under isothermal compression as a result of shear modu-
lus vanishing. According to the estimation Ref. 27, the shear
modulus of Be vanishes at pressures above 1.1 Mbar. Since

TABLE V. Debye temperatures for hcp, bcc, and fcc Be at dif-
ferent relative volumes.

V /V0 �D
hcp�K� �D

bcc�K� �D
fcc�K�

1.10 1351.1 980.58

1.05 879.73

1.00 1465.9 1044.6 1228.5

0.90 1197.8 1409.9

0.80 1711.8 1354.8 1547.9

0.70 1541.7 1707.3

0.60 2058.5 1763.4 1891.5

0.50 2279.1 2044.6 2130.5

0.40 2520.6 2454.7 2446.2

0.30 2828.1 2989.0 2862.9

FIG. 2. The calculated 300 K isotherm for hcp Be �solid line�
compared with experimental data: triangle—Ref. 21, open circle—
Ref. 25, filled circle—Ref. 26; the dashed line is the room tempera-
ture isotherm derived from experimental shock-wave measurements
�see Ref. 37�.

FIG. 3. Calculated �see Ref. 29� pressure-volume relation for fcc
Al �solid line� compared with experimental data �see Ref. 39�: open
circle—modified ruby pressure scale, filled circle—old ruby pres-
sure scale �see Ref. 40�.

FIG. 4. Shear modulus of polycrystals and single-crystals of hcp
Be as functions of pressure.
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this result disagrees with what we obtained, consider this
estimation in more detail. In that paper the shear modulus GV
is calculated as

GV = 3
5 �	B − 2P� , �7�

were B is bulk modulus, P is pressure. The author of Ref. 27

assumes that the value of 	=1− �C̃12− C̃44−2P� /B is con-
stant and close to its magnitude for cubic metals under am-
bient conditions: 	=0.7. Then, following from the fact that
at high pressures B / P→5/3, he makes the conclusion that
GV turns negative at high pressures. Using for B and P the
expressions that approximate the results of calculation of
thermodynamic functions by the Thomas-Fermi model with
corrections, the author27 finds that for Be, GV�0 at P
�1.1 Mbar. At the same time he notes that the result is very
sensitive to the value of the parameter beta and should be
considered qualitative.

Figure 7 shows the pressure dependence of 	 and B / P we
calculated for bcc Be. It is seen from Fig. 7 that the ratio
B / P does approach 5/3 in the high compression limit, as it
must be. However, for bcc Be, the value of 	 is not close to
0.7 either at low or high pressures and therefore, GV remains

positive. For many cubic metals under ambient conditions, 	
differs from 0.7 too. So, for example, for Ca, 	�1.22 and
for Tl, 	�0.32. Thus, the qualitative conclusion27 on the
behavior of the shear modulus of metals under pressure can-
not be admitted to agree with results of ab initio calculations.
Taken alone, the vanishing of the shear modulus of a crys-
talline structure at T=0 K only means that the structure loses
its mechanical stability. For the structure to transform into
liquid, the Gibbs potential of the liquid phase must be lower
than that of any other crystalline structure. The possibility of
the solid-liquid transition cannot be a priori ruled out but it
is unlikely to be general for practicable pressures.

Using the modified Debye model,29 we calculated Gibbs
potentials for hcp, bcc, and fcc Be as functions of pressure at
T
0. They were used to predict the pressure of the possible
hcp→bcc transition at room temperature and obtain the pos-
sible phase diagram for Be in the �P ,T� plane. Figure 8
shows the pressure dependence of Gibbs potentials for the
considered structures of Be relative to the Gibbs potential of
the hcp structure at 300 K. It is seen that the hcp structure is
most favored under ambient conditions and remains so up to
a pressure of 2.7 Mbar where the hcp→bcc transition oc-
curs. Then, at least up to 10 Mbar, the bcc structure remains

FIG. 5. Shear modulus of polycrystals and single crystals of bcc
Be as functions of pressure.

FIG. 6. Shear modulus of polycrystals and single crystals of fcc
Be as functions of pressure.

FIG. 7. Pressure dependence of 	 and B / P for bcc Be.

FIG. 8. Gibbs potential differences of bcc and fcc Be with re-
spect to hcp Be at T=300 K as functions of pressure.

RELATIVE STABILITY AND ELASTIC PROPERTIES… PHYSICAL REVIEW B 71, 214108 �2005�

214108-5



most favored. Our estimate of the hcp→bcc transition pres-
sure equal to 2.7 Mbar does not contradict the experimental
data25,26 but is higher than the values calculated in Refs.
16–19.

It is interesting to see how functions in Fig. 8 will change
if neglect the contribution from the thermal motion of nuclei
and zero-point vibrations. In this case our results can be di-
rectly compared with results presented in Refs. 16–19. For
this end we present Fig. 9 which shows our calculations on
the Gibbs potential differences of bcc and fcc structures with
respect to the Gibbs potential of the hcp structure in the case
where T=0 K and the contribution of zero-point vibrations is
not taken into account. It is seen that in this case at P=0, the
hcp structure is again most stable. But now it remains most
stable to a pressure of 4.1 Mbar and then turns into the bcc
structure which remains stable to at least 10 Mbar. The pres-
sure of the hcp→bcc transition we determined differs from
	2, 	5, 	3, 	1.8 Mbar obtained in Refs. 16–19, respec-
tively. This is apparently a result of our using gradient cor-
rections to the LDA exchange-correlation energy functional.
It should be noted that with no account for the contribution
from the motion of nuclei, the fcc structure at low pressures
was found to be more stable than the bcc structure both in
our calculations and in those presented in Refs. 16–19. Ac-
counting for the contribution from the motion of nuclei,
which differs for bcc and fcc structures if the method29 is
used, allows obtaining, at relatively low pressures and in-
creasing temperature, a sequence of structural transforma-
tions that agrees with experiment.

Figure 10 shows the possible phase diagram for Be in the
�P ,T� plane. It includes the hcp, bcc, and fcc structures. The
melting curve was calculated with Lindemann criterion

Tm = const � V2/3�D
2 �V� . �8�

The constant in this equation was chosen using the experi-
mental value of the melting temperature at ambient pressure.

To reproduce the experimental phase boundary of hcp and
bcc structures at pressures below 0.06 Mbar and high tem-
peratures, we had to slightly correct the curve approximating
the calculated pressure dependence of Debye temperature
near P=0 for these structures. The corrections are within the
calculation error, and they are no greater than 5% of the
initial values. It should be emphasized that the qualitative
result, the dramatic change of dThcp→bcc /dP near normal
density, was obtained without any correction to the calcu-
lated data. A minor correction was only needed to match the
calculated and experimental curves Thcp→bcc�P�.

IV. CONCLUSION

The specific energy, elastic constants, shear moduli, and
relative stability of hcp, bcc, and fcc Be at pressures up to 10
Mbar were determined using ab initio electronic-structure
FP-LMTO calculations. Our results showed that at T=0 K
none of the structures became mechanically unstable, at least
up to 10 Mbar. The obtained elastic constants were used to
include the contribution of nuclei thermal oscillations to the
equation of state of Be. The calculated Be crystal character-
istics at ambient conditions and the 300 K isotherm agree
well with the experimental data available. Our calculations
suggest that at room temperature the structural hcp→bcc
transition in Be occurs at a pressure of about 2.7 Mbar. The
calculated data were used to construct the possible phase
diagram for Be, including hcp, bcc, and fcc phases in the
�P ,T� plane.
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FIG. 9. Gibbs potential differences of bcc and fcc Be with re-
spect to hcp Be at T=0 K as functions of pressure without zero-
point contribution to the Gibbs potential.

FIG. 10. A possible phase diagram of Be, including hcp, bcc,
and fcc phases. The melting curve was calculated from the Linde-
man criterion �8�.

G. V. SIN’KO AND N. A. SMIRNOV PHYSICAL REVIEW B 71, 214108 �2005�

214108-6



*Electronic address: gevas@uniterra.ru
1 N. Gopi Krishna and D. B. Sirdeshmukh, Acta Crystallogr., Sect.

A: Found. Crystallogr. 54, 513 �1998�.
2 American Institute of Physics Handbook, 3rd ed. �McGraw-Hill,

New York, 1972�, Tables 4e-10 and 7b-1.
3 A. Migliori, H. Ledbetter, D. J. Thoma, and T. W. Darling, J.

Appl. Phys. 95, 2436 �2004�.
4 U. Haussermann and S. I. Simak, Phys. Rev. B 64, 245114

�2004�.
5 G. K. H. Madsen, P. Blaha, and K. Schwarz, J. Chem. Phys. 117,

8030 �2002�.
6 J. F. Janak, V. L. Moruzzi, and A. R. Williams, Phys. Rev. B 12,

1257 �1975�.
7 S. Chatterjee and P. Sinha, J. Phys. F: Met. Phys. 5, 2089 �1975�.
8 F. Perrot, Phys. Rev. B 21, 3167 �1980�.
9 R. Dovesi, C. Pisani, F. Ricca, and C. Roetti, Phys. Rev. B 25,

3731 �1982�.
10 M. Y. Chou, P. K. Lam, and M. L. Cohen, Phys. Rev. B 28, 4179

�1983�.
11 J. Redinger, K. Schwarz, N. K. Hansen, G. E. W. Bauer, and J. R.

Schneider, Hahn-Meltner Institute, Berlin, Report HMI B412,
1984, pp. 79–99.

12 U. von Barth and A. C. Pedroza, Phys. Scr. 32, 353 �1985�.
13 P. Blaha and K. Schwarz, J. Phys. F: Met. Phys. 17, 899 �1987�.
14 J. C. Boettger, J. Quantum Chem. symp. 29, 197 �1995�.
15 N. A. W. Holzwarth and Y. Zeng, Phys. Rev. B 51, 13653 �1995�.
16 A. K. McMahan, in Shock Waves in Condensed Matter-1981, AIP

Conf. Proc. No. 78, edited by W. J. Nellis, L. Seaman, and R. A.
Graham �AIP, New York, 1982�, p. 340.

17 P. K. Lam, M. Y. Chou, and M. L. Cohen, J. Phys. C 17, 2065
�1984�.

18 J. Meyer-ter-Vehn and W. Zittel, Phys. Rev. B 37, 8674 �1988�.
19 B. Palanivel, R. S. Rao, B. K. Godwal, and S. K. Sikka, J. Phys.:

Condens. Matter 12, 8831 �2000�.
20 A. R. Marder, Science 142, 664 �1963�.
21 L. C. Ming and M. H. Manghnani, J. Phys. F: Met. Phys. 14, L1

�1984�.
22 V. Vijayakumar, B. K. Godwal, Y. K. Vohra, S. K. Sikka, and R.

Chidambaram, J. Phys. F: Met. Phys. 14, L65 �1984�.

23 L. C. Chhabildas, J. L. Wise, and J. R. Asay, in Shock Waves in
Condensed Matter-1981, AIP Conf. Proc. No. 78, edited by W. J.
Nellis, L. Seaman, and R. A. Graham �AIP, New York, 1982�, p.
422.

24 R. L. Reichlin, Rev. Sci. Instrum. 54, 1674 �1983�.
25 N. Velisavljevic, G. N. Chestnut, Y. K. Vohra, S. T. Weir, V.

Malba, and J. Akella, Phys. Rev. B 65, 172107 �2002�.
26 K. Nakano, Y. Akahama, and H. Kawamura, J. Phys.: Condens.

Matter 14, 10569 �2002�.
27 V. V. Kechin, J. Phys.: Condens. Matter 16, L125 �2004�.
28 S. Yu. Savrasov and D. Yu. Savrasov, Phys. Rev. B 46, 12181

�1992�.
29 G. V. Sin’ko and N. A. Smirnov, J. Phys.: Condens. Matter 14,

6989 �2002�.
30 L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 �1971�.
31 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.

Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671
�1992�.

32 G. Parsafar and E. A. Mason, Phys. Rev. B 49, 3049 �1994�.
33 V. M. Amonenko, V. Ye. Ivanov, G. F. Tikhinskij, and V. A.

Finkel, Phys. Met. Metallogr. 14, 47 �1962�.
34 K. J. H. Mackay and N. A. Hill, J. Nucl. Mater. 8, 263 �1963�.
35 D. J. Silversmith and B. L. Averbach, Phys. Rev. B 1, 567 �1970�.
36 J. F. Smith and C. L. Arbogast, J. Appl. Phys. 31, 99 �1960�.
37 J. L. Wise, L. C. Chhabildas, and J. R. Asay, in Shock Waves in

Condensed Matter-1981, AIP Conf. Proc. No. 78, edited by W. J.
Nellis, L. Seaman, and R. A. Graham �AIP, New York, 1982�, p.
417.

38 T. Neal, in High Pressure Science and Technology, edited by K.
D. Timmerhaus and M. S. Barber �Plenum, New York, 1974�,
pp. 1 and 80.

39 A. Dewaele, P. Loubeyre, and M. Mezouar, Phys. Rev. B 70,
094112 �2004�.

40 H.-K Mao, J. Xu, and P. Bell, J. Geophys. Res. 91, 4673 �1986�.
41 W. Voigt, Lehrbuch der Krystall Physik �Teubner, Leipzig, 1928�,

p. 962.
42 A. Reuss, Z. Angew. Math. Mech. 9, 49 �1929�.
43 D. L. Preston and D. C. Wallace, Solid State Commun. 81, 277

�1992�.

RELATIVE STABILITY AND ELASTIC PROPERTIES… PHYSICAL REVIEW B 71, 214108 �2005�

214108-7


