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The elastic properties of selected transition-metalsTMd nitrides and carbides inB1 structure are studied
using theab initio density-functional perturbation theory. We find thats1d the inequalityB.G8.G.0 holds
for all these materials, whereB=sC11+2C12d /3, G8=sC11−C12d /2, andG=C44 with Cij the elastic constants,
ands2d G has large values when the number of electrons per unit cellZV=8 or 9. The fitted curve ofG vs. ZV

predicts that rocksalt MoN is unstable, and TM carbonitridesse.g., ZrCxN1−xd and di-TM carbidesse.g.,
HfxTa1−xCd have maximumG at ZV<8.3.
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I. INTRODUCTION

Elasticity describes the response of a crystal under exter-
nal strain and provides key information of the bonding
strength between nearest-neighbor atoms. The information
obtained from accurate calculation of elasticity is essential
for understanding the macroscopic mechanical properties of
solids and for the design of hard materials. Nowadays it is
possible to calculate elasticity usingab initio quantum-
mechanical techniques, andab initio calculations have
proven to be very powerful in not only providing accurate
elastic constants or moduli in good agreement with measure-
ments1 but also predicting elasticity at extreme conditions of
high temperatures and high pressures,2,3 which are not easily
accessible to experiment but have wide applications in the
fields ranging from solid-state physics to seismology. Most
previousab initio calculations of elasticity used finite strain
methods within the framework of the density functional
theorysDFTd. The development of density functional pertur-
bation theorysDFPTd makes it possible now to obtain elastic
constants directly and more accurately.4,5

Transition-metal nitrides and carbides in the rocksaltsB1d
structure are widely used for cutting tools, magnetic storage
devices, generators, and maglev trains due to their high hard-
ness, high melting points, and oxidation resistance.6 These
excellent properties are associated with their unusual elec-
tronic bonding. The relatively high superconducting transi-
tion temperature in some of these compounds, reaching
nearly 18 K in NbC1−xNx,

8 indicates a strong electron-
phonon interaction. Many theoretical studies of their elec-
tronic structure7,9–13have revealed an unusual mixture of co-
valent, metallic, and ionic contributions to bonding which
must ultimately lie at the root of their unusual properties.
Specifically, it was found11 that the hardness enhancement of
these materials can be understood on a fundamental level in
terms of their electronic band structures. But the general
trends of elasticity and electronic structure among the
transition-metal nitrides and carbides remain unclear and a
challenge for engineering hard materials.

In this paper we perform systematic calculations of elas-
ticity of the selected transition-metal nitrides and carbides
within the framework of the density functional perturbation

theory. The accuracy of this method is also examined by
numerical finite strain methods. We obtain interesting trends
of the variation of the bulk and shear moduli among various
compounds. We demonstrate the electronic origin of such
trends in these materials.

II. METHODS

Elastic constants are defined as

cijkl ;
]si j

]ekl
=

1

V

]2Eel

]ei j]ekl
− di jskl = Cijkl − di jskl, s1d

where s is stress,e is strain, V and Eel are the unit-cell
volume and energy,d is the Kronecker delta function, and
the Latin indices run from 1 to 3. At zero hydrostatic pres-
surecijkl =Cijkl . One can apply a small strain and calculate
the change of energy or stress to obtain elastic constants.
Direct calculations of stress are possible from the quantum
mechanical theory of stress.14

Alternatively elastic constants can be viewed as the linear
responsesLRd of an undisturbed system by homogeneous
strains smacroscopic distortions of the crystald and can be
directly computed by the DFPT.4 However, strain perturba-
tion is much more difficult to cope with within the DFPT
than atomic displacement perturbationsphonond in that a ho-
mogeneous strain changes the boundary conditions of the
Hamiltonian of an infinite system, and the DFPT requires the
same basis set for the undisturbed and disturbed systems.

Recently Hamannet al.5 applied the reduced-coordinate
metric tensor method to the LR of strain-type perturbations.
Their approach5 is based on an energy expression in terms of
reduced coordinates, which are defined in both real and re-
ciprocal space using primitive directsRd and reciprocalsGd
lattice vectors. If the reduced coordinates are denoted with a
tilde, a real space vectorX and a reciprocal space vectorK
are given by

Xi = o
j

Rij X̃j, Ki = o
j

Gij G̃j , s2d

respectively. Essentially every energy term of the DFT can
be expressed as dot products of vectors in real or reciprocal
space, and
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X8 ·X = o
i j

X̃i8Ji j X̃j, K 8 ·K = o
i j

K̃i8Yi j K̃ j , s3d

where the metric tensorsJ andY are

Ji j = o
k

RkiRkj, Yi j = o
k

GkiGkj. s4d

The DFT energy derivatives with respect to strain act only on
the metric tensors; the first-order derivatives are

]Ji j

]ekl
= RkiRlj + RliRkj,

]Yi j

]ekl
= − GkiGlj − GliGkj, s5d

and second order derivatives can be directly obtained. After
this transformation, strain has an equal footing with other
coordinates, and the wave functions have invariant boundary
conditions, so that the strain derivatives such as elastic con-
stants can be evaluated in a way similar to other derivatives.
Note that the DFPT expressions giveCijkl , not cijkl . Elastic
constants were computed for an insulator AlP,5 and the
agreement between DFPT and numerical finite strain meth-
ods is perfect. Although the DFPT is directly applicable to
metals, it needs special care for the Fermi surface due to
partially occupied states. Here we examine the accuracy of
DFPT for transition-metal nitrides and carbides.

Our first-principles calculations are based on the DFT
within the local density approximationsLDA d. We used
ABINIT sversion 4.3.3d,15 which uses plane-wave basis sets
and norm-conserving pseudopotentials. The pseudopotentials
of C, N, Zr, Nb, Hf, and Ta were generated using theOPIUM

program.16 The cutoff energy of plane-wave basis is 50 Ha.
A dense 16316316 k-point mesh was used over the Bril-
louin zonesBZd, and the cold smearing method17 was per-
formed for BZ integration.

III. RESULTS AND DISCUSSIONS

Equilibrium lattice constantsa0 and bulk moduliB were
evaluated from fitting energy and volume data to the Vinet

equation of state.18 Compared with the available experimen-
tal data,6,19–21a0 are about 1.0%–1.5% smaller, while on av-
erageB are 15% larger. These are typical LDA errors. The
presence of N or C in transition-metal compounds leads to
the hybridizedp-d bonding, and its strength determines lat-
tice constants and bulk moduli. As illustrated in Figs. 1sad
and 1sbd, a0 decrease andB increase as the transition-metal
proceeds rightwardse.g., Zr→Nbd or downwardse.g., Zr
→Hfd on the periodic table. Smallera0 and largerB indicate
stronger bonding. The former trend is because of more filling
of the metald bands, which enhances thed-p bonding.10 The
latter trend is a result of the presence off electrons in core
states, which repeld orbitals out of core regions and in turn
make them bond with C or Np electrons more tightly. Avail-
able experimental data support these theoretical conclusions.
Figure 1 also show that nitrides have smallera0 and largerB
than their corresponding carbides, because N has one more
valence electron than does C so that thed-p bonding strength
in nitrides is higher than that in their carbide counterparts.
Experiment and theory agree well with the trend ofa0, but
the existing measured moduli of NbN and ZrN are lower
than those of NbC and ZrC, respectively. Because different
experimental methods have different levels of accuracy, and
experimental circumstancesse.g., temperature, purity, etcd
could affect measured results greatly, experimentally rescru-
tinizing B is needed to clarify the contradiction with theory.

Electronic band structures were calculated at zero pres-
sure, and it can be seen in Fig. 2 that all these nitrides and
carbides inB1 structure are metals, since there is a direct
band overlap at theX point. At the zone centersG pointd,
there is a finite band gapDEG, except for NbC and TaC.DEG

fFig. 1scdg, the d-band splitting breadth, increases as the
transition-metal goes leftward on the periodic table due to an
upward shift of the metald bands as a result of less filling,12

or goes downward because the presence off electrons pro-
motes metald-band energies. Carbides have smallerDEG

than their nitride counterparts since the carbonp bands have
higher energy than nitrogen.

FIG. 1. The theoreticalsad lattice constantsa0,
sbd bulk moduli B, andscd zone-center band gap
DEG for selected transition-metal nitrides and car-
bides withB1 structure. Filled symbols denote ni-
trides, and open symbols refer to carbides.

FIG. 2. sColor onlined The
electronic band structures of se-
lected transition-metal nitrides
and carbides withB1 structure.
The red sdark grayd curves are
band structures of NbN and NbC
under a finite shear strainse12

=e21=0.1d.
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Elastic constants were computed in the Voigt notation, in
which the Greek subscripts ofCmn run from 1 to 6. Crystals
in cubic structure have only three independent elastic con-
stants, namelyC11, C12, andC44, and the bulk modulus is

B = 1
3sC11 + 2C12d. s6d

One can apply the following strains,

etetr =
1

31− d 0 0

0 − d 0

0 0 2d
2, eorth = 10 d 0

d 0 0

0 0 d22 ,

to distort the lattice vectors,R8=s1+edR. The resulting
changes of energy densitysU=Eel/Vd are associated with
elastic constants,

Utetr =
1
3sC11 − C12dd2 + Osd3d, s7d

Uorth = 2C44d
2 + Osd4d, s8d

respectively.C11 andC12 can be obtained from Eqs.s6d and
s7d, and C44 from Eq. s8d. We denote this finite strain ap-
proach based on total energy as “theory 1.” Another way is to
compute the stress tensor elements for selected strains. For
C11 andC12 we applied a strain tensor withe11=d szero for
other elementsd, andC11=s11/d andC12=s22/d. For C44 the
applied strain wase12=e21=d, and C44=s12/2d. This is
called “theory 2.” We usedd= ±0.002, ±0.004. The third
method stheory 3d is the DFPT of LR of strain
perturbation.4,5 For comparison, elastic constants of NbN ob-
tained from these three methods are shown in Table I, where
B were calculated fromC11 andC12 by Eq.s6d for theories 2
and 3. High level of agreement between the DFPT and the
energystheory 1d or stressstheory 2d was achieved, and simi-
lar agreement was also made for other compounds. It con-
firms the reliability of the LR theory of strain perturbation
for elastic constants of metals.

As summarized in Table II, present DFPT elastic con-
stants are in accordance with experimental results. We point
out that the uncertainty in neutron scattering measurements
of elastic constants could be as high as 10%–15%, and the
experimental data in Table II were measured at room tem-
perature. The elastic stability criteria for a cubic crystal22 at
ambient conditions are

C11 + 2C12 . 0, C44 . 0, and C11 − C12 . 0, s9d

i.e., all the bulkB, shearG=C44, and tetragonal shearG8
=sC11−C12d /2 moduli are positive. Our results satisfy all
three criteria in Eq.s9d, and it follows that these materials in

rocksalt structure are stable, consistent with experiment. In
generalB.G.G8, but for these materials both theory and
experiment hold thatB.G8.G.0, so the shear modulusG
is the main constraint on stability.

The tetragonal shear modulusG8 measures the response
of a crystal under volume conserving tetragonal shear strain,
which involves stretching of metal-N or -C bonds and bend-
ing of metal-metal bonds. Because in these crystalsC11
@C12, andC11 is determined by the nearest-neighbor inter-
action, similar to bulk modulusB, G8 have the same trends
asB, as seen in Fig. 3sad that s1d G8 increases as the metal
goes rightward or downward on the periodic table ands2d
nitrides have biggerG8 than their carbide counterparts.
These trends generally are supported by experiment, and
they are a result of the enhancement ofd-p bonding due to
adding valence electrons or the presence off electrons, as
discussed in previous paragraphs forB. However, farther
right on the periodic tablese.g., Nb→Mod valence electrons
saturate the bonding states and begin to fill the antibonding
states, soB andG8 will go down after reaching a peak.

The shear modulusG sC44d is the most important param-
eter governing indentation hardness. The hardness of a ma-
terial is defined as its resistance to another material penetrat-
ing its surface, and it is determined by the mobility of
dislocations. In covalent hard materials, the bond-breaking

TABLE I. The calculated bulk moduli and elastic constants
sGPad of NbN in B1 structure. Three different approaches were
used. See text for the meaning of theory 1, 2, and 3.

Method B C11 C12 C44

theory 1 353.6 742.6 159.1 76.4

theory 2 353.6 739.4 160.8 75.5

theory 3 353.7 738.9 161.1 74.8

TABLE II. The elastic constantssGPad of selected transition-
metal nitrides and carbides withB1 structure. Here theoretical re-
sults were obtained from the DFPT, and experimental data are in
parentheses.

System C11 C12 C44

ZrN 616 s471ad 117 s88ad 130 s138ad
ZrC 522 s470bd 110 s100bd 160 s160bd
NbN 739 s608ad 161 s134ad 75 s117ad
NbC 667s620bd 163 s200bd 161 s150bd
HfN 694 s679ad 112 s119ad 135 s150ad
HfC 574 s500bd 107 s114cd 180 s180bd
TaN 783 167 20

TaC 740s550bd 165 s150bd 176 s190bd
aNeutron scattering measurements, Ref. 19.
bEstimation from phonon dispersion curves, Ref. 20.
cUltrasonic measurements, Ref. 21.

FIG. 3. The theoreticalsad tetragonal shear moduliG8=sC11

−C12d /2, andsbd shear moduliG=C44 with respect to number of
valence electrons per unit cellsZVd. The solid curve insbd is ob-
tained by quadratic fitting to average shear moduli at eachZV.
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energy under plastic deformation and the bond-restoring en-
ergy under elastic shear strain are very similar, so that one of
the determining factors of hardness is the response of cova-
lent bonds to shear strain.11 We classified these materials
according to their number of valence electrons per unit cell
sZVd in Fig. 3sbd, which shows thatG is intimately related to
ZV. At ZV=8 and 9, these crystals have largeG, but a modest
decrease occurs whenZV rises from 8 to 9. Further increasing
ZV to 10 significantly lowersG. To explain this fascinating
phenomenon, we investigated electronic band structures un-
der finite shear strain. As an example, in Fig. 2 the band
structuresfred sdark grayd dotted curvesg of NbN and ZrC
under a strain ofe12=e21=0.1 are displayed against zero-
strain curves. Under shear strain,p-d hybridized orbitals split
at G point. The energy of the fourth valence band increases
dramatically fred sdark grayd thick lines in Fig. 2g in the
L-G-K section, and the energy of the fifth band decreases.
Strain e4 involves shearing metal-N or -C bonds, and the
direction-sensitive bonding character results in opposite
movements of these two bands. ForZV=8 ssee band struc-
tures of ZrC and HfC in Fig. 2d, along the L-G-K line, the
fourth valence band is nearly fully occupied while the fifth
band is empty, so a largeG is expected. On the other hand, at
ZV=9 sNbC, TaC, ZrN, and HfNd, valence electrons begin to
fill the fifth band, which leads to a negative contribution to
G. However, because the occupation on the fifth band for
NbC and TaC is tiny,G’s of NbC and TaC are very close to
those of ZrC and HfC, respectively. But ZrN and HfN have
more electrons filling the fifth valence band aroundG point
than do NbC and TaC, soG’s of ZrN and HfN are noticeably
smaller than those of ZrC and HfC, respectively. A steep
decline ofG occurs forZV=10 sNbN and TaNd because of
substantial filling on the fifth valence band. Note that TaN
has the largestB andG8 among these materials, but itsG is
the smallest and, interestingly, TaC has large values of allB,
G8 andG.

We fitted three averageG points to a simple quadratic
form and extrapolated the fitted curve toZV=7 and 11fFig.
3sbdg. This fitted curve predicts aG<105 GPa atZV=7 and
very close to the actual calculatedG=114 GPa for YC. YC
has smallerG than ZrC due to its half filling of the fourth
valence band. Our theory predicts a negativeG at ZV=11,
and indeed we computedC44=−67 GPa for MoN. Thus
MoN is unstable in rocksalt structure because extra electrons
fill to the antibonding states, and the energy gain from the

fourth band is less than the energy loss from the fifth band
under shear strain. Previous first-principles calculations9

drew the same conclusion. We note that the peak of the fitted
curve in Fig. 3sbd is roughly atZV=8.3, which corresponds to
full occupation of the fourth valence band without filling on
the fifth band, and an optimumG is expected. NonintegerZV
can be realized by transition-metal carbonitrides such as
ZrCxN1−x or di-transition-metal carbides such as ZrxNb1−xC.
Our estimation ofZV<8.3 for maximumG agrees surpris-
ingly well with experiment6,23,24of ZV=8.4 and theab initio
virtual crystal method11 of ZV in a range of 8.3–8.5. Since
both TaC and HfC have largeG, we propose that HfxTa1−xC
with x<0.3 has the largest shear modulus among these
transition-metal carbonitrides or di-transition-metal carbides
in B1 structure. ZrxNb1−xC and TixV1−xC should have com-
parableG values to HfxTa1−xC, but they have advantages of
much less weight.

IV. SUMMARY

We have carried out first-principles calculations of struc-
tural and elastic properties of selected transition-metal ni-
trides and carbides. We computed elastic constants of metals
using the density-functional perturbation theory, and our re-
sults proved the accuracy of the metric tensor approach5 of
the linear response theory of strain perturbation. It has been
demonstrated that these crystals have similar trends for bulk
B and tetragonal shearG8 moduli, but different trends for
shear moduliG. B andG8 are associated with strains essen-
tially keeping the crystal symmetry, and all valence bands
respond uniformly by moving up or moving down. Shear
strain e4 lowers the crystal symmetry significantly, and it
causesp-d orbitals splitting at zone-center and it has oppo-
site effects on the fourth and fifth valence bands. Such a
systematic study can help clarify the ambiguity rising from
different experimental methods, and predict new materials
with better properties.
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