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The lattice-coupled antiferromagnetic spin model is analyzed for a number of frustrated lattices: triangular,
Kagomé, and pyrochlore. We show, within the mean-field theory, that the classical ground state is free of lattice
deformation in the triangular, Kagomé, and the tetrahedron-based, q=0, Eg phonon mode of the pyrochlore
lattice. The q=0, Eu phonon mode of pyrochlore is shown to have an energy gain of −2�2 per spin over the
undistorted ground state, where � is the spin-lattice interaction strength. Motivated by the picture of the
hexagon spin cluster proposed in the recent experiment on ZnCr2O4 �S. H. Lee et al., Nature �London� 418,
856 �2002��, we also analyze the hexagon-based distortion within our model. Hexagon distortions give rise to
mutually orthogonal arrangement of spins for nearby hexagons, and has an energy gain of −�2 /2 per spin. A
general criterion for the lattice instability in the spin-lattice model is discussed.

DOI: 10.1103/PhysRevB.71.212406 PACS number�s�: 75.10.Hk, 75.10.Jm

Understanding the nature of the ground states, and the
phase transitions between various possible phases, of an in-
sulating antiferromagnet is an interesting and a lively sub-
ject. The fundamental starting point is the Heisenberg Hamil-
tonian

H = �
�ij�

JijSi · Sj �Jij � 0� �1�

defined for an appropriate set of bonds �ij�. Recently, the
importance of a lattice distortion in relieving frustrations
which are inherent in certain lattices has attracted a lot of
attention.1,2 Noting that the exchange energy Jij should de-
pend generically on the separation of orbitals, one can gen-
eralize the exchange constant Jij as

Jij = J��i + ui − j − uj�� 	 J0 − J1êji · �uj − ui� , �2�

where êji= �j− i� / �j− i� is the unit vector connecting the equi-
librium ionic sites, i and j, and J0 and J1 are positive con-
stants. Displacements of each site are denoted ui and uj, re-
spectively. Existing experimental data suggests that Jij falls
off as 6th–14th power of the separation.3

For an Einstein, or optical, phonon mode, and ignoring
the kinetic energy of the displacement, we arrive at the
lattice-coupled spin model4

H = �
�ij�

�J0 − J1êji · �uj − ui��Si · Sj +
K

2 �
i

ui
2. �3�

The purpose of this paper is to analyze the ground state of
the model Hamiltonian, Eq. �3�, in the classical limit S→�,
for a number of frustrated lattices: triangular, Kagomé, and
pyrochlore.5 Although a similar spin-lattice coupled model
has been analyzed by a number of authors for the pyrochlore
structure, much less attention has been devoted to the study
of the two-dimensional frustrated lattices. We show, by a
general argument, that local spin order �to be defined more
precisely later� inherent in the two-dimensional cases makes
the spin-lattice coupling ineffective in producing any struc-

tural changes. Then, we turn our attention to the much-
studied pyrochlore case. We emphasize that the difference
for the pyrochlore structure is the absence of local spin order.
Previous works have assumed that all the nonoverlapping
tetrahedra in the pyrochlore lattice undergo the same struc-
tural change �q=0 mode�. Motivated by the remarkable ex-
periment in Ref. 6, we consider a different type of structural
deformation based on hexagon units. Ground state energies
for both types of distortions are calculated based on our mi-
croscopic Hamiltonian. Below, we present the details of our
work.

By rescaling the displacements, ui→ui /
K, in Eq. �3�, J1
is rescaled to J1 /
K��, while the overall energy scale is
fixed by J0, which is set to one. The reduced Hamiltonian has
the form

H = �
�ij�

Si · Sj − ��
i

ui · f i +
1

2�
i

ui
2, �4�

with f i=� j�iêijSi ·Sj. We indicate all the sites j exchange
coupled to i by the symbol j� i. The nearest-neighbor ex-
change interaction is assumed throughout the paper. We also
scale the spin magnitude S to be one. Minimizing the energy
with respect to ui gives the condition relating the lattice po-
sition with the spin averages

ui/� = �f i� = �
j�i

êij�Si · Sj� . �5�

The meaning of this equation is intuitively clear. Lattice po-
sitions move in such a way that bonds with a large exchange
coupling ��Si ·Sj�� shrink while the less tightly coupled bonds
have a longer bond length. The right-hand side �rhs� of Eq.
�5� is the sum over all nearest-neighbor magnetoelastic
forces acting on site i, with the force given in proportion to
the local spin-spin correlation �Si ·Sj�.

The average �Si ·Sj� breaks up into a product of averages
�Si� · �Sj� within the mean-field theory. We have carried out a
mean-field analysis of the classical energy functional, Eq.
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�4�, and found that, despite the presence of spin-lattice cou-
pling, mean-field solution is characterized by a zero displace-
ment, ui=0, for both triangular and Kagomé lattices.

Classical antiferromagnet on triangular as well as
Kagomé lattices are characterized by a 120° angle between a
pair of adjacent spins at the mean-field level. The difference
in the ground-state degeneracy for the two lattices does not
play a role here, because Eq. �5� depends solely on the spin-
spin correlation �Si ·Sj� for the nearest-neighbor pairs, which
in both lattices are − 1

2 . Therefore, ui�� j�iêij =0. Employing
the acoustic phonon model, �K /2���ij��ui−uj�2, does not alter
the conclusion. The local rotational symmetry of the �Si ·Sj�
in these lattices removes the possible linear gain in the ex-
change energy from the distortion. As we shall see now, this
symmetry condition is violated for the pyrochlore lattice and
there is a spontaneous displacement from spin-lattice cou-
pling.

The product �Si ·Sj�= �Si� · �Sj� can no longer be decom-
posed into a product of averages if, for example, there is a
valence bond across the �ij� bond. There we have �Si ·Sj�
�0 without having any magnetic order. Valence bond solid
order may condense for certain values of spin S.7 The sym-
metry argument used to detect the local deformation of lat-
tice holds for the valence bond-ordered case, because the rhs
of Eq. �5� can be a measure of either the magnetic order, or
the valence-bond order without the concomitant magnetic
order.

Ground state manifold of classical spins on the pyrochlore
lattice is defined by the condition

�
i��

Si = 0, �6�

where the basic building block � is a tetrahedron, for all the
tetrahedra forming the lattice. The requirement is not suffi-
cient to determine �Si ·Sj� uniquely for nearest-neighbor sites.
The local spin symmetry we discussed in the context of two-
dimensional lattices is generally lacking for the ground states
of pyrochlore spins. Within the manifold of spin states satis-
fying Eq. �6�, the classical energy is given by

E = E0 − ��
i

ui · �f i� +
1

2�
i

ui
2 = E0 −

1

2�
i

ui
2, �7�

where E0 is the energy without the spin-lattice coupling.
Mean-field condition ui=��f i� is used to arrive at the final
expression.

For an isolated tetrahedron, interaction energy
−��2 /2��i f i

2 is minimized for a collinear arrangement of
spins, with two pairs of �↑↓� spins on opposite edges of the
tetrahedron. There is a threefold degeneracy, not counting the
spin reversal, corresponding to different ways to arrange the
two pairs over the tetrahedron. Accompanying structural dis-
tortion is tetragonal.

Generalization to the network of tetrahedra which forms
the pyrochlore lattice was carried out by Tschernyshyov,
Moessner, and Sondhi �TMS�,2 assuming all the nonoverlap-
ping tetrahedra undergo the same distortion �q=0 phonons�.
Even within the q=0 mode, spins can be arranged in several

different ways. Spin arrangements that are repeated over all
the nonoverlapping tetrahedra �Eg phonon in Ref. 2� give
ui=0 according to Eq. �5�. Energy per site for the undistorted
pyrochlore lattice is E0=−1. For the Eu phonon mode, Eq.
�5� gives �ui�=2�, and the energy per site −1−2�2 according
to Eq. �7�. The difference between the two modes is that for
the Eg phonon, spins on opposite nearest neighbors of site i
are always the same, leading to the cancellation of magneto-
elastic forces. In the Eu case, two ferromagnetic bonds are
joined by two antiferromagnetic bonds on the other side of i
for a net displacement, while the remaining two antiferro-
magnetic bonds cancel out.

It is not a priori clear what kind of spin configurations
within the manifold defined by Eq. �6� will condense once
we relax the q=0 condition. While an unrestricted mean-
field calculation would be desirable, in practice convergence
to a unique ground state appears impossible starting from a
random initial set of spins. Difficulty to find a true ground
state is presumably a consequence of the very complicated
energy landscape, with many competing metastable states,
that is characteristic of highly frustrated lattices.

In this regard, an inspiring observation has been made in
a recent neutron scattering experiment of the pyrochlore
compound ZnCr2O2. Although the low-temperature phase,
below Tc=12.5 K, has the tetragonal structure with coplanar
spins,8 the paramagnetic, cubic phase appears to be charac-
terized by hexagonal clusters of antiferromagnetically corre-
lated spins. The resulting block spins are christened “spin-
loop directors,” or directors for short, in Ref. 6. While this
picture is extraordinary no quantitative justification for the
formation, and the stability, of such a hexagonal spin cluster
appears to exist to date. We speculate that it is the spin-lattice
coupling that aids the formation of hexagon clusters. To give
support of such a claim, we ask whether the hexagon-based
distortion is a viable, metastable solution of Eq. �5�, and if
so, to compare the energy to that of the tetrahedron-based
q=0 mode.

Pyrochlore lattice is built up of four different types of
nonoverlapping hexagons, depending on the orientation of
the face of each hexagon.6 Each hexagon type lies in one of
the four Kagomé planes that are buried inside the pyrochlore.
For a given Kagomé plane, the nonoverlapping hexagons are
located as in Fig. 1. Each site in the pyrochlore lattice be-
longs to one, and only one such hexagon. The deformation

FIG. 1. �Color online� Nonoverlapping hexagons that span the
pyrochlore lattice, shown in bold black and red for two adjacent
Kagomé planes. Pyrochlore lattice has four types of Kagomé plane
stacks intersecting one another at the angle of the four faces of a
tetrahedron.
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mode we consider assumes that each nonoverlapping hexa-
gon uniformly shrinks in size while the hexagon-hexagon
distances remain unchanged.

First, a single hexagonal antiferromagnetic chain coupled
to the lattice as in Eq. �3� has a mean-field ground state given
by staggered spins, Si

0= ± ẑ, and the corresponding ui all
pointing inward to the center of the hexagon �uniform con-
traction� with �ui�=�. The energy of the hexagon per site is
−1−�2 /2. The orientation of the antiferromagnetic spins de-
fines the spin-loop director of Ref. 6.

Each adjacent pair of spins in the hexagon forms one edge
of a tetrahedron, with the other edge associated with a neigh-
boring hexagon �Fig. 2�. Each hexagon is a neighbor to six
other hexagons. We are assuming that each hexagon con-
tracts towards its center of mass. This fixes the direction of
all ui’s in the lattice, and the only solution of Eq. �5� consis-
tent with this requirement on ui is when spins of the nearby
hexagons are mutually orthogonal as shown in Fig. 2. This
means that in the sum, � j�iêij�Si ·Sj�, four pairs give zero
because of orthogonality, and the remaining two which are
antiferromagnetically coupled give −� j�i� êij which points to
the center of a given hexagon. So, our hexagon-based distor-
tion will be a consistent solution of Eq. �5� provided that we
can assign one of the three mutually orthogonal director

orientations—X, Y, and Z—for all the hexagons, with the
nearby hexagons always having orthogonal directors.

To demonstrate that this is indeed possible, we first build
a “superlattice” of hexagons, treating the center of each
hexagon as a lattice site of this superstructure. Figure 3�a�
shows hexagons of a given orientational type as a colored
dot, with the rods connecting the adjacent hexagons in the
real-space pyrochlore lattice. The unit cell in Fig. 3�a� con-
sists of 2�2�2 hexagons, with two of each type in a unit
cell. Each hexagon is surrounded by six nearest-neighbor
hexagons as expected.

Next, we demonstrate that the hexagon-based lattice of
Fig. 3�a� can be colored using only three colors, X, Y, Z, in
such a way that no two points connected by the rod carry the
same color. In Fig. 3�b� we show how this can be achieved,
using the unit cell consisting of 2�2�6=24 points. The
energy per site for this arrangement of spins is −1−�2 /2,
same as that of a single contracted hexagon, because the
interhexagon exchange energy is zero from orthogonality of
spins. Each site of the pyrochlore lattice has two antiferro-
magnetically coupled neighbors, and the other four with or-
thogonal spins. The energy is lower than that of the undis-
torted lattice, but higher than the Eu phonon mode which has
an energy −1−2�2. The factor of four difference stems from
the amount of displacement in the hexagon-contraction sce-
nario which is �ui�=�, half that of the Eu phonon. It is pos-
sible, however, that addition of higher-order spin interactions
or application of external perturbation such as magnetic field
can change the relative energetics of the distortion modes. At
any rate, we have proved the existence of a metastable con-

FIG. 2. �Color online� Local spin configuration of the hexagon-
distorted pyrochlore lattice. Short �long� bonds are denoted by col-
ored �dashed� lines after the lattice distortion. Each short bond be-
longs to one and only one hexagon cluster. Spins are collinear
within a hexagon and orthogonal for nearby hexagons. Different
colors represent orientation of the hexagon.

FIG. 3. �Color online�; �a� Each colored dot represents the
center-of-mass of a hexagon of given type embedded inside the
pyrochlore. Four types of hexagons cover the entire lattice. Rods
connect the nearest-neighbor hexagons. �b� Each hexagon repre-
sented as a dot is colored according to the director orientation,
which is chosen from one of three orthogonal directions indicated
by green, yellow, and red.

FIG. 4. �Color online� Distortion of an iso-
lated tetrahedron consistent with hexagon
contraction.
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figuration in the pyrochlore lattice with a very different spin-
lattice structure than previously proposed, which appears to
account for the experimental indication of Ref. 6.

For a single tetrahedron, there are six vibrational modes:
singlet A1, a doublet E, and a triplet T2

2. When the pyro-
chlore lattice assumes the hexagonal distortion we discuss,
the resulting distortion for an isolated tetrhedron is not te-
tragonal �E� as discussed in TMS, but is a linear combination
of a doublet E and a triplet T2 �Fig. 4�.

A few words can be said about the effects of valence-bond
order on the lattice distortion. For example, S=1/2 spins can
form at most only one singlet bond for each site. In this case,
a nonzero displacement is guaranteed by Eq. �5�. A similar
situation occurs for half-odd integer spins, for which odd
number of bonds emanate from a given site. The interplay
between valence bond order formation and spin-lattice cou-
pling is an exciting issue, to which we shall return in the
future. The lowering of symmetry in the bond ordered, but
magnetically disordered phase and the concomitant lattice
distortion was also pointed out by TMS.

In conclusion, we analyzed a model of the lattice-coupled
antiferromagnetic spins on a variety of frustrated lattices. We
derived Eq. �5� relating the local lattice displacement with
the local spin-spin correlation �SiSj�. Within the mean-field
theory of the magnetic order, a number of situations includ-
ing triangular, Kagomé, and q=0, Eg phonon mode in the
pyrochlore lattice were shown to be free of lattice deforma-
tion, due to the symmetric cancellation of magnetoelastic
forces. The q=0, Eu phonon mode has an energy of −1
−2�2 per spin. Inspired by the picture of hexagonal spin
cluster proposed for the paramagnetic ZnCrO4, we consid-
ered the hexagon contraction of the pyrochlore lattice. The
hexagon clustering is shown to have an energy −1−�2 /2 per
site.
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