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The basic dynamic equations of the electrostatic force microscope are derived, in the case of a constant
potential applied to a spherical tip above a conducting plane sample. The microscope tip moves in the elec-
trostatic field, providing a force supposed to be inversely proportional to the distance. The linear and nonlinear
approximations are treated to obtain the amplitude and phase of the vibration, at a fixed frequency. Optimal
experiment conditions, i.e., distance, frequency, and voltage, which give the best sensitivity and lateral reso-
lution, are discussed. The stability of the oscillations during the scans is dependent on the experiment condi-
tions. In addition to the tapping regime, we show that two stable noncontact regimes may exist in some
conditions. Only one stable noncontact oscillation occurs at a working frequency equal or superior to the
natural frequency of the system. When a distance equal to the free amplitude is selected, the phase shift due to
the potential is linear in function of the applied potentialsinstead of quadratic as observed at larger distancesd
and a good sensitivity to the potential of the sample is obtained. The theoretical lateral resolution is derived in
the linear and nonlinear approximations, and is shown to depend strongly on the mean tip-sample distance. In
the examples shown, the best resolution values are reached at a very close distance, with values much lower
than the tip apex radius.
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I. INTRODUCTION

Noncontact atomic force microscopysNC-AFMd or dy-
namic force microscopysDFMd has proven to be an effective
method for imaging semiconductor and insulator surfaces up
to atomic resolution.1,2 This result was made possible by vi-
brating the tip very close to the surface, where short-range
interactions are predominant, for instance chemical bonding
force3–6 or electrostatic forces on ionic crystals.7–9

When long-range electrostatic forces are used to measure
the surface potential and charges, for example for microelec-
tronic device studies,10–14 one speaks of electrostatic force
microscopysEFMd or Kelvin force microscopysKFMd. In
these setups, the tip of the microscope is vibrated at a mean
distance of several nanometers. At this distance, the atomic
nature of the sample and the tip is smoothed and the media
can be considered as continuous. Consequently, an atomic
resolution is not expected.

The sensitivity of the experiments and its lateral resolu-
tion are directly related to the characteristics of the vibration,
namely the driving frequency, the amplitude, the mean dis-
tance and the tip voltage, which can be chosen freely by the
experimentalist. The aim of the present article is to provide
the basic clues to obtain the best sensitivity and resolution in
electrostatic force microscopy.

The first evident assumption is that the tip should be vi-
brated as close as possible to the sample, in order to reduce
the extension of the interaction. In this case, the electrostatic
force is strongly dependent on the tip sample distance, and
Fsdd absolutely nonlinear. The basic equation for the motion
of a tip in a nonlinear field of force has been widely treated
in literature, but mostly applied to Van der Waals forces,

decaying in 1/d2,15–19 or to chemical short range
interaction.20,21 Electrostatic force, decreasing in 1/d, as for
sphere-plane geometry, has been less studied.22–24 Some-
times, a sinusoidal voltage is appliedsas in Kelvin force
microscopyd; this corresponds to a more complex experi-
ment, where the dynamics of the transient phase should be
considered.

The sensitivity and lateral resolution for an electrostatic
force decreasing in 1/d is the only case treated below, be-
cause it is considered as an ideal case. In addition, we sup-
posed a constant applied voltage and conducting tip and
sample to simplify the problem. The results concern only
microscopes driven at constant frequencysamplitude vari-
able during the scansd, and not systems with frequency
modulation.

II. BASIC DYNAMIC EQUATION

In the noncontact mode, the height of the tip above the
sample surface, notedHstd, is always positive. Negative val-
ues indicate that contact occurs,sleading to intermittent con-
tact or tapping moded. The penetration of the tip into the
sample would induce elastic repulsive forces, which are not
considered here.17

The mechanical part of the tip-cantilever system is ap-
proximated here by a mass-spring system. The electrostatic
force applies to a punctual mass fastened to a spring without
mass. It has been verified that this approximation is valid for
low frequency vibrations, close to the fundamental frequency
of the cantilever. In this case, the higher harmonic modes of
the beam25,26 are ignored.
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The positionHstd of the mass obeys the following differ-
ential equation:

mH9std + cH8std + k„Hstd − h… = Felecstd + Fexcstd, s1d

whereFelec is the sum of the electrostatic forces applied to
the tip+cantilever system,h the position of equilibrium in
the absence of any force, andFexcstd is the exciting force.
Fexcstd is supposed sinusoidal, with a pulsationvm, close to
the resonance:

Fexcstd = F cossvmt + p/2d. s18d

The +p /2 term allows the phase ofHstd to be zero at reso-
nance, far from the sample.

The electrostatic force between a spherical tipsapex ra-
dius Rd and a plane samplesboth conductingd can be calcu-
lated. In the case of small distancessH,R/10d the
asymptotic expression is

Felecstd = −
p«0RV2

Hstd
. s2d

At larger distances, the force on the conical part of the tip
and on the cantilever are not negligible.27,28As the complete
force expression is too complicated for the following treat-
ments, we choose to consider only an additional constant
term “a,” to represent the contribution of cantilever and the
cone:

Felecstd = − Fp«0R

Hstd
+ aGV2. s3d

For distances greater thanR/2, the approximation is prob-
ably less satisfying, as discussed later.

With an excitation at pulsationvm, and a large quality
factor Q for the systemsfor instanceQ=100 for a micro-
scope operating in aird the response of the system is expected
to be nearly sinusoidal:

Hstd = h + zstd = h + z0 + z1 cossvmt + wd. s4d

z0 is the constant deflection of the cantilever due to the mean
attractive force, andz1 the vibration amplitude.

Reporting the above expressions in the differential equa-
tion, and introducing the free pulsation of the systemv0, the
effective massm=k/v0

2, and the damping factorc=k/
sv0Qd gives

z9std
v0

2 +
z8std
v0Q

+ zstd =
Fexcstd

k
− F p«0R

h + zstd
+ aGV 2

k
. s5d

As it is more convenient to work with reduced values
without dimension, we follow below the notation of Ref. 17
and divide the displacements by the maximum vibration am-
plitude, in the absence of electrostatic force, atvm=v0,
which is Z=QF/k. We introduce the reduced flexion of the
cantilevera0=z0/Z, the reduced amplitudea1=z1/Z, the re-
duced distanced=h/Z, and the reduced pulsationu
=vm/v0. Expressions5d becomes

a9std
v0

2 +
a8std
v0Q

+ astd

=
1

Q
cosSvmt +

p

2
D −

p«0RV2

kZ 2fd + astdg
−

aV 2

kZ
s6d

with astd=zstd /Z=a0+a1 cossvmt+wd.
This expression can be resolved, with three degrees of

precision, at the first orderslinear approximationd, at the sec-
ond orderscalled nonlinear approximationd, and numerically
for full precision results. The three cases are developed be-
low.

A. Linear approximation

The most simple approximation consists in taking the first
order polynomial development of the force term 1/sd+ad
=1/d−a/d2, approximation which is valid if the flexion is
much smaller than the distancea!d. Developing expression
s6d and usingu=vm/v0 gives

s1 − u2da1 cossvmt + wd −
u

Q
a1 sinsvmt + wd + a0

=
1

Q
cosSvmt +

p

2
D −

p«0RV2

kZ 2d2 fd − a0 − a1 cossvmt + wdg

−
aV 2

kZ
. s7d

This equation can be separated into a constant expression,
giving a0,

a0 = −
p«0RV2

kZ2

d − a0

d2 −
aV2

kZ
s8d

and a sinusoidal expression, best written in the complex
Fresnel notation:

S1 − u2 +
iu

Q
Dã1 =

i

Q
+

p«0RV2

kZ 2d2 ã1. s9d

Using the gradient expression

g =
p«0RV2

Z 2d2 , s10d

the complex amplitude is deduced:

ã1 =
1

u − iQs1 − u2 − g/kd
s11d

or in real notation

a1 =
1

Îu2 + Q2s1 − u2 − g/kd2
s12d

and

w = arctanFQs1 − u2 − g/kd
u

G s128d

We note also that a relation independent of the electrostatic
gradient connects the amplitude and the phase:
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cosswd = ua1. s13d

The gradient of the electrostatic force shifts the resonance
of the system towards lower frequencies. The shift,Du
=−g/2k, is proportional toV 2 and can be used to deduce the
sample potential. The above approximation is the classic
theory for electrostatic force microscopy, and Kelvin micros-
copy.

B. Nonlinear approximation

When the amplitude of the vibration is in the same order
of magnitude as the distance, the precedent linear approxi-
mation is no longer valid. A better approximation is given
below, supposing only thata,d, to insure a true noncontact
mode.

The base of the calculus is to develop the electrostatic
force in Fourier series. The electrostatic force in Eq.s6d is
developed over the first Fourier harmonics:

1

d + a1 cossvmt + wd
= t0 + t1 cossvmt + wd + ¯ . s14d

Thea0 term has been neglected here, as much smaller thand.
The t0 and t1 terms are easily obtained by the definite inte-
grals:

t0 =
1

T
E

0

T dt

d + a1 cossvmtd
=

1

Îd2 − a1
2
, s15d

t1 =
2

T
E

0

T cossvmtddt

d + a1 cossvmtd
= −

2

a1
S d

Îd2 − a1
2

− 1D . s16d

Reporting these expressions in Eq.s6d gives

s1 − u2da1 cossvmt + wd −
u

Q
a1 sinsvmt + wd + a0

=
1

Q
sinSvmt +

p

2
D −

p«0RV2

kZ 2 ft0 + t1 cossvmt + wdg

−
aV 2

kZ
s17d

from which can be deduced the constant term

a0 = −
p«0RV2

kZ 2 t0 −
aV 2

kZ
s18d

and a sinusoidal term as in the preceding section:

S1 − u2 +
iu

Q
Dã1 =

i

Q
−

p«0RV2

Z 2 t1
ã1

a1
. s19d

Introducing an effective gradient

g8 = −
p«0RV2kt1

Z 2a1
=

p«0RV2

Z 2

2

a1
2S d

Îd2 − a1
2

− 1D s20d

one obtains expressions for the amplitude and phase:

a1 =
1

Îu2 + Q2s1 − u2 − g8/kd2
s21d

and

w = arctanFQs1 − u2 − g8/kd
u

G . s218d

The amplitude and the phase are still connected by the rela-
tion

cosswd = ua1. s22d

Finally, the approximation presented above appears very
similar to the linear approximation, the only difference con-
sisting in different expressions for the gradientg fEq. s10d or
s20dg. Equations20d tends towards Eq.s10d whena is much
smaller thand, as can be verified in the following series:

g8 =
p«0RV2

Z 2

2

a1
2S d

Îd2 − a1
2

− 1D
=

p«0RV2

Z 2d2 S1 +
3

4

a1
2

d2 +
5

8

a1
4

d4 + ¯ D . s23d

The above series shows that the linear approximation can be
used up toa=d/3, with an error less than 10% on the gra-
dient.

As g8 depends ona1, the functiona1sdd cannot be ex-
tracted explicitly, as in Eq.s12d. By reportings20d in s19d
and performing simple algebra, we obtain

a1Qg8

k
=

2p«0QRV2

kZ 2a1
S d

Îd2 − a1
2

− 1D
= a1Qs1 − u2d ± Î1 − a1

2u2, s24d

from whered can be extracted versusa1:

d = a1
p + 1

Îpsp + 2d

with

p =
kZ 2a1

2p«0QRV2fa1Qs1 − u2d ± Î1 − a1
2u2g. s25d

This expression describes completely the vibration of the
system, and is studied in detail in the next section.

Some authors used the principle of least action and the
Lagrangian of the system, to derive the oscillation equation
in the case of Van der Waals force.16,17 We verified that this
method is also convenient for an electrostatic field of force,
and gives exactly the same integrals and the same final ex-
pressions24d ssee details in the Appendixd. This seems natu-
ral, as the two methods are based on the same hypothesis,
namely the sinusoidal nature of the oscillation and the ne-
glecting of static flexurea0 in Eq. s14d.

Evidently the above methods are only approximations of
the true oscillation, because they neglected the second order
termst2 in the Fourier development.

Whena1 approachesd, i.e., when the tip comes very close
to the sample, terms in 2vmt, 3vmt , . . . can nolonger be
neglected in Eq.s14d and the calculus becomes less precise.

C. Exact result and discussion

The exact solution of the dynamic equations6d can be
computed by a fourth order Runge-Kutta procedure, without
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any of the simplification introduced abovesi.e., without ne-
glecting the static flexurea0, and the higher order termst2,
t3, . . . in theFourier seriesd. At the initial timest=0d the mass
is released at the distanced, and then the oscillations are
progressively established, up to a state of equilibrium. When
the permanent regime is reached, the mean flexurea0 and the
amplitudesa1, a2 of the harmonics and the phases are com-
puted, by a Fourier development of theastd values over one
period.

WhereasQ oscillations are considered by some authors29

as sufficient to obtain the permanent regime, we have pre-
ferred to wait 5Q oscillations in order to obtain the final
amplitudes more accurately.

The oscillation amplitude is reported in Fig. 1 in function
of the distanced, for the two approximate modelsslinear as
dots, nonlinear as continuous linesd. The exact curves ob-
tained numerically are superimposed over the nonlinear
curve to 10−3, for all cases studied, and cannot be separated
from the nonlinear approximation at the scale of the figure.
Only at very small distancessd,0.01d, does a sudden
jump-in appear in the exact curve, not present in the analyti-
cal curves, because of the neglected static flexurea0.

The differences between linear and nonlinear curves are
very simple to understand. The linear approximation gives
too large amplitudes, even larger than the distance in the case
u=0.99, which is absurd in noncontact mode. The nonlinear
approximation seems to bend the curves in order to maintain
a,d. The two models tend toward a common curve at large
distances; they are pretty close together ford.2.

The curves in Fig. 1 have been calculated for a voltage of
1 V or 4 V, and forR=20 nm, which corresponds to a clas-
sic commercial tip radius. These parameters have been cho-
sen to display in Fig. 1 typical behaviors of the system. Vary-
ing the other parameters asR, Z, Q or k will produce similar
curves, because Eq.s25d depends only on the combined
quantity skZ 2d / sQRV2d.

When the distance increases, all curves tend toward a con-
stant, which is the free vibration amplitude of the system,

ainf =
1

Îu2 + Q2s1 − u2d2
, s26d

amplitude at infinite distance. At finite distances, there are
two different behaviors depending on the reduced frequency
valueu.

Caseuù1 sor vmùv0d. As p should be positive in the
radical of expressions25d, and ass1−u2d is negative or null,
then only the sign—can be chosen. There is only one curve
asdd.

Caseu,1 sor vm,v0d. As s1−u2d is now positive, then
the sign1 or 2 can be chosen in expressions25d. There are
two “d” solutions for an amplitude value greater thanainf.

As mentioned in Ref. 19, some parts of these curves cor-
respond to regimes not dynamically stable, namely when the
asdd curves go backwards. On the other hand, when the mi-
croscope feedback is used to maintain a constant amplitude,
only the part of the amplitude curve with a positive slope
corresponds to a stable regulation.

FIG. 1. Amplitude of vibration in function of the distance, for
two voltage valuesV= 1V andV= 4V, for three frequency values
su= f / f0d. The solid curve is the exact value according to expression
s21d; the dotted curve is the linear approximationfexpressions12dg.
The numeric Runge Kutta values are superposed on the nonlinear
curves. The thin straight line indicates thea=d limit. The constants
for the cantilever arek= 1N/m, Q=100, apex radiusR=20 nm,
and free amplitudeZmax=10 nm.
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When two possible distances correspond to the same am-
plitude value, the lower value gives the closest tip sample
distance, and the best sensitivity and resolution. This case
corresponds to the sign1 in Eq. s25d.

The calculated phases are represented in Fig. 2; the non-
linear model and the exact solution appear identical. ForV
=0, the phase tends to values given by Eq.s22d, which are
f=0 for u=1 and ±63° for the two other cases. As for the
amplitude, some parts of the phase curves are not stable, for
example the part of the curve where the phase decreases with
distance, in theu=0.99 case, is not stable.

The results in Fig. 2 are presented for regularly spaced
voltages, which allow us to appreciate the effect of the po-
tential variations. The phase varies more rapidly in the region
close to the angle of the curve, as will be developed in the
next section.

The theoretical results obtained in Figs. 1 and 2 are com-
pared to experimental results in Fig. 3 obtained with a classic
silicon tip sMicromasch Ultrasharp NSC11, covered with
conducting W2Cd. The parameters of the cantileversfree fre-
quency f =59.9 kHz,Q=107, k=4.8 N/md have been inde-
pendently measured. The experimental radiusR=35 nm is
deduced from the fit.

In order to present the curves with correct distance and
amplitude values, the experimental points are recorded with
a sinusoidal low frequencys2 Hzd applied voltage. The si-
multaneous fit of the envelope of the curve with the theoret-
ical curvesV=0 V andV=3 V, permits a correct evaluation
of the free amplitude and of the distance origin. The potential
V is here corrected from the contact potential difference, by
applying an opposite constant potential, as in the Kelvin
probe method. The efficiency of the correction can be ob-
served in Fig. 3 as the successive phase minimumsscorre-
sponding alternatively to +3 V and −3 Vd are both tangent to
the fitted envelope.

Three important points are discussed below.
s1d We observed that the phase and the amplitude curves

could not generally be fitted exactly. Most experiments on
various new tipsshow amplitude and phase increasing to-
wards the free limit more slowly than expectedsin H−2 for
the phased, in the 20–100 nm range. The effect of Van der
Waals forces is negligible in the distance range, and would
produce an opposite effectsphase decreasing in H−3 for a
sphered. A force acting at longer distance is needed, and the
expression for a cone seems to fit the curves better. After
several contactswith the sample, the radius of the apex in-
creases, in the 50 nm range, and the results are better fitted
by a flat tip apex. In sum, experimental curves with the three
following expressions have been observed.

For a conesangleud

Fcone= −

p«0V
2 lnS L

H
D

ln2XtanSq

2
DC

and

FIG. 2. Phase of vibration in function of the distance, for the
voltage valuesV=0, 0.5, 1, 1.5, 2, 2.5, and 3 V, for the three
frequency valuessud. The curves are calculated in the non-linear
approximation. The constants for the cantilever are the same as in
Fig. 1.
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gcone=
p«0V

2

H ln2StanSq

2
DD . s27d

For a spheresradiusRd

Fsphere= − p«0V
2SR

H
D

and

gsphere=
p«0V

2R

H2 . s28d

For a flat surfacesradiusrd

Fflat = −
p«0V

2

2
S r

H
D2

and

gflat =
p«0V

2r2

H3 . s29d

For an intermediary shapesin the Fig. 3 for exampled, the fit
was obtained by the sum of two force expressionssFcone

+Fsphered, indicative of a cone with a spherical apex. The
Fcone and theFspherecontributions are represented separately
in the phase curves. In the 20–50 nm range, the sphere term
is predominant, the two terms are equal at 80 nm, and the
cone term became more important at a larger distance. We
are aware that if nearly all the experimental curves can be
fitted by a sum of the above expressions,30,31 it does not
mean that the exact shape of the tip apex is determined. In
particular the expression for a true cone with a spherical apex
is more complicated than the above sumssee Hudlet28 for an
analytical expression or Belaidi27 for a numerical simula-
tiond.

Finally, it should be considered that the exact shape of the
tip apex is not important in itself, as only theFsdd curve
determines the oscillation behavior, the sensitivity and the
resolution discussed here. Experimentally, the slope of the
phase curvewsdd or of the gradient curvegsdd in log-log plot
is indicative of the major electrostatic contributionsslope −3
for a flat, −2 to a sphere, −1 for a coned. The flat tip slope
s−3d is similar to the slope for the Van der Waals force acting
on a sphere, and produces the same dynamics. The middle
casesslope −2 for an electrostatic force in the sphere-plane
geometryd is the only case analyzed in the following sec-
tions.

s2d Another difficulty in fitting the experimental curves in
Fig. 3, comes from theV=0 curve. With a sinusoidal applied
voltagesamplitude 3 Vd, we are sure that the voltage differ-
ence between the tip and the sample passes regularly by zero,
whatever the eventual contact potential difference between
the two materials. Then, the upper envelope of the experi-
mental curve should correspond to theV=0 sno forced theo-
retical solution: the amplitude is constant at a large distance
sH.30 nmd, and limited by thed=a line at distances below
the free amplitudesH,26 nmd. This simple shapestwo
straight linesd is not observed in Fig. 3, probably due to the
Van der Waals forces or residual charges,30 neglected in the
model, and preponderant when the main electrostatic forces
disappearsfor V=0d. In order to fit better the experimental
curve in Fig. 3, a small amount of Van der Waals force has
then been added to the theoretical values.

s3d The above calculations in noncontact mode do not
include the dissipation process, which arises when the tip
approaches the surface. The dissipation induces a phase shift,
as discussed in Refs. 32–34. The onset of such an effect can
be clearly seen in Fig. 3, where the experimental phase is
higher than calculated at small distances. The same effect is
clearly observed at low amplitude in Ref. 33. We have not
attempted to fit this part of the curve, as the dissipation pro-
cesses are out of the scope of the present article.

FIG. 3. Experimental amplitude and phase in function of dis-
tance, when a sinusoidal voltage is applied to the samplesthe volt-
age amplitude is 3 V and frequency 2 Hzd. The lower envelope is
the theoretical values obtained for acone+sphereshaped tip with a
20° aperture angle, aR=35 nm apex radius and for a 3 V voltage.
The contributions of the sphere alone and of the cone alone are
reported as thin lines. In the caseV=0 V, a small amount of Van
der Waals force has been added to stabilize the noncontact mode.
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III. SENSITIVITY

The sensitivity is defined as the ability of the system to
differentiate two close values for the voltageV. We introduce
the following definition:

Phase sensivity = −
dw

dV
or Amplitude sensivity = −

da1

dV

s30d

the sign-being used to obtain positive values in most cases
snotably foru.1d.

Expression for the sensitivity can be deduced easily from
expressions24d, written as

CV 2

a1
S d

Îd2 − a1
2

− 1D = a1Qs1 − u2d ± Î1 − a1
2u2

with

C =
2p«0QR

kZ2 . s31d

One obtains

da1

dV
=

2CVS d

Îd2 − a1
2

− 1D
a1dCV2

sd2 − a1
2d3/2 − 2a1Qs1 − u2d 7 Î1 − a1

2u2 ±
a1

2u2

Î1 − a1
2u2

.

s32d

The amplitude and the phase being related according to
expressions22d, the amplitude and the phase sensitivity are
related by

da1

dV
=

da1

dw

dw

dV
= −

sinw

u

dw

dV
s33d

Then

dw

dV
=

− u

Î1 − u2a1
2

da1

dw
. s34d

In Fig. 4 the phase sensitivity is reported, calculated theo-
retically from the expressionss32d and s34d.

In the caseuù1, the sensitivity is always positive and
presents a maximum, whose position and value depends on
the reduced frequency “u,” and on the combinedRV2 term.
For low voltagesor radiusd, the values of maximum sensitiv-
ity lie in the 0,d,1 distance range, indicating that working
in the non-linear domain is essential for a good sensitivity

For u,1, positive and negative sensitivities are obtained.
The sensitivity reaches a very high value, for certain dis-
tances. This induces several problems in experiments, as the
electrical contrast becomes very sensitive to the distance, and
may reverse in certain conditions.

IV. STABILITY

The vibration modes found theoretically by the resolution
of the differential equations6d are not necessarily stable.
This instability has two main reasons.

FIG. 4. Sensitivity of the microscope to voltage variations,
sensitivity=−dw /dV. The constants for the cantilever arek
=1 N/m, Q=100, tip apex radiusR=20 nm, and free amplitudeZ
=10 nm.
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First, some solutions correspond to theoretically unstable
movement.15,17 Any disturbance, no matter how small, in-
duces a diverging process, which after a short time converges
toward a different vibration state. This is the case of the
backward part of the superiorasdd curves in Fig. 1.

The second reason occurs in experiments, when several
stable vibrations are possible at one distance. For example,
when d,1 the noncontact vibration mode and the tapping
vibration mode are both stable,35–38 they correspond to at-
tractive or repulsive regimes. Three stable states may then
exit in the case of soft samples.39

Small experimental disturbancesssuch as thermal noise,
sample roughness or a small shock on the systemd may in-
duce the transit from one mode to the other.40,41If this transit
is easier in one sense than in the other, then a mode appears
more stable than the other. Experimentally the system adopts
the most stable mode, even if another is possible theoreti-
cally.

Examples of such behavior are presented in Fig. 5, where
the oscillating amplitude is presented during the transient
phase. For a purely sinusoidal vibration, the position and
velocity at the timet=0 are

Z0 = bResÃeivtdct=0 = ResÃd andV0 = F d

dt
ResÃeivtdG

t=0

= v ImsÃd.

Our representation is then similar to the Poincaré plot used in
Refs. 40 and 41 and enables us to define the basins of attrac-
tion of the different modes. Starting from an initial condition
sdots at the beginning of the curvesd, the amplitude and
phase evolve towards a permanent vibrationfnoncontact or
tapping in the Fig. 5sadg. The complex plane can be divided
into zones where the oscillation evolves towards one or the
other stable mode. In Fig. 5sad, all initial oscillations below
the dotted line converge towards the noncontact mode and all
initial oscillations above the dotted line converge towards the
tapping mode. The basins of attraction are of similar size. As
only initial points inside the noncontact circle have been
tested, the spiral structure of Refs. 40 and 41 is not apparent.

In Fig. 5sbd, the case of 3 stable modes on a stiff sample
is represented. The basin of attraction for the low amplitude
noncontact modesnc1d is much larger than the basin for the
high amplitude noncontact modesnc2d. At this frequency, the
basin for the tapping mode is so reduced that it cannot be
plotted clearly at the scale of the figure. For these experimen-
tal conditions, the tapping mode is absolutely stable but very
sensitive to any disturbance.

All the above modes are totally stable at the end of the
transient time, but can commute from one to the other if a
disturbance occurs. In order to quantify the relative stability
of any mode, we introduce a measure of the stability, defined
as the amount of disturbance needed to pass from one mode
to another. As the disturbance is generally a casual variation
of distanced, the maximum disturbanceDd can be calcu-
lated numerically by applying a sudden jump ofDd and ob-
serving if the system returns to the initial mode or changes
toward another state. In Fig. 5, the stability can be measured
as the horizontal jump needed to translate the mode from a

stable point toward another basin of attraction.
The main results can be observed in Fig. 6. The vertical

scale represents the magnitudeDd of the stability.
For u=1 there are only 2 stable movements, the non-

contact and the tapping mode.

FIG. 5. Evolution of the oscillating amplitudesreal and imagi-
nary partd during the transitory phase. The dashed circle indicates
the contactd=a condition. Points inside the circle correspond to
noncontact oscillations, whereas points outside the circle corre-
spond to intermittent contact oscillations. Depending on the initial
conditionssdotsd, the oscillation tends towards different modes. All
initial conditions within the circle have been tested numerically in
order to define attraction zones. The limit between the zones is
noted as the dotted line. The common experimental conditions are
distanceH=5 nm, voltageV=0.5 V, tip radiusR=20 nm, and re-
duced elastic modulus of tip and sampleE* =66 GPa. Upper dia-
gram: reduced frequencyu=1. Two zones appear: one that leads to
the tapping mode and the other to the noncontact mode. Free am-
plitude Z=10 nm; reduced distanced=H /Z=0.5. Lower diagram:
reduced frequencyu=0.99. The experiment conditions have been
chosen to produce the rare case where three stable modes coexists2
noncontact modes and the tapping moded. Free amplitudeZ
=5.5 nm; reduced distanced=H /Z=0.91.
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For u,1 there are 2 or 3 stable movements, depending on
thed values, one tapping mode and 1 or 2 noncontact modes,
as already apparent in Fig. 1. The stability of the tapping
mode decreases as the distance approaches the free ampli-
tude sd,1d. When d increases slightly above 1, the only
stable mode remaining is the noncontact mode.

For u.1 the noncontact mode is unconditionally stable.
An important result not mentioned in the above references

is the possible existence of 2 stable noncontact modes with a
purely attractive forcesFigs. 5 and 6d, due to the non-
linearity of the force. Adding a repulsive force term leads to
a third stable mode, the tapping mode. We note in Fig. 6, that
for most distancesd, only two stable modes are present,
tapping and noncontact 1 ford,1, or noncontact 1 and non-
contact 2 ford,1. Only in a very small distance interval,
slightly lower than 1, does the possibility of three stable
modes appearfas in Fig. 5sbdg. These three stable modes
could produce, in experimental amplitude-distance curves, a

double jump, not already mentioned in the literature, prob-
ably because of the very small basin of attraction of the third
mode, which is simply missed.

For a free amplitude of 10 nm, a sudden topographic
jump in the order of 1 nm is sufficient to induce a mode
commutations, from noncontact mode to tapping mode and
vice versa. These sudden jumps should be avoided during the
scans, so a very stable mode is recommended. For instance,
in the conditions of Fig. 6, the recommended working dis-
tance isH.10 nm sequivalent tod.1d, to obtain stable
scans.

It is difficult to deduce general rules on the stability of the
different modes, except the following quasievident conclu-
sions.

The noncontact mode is very stable if the amplitude is
much smaller than the distance.

Large voltagesor radiusd enhances the stability of the
noncontact mode.

Null voltage leads to the tapping mode, because the Van
der Waals attractive force is too weak to stabilize the non-
contact mode.

Experimentally, it is recommend to chooseuù1 and a
distance aroundd=1, to be at the lowest distance with un-
conditional noncontact stability.

V. LATERAL RESOLUTION

Lateral resolution is the ability of the system to observe
the surface potential of small objects with acuity. Several
practical definitions for the resolution can be found, accord-
ing to the type of object to be imaged.42,43In microelectronic
applications, objects are often bidimensional, with linear
edges, such as tracks, or flat layers in transversally cut com-
ponents. For this reason we introduce, as a standard sample,
the line of separation of two potentialssV1 andV2d on a flat
surface, as represented in Fig. 7.

Varying the positionX of the tip gives a phase that passes
continuously from the valuesw1 to w2. We defined the reso-
lution as the distanceDX for which the signal varies from the
ratio 1

4 to 3
4 of the maximal variationsw2−w1d, as represented

in Fig. 7sbd snotedDL50 in Ref. 41d.
Calculating the resolution needs an expression for the

electrostatic force derived below. In the limit case where the
tip-sample distanceH is much smaller than the tip radiusR,
the electric field between the tip and the sample can be taken
as vertical, and the force obtained by simple integration of
the electrostatic pressure

Psx,yd =
«0

2

V2

z2 =
«0

2

V2

SH +
x2 + y2

2R
D2 , s35d

over the sample plane, which has a potentialV1 for x,X and
V2 for x.X. The force is expressed as

uFzu =E
−`

+`

dyE
−`

X

P1sx,yddx+E
−`

+`

dyE
X

+`

P2sx,yddx

=
p«0R

2H S1 +
X

ÎX2 + 2RH
DV1

2

+
p«0R

2H S1 −
X

ÎX2 + 2RH
DV2

2

FIG. 6. Stability of the mode of oscillation of the cantilever for
two values of the frequencysu=0.99 and 1.00d. The oscillating
conditions are free amplitudeZ=10 nm, apex radiusR=20 nm, and
voltageV=1 V. The caseu=1.01 shows unconditional noncontact
stability and cannot be represented.
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=
p«0R

4H
sV1

2 + V2
2d +

p«0R

2H

X
ÎX2 + 2RH

sV1
2 − V2

2d. s36d

The gradient can be obtained by deriving the above expres-
sion,G=dF/dH:

Gz =
p«0R

4H2 sV1
2 + V2

2d +
p«0R

2H2

XsX2 + 3RHd
sX2 + 2RHd3/2sV1

2 − V2
2d.

s37d

According to expressions12d, the phase follows the variation
of the gradient, and presents then the behavior reported in
Fig. 7sbd.

A. Linear approximation

The phase passes continuously fromw1 when the tip is
over theV1 potential tow2 when the tip is over theV2 po-
tential. The function csXd=XsX2+3RHd / sX2+2RHd3/2 is
characteristic of the phase variation when the tip passes
above the limit of the two bands. This function varies be-
tween −1 and +1.

Using the above definition for the lateral resolutionsDX is
the distance between the points where the functioncsXd is
−1/2 and +1/2d, we obtain the resolution in measures sen-
sitive to the gradient:

DX = 1.047ÎRH. s38d

Similar results in the form of a constant multiplied toÎRH
can be obtained, with an adapted expression of the force, in
the case of different objects, as individual charge or vertical
dipole.

The expressions38d is somewhat different from Ref. 43
because of the different assumptions in the electric field. Mc-
Murray and Williams consider the tip as a point charge; its
model applies then to a large tip-sample separationsH.Rd,
whereas we consider the tip as a sphere very close to the
sample, giving here the low distance approximationsH
,Rd.

B. Nonlinear approximation and exact solution

In the nonlinear regime, the calculus of the resolution is
less simple, because the effective gradientfexpressions20dg
depends on the distance and on the vibration amplitude. The
exact resolution can however be evaluated by solving nu-
merically the vibration equation by the Runge Kutta proce-
dure, including the exact forces36d, in order to obtain the
csXd curve.

Using the same definition of lateral resolutionsinterval
DX which corresponds to 1/4 to 3/4 ratio of the maximum
variation of the phased, the resulting resolution of the system
is determined, and represented in Fig. 8 as dots. The follow-
ing results can be derived.

For uù1, the resolution is an increasing function of dis-
tance, indicating that the best distance for obtaining sharp
images is the smallest one.

For u,1, the resolution shows a plateau in the distance
ranges0–1d, which is related to the fact that theasdd curve
sFig. 1d is nearly parallel to thed=a line. In this range, the
minimum distancesd−a1d is relatively constant.

An approximation corresponding to the nonlinear model
can now be derived. As the electrostatic interaction has its
maximum effect when the tip is close to the sample plane,
the true resolution should be better than 1.047ÎRH, which is
calculated for the mean distanceH.

A better approximation is obtained as follows: first, we
introduce an effective distancedeff, which is the distance
where the electrostatic force is equal to the mean force, av-
eraged over a period. According to expressions15d, the ef-
fective distance is given by

def f = Îd2 − a1
2 = Îdmindmax. s39d

Secondly, this value is used instead of the mean distanced
in Eq. s38d. Expressing the equation in absolute units, we
obtain

DX = 1.047ÎRHeff = 1.047ÎRZdef f = 1.047ÎRÎ4 HminHmax.

s40d

This calculated resolution for the nonlinear approximation is
reported in Fig. 8. As expected, this approximation is much
better than the linear one, and sufficient for practical appli-
cation.

According to the values in Fig. 8, the best resolution is
obtained for the smallest distance. In some casesshere for

FIG. 7. sad Scheme of the tip and sample relative position,
which indicates the distanceX between the tip axis and the potential
step.sbd FunctioncsXd for R=20 nm andH=10 nm. The resolution
is hereDX=23 nm.
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u=0.99d, the resolution shows a plateau. This plateau prob-
ably corresponds to favorable experimental conditions, as the
resolution is good, and nearly independent of distance.

We verify also that, in nonlinear mode, resolution can be
much lower than the apex radius.

VI. STUDY OF A CURIOUS NONLINEAR
CASE (u=1 AND d=1)

It appears above that the vibration with a working fre-
quency equal to the natural frequency of the systemsu=1d,
and with a distance equal to the free amplitudesd=1d, is one
of the best noncontact modes for scanning the voltage of a
sample, combining high sensitivity to the voltage, high reso-
lution and an absolute stability.

In this particular case, Eq.s24d becomes

2p«0QRV2

kZ 2 S 1

Î1 − a1
2

− 1D = a1
Î1 − a1

2, s41d

which is a 5th degree equation ina1, which can be simplified
in some useful cases. As good spatial resolutions are ob-
tained only for small radiusR, we further suppose that the
term 2p«0QRV2/kZ2 is much smaller than 1. As a resulta1
is close to 1, and Eq.s41d can be developed in series, and
solved to the first order:

a1 = 1 −
p«0QRV2

kZ2 . s42d

The phase is then deduced from Eq.s22d:

w = − arccosfua1g = −Î2p«0QRV2

kZ2 = −Î2p«0QR

kZ 2 uVu.

s43d

The minimum distance between the tip and sample is given
by

Hmin = Zs1 − a1d =
p«0QRV2

kZ
. s44d

The sensitivity is obtained by differentiatings43d:

Sens = −
dw

dV
=Î2pQ«0R

kZ 2 . s45d

The approximate lateral resolution is obtained by replacing
s44d andHmax=2Z in s40d:

DX = 1.047F2p«0QR3V2

k
G1/4

. s46d

The accuracy of the above approximation can be verified
in the Table I forH=10 nm,V=0.2 V, R=20 nm,Q=100,
k=3 N/m, andZ=10 nm.

As expected for this distance, the linear model fails to-
tally. The nonlinear model gives a satisfying approximation.

We consider this case as curious because of expression
s43d, in which the phase of the vibration depends onuVu,
instead ofV 2, as usual in the other cases. In Fig. 9, for

FIG. 8. Resolution of the microscope in function of the tip-
sample mean distance for different reduced frequencies. The reso-
lution is calculated according to then expressions38d slinear
modeld, expressions40d snonlinear modeld and by the Runge Kutta
proceduresexactd. The oscillating conditions are free amplitudeZ
=10 nm, voltage=1 V, tip apex radiusR=20 nm, quality factorQ
=100, and cantilever stiffnessk=1 N/m.
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example, one can verify the linear dependencewsVd for d
=1 sH=10 nmd. For a larger distance,d=1.2 sH=12 nmd,
the wsVd exhibits the more classic parabolic dependence.

For d=1, the voltage sensitivity is also constantfexpres-
sion s43dg, instead of decreasing with the voltage as in linear
modes. This particularity would allow the detection of a
much lower voltage than permitted in the other configura-
tions, and finally constitutes the interest of the studied case.

VII. DISCUSSION AND CONCLUDING REMARKS

The noncontact mode at short distance, with electrostatic
forces, appears relatively simple, with a general behavior
similar to the more studied Van der Waals forces. We show
that the development of the force in the Fourier series is
sufficient, at the first order, to provide precise analytical ap-
proximation.

Moreover, this article combines several notions related to
the experiments, such as sensitivity, stability and lateral reso-
lution, in order to determine which the best experimental
conditions are.

The free parameters in an experiment are the working
frequency sor u=vm/v0d, the maximal amplitudeZ, the

mean distanceD sor d=D /Zd, and the tip voltageV relative
to the sample. From all the above expressions and figures it
is clear that sensitivity, stability and lateral resolution cannot
be optimal at the same time.

(1) Stability. A small working distance seems to be favor-
able, both for sensitivity and for resolution, but its reduction
below the free amplitude is limited by the stability of the
noncontact vibration. As the stability of the noncontact mode
is difficult to predict theoretically, we can understand the
method often used by experimentalists, i.e., the tip distance
is lowered until the system begins to be unstable, and then
restabilized by a small distance increase. However, we show
that working with frequency above the free frequency of the
cantileversu.1d gives the best stability conditions.

(2) Sensitivity. For a given tip, the sensitivity can be cho-
sen as great as desired, because infinite sensitivity is theo-
retically predicted. The amplitude, distance and voltage con-
ditions for infinite sensitivity can be found in Fig. 2; they
coincide with points where the slope of thewsdd is vertical.
Experimentally, the precise conditions for maximal sensitiv-
ity are difficult to find and maintain during the scans, be-
cause they are very sharp, as seen in the upper Fig. 4. It
seems preferable to choose a lower sensitivity, with more
flexible experimental conditions. As the sensitivity curve
Ssdd decreases and flattens when the frequency and the volt-
age increase, reduced frequencies equal or greater than 1 are
recommended. For example,u=1 andV=1 V sin the middle
Fig. 4d, give relatively good sensitivity in the range 1,d
,1.5. The special case treated in Sec. VI is therefore a good
compromise.

(3) Lateral resolution. The theoretical resolution improves
sdecreasesd when the tip sample distance decreases, and
seems to vanish in all conditions ford=0. Experimentally,
this is evidently not the case for two reasons. First we ne-
glected the atomic nature of the tip and sample, and secondly
we supposed that the tip sample distance can be as low as
needed. In ambient air, for instance, the onset of a liquid
meniscus between the tip and sample prevents us approach-
ing the tip closer than some nanometers. In vacuum, when
the tip-sample distance decreases, the Van der Waals force
increases more rapidly than the electrostatic forces, and for
small distances, may exceed them. In this case, the attractive
force becomes independent of the voltage, and the voltage
contrast gradually disappears. This induces also a minimum
distance calledHmin. When this minimum distance is re-
ported in expressions40d andHmax=2D−Hmin>2D, one ob-
tains

DXlimit = 1.047Î4 2R2DHmin, s47d

which is the best lateral resolution realizable in an experi-
ment at the mean distanceD. If this limit resolution is com-
pared, in Fig. 10, to the theoretical resolution deduced from
the general expressions40d, it appears that distance and volt-
age values cannot be selected freely. Resolutions lower than
the limit are prohibited because the tip would pass too close
from the sample. For instance, it is evident in Fig. 10 that the
tip voltage should not be reduced below a certain value
s0.5 V in the middle Fig. 10d, in order to avoid such close-
ness.

TABLE I. Comparison between linear and nonlinear approxima-
tions, for the caseu=1 andd=1.

Linear
approximation

Nonlinear
approximation

Exact
values

a 9.9997 nm 9.926 nm 9.933 nm

w 0.42° 6.98° 6.63°

Hmin 0.0003 nm 0.074 nm 0.067 nm

Sens 4.2°/V 34.9°/V 33.1°/V

DX 14.8 nm 4.3 nm 3.0 nm

FIG. 9. Phase of the oscillation in function of the tip voltage, for
several tip-sample mean distancesH. The oscillating conditions are
free amplitudeZ=10 nm, reduced frequencyu=1, and tip apex ra-
diusR=20 nm. The curves forH=8 nm andH=9 nm are not plot-
ted for low voltages, because they are unstable.
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Although there are no experimental conditions which give
simultaneously the best sensitivity, stability and lateral reso-
lution, the frequencyu=1 seems nearly optimal in most
cases. The distance aroundd=1 is favorable for the sensitiv-
ity, whereas lower values are recommended for the lateral
resolution. Finally the tip-sample voltage should be notable,
so that a too close approach between the tip and the sample
is avoided. In vacuum, the ultimate resolution is determined
by the ratio of Van der Waals to electrostatic forces, and is
therefore closely related to the microscopic nature of the

sample, i.e., the covalent or ionic character of the surface and
tip atoms.

APPENDIX

We will demonstrate below that the variational method,
applied on the sphere-plane electrostatic interaction, is abso-
lutely similar to the Fourier method used above in the deri-
vation of Eq.s24d. We follow below the notation used by J.P.
Aimé, in the Van der Waals case.17

The LagrangianL is composed of three terms, represent-
ing the kinetic energy, the potential energy and the dissipa-
tion,

Lsz,ż,td = T − U + W, sA1d

L =
1

2
mż2 − F1

2
kz2 − zFexc+ EelecG − czż, sA2d

with the electrostatic potential energy, referred to the mean
distanceD:

Eelec= −E
0

z p«0RV2

D + z
dz= − p«0RV2 lnSD + z

D
D . sA3d

As the oscillation is supposed sinusoidal,

zstd = A cossvmt + wd, sA4d

the actionS is the integral of the Lagrangian over a period.
The action is dissociated in three terms,

S= S0 + Selec+ Sdiss, sA5d

whereS0, Selec, andSdiss are, respectively, the action of the
harmonic oscillator without dissipation, the action of the
electrostatic force, and the action of the dissipating term.S0
and Sdiss are similar to the results in Ref. 17, except for
sinswd which comes from our different drive reference:

S0 =
pm

2v
A2sv2 − v0

2d +
pF

v
A sinswd, sA6d

Sdiss= −
pmv0

Q
AA sinsw − wd, sA7d

Selec=E
0

2p/v

Eelecdt. sA8d

TheSelec term is not evaluated explicitly, only its derivatives
are needed:

]Szelec

]A
=

]

]A
E

0

2p/v

Eelecdt =E
0

2p/v ]

]A
Eelecdt

=
2p2«0RV2

vA S D
ÎD2 − A2

− 1D , sA9d

FIG. 10. Resolution of the microscope in function of the tip-
sample mean distance, for different applied voltages and frequen-
cies. The resolution is calculated according to expressions38d slin-
ear modeld and expressions40d snonlinear modeld. The oscillating
conditions are free amplitudeZ=10 nm, voltage=1 V, tip apex ra-
dius R= 20 nm, quality factorQ=100, and cantilever stiffnessk
=1 N/m. The minimum distance for the limit resolution isHmin

=0.3 nm.
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]Szelec

]w
=

]

]w
E

0

2p/v

Eelecdt =E
0

2p/v ]

]w
Eelecdt = 0.

sA10d

The minimization ofS with respect toA andw gives

]S

]A
=

pm

v
Asv2 − v0

2d +
pF

v
sinswd

+
2p2«0RV2

vA S D
ÎD2 − A2

− 1D = 0, sA11d

]S

]w
=

pF

v
A cosswd −

pmv0

Q
A2 = 0, sA12d

where the underlined variables are calculated along the
physical path:A=A andw=w. Introducing the reduced vari-

ables,Z=QF/k, m=k/v0
2, a1=A/Z, d=D /Z, and u=v /v0

gives the system

Qa1su2 − 1d + sinswd +
2p«0QRV2

kZ2a1
S d

Îd2 − a1
2

− 1D = 0,

sA13d

cosswd − ua1 = 0, sA14d

which is identical to expressionss24d and s22d.
The deduction given in this appendix is longer than the

development in the Fourier series, given in the text, and
therefore not recommended. However, it was useful to dem-
onstrate that the two methodssvariational and Fourierd are
strictly identical for our system, and that they both neglected
the constant deflectionz0 in expressions4d and the corre-
spondingA0 term omitted in expressionsA4d.
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