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The basic dynamic equations of the electrostatic force microscope are derived, in the case of a constant
potential applied to a spherical tip above a conducting plane sample. The microscope tip moves in the elec-
trostatic field, providing a force supposed to be inversely proportional to the distance. The linear and nonlinear
approximations are treated to obtain the amplitude and phase of the vibration, at a fixed frequency. Optimal
experiment conditions, i.e., distance, frequency, and voltage, which give the best sensitivity and lateral reso-
lution, are discussed. The stability of the oscillations during the scans is dependent on the experiment condi-
tions. In addition to the tapping regime, we show that two stable noncontact regimes may exist in some
conditions. Only one stable noncontact oscillation occurs at a working frequency equal or superior to the
natural frequency of the system. When a distance equal to the free amplitude is selected, the phase shift due to
the potential is linear in function of the applied potentiaktead of quadratic as observed at larger distances
and a good sensitivity to the potential of the sample is obtained. The theoretical lateral resolution is derived in
the linear and nonlinear approximations, and is shown to depend strongly on the mean tip-sample distance. In
the examples shown, the best resolution values are reached at a very close distance, with values much lower
than the tip apex radius.
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l. INTRODUCTION decaying in 1625 or to chemical short range
interaction?%?! Electrostatic force, decreasing ind,/as for

Noncontact atomic force microscogNC-AFM) or dy-  sphere-plane geometry, has been less studigtl.Some-
namic force microscopyDFM) has proven to be an effective times, a sinusoidal voltage is applidds in Kelvin force
method for imaging semiconductor and insulator surfaces umicroscopy; this corresponds to a more complex experi-
to atomic resolutior:? This result was made possible by vi- ment, where the dynamics of the transient phase should be
brating the tip very close to the surface, where short-rangeonsidered.
interactions are predominant, for instance chemical bonding The sensitivity and lateral resolution for an electrostatic
force®=8 or electrostatic forces on ionic crystats. force decreasing in H/is the only case treated below, be-

When long-range electrostatic forces are used to measucause it is considered as an ideal case. In addition, we sup-
the surface potential and charges, for example for microelegosed a constant applied voltage and conducting tip and
tronic device studie¥)* one speaks of electrostatic force sample to simplify the problem. The results concern only
microscopy(EFM) or Kelvin force microscopyKFM). In  microscopes driven at constant frequer(eynplitude vari-
these setups, the tip of the microscope is vibrated at a meable during the scaipsand not systems with frequency
distance of several nanometers. At this distance, the atomimodulation.
nature of the sample and the tip is smoothed and the media
can be considered as continuous. Consequently, an atomic
resolution is not expected. Il. BASIC DYNAMIC EQUATION

The sensitivity of the experiments and its lateral resolu-
tion are directly related to the characteristics of the vibration, In the noncontact mode, the height of the tip above the
namely the driving frequency, the amplitude, the mean dissample surface, notdd(t), is always positive. Negative val-
tance and the tip voltage, which can be chosen freely by thees indicate that contact occu(kading to intermittent con-
experimentalist. The aim of the present article is to provideact or tapping mode The penetration of the tip into the
the basic clues to obtain the best sensitivity and resolution isample would induce elastic repulsive forces, which are not
electrostatic force microscopy. considered her¥.

The first evident assumption is that the tip should be vi- The mechanical part of the tip-cantilever system is ap-
brated as close as possible to the sample, in order to redugeoximated here by a mass-spring system. The electrostatic
the extension of the interaction. In this case, the electrostatiforce applies to a punctual mass fastened to a spring without
force is strongly dependent on the tip sample distance, anghass. It has been verified that this approximation is valid for
F(d) absolutely nonlinear. The basic equation for the motionlow frequency vibrations, close to the fundamental frequency
of a tip in a nonlinear field of force has been widely treatedof the cantilever. In this case, the higher harmonic modes of
in literature, but mostly applied to Van der Waals forces,the bear®2 are ignored.
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The positionH(t) of the mass obeys the following differ- a't)y a'(t) ®
; P —— + —— +al
ential equation: wg o)
mH’(t) + cH'(t) + k(H(t) = h) = Fgedt) + Foudt), (1) 1 T megRV?2 aV?
T ety iz aran] kz O
whereFg . is the sum of the electrostatic forces applied to Q
the tip+cantilever systenh) the position of equilibrium in  with a(t)=z(t)/Z=ay+a; cod wt+¢).
the absence of any force, afd,J{t) is the exciting force. This expression can be resolved, with three degrees of
Fexdt) is supposed sinusoidal, with a pulsatiep, close to  precision, at the first ordélinear approximatiop at the sec-
the resonance: ond order(called nonlinear approximatignand numerically
for full precision results. The three cases are developed be-
Fexdt) =F coqwt + 7/2). 1) low.
The +7/2 term allows the phase ¢i(t) to be zero at reso- A. Linear approximation
nance, far from the sample. . L L . '
The electrostatic force between a spherical(tpex ra- The most S|r_nple approximation consists in taking the first
diusR) and a plane sampldoth conductingcan be calcu- order polynomial development of the force term(d+a)
asymptotic expression is much smaller than the distanae<d. Developing expression
(6) and usingu=w,/ wg gives
_ meoRV2 u
Faedt) =~ " @ (1-1)a cogwpt+ ) - Q2 Sinlent + ¢) + 2
At larger distgnces, the force on t'he conical part of the tip 1 7\ megRV2
and on the cantilever are not negligiBle8 As the complete =—cog wyt+ > Wz [d-ay—a; codwnt+ )]
force expression is too complicated for the following treat- Q
ments, we choose to consider only an additional constant aV?
term “a,” to represent the contribution of cantilever and the T kz ()
cone:
This equation can be separated into a constant expression,
megR giving ay,
Felec(t) == |: H ?: + a’:|V2. (3
® __msRV2d-a, aV? ®
For distances greater thd/2, the approximation is prob- kz? o kZ
ably less satisfying, as discussed later. _and a sinusoidal expression, best written in the complex
With an excitation at pul_sat|om>m, and a large ql_Jallty Fresnel notation:
factor Q for the system(for instanceQ=100 for a micro-
scope operating in dithe response of the system is expected 1-2+ u\_ i N meoRV2, 9
to be nearly sinusoidal: u Q A= Q kz2d? .- 9
H(t)=h+z(t) =h+2zy+ z; coSwyt + ). (4) Using the gradient expression
2
7, is the constant deflection of the cantilever due to the mean = %, (10)
attractive force, and, the vibration amplitude. Z<d
Reporting the above expressions in the differential equ h | l ; .
tion, and introducing the free pulsation of the systegthe “the complex amplitude is deduced:
effective massm=k/ woz, and the damping factoc=k/ - 1 11
(@oQ) gives TIToTC T (1D
Zt) Z(t Fexdt R V2 or in real notation
¥+—()+z(t): exc()_|: mEOR ]_ (5)
wj  wQ k h+ z(t) k 1 12
a;= 12
As it is more convenient to work with reduced values L2+ Q1 - - glk)?
without dimension, we follow below the notation of Ref. 17 d
and divide the displacements by the maximum vibration am@"
plitude, in the absence of electrostatic force, «f=wy, Q(1 - u?- g/k)
which is Z=QF/k. We introduce the reduced flexion of the ¢ =arcta u (12)

cantileverayg=2z,/Z, the reduced amplituda;=z,/Z, the re-
duced distanced=h/Z, and the reduced pulsatiom  We note also that a relation independent of the electrostatic
= o,/ wy. Expression5) becomes gradient connects the amplitude and the phase:
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cog) = uay. (13) o- arcta{ QL -u?-g'/k) } |

The gradient of the electrostatic force shifts the resonance
of the system towards lower frequencies. The shfti  The amplitude and the phase are still connected by the rela-
=—g/ 2K, is proportional tov 2 and can be used to deduce the tion
sample potential. The above approximation is the classic
theory for electrostatic force microscopy, and Kelvin micros-

copy.

(21)
u

coqp) = Ua. (22)

Finally, the approximation presented above appears very
similar to the linear approximation, the only difference con-
) o sisting in different expressions for the gradigitEqg. (10) or
When the amplitude of the vibration is in the same order(zo)]_ Equation(20) tends towards Eq10) whena is much

of magnitude as the distance, the precedent linear approximajier thard, as can be verified in the following series:
mation is no longer valid. A better approximation is given

B. Nonlinear approximation

below, supposing only that<d, to insure a true noncontact . meRVZ2 ([ d
mode. z?2 a2\ Jd?- a

The base of the calculus is to develop the electrostatic

force in Fourier series. The electrostatic force in E).is
developed over the first Fourier harmonics:

1
d+a; codwnt+ ¢)

=tg+t  codwpt+ @)+ -+ (14)

Theay term has been neglected here, as much smallerdhan

_ 7780RV2< 38.% 5:’:1‘11 . ) 29

=S 1+-=+ ==
Z 2 402 8d*

The above series shows that the linear approximation can be

used up toa=d/3, with an error less than 10% on the gra-

dient.
As g’ depends orgm;, the functiona;(d) cannot be ex-

The ty andt; terms are easily obtained by the definite inte'tracted explicitly, as in Eq(12). By reporting (20) in (19)

grals:
- fT dt 1 15
" 1), d+a; codwnt) o2 - a2’
L2 fT coford)dt _ 20 d g
Y T)o drajcodond) A Vd? - a2 .

Reporting these expressions in Ef) gives

(1-u?ay codwnt + @) = %al sin(wpt + @) + a9

1 . m\  weRV?
= 5 SII’]( opt + E) - F[to +1; codwpt + )]
aV?
-— 17
Z (17)
from which can be deduced the constant term
meoRV? aV?
=- to——— 18
kz? ° kz (18
and a sinusoidal term as in the preceding section:
iu\. i RVZ &
(1—u2+—>a1:——m°2 t,—. (19
Q Q z ay
Introducing an effective gradient
RV %kt RV?Z 2 d
/:_77802 ZI.:WSO2 =5 -1 (20)
Z%y Z% aj\Jd?-a?

one obtains expressions for the amplitude and phase:
_ 1
VU + QA1 -u? - g'lk)?

(21)

and

and performing simple algebra, we obtain
Qg 2meQRVA2 ( d 1)
Vd

k kz 2a1 2 ai
=a,Q(1 -ud) = 1 -als?, (24)

from whered can be extracted versuas:

p+1
p(p+2)
with
kZ %, ——
p= W[%Q(l -u?) + 1 -aju?]. (25)

This expression describes completely the vibration of the
system, and is studied in detail in the next section.

Some authors used the principle of least action and the
Lagrangian of the system, to derive the oscillation equation
in the case of Van der Waals foré&!” We verified that this
method is also convenient for an electrostatic field of force,
and gives exactly the same integrals and the same final ex-
pression(24) (see details in the AppendixXThis seems natu-
ral, as the two methods are based on the same hypothesis,
namely the sinusoidal nature of the oscillation and the ne-
glecting of static flexur@, in Eq. (14).

Evidently the above methods are only approximations of
the true oscillation, because they neglected the second order
termst, in the Fourier development.

Whena, approached, i.e., when the tip comes very close
to the sample, terms inat, 3wnt,... can nolonger be
neglected in Eq(14) and the calculus becomes less precise.

C. Exact result and discussion

The exact solution of the dynamic equati@® can be
computed by a fourth order Runge-Kutta procedure, without
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any of the simplification introduced abovee., without ne-
glecting the static flexurey, and the higher order ternts, 1r
t3,... in theFourier seriek At the initial time (t=0) the mass

is released at the distanck and then the oscillations are
progressively established, up to a state of equilibrium. When @
the permanent regime is reached, the mean fleagieend the
amplitudesa,, a, of the harmonics and the phases are com-
puted, by a Fourier development of th&) values over one
period.

WhereasQ oscillations are considered by some autfbrs
as sufficient to obtain the permanent regime, we have pre-
ferred to wait %) oscillations in order to obtain the final 0.2r
amplitudes more accurately.

The oscillation amplitude is reported in Fig. 1 in function — , ‘
of the distanced, for the two approximate model§near as 0 05 15 2 25 3
dots, nonlinear as continuous line§he exact curves ob- Reduced distance (d)
tained numerically are superimposed over the nonlinear
curve to 103, for all cases studied, and cannot be separated
from the nonlinear approximation at the scale of the figure. g
Only at very small distance$d<0.01), does a sudden
jump-in appear in the exact curve, not present in the analyti- VOB_
cal curves, because of the neglected static flexyre

The differences between linear and nonlinear curves are ;
very simple to understand. The linear approximation gives
too large amplitudes, even larger than the distance in the case_gj
u=0.99, which is absurd in noncontact mode. The nonlinear 80_4_
approximation seems to bend the curves in order to maintain 3
a<d. The two models tend toward a common curve at large
distances; they are pretty close togetherdor 2. 0.2

The curves in Fig. 1 have been calculated for a voltage of
1V or4V, and forR=20 nm, which corresponds to a clas- — . . . ‘
sic commercial tip radius. These parameters have been cho-  © 0.5 1 1.5 2 2.5 3
sen to display in Fig. 1 typical behaviors of the system. Vary- Reduced distance (d)
ing the other parameters BsZ, Q or k will produce similar
curves, because Ed25 depends only on the combined - - - - -
quantity (kZ?)/(QRV?). 1t u = 1.01

When the distance increases, all curves tend toward a con- -

0.81

o
)
T

Reduged amplitud
N

u=0.99

Redu

stant, which is the free vibration amplitude of the system, aoa—
s
=
1 (26) =
ai = —_—, o,
2+ Q41 -12? go.s
2
amplitude at infinite distance. At finite distances, there are 894y
two different behaviors depending on the reduced frequency E

valueu.
Caseu=1 (or wy,=wp). As p should be positive in the
radical of expressio(25), and ag1-u?) is negative or null,

o
o
:

then only the sign—can be chosen. There is only one curve O 05 15 P 55 3
a(d). Reduced distance (d)

Caseu<1 (or wy,<w). As (1-u?) is now positive, then
the sign+ or — can be chosen in expressi@b). There are FIG. 1. Amplitude of vibration in function of the distance, for
two “d” solutions for an amplitude value greater thap. two voltage value®/= 1V andV= 4V, for three frequency values

As mentioned in Ref. 19, some parts of these curves coru=f/fy). The solid curve is the exact value according to expression
respond to regimes not dynamically stable, namely when thé1); the dotted curve is the linear approximati@xpression(12)].
a(d) curves go backwards. On the other hand, when the miThe numeric Runge Kutta values are superposed on the nonlinear
croscope feedback is used to maintain a constant amplitudeyrves. The thin straight line indicates thed limit. The constants
only the part of the amplitude curve with a positive slopefor the cantilever ar&= 1N/m, Q=100, apex radiut=20 nm,
corresponds to a stable regulation. and free amplitude,a,=10 nm.
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When two possible distances correspond to the same am 0
plitude value, the lower value gives the closest tip sample

distance, and the best sensitivity and resolution. This case go|

corresponds to the sigi in Eq. (25).

The calculated phases are represented in Fig. 2; the non
linear model and the exact solution appear identical. \For
=0, the phase tends to values given by E2p), which are

degree)

¢=0 for u=1 and +63° for the two other cases. As for the & o}

amplitude, some parts of the phase curves are not stable, fog

example the part of the curve where the phase decreases wit®

distance, in tha1=0.99 case, is not stable. o
The results in Fig. 2 are presented for regularly spaced

voltages, which allow us to appreciate the effect of the po- -80r

tential variations. The phase varies more rapidly in the region
close to the angle of the curve, as will be developed in the g4

PHYSICAL REVIEW B 71, 205419(2005

u=0.99

next section. 0 05 1 1.5 2 25 3

The theoretical results obtained in Figs. 1 and 2 are com-
pared to experimental results in Fig. 3 obtained with a classic

silicon tip (Micromasch Ultrasharp NSC11, covered with 10
conducting WC). The parameters of the cantilevéree fre- or
quencyf=59.9 kHz,Q=107,k=4.8 N/m) have been inde- 10l
pendently measured. The experimental radiss35 nm is

deduced from the fit. —~-207

. . [0}
In order to present the curves with correct distance and® _
amplitude values, the experimental points are recorded with&

a sinusoidal low frequency?2 Hz) applied voltage. The si- 240}
multaneous fit of the envelope of the curve with the theoret- & _sol

ical curvesvV=0 V andV=3 V, permits a correct evaluation &

of the free amplitude and of the distance origin. The potential 8- -60r \V =3V il
V is here corrected from the contact potential difference, by _7o} i
applying an opposite constant potential, as in the Kelvin

probe method. The efficiency of the correction can be ob- -807 u=1 i
served in Fig. 3 as the successive phase minim(coge- -90, < '5 ; s 5 25 3

sponding alternatively to +3 V and —-3)\are both tangent to
the fitted envelope.
Three important points are discussed below. 80
(1) We observed that the phase and the amplitude curves
could not generally be fitted exactly. Most experiments on
various new tipsshow amplitude and phase increasing to-  -6%
wards the free limit more slowly than expectéd H™2 for
the phasg in the 20—100 nm range. The effect of Van der g_79
Waals forces is negligible in the distance range, and would g
produce an opposite effe¢phase decreasing inFifor a Q
spherg. A force acting at longer distance is needed, and the
expression for a cone seems to fit the curves better. After%

several contactsvith the sample, the radius of the apex in- £ -gor

o
creases, in the 50 nm range, and the results are better fitte

by a flat tip apex. In sum, experimental curves with the three
following expressions have been observed.
For a conglangle 6)

T_75-

-851

Reduced distance (d)

Reduced distance (d)

% 05 1 15 2 25 3
L Reduced distance (d)
megV 2 In( )
H
Feone=— 7{]\ . . . . .
2 FIG. 2. Phase of vibration in function of the distance, for the
In (tar<2>) voltage valuesv=0, 0.5, 1, 1.5, 2, 2.5, and 3V, for the three
frequency valuegu). The curves are calculated in the non-linear
approximation. The constants for the cantilever are the same as in
and Fig. 1.
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30

25

Amplitude (nm)
o S

—_
o
T

0 10 20 30 40 50 60
Distance (nm)

Phase (degree)

0 10 20 . 30 40 50 80 70
Distance (nm)
FIG. 3. Experimental amplitude and phase in function of dis-
tance, when a sinusoidal voltage is applied to the sarttpé&evolt-
age amplitude is 3 V and frequency 2 }dZhe lower envelope is

the theoretical values obtained focanet+sphereshaped tip with a
20° aperture angle, B=35 nm apex radius and for a 3 V voltage.

PHYSICAL REVIEW B71, 205419(2005

megV 2 ([ 1 \?
Fnat:—T m

and
eV 2r?

e (29

Oflat =

For an intermediary shafde the Fig. 3 for example the fit

was obtained by the sum of two force expressidRg)e
+Fgpnerd, indicative of a cone with a spherical apex. The
Feone @nd theFgeccontributions are represented separately
in the phase curves. In the 20—50 nm range, the sphere term
is predominant, the two terms are equal at 80 nm, and the
cone term became more important at a larger distance. We
are aware that if nearly all the experimental curves can be
fitted by a sum of the above expressiéhd! it does not
mean that the exact shape of the tip apex is determined. In
particular the expression for a true cone with a spherical apex
is more complicated than the above s(sae Hudlet for an
analytical expression or Belafdifor a numerical simula-
tion).

Finally, it should be considered that the exact shape of the
tip apex is not important in itself, as only tHe(d) curve
determines the oscillation behavior, the sensitivity and the
resolution discussed here. Experimentally, the slope of the
phase curvep(d) or of the gradient curvg(d) in log-log plot
is indicative of the major electrostatic contributisiope -3
for a flat, -2 to a sphere, -1 for a condhe flat tip slope
(=3) is similar to the slope for the Van der Waals force acting
on a sphere, and produces the same dynamics. The middle
case(slope -2 for an electrostatic force in the sphere-plane
geometry is the only case analyzed in the following sec-
tions.

(2) Another difficulty in fitting the experimental curves in
Fig. 3, comes from th& =0 curve. With a sinusoidal applied
voltage(amplitude 3 \}, we are sure that the voltage differ-
ence between the tip and the sample passes regularly by zero,
whatever the eventual contact potential difference between

The contributions of the sphere alone and of the cone alone arthe two materials. Then, the upper envelope of the experi-

reported as thin lines. In the ca¥e=0 V, a small amount of Van

mental curve should correspond to ttie 0 (no force theo-

der Waals force has been added to stabilize the noncontact moderetical solution: the amplitude is constant at a large distance

eV 2
Goone= 77571 27
2
i tar{ 2|
2
For a spherdradiusR)
()
= -7 —
sphere 0 H
and
megV 2R
Osphere™ # (28)

For a flat surfacdéradiusr)

20541

(H>30 nm), and limited by thed=a line at distances below
the free amplitude(H<26 nm). This simple shapegtwo
straight lineg is not observed in Fig. 3, probably due to the
Van der Waals forces or residual charg@sgglected in the
model, and preponderant when the main electrostatic forces
disappear(for V=0). In order to fit better the experimental
curve in Fig. 3, a small amount of Van der Waals force has
then been added to the theoretical values.

(3) The above calculations in noncontact mode do not
include the dissipation process, which arises when the tip
approaches the surface. The dissipation induces a phase shift,
as discussed in Refs. 32—34. The onset of such an effect can
be clearly seen in Fig. 3, where the experimental phase is
higher than calculated at small distances. The same effect is
clearly observed at low amplitude in Ref. 33. We have not
attempted to fit this part of the curve, as the dissipation pro-
cesses are out of the scope of the present article.
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IIl. SENSITIVITY 200 T T . . .

The sensitivity is defined as the ability of the system to 180F u=0.99 1
differentiate two close values for the voltageWe introduce 160t )
the following definition:

g da S140F V=1V ] .
Lo do . Lo 08y o =
Phase sensivity = qv or Amplitude sensivity = qv %’)120— \
o
(30) :;100' 4
=
the sign-being used to obtain positive values in most caseg 80
(notably foru>1). N gok
Expression for the sensitivity can be deduced easily fromn
expressiorn(24), written as 40r i
20¢
cv?/ d ——s
(,22—1):a1Q(1—u2)i\1—a§u2 0 : , . :
ar \yd°-aj 0 0.5 1 15 2 25 3
ith Reduced distance (d)
wi
2 R 50 . ~ ; ; .
= 2me9R (3
kz 45+
One obtains a0t
d <35¢
2CV<22 - 1) o
da, _ Vd©-ay 2301
dvV  a,dCv? ‘ au? 3
— e — 23,01 - T 1 -t ——— >25¢
(02 - a3)%2 Q )7 YT 1-ad Z
g 20_
I

The amplitude and the phase being related according t 10l
expression22), the amplitude and the phase sensitivity are
related by 5r

da, _da,dp _ _sinede (33) % 05 1 15 2 25 3
dv dedV u dv Reduced distance (d)
Then 20 . . . . .
de -u  day 18+ u=1.01 1

N T (34
dv  \1-u%f de

-
(o2

In Fig. 4 the phase sensitivity is reported, calculated theo
retically from the expression@2) and (34).

In the caseu=1, the sensitivity is always positive and
presents a maximum, whose position and value depends ¢
the reduced frequencyu!” and on the combine®V? term.
For low voltage(or radiug, the values of maximum sensitiv-
ity lie in the 0<d< 1 distance range, indicating that working
in the non-linear domain is essential for a good sensitivity

Foru<1, positive and negative sensitivities are obtained.
The sensitivity reaches a very high value, for certain dis-
tances. This induces several problems in experiments, as tl
electrical contrast becomes very sensitive to the distance,ar 0 : .

—_ -
N S

(o]

Sensivity (degree/V)
(o]

B
T

. . - 0 05 1 1.5 2 25 3
may reverse in certain conditions. Reduced distance (d)

IV. STABILITY o . .
FIG. 4. Sensitivity of the microscope to voltage variations,
The vibration modes found theoretically by the resolutionsensitivity=-tlp/dV. The constants for the cantilever are

of the differential equation(6) are not necessarily stable. =1 N/m, Q=100, tip apex radiu®k=20 nm, and free amplitudg
This instability has two main reasons. =10 nm.
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First, some solutions correspond to theoretically unstable 6 ' ' ' ' '
movement>t” Any disturbance, no matter how small, in- u=1
duces a diverging process, which after a short time converges _ 4|
toward a different vibration state. This is the case of the
backward part of the superia(d) curves in Fig. 1.

The second reason occurs in experiments, when severa2 2| /]
stable vibrations are possible at one distance. For example €
whend<1 the noncontact vibration mode and the tapping « of
vibration mode are both stabie;8 they correspond to at-
tractive or repulsive regimes. Three stable states may ther < L.
exit in the case of soft samplé$. -2r N

Small experimental disturbancésuch as thermal noise,
sample roughness or a small shock on the systaay in- —4}
duce the transit from one mode to the otffet! If this transit
is easier in one sense than in the other, then a mode appeal . . . . . .
more stable than the other. Experimentally the system adopts -6 -4 ) 0 2 4 6
the most stable mode, even if another is possible theoreti- Real part of Amplitude (nm)
cally.

Examples of such behavior are presented in Fig. 5, where 6 : : :
the oscillating amplitude is presented during the transient
phase. For a purely sinusoidal vibration, the position and __ 4|

tapping mode

rd

Amplitude (nm

rt
e

Imaginar

non-contact
mode

- -
———————

velocity at the timet=0 are £ i
g 3
Zo=|Re(A€) o= Re(A) andV, = [— Re@e‘wt)] g7 /
dt t=0 £
~ < ol
=wIm(A). g0 .
o It
Our representation is then similar to the Poincaré plot used ing 5
2 ol

Refs. 40 and 41 and enables us to define the basins of attrace
tion of the different modes. Starting from an initial condition g

(dots at the beginning of the curyeghe amplitude and ~4r N e -

R N PURPN Y ~~ non-contact
phase evolve towards a permanent vibrafinooncontact or ~Ul - mode 1
tapping in the Fig. &)]. The complex plane can be divided , , , . . . .
into zones where the oscillation evolves towards one or the -6 -4 -2 0 2 4 6

other stable mode. In Fig.(&, all initial oscillations below Real part of Amplitude (nm)

'.[h.?. dlotteq”hrtI_e Con\éergettr?wgrctjts ;[jhlg noncontact rtnOdec?n?ha” FIG. 5. Evolution of the oscillating amplitudgeal and imagi-
Inftiat osciliations above the dotted line converge towards %ary pari during the transitory phase. The dashed circle indicates

tapplng_ mode._ The_ba_sms of attraction are (_)f similar size. A?he contactd=a condition. Points inside the circle correspond to

only initial points inside the noncontact circle have been,,ncontact oscillations, whereas points outside the circle corre-

tested, the spiral structure of Refs. 40 and 41 is not apparentyonq to intermittent contact oscillations. Depending on the initial
In Fig. 5(b), the case of 3 stable modes on a stiff samplegonditions(dots, the oscillation tends towards different modes. All

is represented. The basin of attraction for the low amplitudenitial conditions within the circle have been tested numerically in

noncontact modéncl) is much larger than the basin for the order to define attraction zones. The limit between the zones is

high amplitude noncontact modec?). At this frequency, the noted as the dotted line. The common experimental conditions are

basin for the tapping mode is so reduced that it cannot beistanceH=5 nm, voltageV=0.5 V, tip radiusR=20 nm, and re-

plotted clearly at the scale of the figure. For these experimerduced elastic modulus of tip and samjié=66 GPa. Upper dia-

tal conditions, the tapping mode is absolutely stable but vergram: reduced frequenay=1. Two zones appear: one that leads to

sensitive to any disturbance. the tapping mode and the other to the noncontact mode. Free am-
All the above modes are totally stable at the end of theplitude Z=10 nm; reduced distanat=H/Z=0.5. Lower diagram:

transient time, but can commute from one to the other if deduced frequency=0.99. The experiment conditions have been

disturbance occurs. In order to quantify the relative stabilitychosen to produce the rare case where three stable modes ¢exist

of any mode, we introduce a measure of the stability, define@oncontact modes and the tapping modgree amplitudeZ

as the amount of disturbance needed to pass from one modé-5 "M; reduced distanak=H/Z=0.91.

to another. As the disturbance is generally a casual variation

of distanced, the maximum disturbancAd can be calcu- stable point toward another basin of attraction.

lated numerically by applying a sudden jumpAd and ob- The main results can be observed in Fig. 6. The vertical

serving if the system returns to the initial mode or changescale represents the magnitullé of the stability.

toward another state. In Fig. 5, the stability can be measured For u=1 there are only 2 stable movements, the non-

as the horizontal jump needed to translate the mode from eontact and the tapping mode.
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107 ; ; . . ; double jump, not already mentioned in the literature, prob-
u = 0.99 ably becayse .of t_he very §mal| basin of attraction of the third
) non—contact 2 mode, which is simply missed.
\ For a free amplitude of 10 nm, a sudden topographic
jump in the order of 1 nm is sufficient to induce a mode
commutations, from noncontact mode to tapping mode and
vice versa. These sudden jumps should be avoided during the
scans, so a very stable mode is recommended. For instance,
in the conditions of Fig. 6, the recommended working dis-
tance isH>10 nm (equivalent tod>1), to obtain stable
scans.

It is difficult to deduce general rules on the stability of the
different modes, except the following quasievident conclu-
] sions.

The noncontact mode is very stable if the amplitude is
much smaller than the distance.

Large voltage(or radius enhances the stability of the
noncontact mode.

Null voltage leads to the tapping mode, because the Van
der Waals attractive force is too weak to stabilize the non-
contact mode.

Experimentally, it is recommend to choose=1 and a
distance aroundi=1, to be at the lowest distance with un-
conditional noncontact stability.

non-contact 1

h
o_;

Stability (nm)

12

6
Distance (nm)

10

non-contact

N

V. LATERAL RESOLUTION

/ tapping Lateral resolution is the ability of the system to observe
the surface potential of small objects with acuity. Several
practical definitions for the resolution can be found, accord-
ing to the type of object to be imagé#éi*3In microelectronic
applications, objects are often bidimensional, with linear
edges, such as tracks, or flat layers in transversally cut com-
ponents. For this reason we introduce, as a standard sample,
. ‘ . . - the line of separation of two potential§; andV,) on a flat
0 2 4 6 8 10 12 surface, as represented in Fig. 7.
Distance (nm) Varying the positiorX of the tip gives a phase that passes
continuously from the valueg, to ¢,. We defined the reso-
FIG. 6. Stability of the mode of oscillation of the cantilever for |ytion as the distancaX for which the signal varies from the
two values of the frequencyu=0.99 and 1.00 The oscillating ratio;ll to % of the maximal variatiorie,— ¢,), as represented
conditions are free amplitudé=10 nm, apex radiuR=20 nm, and in Fig. 7(b) (notedA_ s, in Ref. 4.
voltggevzl V. The casai=1.01 shows unconditional noncontact Calculating the resolution needs an expression for the
stability and cannot be represented. electrostatic force derived below. In the limit case where the
tip-sample distancél is much smaller than the tip radilg
Foru<1 there are 2 or 3 stable movements, depending ofhe electric field between the tip and the sample can be taken
thed values, one tapping mode and 1 or 2 noncontact modesss vertical, and the force obtained by simple integration of
as already apparent in Fig. 1. The stability of the tappinghe electrostatic pressure

—_
(=]

Stability (nm)

mode decreases as the distance approaches the free ampli- e V2 & V2
tude (d~1). Whend increases slightly above 1, the only P(X,y) = j—zz—oﬁ, (35)
stable mode remaining is the noncontact mode. 2z° 2 (H X ty )

Foru>1 the noncontact mode is unconditionally stable. 2R

An important result not mentioned in the above references :
: . ; . <
is the possible existence of 2 stable noncontact modes with gver the sample plane, which has a potentiglor x<X and

purely attractive force(Figs. 5 and § due to the non- \?2 for x>X. The fzrce Is expressed as

linearity of the force. Adding a repulsive force term leads to (T R

a third stable mode, the tapping mode. We note in Fig. 6, that |74 = B dy B P1(x y)dx+ B dy . Py(xy)dx
for most distancegl, only two stable modes are present,

tapping and noncontact 1 fdr< 1, or noncontact 1 and non- _ megR X 2
contact 2 ford~1. Only in a very smgll_ _distance interval, ~ 2H X2+ 2RH/ *
slightly lower than 1, does the possibility of three stable

modes appeafas in Fig. §b)]. These three stable modes L meoR( X V2
could produce, in experimental amplitude-distance curves, a 2H W+ 2RH/ 2

205419-9
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AX = 1.047ARH. (39)

Similar results in the form of a constant multiplied {&H
can be obtained, with an adapted expression of the force, in
the case of different objects, as individual charge or vertical
dipole.

The expressiori38) is somewhat different from Ref. 43
because of the different assumptions in the electric field. Mc-
Murray and Williams consider the tip as a point charge; its

1 ' ' ' ' ' ' ' model applies then to a large tip-sample separativr R),
0.8f 1 whereas we consider the tip as a sphere very close to the
06k | sample, giving here the low distance approximatigth
<R).
0.4} 1
% ol B. Nonlinear approximation and exact solution
5§ o In the nonlinear regime, the calculus of the resolution is
B less simple, because the effective gradiexpression20)]
5—0-2' ] depends on the distance and on the vibration amplitude. The
—0.4} | exact resolution can however be evaluated by solving nu-
AX merically the vibration equation by the Runge Kutta proce-
-08r ; < . I dure, including the exact forcé86), in order to obtain the
-0.8f c(X) curve.
» ) , ) ) , ) ) Using the same definition of lateral resolutiginterval
-40 30 -20 -10 0 10 20 30 40 AX which corresponds to 1/4 to 3/4 ratio of the maximum
Distance X (nm) variation of the phagethe resulting resolution of the system

FIG. 7. () Scheme of the tip and sample relative position, is determined, and represented in Fig. 8 as dots. The follow-

which indicates the distancébetween the tip axis and the potential ing results can be derived.

step.(b) Functionc(X) for R=20 nm andH=10 nm. The resolution For l.JZ 1 the resolution is an Increasing functl_or_1 of dis-
is hereAX=23 nm. tance, indicating that the best distance for obtaining sharp

images is the smallest one.
For u<1, the resolution shows a plateau in the distance
_ WSOR( ) 7TSoR X (V2 V) (36) range(0-1), which is related to the fact that thed) curve
4H VX2 + 2RH (Fig. 1) is nearly parallel to thel=a line. In this range, the
minimum distancé€d—a;) is relatively constant.
The gradient can be obtained by deriving the above expres- AN @pproximation corresponding to the nonlinear model
sion, G=dF/dH: can now be derived. As the electrostatic interaction has its
maximum effect when the tip is close to the sample plane,
) the true resolution should be better than 1R, which is
R2 a2+ meR X(X+ 3RH) V2-\2). calculated for the mean distante
2H? (X?+ 2RH)%? 2 A better approximation is obtained as follows: first, we
(37) introduce an effective distanocg.;, which is the distance
where the electrostatic force is equal to the mean force, av-

. . . eraged over a period. According to expressitb), the ef-
According to expressiofiL2), the phase follows the variation fective distance is given by

of the gradient, and presents then the behavior reported in

7T80R

GZ—

Flg 7(b) deff = VJdZ - ai = \“sdmindmax- (39)
. o Secondly, this value is used instead of the mean distdnce
A. Linear approximation in Eq. (38). Expressing the equation in absolute units, we

The phase passes continuously frgm when the tip is obtain

over theV; potential tog, when the tip is over th&/, po- AX = 1.04ARH= 1.04ARZd; = 1.043RYH i H e
tential. The function c(X)=X(X?+3RH)/(X?+2RH)*? is 40
characteristic of the phase variation when the tip passes (40
above the limit of the two bands. This function varies be-This calculated resolution for the nonlinear approximation is
tween -1 and +1. reported in Fig. 8. As expected, this approximation is much

Using the above definition for the lateral resolutidtX is  better than the linear one, and sufficient for practical appli-
the distance between the points where the functiof is cation.

-1/2 and +1/2, we obtain the resolution in measures sen- According to the values in Fig. 8, the best resolution is
sitive to the gradient: obtained for the smallest distance. In some cadbese for
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u=0.99, the resolution shows a plateau. This plateau prob-
ably corresponds to favorable experimental conditions, as the
resolution is good, and nearly independent of distance.

We verify also that, in nonlinear mode, resolution can be
much lower than the apex radius.

VI. STUDY OF A CURIOUS NONLINEAR
CASE (u=1 AND d=1)

It appears above that the vibration with a working fre-
guency equal to the natural frequency of the systaml),
and with a distance equal to the free amplitude 1), is one
of the best noncontact modes for scanning the voltage of a
sample, combining high sensitivity to the voltage, high reso-
lution and an absolute stability.

In this particular case, Eq24) becomes

2me,QRV2 ( 1

(41)

k22 _1):a1\’l_a§,

[
V1 —af

which is a 5th degree equationan, which can be simplified

in some useful cases. As good spatial resolutions are ob-
tained only for small radiu®, we further suppose that the
term 2me,QRV2/kZ? is much smaller than 1. As a resalf

is close to 1, and Eq41) can be developed in series, and
solved to the first order:

megQRV?
kz?
The phase is then deduced from E22):

2meQRV? _ \/ZWSOQR
kz?2 kz?

a,=1- (42)

V.
(43

The minimum distance between the tip and sample is given
by

¢ =—arccofuay | =-— \/

meoQRV?
Hiin= Z(1—ag) = — ——. (44
The sensitivity is obtained by differentiating3):
de 2mQegR
Sens=—>=/———. 45
NS ="av kz? 49

The approximate lateral resolution is obtained by replacing
(44) andH,,=2Z in (40):

2 |1/4
ZWSOQR3V] | 48

k

The accuracy of the above approximation can be verified

AX= 1.047{

FIG. 8. Resolution of the microscope in function of the tip- IN the Table | forH=10 nm,V=0.2 V, R=20 nm,Q=100,
sample mean distance for different reduced frequencies. The resé=3 N/m, andZ=10 nm.

lution is calculated according to then expressi88) (linear

As expected for this distance, the linear model fails to-

mode), expressior(40) (nonlinear modeéland by the Runge Kutta tally. The nonlinear model gives a satisfying approximation.

procedure(exac). The oscillating conditions are free amplitude
=10 nm, voltage=1V, tip apex radil®=20 nm, quality factoiQ

=100, and cantilever stiffness=1 N/m.

We consider this case as curious because of expression
(43), in which the phase of the vibration depends [
instead ofV?, as usual in the other cases. In Fig. 9, for
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TABLE I. Comparison between linear and nonlinear approxima-mean distanc® (or d=D/Z), and the tip voltag/ relative

tions, for the cas&i=1 andd=1. to the sample. From all the above expressions and figures it
is clear that sensitivity, stability and lateral resolution cannot
Linear Nonlinear Exact be optimal at the same time.
approximation approximation values (1) Stability A small working distance seems to be favor-
a 9.9997 nm 9.926 nm 9.933 nm able, both for sensitivity and for resolution, but its reduction

below the free amplitude is limited by the stability of the

@ 0.425 6.96 6.63° noncontact vibration. As the stability of the noncontact mode
Humin 0.0003 nm 0.074 nm 0.067nm g difficult to predict theoretically, we can understand the

Sens 4.2°IV 34.9°V 33.1°V method often used by experimentalists, i.e., the tip distance
AX 14.8 nm 4.3 nm 3.0 nm is lowered until the system begins to be unstable, and then

restabilized by a small distance increase. However, we show
that working with frequency above the free frequency of the
example, one can verify the linear dependeg€¥) for d  cantilever(u> 1) gives the best stability conditions.
=1 (H=10 nm. For a larger distanced=1.2 (H=12 nm), (2) Sensitivity For a given tip, the sensitivity can be cho-
the (V) exhibits the more classic parabolic dependence. sen as great as desired, because infinite sensitivity is theo-
For d=1, the voltage sensitivity is also constdekpres- retically predicted. The amplitude, distance and voltage con-
sion (43)], instead of decreasing with the voltage as in linearditions for infinite sensitivity can be found in Fig. 2; they
modes. This particularity would allow the detection of acoincide with points where the slope of thgd) is vertical.
much lower voltage than permitted in the other configura-Experimentally, the precise conditions for maximal sensitiv-
tions, and finally constitutes the interest of the studied casety are difficult to find and maintain during the scans, be-
cause they are very sharp, as seen in the upper Fig. 4. It
VIl. DISCUSSION AND CONCLUDING REMARKS seems preferable to choose a lower sensitivity, with more

The noncontact mode at short distance, with electrostatif€xible experimental conditions. As the sensitivity curve
forces, appears relatively simple, with a general behavios(d) decreases and flattens when the frequency and the volt-
similar to the more studied Van der Waals forces. We shovd€ increase, reduced frequencies equal or greater than 1 are
that the development of the force in the Fourier series igécommended. For example=1 andV=1 V (in the middle
sufficient, at the first order, to provide precise analytical apfi9- 4, give relatively good sensitivity in the range<d
proximation. <1.5. The special case treated in Sec. VI is therefore a good

Moreover, this article combines several notions related t¢OMPromise. . . o
the experiments, such as sensitivity, stability and lateral reso- (3) Lateral resolutionThe theoretical resolution improves
lution, in order to determine which the best experimental(decreasgswhen the tip sample distance decreases, and
conditions are. seems to vanish in all conditions fol=0. Experimentally,

The free parameters in an experiment are the workinghis is evidently not the case for two reasons. First we ne-

frequency (or u=wy,/wy), the maximal amplitudez, the  9lected the atomic nature of the tip and sample, and secondly
we supposed that the tip sample distance can be as low as

60 needed. In ambient air, for instance, the onset of a liquid

meniscus between the tip and sample prevents us approach-
ing the tip closer than some nanometers. In vacuum, when
501 the tip-sample distance decreases, the Van der Waals force
. increases more rapidly than the electrostatic forces, and for
D 40t small distances, may exceed them. In this case, the attractive
S force becomes independent of the voltage, and the voltage
3 contrast gradually disappears. This induces also a minimum
2 distance calledH,,;,, When this minimum distance is re-
a ported in expressiofd0) andH,4=2D -H,i,= 2D, one ob-
_C .
o 20t tains
[ —_—
AXjmit = 1.04R2R?DH i, (47)
10 which is the best lateral resolution realizable in an experi-
ment at the mean distan&e If this limit resolution is com-
o0 o2 04 o8 o8 ; CEEEVEERY pared, in Fig. 10, to the theoretical resolution deduced from

Voltage (V) the general expressidd0), it appears that distance and volt-
age values cannot be selected freely. Resolutions lower than
FIG. 9. Phase of the oscillation in function of the tip voltage, for the limit are prohibited because the tip would pass too close
several tip-sample mean distan¢¢sThe oscillating conditions are  from the sample. For instance, it is evident in Fig. 10 that the
free amplitudez=10 nm, reduced frequenay=1, and tip apex ra- tip voltage should not be reduced below a certain value
diusR=20 nm. The curves forl=8 nm andH=9 nm are not plot- (0.5 V in the middle Fig. 10 in order to avoid such close-
ted for low voltages, because they are unstable. ness.
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20

sample, i.e., the covalent or ionic character of the surface and
tip atoms.

-
(4]

APPENDIX

We will demonstrate below that the variational method,
----- - applied on the sphere-plane electrostatic interaction, is abso-
lutely similar to the Fourier method used above in the deri-
vation of Eq.(24). We follow below the notation used by J.P.

Resolution (nm)
[=]

~— 05V

3]

—02V Aimé, in the Van der Waals casé.
o5 5 5 ‘ The LagrangiarL is composed of three terms, represent-
1 15 20 i ineti i fecing.
Distance (nm) ![?(?nthe kinetic energy, the potential energy and the dissipa
20 S8 —
L(zzt)=T-U+W, Al
u=1.00 / (z,z1) (A1)
€15 Linear 1 1, .
£ 1V L= Emzz - Ekz ~ ZFexct Eelec| — €27 (A2)
S0 0.5V
3 ISR with the electrostatic potential energy, referred to the mean
2 N distanceD:
Q Limit
x5 .
z RV D+z
Eelecz—f T dz= - meoRV? |n<—). (A3)
0 o D+z D
() 5 10 15 20
Distance (nm) As the oscillation is supposed sinusoidal,
20 Z(t) =Acodwnt + ¢), (A4)

u=1.01

the actionS is the integral of the Lagrangian over a period.

’g15 Linear The action is dissociated in three terms,

o

S1o 'V S= S+ Suiee Stiss (A5)
3 g—

2 M—""""""\Tt where S, S.eo @nd Syiss are, respectively, the action of the
[} mi

14

harmonic oscillator without dissipation, the action of the

electrostatic force, and the action of the dissipating ten.

and Sy are similar to the results in Ref. 17, except for

% 5 10 15 20 sin(¢) which comes from our different drive reference:
Distance (nm)

o

o2V

_mm ., 5, o, mF

FIG. 10. Resolution of the microscope in function of the tip- = ZA ("= o) + ;A sin(e), (AB)
sample mean distance, for different applied voltages and frequen-

cies. The resolution is calculated according to expres&8n(lin-

ear model and expressioii40) (nonlinear model The oscillating __TMag . _

conditions are free amplitudé=10 nm, voltage=1 V, tip apex ra- Stiss = Q AAsin(e - @), (A7)
dius R= 20 nm, quality factorQ=100, and cantilever stiffneds

=1 N/m. The minimum distance for the limit resolution k&,

27l w
=0.3 nm. Selec:f Eele(,dt- (A8)

Although there are no experimental conditions which give 0
simultaneously the best sensitivity, stability and lateral reso-, . - . L
lution, the fre}(/quencyu:1 seemsynearly )o/ptimal in most The S, cterm is not evaluated explicitly, only its derivatives
cases. The distance aroudd 1 is favorable for the sensitiv- &€ needed:
ity, whereas lower values are recommended for the lateral P 2l
resolution. Finally the tip-sample voltage should be notable, aszelec: if E (,dt:f —Egedt
so that a too close approach between the tip and the sample oA oA), ele o JA °°
is avoided. In vacuum, the ultimate resolution is determined )
by the ratio of Van der Waals to electrostatic forces, and is - 2meoRV: D _ 1 (A9)
therefore closely related to the microscopic nature of the wA VD% - A2 '
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aslelec_ J 27w ~ 27w 9 ~ ab|eS,Z:QF/k, m:k/wg, a]_:A/Z, d:D/Z, and U:a)/wo
oo el Ecledt= . %Eelecdt_o' gives the system
Al _ 2 RVZ( d
(A10) Qay(Uu?- 1) +sin(e) + WSO? ( e 1) =0,
The minimization ofS with respect toA and ¢ gives k2% \\d* -2y
(A13)
S mm 7F .
i 7A(w2 - wd) + — sin(e) code) —ua =0, (A14)

+ 277280Rv2( D 1) -0 (A11) which is identical to expressior(24) and (22).
oA VD2 - A2 ' The deduction given in this appendix is longer than the
development in the Fourier series, given in the text, and
JS wF Mg therefore not recommended. However, it was useful to dem-
P :A cogep) - ——A"=0, (A12)  onstrate that the two methodsariational and Fourigrare
¢ strictly identical for our system, and that they both neglected
where the underlined variables are calculated along thé¢he constant deflectiog, in expression(4) and the corre-
physical pathA=A and ¢=¢. Introducing the reduced vari- spondingA, term omitted in expressio(A4).
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