PHYSICAL REVIEW B 71, 205417(2005

Fano interference and resonances in open systems
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A scenario of quantum interference in which decayiggasibounil states interfere with the continuum or
with other quasibound states is investigated. The model we adopt as the basis of our analysis consists of two
or three antidots in an electronic waveguide. In a perfect waveguide, electron states belong to different
subbands and antidots give a transfer between them. For a waveguide with two antidots we have observed
interesting phenomena: interference between one subband of the quasibound state and a background second
subband, and interference of resonant group states of different subbands. In this case, the zero of the Fano
resonance is shifted to the complex plane and the coupling parameter becomes complex. In a waveguide with
three antidots, degeneracy of two quasibound states takes place and interference of these states occurs. The
Fano interference of two nearly degenerate resonances may bring a full suppression of pair resonances in the
transmission. We explain that this is due to the parities of the quasibound states. Our results show that the zero
of the Fano resonance due to interference between the quasibound states and the continuum is generally placed
in the complex plane. This gives an additional possibility for manipulating conductance resonances in a
waveguide by changing the antidot parameters.

DOI: 10.1103/PhysRevB.71.205417 PACS nun®er73.23.Ad, 73.40.Gk, 73.63.Nm, 73.63.Kv

I. INTRODUCTION a phenomenon of the interference between the discrete levels
and the continuum.Since a discrete level has a real wave
: Tunction, it is supposed in the original Fano theory that the
structures are among the most important quantumy,niing parameter is a real numB&Fherefore, interference
p_henomené_:z Recently, Fano resonances have been extengith a real wave function has been studied in most
sively studied both theoretically and experiment&iff. b pjicationg?-11.14.16-18
There are |nterest|ng manifestations of Fano resonances When we consider resonance for a repu'sive potentiaL the
which have been observed in transport investigations ofisual solutions of the Schrodinger equation for such a poten-
nanostructure¥21315192%Fano interference may potentially tial are real energy and continuum scattering states. The scat-
be used for the design of quantum electronic or spintronigering functions form a complete set, and the continuum
devices, such as a Fano interference trandfstmra Fano wave functions in principle describe all properties of the
filter for polarized electron&: There is an attractive idea to resonance. However, for energy near the resonance, the wave
use Fano phenomena for lasing without inversion. function looks like that of a bound state of the confinement
Many recent publications about Fano resonance irpotential. The resonance wave functions are linear combina-
Waveguides with an impurithuantum dots with an attrac- tions of such kinds of functions. For Iong-living resonances,
tive potential have been reportet!!1416-18n 3 theoretical ~ the wave functions resemble more closely bound—s_tate wave
investigation finding the positions and structure of resofunctions, and hence they form a more natural basis than the
nances, the Feshbach formalism with a projection operatd¥ave functions of the continuum stafésif the states that
has been applied with succeé8€4To explain the concept of belong to the resonance are conn_ected_ with the continuum,
excitations in interaction system@s has been done for then we have an additional scenario of interference between

atomic systems the shape of the conductance peaks can bgecaylng Stat?ti and thel continuum. Thlsbme%ns thz:ljt_Fano
understood in terms of single-electron configurations. In orf€sonances with a complex paramelenay be observed in

der to fit the experimental data, the authors used the expregjeAtliﬁnsmr']Stsr']ont'h fE has b devel
sion for the conductanc& of quantum waveguides, rings, ough the theory of Fano resonances nhas been devel-

and quantum islands: oped in many publications, to the_best of our kn_owlec_ige, no
attempt has been made to investigate the physical situations
e +q? in which the parameteq is complex, or, in other words,
G=Gy 5, 1 (1) when the zero of the Fano resonance is located in the com-
plex energy plane. It is well known that Breit-Wign@gWw)
where Gy, is the nonresonant conductance, ane(E resonance is an interference of waves in the same channel.
—Eg)/T" is the reduced enerdg¥y, is the energy of the reso- Now an intriguing question arises: What happens when a
nance,I" is the width, andg is the coupling parametet>'®  group of resonance states interfere with other states of the
Here, the parametey measures qualitatively the interference continuum? The interference of a quasibound state with the
between the bound states and propagating continuum stateantinuum is similar to localized state interference, al-
Hence, the question is how to obtain the positions, widthsthough it is not quite the same. The effect of Fano interfer-
andq values of the long-living resonances. Fano resonance ience, which has been analyzed in detail in previous
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FIG. 1. An electron waveguide witf®) two and(b) three anti- (a) (b) (c)

dots. The inner potential domaiiX, <x<Xg) is indicated by dot-

ted lines atx=X_ and Xg. The width of antidots in the transverse FIG. 2. (a) Dispersion relation for electron in a perfect wave-

direction is set to 0/ for all calculations. guide, andb) and(c) are schematic illustrations of the quasibound
levels in the effective potentials for two and three antidots,

articles®1114-18merges naturally as a result of the coupling"esPectively.
between a discrete state from an attractive potential and the
nearest bands of the continuum. While the interference be- 72 [ &
tween a single level and the continuum is the subject of ~ 5
many publications, interference between continuum states

and another continuum has not been studied until very re- =E¥(xy), 2
cently. The purpose of this paper is to investigate the inter-

ference of a narrow group of states with the continuum. Wewith particular boundary conditions in the leads— +). It

use a Feshbach method and analyze the evaluation of tlig convenient to expand the wave function in the complete
scattering amplitude with repulsive potentials only when BWhbasis of functions describing the transverse motion:
resonances are possible. In order to apply this method in this

situation, it is necessary to assume the renormalization of the *

scattering parameters for direct processes. Therefore, we ex- P(x,y) = > Un(X) en(y). (3
tend our discussion to the resonant theory of Kapura and n=1

Peierls?® which is more suitable to this purpose. A model we

adopt as the basis of our analysis consists of two or thre@ubstituting expansion Ed3) into Eq. (2), we obtain the
antidots in the waveguide, which may potentially be used forcoupled-channel equations for an electron in the form
applications. It is implicitly assumed that electron-electron
interactions play no further role in modifying the resonances, B2 P
so that a single-particle approach is thus valid close to the = 5=—5¥n(X) + 2 Vo () ¢y (X) = (E—- EDyn(¥), (4)
resonancé®-28 2m X n=1

P
et a—y2>\1’(x,y) + V(Y)W (xy) + V(X Y)P(X,y)

©

where the coupling matrix elements of the antidot’s potential

Il. THE MODEL AND MAIN EQUATIONS (which still act on thex coordinate are defined to be
We study the propagation of the electron waves in an
electronic two-dimensional2D) waveguide of widthw ar- _
ranged along th& axis. Let us consider a confining potential Vi ) = | en(y) VoY) en (y)dy. ®)

V.(y) in the transverse direction. Then, there is a complete
basis of functions describing the transverse motigty) of  Since Eq.(4), which is equivalent to the 2D Schrodinger
an electron with energiel,, effective massn, wave vector  equation, cannot be solved in general, we use some param-
k, along thex direction, and energf=£2/2m+E,. The  eters which allow us to use a resonant perturbation
electron waves in the perfect waveguide can be written agheory?®2%in the system under investigation. Here, we con-
"o (y). These propagating states may be considered igider the situation when the energy of the incoming electron
the waveguide as open channels. Now, we insert the repuis placed in the intervaExE(E; (the second energy win-
sive potentialV(x,y) of the antidots in the waveguide. The dow), as shown schematically in Fig. 2.
schematic geometry of the system is presented in Fig. 1 It was shown in Refs. 29 and 30 that the calculation of the
showing the potential region in the waveguide, where two orconductance in a waveguide with quantum dots in the ballis-
three antidots are arranged along the longitudinal directiottic regime reduces to the solution of the scattering problem.
and the potential outside of the regig, <x<Xg) van-  We are interested in the transmission amplittile describ-
ishes. Here, we introduce two or three antidots to demoning the scattering of electrons from the channel with number
strate interference effects for both an isolated quasibound’ into the channel with number. The transmission ampli-
state(for two antidotg and degenerate quasibound stdfes  tude can be determined from the asymptotic solutions of Eq.
three antidotswith the continuum states. (4). The conductance measured by the two-probe method is
In order to find an electron wave function in the wave- determined by the Buttiker-Landauer formt#&=°through a
guide with antidots, we solve the 2D Schrodinger equation scattering matrix.
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Ill. FANO INTERFERENCE OF RESONANCES #2
WITH THE CONTINUUM

)
- —— + V1 (X) | xE(X) = (E - E)) x&(X). 8
o 11¢) | Xg(X) = ( DXE(X) )
In this section, we try to understand how the group of
resonances interacts with the continuum. Investigation of & i
waveguide with an attractive impurity has shown that havingN€ asymptotic form

ere, xg(X) and yz(x), which are solutions of Eq8), have

more than two open channels only alters the width and po- ik
sition of the resonances, and hence plays a minor role in the (%) = 7€V, X— fo, 9)
Fano phenomenditi®Therefore, in the resonant approxima- XE etk 4 peikx x5 oo,

tion we only need to consider two coupled equations in the
second energy windowWEx(E(E;) to understand the main where 7] and pj are the transmission and reflection ampli-
physical features of the interference. If the characteristitudes(7;=7;= ).} In other words, we assume that in the
value of the matrix element;,, describing the coupling be- first channel there are only nonresonant states for a given
tween two nearest channels, is small compared to the sulenergy interval.
band distance, then we can use the two-band approximation In decoupled systems, the wave functions in the second
in the form channel belong to the continuum. In order to treat the scat-
tering problem for a repulsive potential, which produces qua-
h2 P sibound states, the resonant states are more convenient to use
(— e +V11(X)>¢1(X) +Vi(X) iha(X) = (E = Ep (%), because the resonant wave functions form a more natural
basis than the functions of the continuum. We use Kapura’s
(6) and Peierls(KP) approac® which gives orthogonal func-
tions of the quasibound states. In order to find the KP basis,
we solve the auxiliary equation in the potential regiog

h? P
( + V22(X)> (%) + Vo1 (X) 1 (X) = (E = Ex) ¢ha(X). <X<XR)

" 2maxk?
7 hZ 2
™ ( =z +v22<x>>¢j<x> = -E)¢0). (10

2m x>
However, without much problem this can be extended for a
multiband approximation. with special boundary conditionghe radiation or Sommer-

In order to examine the interaction between the group ofeld boundary conditions(see Appendix A for detai)s The
resonances and the continuum, we use two different method®|utions of Eq.(10) produce resonant states with complex
which can both illuminate the coherent effects in the transenergies and eigenfunctions:
mission. First, we extract a resonant contribution from the
scattering amplitude. In other words, we try to find a disper- gi=ef—iyR 6(0(j=1,2...). (12)
sion formula for the transmission in an open system. Second, b . :
we solve Eqgs(6) and(7) by using a numerical method and |f the distance between resonances is greater than the width
obtain the transmission amplitude. In this case, we evaluatgnd the energy of the incoming electron is located near the
the conductance numerically in the quantum channel withenergy of a resonance, then we can consider a contribution of
two and three antidots. The advantage of this technique igach resonant state separately. In this case, we have a reso-
that tuning of the resonance is possible by modulating thgiance in the second channel with a Lorentzian line shape.
parameters of the system. In addition, the overlapping offhere are situations when a group of overlapping resonances
resonances is also shown in the Waveguide with three anti'nay be in the second channel. In this case the Shape of the
dots. In our numerical calculations performed here, we usgesonances in the overlapping group will be different from
the following parameters for the waveguide and antidots: the orentzian(see Sec. 11l D for detai)s
effective massm=0.067fn, (which is appropriate for the  Thus, for the decoupled system we have scattering waves
AlGaAs/GaAs in_terfa_c)eand the width of the waveguide is xe(x) and yz(x) in the first channel, and quasibound states
W=23.69 nm(which givesE; =10 meV andE,=40 meV for 4 (x) in the second channel. For the coupled channel, on the
the first two.energy Ie_vels due to transversg confinement iginer hand, the interaction may induce a transition from
the waveguide The distancel. between antidots, and the ropagating states to quasibound states. In other words, the

positionY_ of the middle of the antidots in the waveguide arejnteraction may induce interference between the quasibound
also parameters of the system, as shown in Fig. 1; thesg§ates and the continuum.

parameters may be considered as variables.

B. Interference of resonances with background

A. Decoupled systems . . . .
P Y We are interested in the case in which the energy of an

First, we study an analysis of the decoupled system#&ncoming electron is assumed to be located near the resonant
[V12(x)=0]. If we neglect intersubband interactions, the in-energy, defined by Eqll). For the coupled systems, the
coming decoupled wave in the first channel may be foundvave functiong,(x) may be expanded in the interva}
from <X<Xg as
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5(X) => Ai(x). (12) plitudes, are the main res_ults of thi_s section. To iIIusFrate the

result for the transmission amplitudes, we consider the

From Eq.(7) we can find a formal expression for the ampli- simple case when only a single resonance is in the first en-
tudesA;, ergy window of the second channel.

(E-g)A; = (¢IVid i), (13

where the scalar product in right side of E43) defined in
Appendix A. Using a Green’s function for the electron in the  Let us consider the appropriate parameters of antidots for
first decoupled channel, the solution of E6). can be written  a single resonance in the second channel. It is assumed that
as the distance between resonances is greater than the width of
|t + the resonance for a given energy interisge Fig. 20)]. In

1) = [xe) + G1Vad o), (14) this case, we examine a single quasibound state in the poten-
where|xz) is the amplitude of the incoming wave in the first tial V2,(x) and choose the state with the numperl. From
decoupled channel. Substituting E44) into Eq. (13), we  EQ. (19) we obtain
obtain the following explicit equation for the amplitudes:

C. Separate resonances

E-E?
(E-g)A - > U /Ay = (5| Varl xe). (15 = nE_ ER+irR’ (21)
j/ R R R
where Ef=eR+RegU;y) and I'f=92-Im(U;,). Here, the
complex pole and zero are obtained E%sﬁ U;4 and Efl’
Ujjr = (#V21G1Vid y)). (16)  =g,+Qy,, respectively. The complex parame®; is de-

where

If we assume that the incoming wave belongs to the firs{Ined as the matrix element
channel, we can find the elements of the scattering matrix Xr XR

that are determined by the asymptotic behavior of the outgo- Qjj’ = TR (J dx ¢j(X)V12(X)J dX’ by (X )V 15(x')
ing wave i;(X): for x— +o, i;(x) —t,,6%1%. To do this, we ! X
use Eq.(14) in the form

_XL

X xe(<)xe(x) - XE(X)XE(X')]) : (22)
(%) = X+ > A f dx' G1(x,X")V15(X') ('),
j Notice that all parameters of the resonafizero and pole
(17) are slowly varying functions of energy.
o o Thus, we obtain a simple result for the transmission am-
where the explicit form of the Green’s function is plitude with a zero and a pole in the complex energy plane.
0va(X), X>X, _However, the meaning of th_|s result |s_d|fferent from the
% X {XE( EXEE ) ' (18 interference of dound statewith the continuum. Two con-
ikqfory Xe(X)xe(x), x<Xx', tributions to the width of the resonance are as follo(@sthe
where x{(x) and yz(x) are solutions of Eq(8) and 7, is the width of the quasibound IevalrR and(b) Im(U;,), which is
scattering amplitude in the first channel. We use expressior§® result of interference with the resonance with the con-
that connect the asymptotic behaviongix) andyg(x) with  tinuum. The equatiorEy=,+Q,; implies that the zero of
the reflection and transmission coefficieht8.Substituting  the resonance is generally located in the complex plane.

the solution of Eq(15) into Eq.(17), we obtain the explicit Since¥f~Im Q; is equal to zero for the bound-state energy
equation for the amplituds; in the form (see proof in Refs. 10 and L 7the transmission amplitude

has a zero on the real energy axis. In this case, the position of
R ; —.R
ty=m 1+—5— E(X ) ( ) (u|Vixt) b, zero resonance is defined 57 =7+ Re(Qyy). Then, Eq.
H 1{ klhz elViz "\E-H . Ve (21) gives the contribution of the Fano line shape, shown in
Eqg. (1), to the conductance due to the current in the first

Gi(x,x') =

(19) channel with the complex parameter
whereH=¢l +U is defined as a matrix, arids a unit matrix. _ _ C R B
Similarly, considering the wave functiogi,(x) to have q={Re(Us; = Qo) + il = Im(Qu) /51~ Im(Uy)].
asymptotic behaviog,(x) — t,,€*, for x— o, we obtain In addition, there is another contribution to the conductance

from the second channel when the Fermi energy belongs to

ty = e kRS d)(XR)( ) (¢y|Vidxg). (20)  the second energy window. Near the resonant energy, the
I E-H transmission amplitude, can be obtained from Eq2) as

Similar expressions foi;, andt,, can also be found. These kX (XelV1d 1) h1(XR)

expressions can be simplified for a particular energy interval tpy~ € 7R E—-ER+ IFR : (23

by taking into account only a finite number channels which !

interfere with the continuum resonant states. Equati@®s  The obtained results far; andt,; have a simple physical
and(20), called dispersion formulas for the transmission am-interpretation as follows. The antidots in the waveguide form
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an open resonator. Assuming that an incoming wave is in the 2 7
first channelln=1) and interacts with the antidots, the wave (a) bl
may be transferred to an open resonator in the second chan- 1.5 L
nel (n=2). In this case, we have slowly emitted waves in the Tos24 v
second channel. So, if there is a resonant state in the second 1 —
channel (i.e., there are only outgoing wavest gives a L
Lorentz-type resonance in the transmission. In the meantime, 0.5T1512 o
the interference between a nonresonant stsaekgroundlin -

the first channel and a quasibound state in the second chan-
nel gives a Fano-type profile in the transmission. The same

results are expected when a nonresonant state in the second 2
channel interferes with a resonant state in the first channel. (b)
For a numerical calculation we assume that the antidots 1.5

are described by short-range potentials in the direction of
electron propagation, and finite in the transverse direction.
The matrix elements of the antidot potentials may be written
in the form

2
Vn,n,(x)=%vn,n/[5(x—§> + 6<x+%)] (24)

2 T T
wherev,, v is the matrix of the single-dot potential defined (© Lo
by the width of the waveguid#/, the position of the barriers 1.5 i i
Y, (defined from the edge of the waveguide to the center of Tooz1 E/\j/\_/
the barrie), and the scattering parametea¥, (V, is the 1 L
potential barrier height, anais the thickness of the barrijer :
The transverse geometrical parametae width of the scat- 0.5 |
tererg is set to 0.5V for all the antidots. The matrix element Ty, |
von fOr a system under consideratieee Figs. (&) and i
1(b)] can be easily obtained from E) in an explicit form. 0 20 40 60 80
Then, Egs(6) and(7) for a given potential in the two-band E (meV)
approximation may be solved by using transfer-matrix tech-
niques[1]. FIG. 3. Transmission3;_,; , and T,_,, ; of a quantum wave-
We have calculated the transmissions guide with two antidots as a function of the electron energy for

three different positions of the antidofg;=(a) 0.5W, (b) 0.375N,
and(c) 0.25M. The vertical dashed lines parcel out the energy in-
terval where an effective Fano interference takes place for the given
parameters of systeifirom 40 to 50 meV. The distance between
(25) the antidots isL=27 nm, and the scattering parameter a¥
=0.8 eV nm, wherea is the length of the antidot an®y is the
eight of the potential barrier. The pronounced BW resonances in
he first and second channels are showtajnWe focus on the first
resonance in the second channel with the posi&éPr46.33 meV
Und the widthyf=0.18 meV.

Ky Ky
Ti12= |t + k_|t21|2 and T, 5=ty + k_|t12|2
1 0

for different positions of the antidots by varying the param-
eter Y.. This parameter characterizes the transfer of th
waves between two channels.Yf=0.5W, the antidots are
placed in the center of the waveguide and the interactio
between channels is equal to zédecoupled channelsFor
a given distance between antidéts=27 nm there are BW  values of the coupling parametéihe positionY, of anti-
resonances in the second channel in the second energy widets. As the energy of the propagating electron is changed,
dow (ExXE(Ez). In order to obtain the energy value of the the effective matrix element of channel interaction is
resonance, we solve the KP equation for the potential givehanged from destructive to constructive interference. For an
in Eq. (24). The energy can then be found from attractive potential, the wave function of the discrete levels is
real and the zero of the resonance is on the real axis of the
. (an) 1 (Kn+ iqn>2 i L2 energy. Hence, the transmission goes through zero when the
sinl —— |==||—— ] —1|e"""%, (26) -
2 2i| \ k,—iq, electron energy goes through the particular energy of Fano
. resonance. The interaction of resonances in an open system
where d,=\2m(e ~E,)/% and k,=ik,=2v,, (=1,2). Sup-  results in the shift of the zero resonance in the complex en-
pose we focus on the resonance with the positigh ergy plane, and the transformation of a BW resonance into a
=46.33 meV and the width5=0.18 meV (for noninteract-  Fano resonance in the first channel. The transmisSign
ing channelsY =0.5W). In general, the interaction between =|t,,|? of the first channel, indicating the Fano resonance, is
channels changes the shape of the resonance dramaticalihown in Fig. 4a) and the transmissiof,,=|t,,> of the
The transmission in the first and second channels as a fungecond channel, indicating a transformation of BW reso-
tion of the electron energy is shown in Fig. 3 for different nance, is depicted in Fig.(#d) for Y.=0.428N when there is
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0.05 > 1
0.04 5@ | 0.8 (b)/
- 0.03 0.6
002 O 0.4
0.01 / 05 0.2
44 45 46 47 48 44 45 46 47 48 0 20 40 60 80 40 42 44 46 48 50

E E E (meV) E (meV)

FIG. 4. Transmissioia) Ty, of t.he fir.st channel_ antb) T, of . FIG. 6. (a) Conductance of the waveguide with two antidots for
the second channel for a waveguide with two antidots as a f“nCt'OQ'C:O.S\N (in units of the nonresonant conductance of the wave-

of the electron energy for;=0.423 (solid line) and 0.5V (dotted  iqe The Fano resonance is a result of interference between the

line). A Fano resonance is seeniy, whereas a transformation of 50004 channel of the quasibound states and the first channel of the

the BW resonance is ifiy, due to the mte_rfergnce between chan- continuum(Fano resonance is marked by an anrolls) The shape

nels. Other parameters are the same as in Fig. 3. of the Fano resonance in the conductance is depicted in a different
scale. Other parameters are the same as in Fig. 4.

interference between channels. In order to see the shift of the

zero resonance in the complex energy plane, we present a p. Overlapping of resonances and Fano interference

contour plot of the absolute value of the transmission ampli-

tude for the Fano and BW resonances in Figs) &nd §b), To begin this subsection, we discuss the interference of
respectively. In Fig. &), we see a Fano dipol¢ransmission  the localized states. For instance, when two identical quan-
zero and polgin the complex energy plane where the ener-tum wells are brought together to a distance comparable with
gies of a zero and a pole af=(46.47-0.14 meV and their localized radius, the degenerate levels become split due

E§=(46.21—io.24) meV, respectively. This clearly indicates to the interference of the waves. A similar effect takes place

that the position of the transmission zero is shifted to the}‘?Or guasibound states. When more than one resonant quasi-

complex energy plane due to the interference between char ound state is present in a one-channel system, fqr instance,
nels. We note that the position of a pole in the second charl 2 three-barrier systefi;* the resonance states interfere

nel is approximately the same as that of the first channel onV'th each _other an_d this r_esults in the overlapping of reso-
Y.=0.425N, but it is shifted a little for the nonperturbed nances. Since the interaction between resonance states gives

~R i the overlapping of resonances, the single BW formula is no
resonancéY,=0.5W) asET=(46.33-10.18 meV. longer valid for this situation.

The conductance of the waveguide with two antidots as a | the triple-barrier resonant structure of FigcR in par-
function of the electron energy is shown in Figa and the  tjcylar, there are two resonant quasibound states which are
shape of the Fano resonangearked by an arrow in Fig. associated with bonding and antibonding states in the two
6(a)] on a different scale is depicted in Figg. The shape \elis separated by a barrier. In order to consider tunneling
of the Fano resonance in the conductance of the waveguidgrough this system of three antidots, we add an additional
for different positions of the antidots is displayed in Fig. 7. jntidot at the origin with matrix elements , to Eq. (5).

Thus, if a long-living state mterferes with the continuum, theThen, the new matrix elements of the three-antidot potentials
zero of Fano resonance is placed in the complex plane. can be written as

15

f
0.5
0
-0.5
-1
. -15

44 45 46 47 48 44 46 47 48
Re E Re E
FIG. 5. A contour plot of the absolute value of the transmission

amplitudes(T,; and T,,) in the complex energy plane is depicted
for (a) Fano andb) BW resonances for the same parameters as ir

Fig. 4. (a) The position of the transmission zero is shifted to the E (meV)
complex energy plane due to the interaction of resonance with con-
tinuum [E8=(46.47—io.14; meV] and (b) a transformation from FIG. 7. (Color) Fano resonance in the conductance of the wave-

Fano resonance to BW resonance in the first channel is observeglide for different positions of the antidot¥,.=0.5W (black),
with evidence of merging a Fano dipolé&ransmission zero and 0.45V (red), 0.4W (green), 0.35V (blue), 0.3W (brown), and 0.2%V
pole) and a transmission pole. (purple. Other parameters are the same as in Fig. 4.
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hZ L L 2
Vn,n’(x)z_{ nn/5(X)+Vnn'[5<X‘—>+5<X+—)]}- (@
m 2 2 15 )

(27) T2—>2,1
Now, we have the possibility of manipulating resonances by !
changing the potential height of this additional antidot at the 0.5 Tioiz
origin.

In this section, we extend these studies to consider the

interference of two quasibound states with a continuum. 0 20
Here, we focus on the case where the two quasibound states 2
are in the second chann@br a decoupled systemilt is clear 15 ®)
that two quasibound states can interact only through virtual . Tooas

transitions to the continuum, because the interaction of the
resonance with the continuum is defined by Ep). It can
be seen that for a system with symmetry about the center the 0.5

Tion,
“initial” quasibound levels do not interact direct{yJ,,=0), A
but are connected through the matrix element describing the
transition from the quasibound levels to the first band. We 0 20
can find from Eq.(19) that the transmission amplitude for 2
this case has the form 5 ©
(E-EDE-ED+, Teoer
t12(E) = 7(E , 28 1
(B =7l )(E—E§+|r§)(E—EZ+|F§) (28
Where 0.5 T1—>1,
m 0 20 40 60 80
7%2 ﬁ4k27_2(XE|V21|¢l)(XE|V21|¢)2 (¢1|V21|XE) ¢2|V21|XE) E (meV)
EF=e[+Re(Uj)), [T=7}~Im(Uy), andEJQ:Sj*'ij (1=1,2. FIG. 8. Transmission3;_,; , andT,._., ; for different positions

Here, the complex parametegy; are defined by Eq(22) of the three antidotsY,=(a) 0.5W, (b) 0.4W, and (c) 0.3W. The

and the coupling parameter;, can be obtained from the distance between the antidotdis 27 nm, and the amplitude of the

framework of the matrix potential Eq27) in an explicit intermediate antidot potential is chosen to be 1.25 larger than the

form. As a result of the interference, the positions of theothers; the scattering parameter a¥,=0.4 eV nm. There is an

zeros in the complex energy plane depend on the couplingverlapping of the BW resonances in the second channel which

parameters between the localized states and the continuu§ives an asymmetri¢-ano-typ¢ resonance in the transmission.

The scattering amplitude also possesses two poles in the

complex plane. Thus, Fano resonances interact effectivelgositions? Since crossing of the resonances is possible in this

and this leads to a number of interesting consequences, aase(see beloy, we need to modify the method for investi-

will be proved below. gating the interference of resonances in open systems. We
We present numerical results to illuminate the interferencébegin by studying the analysis of the KP equations for

of two quasibound states with a continuum. The levels in theoupled channels:

system with three antidots may be found by perturbation

theory. For instance, if the distance between the antidots ii G ) v _ E

L=27 nm for given barriers, there are two quasibound states, 2mJx? 1100|100 + V120 51(x) = V1)

for energies £7=43.56 meV (/7=0.37 meV and &5

=45.64 meV(V;:O.SO meV, which give two overlapping ﬁz

resonances in the transmission. The transmissignsg , and ( 2max 2t

T, ., 1 as a function of energy for different positions of three

antidots[Y,=(a) 0.5W, (b) 0.4W, and(c) 0.3W] are shown in (29)

Fig. 8. It can be clearly seen that there are two overlappmq:rom now on, we use the notatian= ER_IFR throughout

BW resonances in the second channel. The asymmetric Fagg

V22(X)> B2j(X) + V21(X) 1) (X) = (] = Ep) hpj(X) -

e section. The wave functions in the |nner potential region
resonance in the transmission is due to the interference
. . ay be expanded as
resonances with the continuum.

IV. INTERFERENCE OF RESONANCES () =2 Ady(X), (X)) =2 Ady(x).  (30)

IN DIFFERENT CHANNELS Using Eq.(29) and boundary conditiontsee Appendix B

Now, a very interesting question arises: what happensve can finally find the elements;; andt,,) of the transmis-
when both scattering channels have resonances with nearlsion amplitude:
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ﬁzk —ikoXR (X (X R
¢|;](—|;?R¢ilji(l“§)’ N2 = | Vs (3T

(31)

11~ :
J

2k, KR by (Xe) s (X) Note that Eq.(36) is written using complex paramete(s,

ty, = >, SR =ER-il'Y), even though it looks like the usual expression for

j E-E+Il; splitting and degenerate energy levels in perturbation theory.

This equation describes the interaction of poles in the com-

plex energy plane. Thus, the solutions of E86) give the

position and the width of the resonances. Applying a stan-

dard method, we can find two orthogonal wave functiéns

for the complex eigenvalues,. Using these functions, we

A. Interference of two resonances in continuum can expand the transmission amplitude near the resonances

We start our analysis considering a two-antidot systerﬁ"‘s is done in Eq(31). Therefore, in the first scattering chan-
with no coupling between channels. In this case, we havé'el we have

Similarly, the elementst,, andt;,) of the scattering matrix
can also be obtained if the incoming wave is only in the
second channel.

two independent KP equations from HQ9) with V,,=0. If i2k e R D (XD, (X))  DP_(XQP_(X)
we also assume that the antidot barriers are very high, then ty =~ m E—ER+iTR + E—ER+iTR
we can find the solutions of independent KP equations using " - - N
a perturbation. In the first approximation, we have energies (39)
for the first and the second channels Each term in Eq(38) describes a resonance with a Lorentz-
722 2522 ian Iing shape. Because the wave functions a.re.cor_nplex,
8<101>— E,+ > and 8(22 E,+ =, (32 phase interference of resonances in the transmission is pos-
2mL 2mL sible. An example of this type of interference is presented in

Fig. 9 for different positions of the antidots, with the distance
between the antidotis=36.46 nm. There is a dip in the first
channel of the transmission due to the interference of two
(0) — .0 resonances between the first and second channels. The dip is
eyt =e2:b) 39 located near the bare energy’}=ey1=43.36 meV (¥,

if we treat the distanck as a free parameter in this equation. =1.34 meV, 7)51 0.13 meV. The resonance in the second
In other words, by changing the distance between antidotsshannel shows an asymmetric shape in Fig).9The con-
we get two closely placed quasilevels. If the distance beductance of the waveguide, which is the sum of the transmis-
tween quasilevels is less than the width of the resonancesjon of the different channels, as a function of Fermi energy
the corresponding states may be considered as almost degém-the regime of overlapping resonance is shown in Fig. 10,
erate. The weak coupling between the channels by a matriwhere the dip neas(logzezo)l—43 36 meV disappears.
elementVy, gives the interference between the quasibound The interference of the resonances is defined by two fac-
states. tors: (i) direct interference of two resonance states &ind

Let us use the condition of resonant overlapping that taketerference through the background. The direct interference
place for a particular distance between the antidots. For this the main effect for the chosen parameters of the antidots. It
unperturbed system, we have two solutions of the decoupleid easy to prove that KP states may be characterized by a

with j,s=1,2,..., respectively. It is easy to show that there
are solutions of the equations

equationg29): parity so thatV,,(X)=V,y(=x). The matrix element in Eq.
(37) for the quasibound states depends on the parities of the
$1(X) = b1j(X), 1= ey, wave functions. For instance, there is a strong interference
and between the firsteven resonance of the second channel and

the third(even resonance of the first chanr&lig. 10. If the
_ - distance between the antidots lis=29.25 nm, there is an
20 = b2 dX) 2= f2s (39 overlap of the secontbdd resonance of the second channel
For a weak coupling interaction between channels, the solland the third(even resonance of the first channel for the
tion of Eqg.(29) can be written in the form energye, )2—85_0)3_ 60.62 meV. In this case, the resonances do
not interact directly but there is weak interaction of the levels
(‘131(X)) B <¢1(X)> ( 0 ) as a result of the interference through the background.
=q + (35) . . g . .
D,(X) 0 b Notice that the formation of a miniband in the transmis-
sion resonances can be obtained if we consider a superlattice
From Egs.(29), we also can find the perturbed energies ofof antidots in the waveguide. For example, &teal3® have
the resonances..: investigated the characteristics of transmission resonance in
a quantum-dot superlattice, considering the aspect-ratio
_ete \/ e1—€5\° 9 variation of two alternating potential heights in the quantum
Br= T, * 5 +(1]V152)%, (36) channel. In this system, well-arranged resonant peaks in the
first miniband of each plateau are divided into paired peaks
where the element of the complex matrix is defined by of two groups, which produce an extra gap inside each mini-
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1.5

0.5

0 20 40 60 80
E (meV)

FIG. 11. Conductance of the waveguide with three antidiits
tance between the dots is=33.5 nm, and amplitude of the inter-
mediate antidot potential is chosen to be 1.25 times larger than the
others; Y,=0.28V). Fano interference of two nearly degenerate
resonances results in full suppression of pair resonances as a result
of different parities of the quasi bound statisere, the position of
the second resonan¢edd peak in the second channel is indicated
by an arrowj

main idea, we study the solutions of the KP equation for
three antidots with a matrix potential given by E@7).
Again, we begin by considering the case where the coupling
matrix element is equal to zef&Y,=0.5W), and we assume
that the intermediate barrier is very high. In this case, there is
a group of nearly degenerate stafest of coupled narrow
resonances in each open channdle may consider a cross-
ing of two group resonances by changing the distance be-
tween the antidots. Using a perturbation, we can have a lin-
FIG. 9. Interference of two resonances in the transmissiorf@l combination of four waves and find four complex
T, .1, andT,_,, for different positions of two antidots. The dis- €nergies. This solution may be easily investigated numeri-
tance between the antidots liss36.46 nm, and the scattering pa- cally.
rameter isaVy=0.5 eV nm.(a) There is a crossing of two BW reso- In Fig. 11, we have displayed the conductance of the
nances with the bare energy’,=s,=43.36 meV forY,=0.5W.  waveguide with three antidotglistance between dots Is
The overlapping of resonances in the first and the second channets33.3 nm; the amplitude of the intermediate antidot potential
produces a dip in the first channel of the transmission for bothis chosen as 1.25 larger than the othek&hen there is a
Y.=(b) 0.4W and(c) 0.3W. crossing of levels with the same parities, the Fano interfer-
ence of two nearly degenerate resonances completely sup-

band. As follows from our consideration, the phase structur@resses the pair resonances in the transmisgidre. position
of the resonances plays an important role in the formation off the second resonancedd peak in the second channel is

the band structure in open systems. indicated by an arrow in Fig. 1[LThis is due to the different
parities of the quasibound states, which indicates that the
B. Multiresonant interference in the continuum effective interaction of the resonances depends on the parity

of the quasibound levels. The interference from the group of

A more general scenario of overlapping resonances is PO%asonances also depends on the parities of the KP states.
e

sible for three antidots in the waveguide. To understand th

12(3) | 12 ©) V. CONCLUSION
Interference effects have been investigated in a quantum
G 1 1 . . . . :
waveguide with repulsive potentialgntidots. In a wave-

05 05 guide with two antidots, we have observed interesting phe-
nomena: the interference between the quasibound states of
one channel and background states of the second channel,
and the interference of resonant group states of different

FIG. 10. (a) Conductance as a function of Fermi energy in the channels. In this case, the zero of the Fano resonance is
regime of the overlapping resonandésre energies aregogzs(zo)l shifted to the CompleX plane and the COUpIing parameter be-
=43.36 meV, presented in different channe(b) Expanded plotof comes complex. We have used the KP theory for the calcu-
the conductance near the crossing of resonances is showry, for lation of quasibound states and have developed a perturba-
=0.3W. Parameters of the system are the same as in Fig. 9. tion theory for nearly degenerate levels in the continuum.

0 20 40 60 80 40 42 44 46 48 50
E (meV) E (meV)
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Degeneracy of two quasibound states takes place in and(d) substitute from one equation to the other. Notice that
waveguide with three antidots, where the interference of dekq. (A2) is the direct product of two functior®ot the prod-
generate states may be considered. The Fano interferenceuaft of the one with the complex conjugate of the ojiér
two nearly degenerate resonances fully suppresses pair reddsing Eqgs.(10) and (Al), it is easy to show that the eigen-
nances in the transmission. We have found that this could bealues may be written as
explained by the parities of the quasibound states. Our re- R
sults have shown that the zero of the Fano resonance, arising g =g ~1 7)? (A3)

from the interference between groups of stdtgsasibound R

. , ; ~ wheree" are the real energies of the resonances,ﬁhdre
or resonant statgsvith the continuum, is generally placed in

i the rea‘(and positive widths of the resonances which are
the complex plane. It was shown that the profile of the FanQyefined as

line in the transmission depends on the phase difference be-

tween the paths. The Fano resonance in the transmission may g 1K (XD + | hi(XR) 7]

disappear for some parameters of the system. The operation Vi = Xg =0. (A4)
of resonances in transmission gives a method of controlling 2mf |¢j(x)|2dx

quantum interference in nanostructures. The application of X

Fa;no feéif’;}gg‘ceg thas bl ble:en _dtlscfussedt in ”ﬁ"i”y The wave functionpg(x) for the second decoupled chan-
references; and a tunable Fano interferometer consist-| .« v <o jution of the equation

ing of a quantum dot via tunneling to a 1D channel has been

realized in an experiment to observe the Fano resonance 2 0 o

which coexists with an interaction in the form of the Cou- T oma +Vo(X) |45 (X) = (E-Ex)hy (). (A5)
6 max

lomb blockadé®

On the other hand, the wave functiq@(’)(x) may be ex-
ACKNOWLEDGMENT panded in the interVaXL<X< XR as

This work is supported by the Indiana 21st Century Re- P (x) = 2 A% i(x). (AB)
search and Technology Fund.
Multiplying Eg. (10) by w(zo)(x) and Eq.(A5) by ¢;(x), sub-
tracting one from the other after the integration of each equa-
tion over the intervaX, <x<Xg, and using the orthogonal-
ity conditions[Eqg. (A2)], the amplitudeA}o) can be written as
Among many different approaches for investigating reso- -
nant state$>332we use Kapura's and Peierls’ appro#th A0 = @_@& (A7)
which gives orthogonal functions of the quasibound states. ) m E—sz+iyjR
(For comparison, a nonorthogonal basis is obtained b
Sigert’'s approacf). In order to find the KP basis, we solve
an auxiliary equation10) in the potential region(X, <x

APPENDIX A: KAPURA-PEIERLS APPROACH FOR
ONE-CHANNEL SYSTEMS

>ﬁ'herefore, the wave function in the potential region may be
written as

< Xg) with boundary conditionsthe left and right sides of i72k () (X))
the antidots are used as the lines which pass through the D(x) = mzz E]— RL')LF' (A8)
pointsx=X, andx=Xg) g 1
P P The transmission amplituder,, defined by mek®
<— + ikz) #i(X) =0 <— - ikz) #i(X) =0, =y (Xg), can be expressed as
IX X=X IX X=Xp
221, omikoX
(A1) = ih kg2 RE d)](XR)d)j(XL). (A9)

———, . . m = E-eR+iyf
wherek,=+2m(E-E,)/# is the wave vector of electrons in ! IS

the second band, anel denotes the complex eigenvalues. Notice that this transmission amplitude has resonant terms
Because the boundary conditions E41) are complex and with a Lorentzian line shape.
uniform, the solutions of Eq(10) have an infinite set of

mplex functionsgi(x) (j=1,2,...) with the orth nali
complex functio &ﬁ'( ) (J Y ) th the orthogonality APPENDIX B: KAPURA-PEIERLS APPROACH FOR

conditions COUPLED SYSTEMS
X
(pjley) = R¢>J-(x)¢j,(x)dx: 8- (A2) In this appendix, we extend the KP approach for two
L coupled resonant systerfiggs. (29)] with boundary condi-
tions

The orthogonality condition of Eq(A2) can be obtained

from the following steps(a) write two KP equations foip, P P

and ¢;, from Eq. (10), (b) multiply each equation by an (5(‘“'(1)(7511'()() =0, (5( —Ik1> $1j(X) =0,
orthogonal function, eithes;, or ¢;, (c) integrate both equa- =X X=Xr
tions in the intervaX; <x< Xy taking into account EqA1), (B1)
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=0.

X ax ax -~
(B2) (B6)

The orthogonality conditions can now be chosen as

<§+ik2>¢2j(x) =0, (i—ikz)fﬁzj'(x) =0. (i+ik2)¢2(x) =0, (i—ik2>¢2(x)
X X:XL x:XL

X=Xg

The wave functions in the inner potential region may be
(bajl 1) + ( ajlpajr) = 6. (B3)  expanded as Eq$30). By doing the same procedure as ex-

The complex eigenenergies have been written in the forn‘?lalmad in Appendix A, we can find the amplitudas
sj:ER—iFjR (see Sec. I}, where the width of the resonances

is defined by A= ih%k, ¢1;éXL) ; &)
r 12l by (X0 + kgl by (X)) m E-E
l“j = Xa . (B4)
2m{ | [[pyj(¥)|? + [ (%) 21dx Then the wave functions in the inner region can be written as
XL
Now, we focus on the scattering matrix when the electron _ iﬁzklz 1 (X)) ¢1j(X)
waves are in two open channels. As a result of the linearity Ya(x) = ~ E-ER+iTR’
of the Schrédinger equation, we can consider the scattering : : . 8
of the two channels independently. For instance, if the in- . (B8)
comin ; ; . ; _ ik o ¢ (XD ¢95(X)
g wave is only in the first scattering channel, the o(X) = > =R
boundary conditions for the electron wave functions may be m T E-E+il
written as
J 9 Therefore, the transmission amplitudest;,, t4, andt,, can
<— + ikl) (%) = 2iky, <— - ikl) #(x) =0,  be obtained from the boundary conditions, where the expres-
X =X X EXR sions for transmission amplitudég andt,; are given in Eq
21 .
(B5) (31 in Sec IV.
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