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A scenario of quantum interference in which decayingsquasiboundd states interfere with the continuum or
with other quasibound states is investigated. The model we adopt as the basis of our analysis consists of two
or three antidots in an electronic waveguide. In a perfect waveguide, electron states belong to different
subbands and antidots give a transfer between them. For a waveguide with two antidots we have observed
interesting phenomena: interference between one subband of the quasibound state and a background second
subband, and interference of resonant group states of different subbands. In this case, the zero of the Fano
resonance is shifted to the complex plane and the coupling parameter becomes complex. In a waveguide with
three antidots, degeneracy of two quasibound states takes place and interference of these states occurs. The
Fano interference of two nearly degenerate resonances may bring a full suppression of pair resonances in the
transmission. We explain that this is due to the parities of the quasibound states. Our results show that the zero
of the Fano resonance due to interference between the quasibound states and the continuum is generally placed
in the complex plane. This gives an additional possibility for manipulating conductance resonances in a
waveguide by changing the antidot parameters.
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I. INTRODUCTION

Tunneling and interference of electron waves in nano-
structures are among the most important quantum
phenomena.1,2 Recently, Fano resonances have been exten-
sively studied both theoretically and experimentally.3–20

There are interesting manifestations of Fano resonances
which have been observed in transport investigations of
nanostructures.12,13,15,19,20Fano interference may potentially
be used for the design of quantum electronic or spintronic
devices, such as a Fano interference transistor15 or a Fano
filter for polarized electrons.21 There is an attractive idea to
use Fano phenomena for lasing without inversion.22

Many recent publications about Fano resonance in
waveguides with an impuritysquantum dots with an attrac-
tive potentiald have been reported.8–11,14,16–18In a theoretical
investigation finding the positions and structure of reso-
nances, the Feshbach formalism with a projection operator
has been applied with success.23,24To explain the concept of
excitations in interaction systemssas has been done for
atomic systemsd, the shape of the conductance peaks can be
understood in terms of single-electron configurations. In or-
der to fit the experimental data, the authors used the expres-
sion for the conductanceG of quantum waveguides, rings,
and quantum islands:

G = Gb

u« + qu2

«2 + 1
, s1d

where Gb is the nonresonant conductance, and«=sE
−ERd /G is the reduced energysER is the energy of the reso-
nance,G is the width, andq is the coupling parameterd.15,18

Here, the parameterq measures qualitatively the interference
between the bound states and propagating continuum states.
Hence, the question is how to obtain the positions, widths,
andq values of the long-living resonances. Fano resonance is

a phenomenon of the interference between the discrete levels
and the continuum.3 Since a discrete level has a real wave
function, it is supposed in the original Fano theory that the
coupling parameter is a real number.3 Therefore, interference
with a real wave function has been studied in most
publications.3–11,14,16–18

When we consider resonance for a repulsive potential, the
usual solutions of the Schrödinger equation for such a poten-
tial are real energy and continuum scattering states. The scat-
tering functions form a complete set, and the continuum
wave functions in principle describe all properties of the
resonance. However, for energy near the resonance, the wave
function looks like that of a bound state of the confinement
potential. The resonance wave functions are linear combina-
tions of such kinds of functions. For long-living resonances,
the wave functions resemble more closely bound-state wave
functions, and hence they form a more natural basis than the
wave functions of the continuum states.24 If the states that
belong to the resonance are connected with the continuum,
then we have an additional scenario of interference between
decaying states and the continuum. This means that Fano
resonances with a complex parameterq may be observed in
the transmission.

Although the theory of Fano resonances has been devel-
oped in many publications, to the best of our knowledge, no
attempt has been made to investigate the physical situations
in which the parameterq is complex, or, in other words,
when the zero of the Fano resonance is located in the com-
plex energy plane. It is well known that Breit-WignersBWd
resonance is an interference of waves in the same channel.
Now an intriguing question arises: What happens when a
group of resonance states interfere with other states of the
continuum? The interference of a quasibound state with the
continuum is similar to localized state interference, al-
though it is not quite the same. The effect of Fano interfer-
ence, which has been analyzed in detail in previous
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articles,3–11,14–18emerges naturally as a result of the coupling
between a discrete state from an attractive potential and the
nearest bands of the continuum. While the interference be-
tween a single level and the continuum is the subject of
many publications, interference between continuum states
and another continuum has not been studied until very re-
cently. The purpose of this paper is to investigate the inter-
ference of a narrow group of states with the continuum. We
use a Feshbach method and analyze the evaluation of the
scattering amplitude with repulsive potentials only when BW
resonances are possible. In order to apply this method in this
situation, it is necessary to assume the renormalization of the
scattering parameters for direct processes. Therefore, we ex-
tend our discussion to the resonant theory of Kapura and
Peierls,25 which is more suitable to this purpose. A model we
adopt as the basis of our analysis consists of two or three
antidots in the waveguide, which may potentially be used for
applications. It is implicitly assumed that electron-electron
interactions play no further role in modifying the resonances,
so that a single-particle approach is thus valid close to the
resonance.26–28

II. THE MODEL AND MAIN EQUATIONS

We study the propagation of the electron waves in an
electronic two-dimensionals2Dd waveguide of widthW ar-
ranged along thex axis. Let us consider a confining potential
Vcsyd in the transverse direction. Then, there is a complete
basis of functions describing the transverse motionwnsyd of
an electron with energiesEn, effective massm, wave vector
kn along thex direction, and energyE="2kn

2/2m+En. The
electron waves in the perfect waveguide can be written as
e±iknxwnsyd. These propagating states may be considered in
the waveguide as open channels. Now, we insert the repul-
sive potentialVsx,yd of the antidots in the waveguide. The
schematic geometry of the system is presented in Fig. 1
showing the potential region in the waveguide, where two or
three antidots are arranged along the longitudinal direction
and the potential outside of the regionsXL,x,XRd van-
ishes. Here, we introduce two or three antidots to demon-
strate interference effects for both an isolated quasibound
statesfor two antidotsd and degenerate quasibound statessfor
three antidotsd with the continuum states.

In order to find an electron wave function in the wave-
guide with antidots, we solve the 2D Schrödinger equation

−
"2

2m
S ]2

]x2 +
]2

]y2DCsx,yd + VcsydCsx,yd + Vsx,ydCsx,yd

= ECsx,yd, s2d

with particular boundary conditions in the leadssx→ ±`d. It
is convenient to expand the wave function in the complete
basis of functions describing the transverse motion:

Csx,yd = o
n=1

`

cnsxdwnsyd. s3d

Substituting expansion Eq.s3d into Eq. s2d, we obtain the
coupled-channel equations for an electron in the form

−
"2

2m

]2

]x2cnsxd + o
n=1

`

Vnn8sxdcn8sxd = sE − Endcnsxd, s4d

where the coupling matrix elements of the antidot’s potential
swhich still act on thex coordinated are defined to be

Vn,n8sxd =E wnsydVsx,ydwn8syddy. s5d

Since Eq.s4d, which is equivalent to the 2D Schrödinger
equation, cannot be solved in general, we use some param-
eters which allow us to use a resonant perturbation
theory23,24 in the system under investigation. Here, we con-
sider the situation when the energy of the incoming electron
is placed in the intervalE2kEkE3 sthe second energy win-
dowd, as shown schematically in Fig. 2.

It was shown in Refs. 29 and 30 that the calculation of the
conductance in a waveguide with quantum dots in the ballis-
tic regime reduces to the solution of the scattering problem.
We are interested in the transmission amplitudetn,n8 describ-
ing the scattering of electrons from the channel with number
n8 into the channel with numbern. The transmission ampli-
tude can be determined from the asymptotic solutions of Eq.
s4d. The conductance measured by the two-probe method is
determined by the Buttiker-Landauer formula1,29,30through a
scattering matrix.

FIG. 1. An electron waveguide withsad two andsbd three anti-
dots. The inner potential domainsXL,x,XRd is indicated by dot-
ted lines atx=XL and XR. The width of antidots in the transverse
direction is set to 0.5W for all calculations.

FIG. 2. sad Dispersion relation for electron in a perfect wave-
guide, andsbd andscd are schematic illustrations of the quasibound
levels in the effective potentials for two and three antidots,
respectively.
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III. FANO INTERFERENCE OF RESONANCES
WITH THE CONTINUUM

In this section, we try to understand how the group of
resonances interacts with the continuum. Investigation of a
waveguide with an attractive impurity has shown that having
more than two open channels only alters the width and po-
sition of the resonances, and hence plays a minor role in the
Fano phenomenon.8–10Therefore, in the resonant approxima-
tion we only need to consider two coupled equations in the
second energy windowsE2kEkE3d to understand the main
physical features of the interference. If the characteristic
value of the matrix elementV12, describing the coupling be-
tween two nearest channels, is small compared to the sub-
band distance, then we can use the two-band approximation
in the form

S−
"2

2m

]2

]x2 + V11sxdDc1sxd + V12sxdc2sxd = sE − E1dc1sxd,

s6d

S−
"2

2m

]2

]x2 + V22sxdDc2sxd + V21sxdc1sxd = sE − E2dc2sxd.

s7d

However, without much problem this can be extended for a
multiband approximation.

In order to examine the interaction between the group of
resonances and the continuum, we use two different methods
which can both illuminate the coherent effects in the trans-
mission. First, we extract a resonant contribution from the
scattering amplitude. In other words, we try to find a disper-
sion formula for the transmission in an open system. Second,
we solve Eqs.s6d and s7d by using a numerical method and
obtain the transmission amplitude. In this case, we evaluate
the conductance numerically in the quantum channel with
two and three antidots. The advantage of this technique is
that tuning of the resonance is possible by modulating the
parameters of the system. In addition, the overlapping of
resonances is also shown in the waveguide with three anti-
dots. In our numerical calculations performed here, we use
the following parameters for the waveguide and antidots: the
effective massm=0.067m0 swhich is appropriate for the
AlGaAs/GaAs interfaced and the width of the waveguide is
W=23.69 nmswhich givesE1=10 meV andE2=40 meV for
the first two energy levels due to transverse confinement in
the waveguided. The distanceL between antidots, and the
positionYc of the middle of the antidots in the waveguide are
also parameters of the system, as shown in Fig. 1; these
parameters may be considered as variables.

A. Decoupled systems

First, we study an analysis of the decoupled systems
fV12sxd=0g. If we neglect intersubband interactions, the in-
coming decoupled wave in the first channel may be found
from

S−
"2

2m

]2

]x2 + V11sxdDxE
±sxd = sE − E1dxE

±sxd. s8d

Here,xE
+sxd andxE

−sxd, which are solutions of Eq.s8d, have
the asymptotic form

xE
±sxd = H t 1

±e±ik1x, x → ± `,

e±ik1x + r1
±e7ik1x, x → 7 `,

J s9d

wheret 1
± and r1

± are the transmission and reflection ampli-
tudesst1

+=t1
−;t1d.1 In other words, we assume that in the

first channel there are only nonresonant states for a given
energy interval.

In decoupled systems, the wave functions in the second
channel belong to the continuum. In order to treat the scat-
tering problem for a repulsive potential, which produces qua-
sibound states, the resonant states are more convenient to use
because the resonant wave functions form a more natural
basis than the functions of the continuum. We use Kapura’s
and Peierls’sKPd approach25 which gives orthogonal func-
tions of the quasibound states. In order to find the KP basis,
we solve the auxiliary equation in the potential regionsXL

,x,XRd

S−
"2

2m

]2

]x2 + V22sxdDf jsxd = s« j − E2df jsxd, s10d

with special boundary conditionssthe radiation or Sommer-
feld boundary conditionsd ssee Appendix A for detailsd. The
solutions of Eq.s10d produce resonant states with complex
energies and eigenfunctions:

« j = « j
R − ig j

R, f jsxds j = 1,2,…d. s11d

If the distance between resonances is greater than the width
and the energy of the incoming electron is located near the
energy of a resonance, then we can consider a contribution of
each resonant state separately. In this case, we have a reso-
nance in the second channel with a Lorentzian line shape.
There are situations when a group of overlapping resonances
may be in the second channel. In this case the shape of the
resonances in the overlapping group will be different from
Lorentzianssee Sec. III D for detailsd.

Thus, for the decoupled system we have scattering waves
xE

+sxd and xE
−sxd in the first channel, and quasibound states

f jsxd in the second channel. For the coupled channel, on the
other hand, the interaction may induce a transition from
propagating states to quasibound states. In other words, the
interaction may induce interference between the quasibound
states and the continuum.

B. Interference of resonances with background

We are interested in the case in which the energy of an
incoming electron is assumed to be located near the resonant
energy, defined by Eq.s11d. For the coupled systems, the
wave functionc2sxd may be expanded in the intervalXL

,x,XR as
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c2sxd = o Ajf jsxd. s12d

From Eq.s7d we can find a formal expression for the ampli-
tudesAj,

sE − « jdAj = sf juV12uc1d, s13d

where the scalar product in right side of Eq.s13d defined in
Appendix A. Using a Green’s function for the electron in the
first decoupled channel, the solution of Eq.s6d can be written
as

uc1d = uxE
+d + G1

+V12uc2d, s14d

whereuxE
+d is the amplitude of the incoming wave in the first

decoupled channel. Substituting Eq.s14d into Eq. s13d, we
obtain the following explicit equation for the amplitudes:

sE − « jdAj − o
j8

Uj ,j8Aj8 = sf juV21uxE
+d, s15d

where

Uj ,j8 = sf juV21G1V12uf j8d. s16d

If we assume that the incoming wave belongs to the first
channel, we can find the elements of the scattering matrix
that are determined by the asymptotic behavior of the outgo-
ing wavec1sxd: for x→ +`, c1sxd→ t11e

ik1x. To do this, we
use Eq.s14d in the form

c1sxd = t1e
ik1x + o

j

Aj E dx8G1
+sx,x8dV12sx8df jsx8d,

s17d

where the explicit form of the Green’s function is

G1
+sx,x8d =

m

ik1"2t1
3 HxE

+sxdxE
−sx8d, x . x8,

xE
+sx8dxE

−sxd, x , x8,
J s18d

wherexE
+sxd andxE

−sxd are solutions of Eq.s8d andt1 is the
scattering amplitude in the first channel. We use expressions
that connect the asymptotic behavior ofxE

+sxd andxE
−sxd with

the reflection and transmission coefficients.9,10 Substituting
the solution of Eq.s15d into Eq. s17d, we obtain the explicit
equation for the amplitudet11 in the form

t11 = t1H1 +
m

ik1"2t1
o
j ,j8

sxE
−uV12uf jdS I

E − H
D

j j 8
sf j8uV12uxE

+dJ ,

s19d

whereH=«I +U is defined as a matrix, andI is a unit matrix.
Similarly, considering the wave functionc2sxd to have

asymptotic behaviorc2sxd→ t21e
ik1x, for x→`, we obtain

t21 = e−ik2XRo
j ,j8

f jsXRdS I

E − H
D

j j 8
sf j8uV12uxE

+d. s20d

Similar expressions fort12 and t22 can also be found. These
expressions can be simplified for a particular energy interval
by taking into account only a finite number channels which
interfere with the continuum resonant states. Equationss19d
ands20d, called dispersion formulas for the transmission am-

plitudes, are the main results of this section. To illustrate the
result for the transmission amplitudes, we consider the
simple case when only a single resonance is in the first en-
ergy window of the second channel.

C. Separate resonances

Let us consider the appropriate parameters of antidots for
a single resonance in the second channel. It is assumed that
the distance between resonances is greater than the width of
the resonance for a given energy intervalfsee Fig. 2sbdg. In
this case, we examine a single quasibound state in the poten-
tial V22sxd and choose the state with the numberj =1. From
Eq. s19d we obtain

t11 = t1
E − Ẽ1

0

E − E1
R + iG1

R , s21d

where E1
R=«1

R+ResU11d and G1
R=g1

R−ImsU11d. Here, the

complex pole and zero are obtained byẼ1
R=«1+U11 and Ẽ1

0

=«1+Q11, respectively. The complex parameterQ11 is de-
fined as the matrix element

Qjj 8 =
m

ik1"2t1
SE

−XL

XR

dx f jsxdV12sxdE
x

XR

dx8f j8sx8dV12sx8d

3fxE
+sx8dxE

−sxd − xE
+sxdxE

−sx8dgD . s22d

Notice that all parameters of the resonanceszero and poled
are slowly varying functions of energy.

Thus, we obtain a simple result for the transmission am-
plitude with a zero and a pole in the complex energy plane.
However, the meaning of this result is different from the
interference of abound statewith the continuum. Two con-
tributions to the width of the resonance are as follows:sad the
width of the quasibound levelg1

R and sbd ImsU11d, which is
the result of interference with the resonance with the con-

tinuum. The equationẼ1
0=«1+Q11 implies that the zero of

the resonance is generally located in the complex plane.
Sinceg1

R−Im Q11 is equal to zero for the bound-state energy
ssee proof in Refs. 10 and 17d, the transmission amplitude
has a zero on the real energy axis. In this case, the position of
zero resonance is defined byE1

0=«1
R+ResQ11d. Then, Eq.

s21d gives the contribution of the Fano line shape, shown in
Eq. s1d, to the conductance due to the current in the first
channel with the complex parameter

q = hResU11 − Q11d + ifg1
R − ImsQ11dgj/fg1

R − ImsU11dg.

In addition, there is another contribution to the conductance
from the second channel when the Fermi energy belongs to
the second energy window. Near the resonant energy, the
transmission amplitudet21 can be obtained from Eq.s2d as

t21 < e−ik2XR
sxE

−uV12uf1df1sXRd
E − E1

R + iG1
R . s23d

The obtained results fort11 and t21 have a simple physical
interpretation as follows. The antidots in the waveguide form
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an open resonator. Assuming that an incoming wave is in the
first channelsn=1d and interacts with the antidots, the wave
may be transferred to an open resonator in the second chan-
nel sn=2d. In this case, we have slowly emitted waves in the
second channel. So, if there is a resonant state in the second
channel si.e., there are only outgoing wavesd, it gives a
Lorentz-type resonance in the transmission. In the meantime,
the interference between a nonresonant statesbackgroundd in
the first channel and a quasibound state in the second chan-
nel gives a Fano-type profile in the transmission. The same
results are expected when a nonresonant state in the second
channel interferes with a resonant state in the first channel.

For a numerical calculation we assume that the antidots
are described by short-range potentials in the direction of
electron propagation, and finite in the transverse direction.
The matrix elements of the antidot potentials may be written
in the form

Vn,n8sxd =
"2

m
vn,n8Fd Sx −

L

2
D + d Sx +

L

2
DG , s24d

wherevn,n8 is the matrix of the single-dot potential defined
by the width of the waveguideW, the position of the barriers
Yc sdefined from the edge of the waveguide to the center of
the barrierd, and the scattering parametersaV0 sV0 is the
potential barrier height, anda is the thickness of the barrierd.
The transverse geometrical parametersthe width of the scat-
terersd is set to 0.5W for all the antidots. The matrix element
nn,n8 for a system under considerationfsee Figs. 1sad and
1sbdg can be easily obtained from Eq.s5d in an explicit form.
Then, Eqs.s6d and s7d for a given potential in the two-band
approximation may be solved by using transfer-matrix tech-
niquesf1g.

We have calculated the transmissions

T1→1,2= ut11u2 +
k2

k1
ut21u2 and T2→2,1= ut22u2 +

k1

k2
ut12u2

s25d

for different positions of the antidots by varying the param-
eter Yc. This parameter characterizes the transfer of the
waves between two channels. IfYc=0.5W, the antidots are
placed in the center of the waveguide and the interaction
between channels is equal to zerosdecoupled channelsd. For
a given distance between antidotssL=27 nmd there are BW
resonances in the second channel in the second energy win-
dow sE2kEkE3d. In order to obtain the energy value of the
resonance, we solve the KP equation for the potential given
in Eq. s24d. The energy can then be found from

sinSqnL

2
D =

1

2i
FSkn + iqn

kn − iqn
D2

− 1Ge−iqnL/2, s26d

where qn=Î2ms«−End /" and kn= ikn−2nnn sn=1,2d. Sup-
pose we focus on the resonance with the position«1

R

=46.33 meV and the widthg1
R=0.18 meVsfor noninteract-

ing channels,Yc=0.5Wd. In general, the interaction between
channels changes the shape of the resonance dramatically.
The transmission in the first and second channels as a func-
tion of the electron energy is shown in Fig. 3 for different

values of the coupling parametersthe positionYc of anti-
dotsd. As the energy of the propagating electron is changed,
the effective matrix element of channel interaction is
changed from destructive to constructive interference. For an
attractive potential, the wave function of the discrete levels is
real and the zero of the resonance is on the real axis of the
energy. Hence, the transmission goes through zero when the
electron energy goes through the particular energy of Fano
resonance. The interaction of resonances in an open system
results in the shift of the zero resonance in the complex en-
ergy plane, and the transformation of a BW resonance into a
Fano resonance in the first channel. The transmissionT11
= ut11u2 of the first channel, indicating the Fano resonance, is
shown in Fig. 4sad and the transmissionT22= ut22u2 of the
second channel, indicating a transformation of BW reso-
nance, is depicted in Fig. 4sbd for Yc=0.425W when there is

FIG. 3. TransmissionsT1→1,2 and T2→2,1 of a quantum wave-
guide with two antidots as a function of the electron energy for
three different positions of the antidots:Yc5sad 0.5W, sbd 0.375W,
and scd 0.25W. The vertical dashed lines parcel out the energy in-
terval where an effective Fano interference takes place for the given
parameters of systemsfrom 40 to 50 meVd. The distance between
the antidots isL=27 nm, and the scattering parameter isaV0

=0.8 eV nm, wherea is the length of the antidot andV0 is the
height of the potential barrier. The pronounced BW resonances in
the first and second channels are shown insad. We focus on the first
resonance in the second channel with the position«1

R=46.33 meV
and the widthg1

R=0.18 meV.
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interference between channels. In order to see the shift of the
zero resonance in the complex energy plane, we present a
contour plot of the absolute value of the transmission ampli-
tude for the Fano and BW resonances in Figs. 5sad and 5sbd,
respectively. In Fig. 5sad, we see a Fano dipolestransmission
zero and poled in the complex energy plane where the ener-

gies of a zero and a pole areẼ1
0=s46.47−i0.14d meV and

Ẽ1
R=s46.21−i0.24d meV, respectively. This clearly indicates

that the position of the transmission zero is shifted to the
complex energy plane due to the interference between chan-
nels. We note that the position of a pole in the second chan-
nel is approximately the same as that of the first channel for
Yc=0.425W, but it is shifted a little for the nonperturbed

resonancesYc=0.5Wd as Ẽ1
R=s46.33−i0.18d meV.

The conductance of the waveguide with two antidots as a
function of the electron energy is shown in Fig. 6sad, and the
shape of the Fano resonancefmarked by an arrow in Fig.
6sadg on a different scale is depicted in Fig. 6sbd. The shape
of the Fano resonance in the conductance of the waveguide
for different positions of the antidots is displayed in Fig. 7.
Thus, if a long-living state interferes with the continuum, the
zero of Fano resonance is placed in the complex plane.

D. Overlapping of resonances and Fano interference

To begin this subsection, we discuss the interference of
the localized states. For instance, when two identical quan-
tum wells are brought together to a distance comparable with
their localized radius, the degenerate levels become split due
to the interference of the waves. A similar effect takes place
for quasibound states. When more than one resonant quasi-
bound state is present in a one-channel system, for instance,
in a three-barrier system,33,34 the resonance states interfere
with each other and this results in the overlapping of reso-
nances. Since the interaction between resonance states gives
the overlapping of resonances, the single BW formula is no
longer valid for this situation.

In the triple-barrier resonant structure of Fig. 2scd, in par-
ticular, there are two resonant quasibound states which are
associated with bonding and antibonding states in the two
wells separated by a barrier. In order to consider tunneling
through this system of three antidots, we add an additional
antidot at the origin with matrix elementsnn,n8

c to Eq. s5d.
Then, the new matrix elements of the three-antidot potentials
can be written as

FIG. 4. Transmissionsad T11 of the first channel andsbd T22 of
the second channel for a waveguide with two antidots as a function
of the electron energy forYc=0.425W ssolid lined and 0.5W sdotted
lined. A Fano resonance is seen inT11, whereas a transformation of
the BW resonance is inT22 due to the interference between chan-
nels. Other parameters are the same as in Fig. 3.

FIG. 5. A contour plot of the absolute value of the transmission
amplitudessT11 and T22d in the complex energy plane is depicted
for sad Fano andsbd BW resonances for the same parameters as in
Fig. 4. sad The position of the transmission zero is shifted to the
complex energy plane due to the interaction of resonance with con-

tinuum fẼ1
0=s46.47−i0.14d meVg and sbd a transformation from

Fano resonance to BW resonance in the first channel is observed
with evidence of merging a Fano dipolestransmission zero and
poled and a transmission pole.

FIG. 6. sad Conductance of the waveguide with two antidots for
Yc=0.3W sin units of the nonresonant conductance of the wave-
guided. The Fano resonance is a result of interference between the
second channel of the quasibound states and the first channel of the
continuumsFano resonance is marked by an arrowd. sbd The shape
of the Fano resonance in the conductance is depicted in a different
scale. Other parameters are the same as in Fig. 4.

FIG. 7. sColord Fano resonance in the conductance of the wave-
guide for different positions of the antidots:Yc=0.5W sblackd,
0.45W sredd, 0.4W sgreend, 0.35W sblued, 0.3W sbrownd, and 0.25W
spurpled. Other parameters are the same as in Fig. 4.
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Vn,n8sxd =
"2

m
Hnn,n8

c dsxd + nn,n8FdSx −
L

2
D + dSx +

L

2
DGJ .

s27d

Now, we have the possibility of manipulating resonances by
changing the potential height of this additional antidot at the
origin.

In this section, we extend these studies to consider the
interference of two quasibound states with a continuum.
Here, we focus on the case where the two quasibound states
are in the second channelsfor a decoupled systemd. It is clear
that two quasibound states can interact only through virtual
transitions to the continuum, because the interaction of the
resonance with the continuum is defined by Eq.s15d. It can
be seen that for a system with symmetry about the center the
“initial” quasibound levels do not interact directlysU12=0d,
but are connected through the matrix element describing the
transition from the quasibound levels to the first band. We
can find from Eq.s19d that the transmission amplitude for
this case has the form

t11sEd = t1sEd
sE − Ẽ1

0dsE − Ẽ2
0d + g12

2

sE − E1
R + iG1

RdsE − E2
R + iG2

Rd
, s28d

where

g12
2 =

m2

"4k1
2t1

2sxE
−uV21uf1dsxE

−uV21uf2dsf1uV21uxE
+dsf2uV21uxE

+d,

Ej
R=« j

R+ResUjjd, G j
R=g j

R−ImsUjjd, andẼj
0=« j +Qjj s j =1,2d.

Here, the complex parametersQjj are defined by Eq.s22d
and the coupling parameterg12 can be obtained from the
framework of the matrix potential Eq.s27d in an explicit
form. As a result of the interference, the positions of the
zeros in the complex energy plane depend on the coupling
parameters between the localized states and the continuum.
The scattering amplitude also possesses two poles in the
complex plane. Thus, Fano resonances interact effectively
and this leads to a number of interesting consequences, as
will be proved below.

We present numerical results to illuminate the interference
of two quasibound states with a continuum. The levels in the
system with three antidots may be found by perturbation
theory. For instance, if the distance between the antidots is
L=27 nm for given barriers, there are two quasibound states
for energies «1

R=43.56 meV sg1
R=0.37 meVd and «2

R

=45.64 meVsg2
R=0.80 meVd, which give two overlapping

resonances in the transmission. The transmissionsT1→1,2 and
T2→2,1 as a function of energy for different positions of three
antidotsfYc5sad 0.5W, sbd 0.4W, andscd 0.3Wg are shown in
Fig. 8. It can be clearly seen that there are two overlapping
BW resonances in the second channel. The asymmetric Fano
resonance in the transmission is due to the interference of
resonances with the continuum.

IV. INTERFERENCE OF RESONANCES
IN DIFFERENT CHANNELS

Now, a very interesting question arises: what happens
when both scattering channels have resonances with nearby

positions? Since crossing of the resonances is possible in this
casessee belowd, we need to modify the method for investi-
gating the interference of resonances in open systems. We
begin by studying the analysis of the KP equations for
coupled channels:

S−
"2

2m

]2

]x2 + V11sxdDf1jsxd + V12sxdf2jsxd = s« j − E1df1jsxd,

S−
"2

2m

]2

]x2 + V22sxdDf2jsxd + V21sxdf1jsxd = s« j − E2df2jsxd.

s29d

From now on, we use the notation« j =Ej
R− iG j

R throughout
the section. The wave functions in the inner potential region
may be expanded as

c1sxd = o Ajf1jsxd, c2sxd = o Ajf2jsxd. s30d

Using Eq.s29d and boundary conditionsssee Appendix Bd,
we can finally find the elementsst11 andt21d of the transmis-
sion amplitude:

FIG. 8. TransmissionsT1→1,2 andT2→2,1 for different positions
of the three antidots:Yc5sad 0.5W, sbd 0.4W, and scd 0.3W. The
distance between the antidots isL=27 nm, and the amplitude of the
intermediate antidot potential is chosen to be 1.25 larger than the
others; the scattering parameter isaV0=0.4 eV nm. There is an
overlapping of the BW resonances in the second channel which
gives an asymmetricsFano-typed resonance in the transmission.
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t11 =
i"2k1e

−ik2XR

m
o

j

f1jsXRdf1jsXLd
E − Ej

R + iG j
R ,

s31d

t21 =
i"2k1e

−ik2XR

m
o

j

f1jsXRdf2jsXLd
E − Ej

R + iG j
R .

Similarly, the elementsst22 and t12d of the scattering matrix
can also be obtained if the incoming wave is only in the
second channel.

A. Interference of two resonances in continuum

We start our analysis considering a two-antidot system
with no coupling between channels. In this case, we have
two independent KP equations from Eq.s29d with V12=0. If
we also assume that the antidot barriers are very high, then
we can find the solutions of independent KP equations using
a perturbation. In the first approximation, we have energies
for the first and the second channels

«1,j
s0d = E1 +

p2"2j2

2mL2 and «2,s
s0d = E2 +

p2"2s2

2mL2 , s32d

with j ,s=1,2,…, respectively. It is easy to show that there
are solutions of the equations

«1,j
s0dsLd = «2,s

s0dsLd s33d

if we treat the distanceL as a free parameter in this equation.
In other words, by changing the distance between antidots,
we get two closely placed quasilevels. If the distance be-
tween quasilevels is less than the width of the resonances,
the corresponding states may be considered as almost degen-
erate. The weak coupling between the channels by a matrix
elementV12 gives the interference between the quasibound
states.

Let us use the condition of resonant overlapping that takes
place for a particular distance between the antidots. For the
unperturbed system, we have two solutions of the decoupled
equationss29d:

f1sxd ; f1,jsxd, «1 ; «1,j ,

and

f2sxd ; f2,ssxd, «2 ; «2,s. s34d

For a weak coupling interaction between channels, the solu-
tion of Eq. s29d can be written in the form

SF1sxd
F2sxd

D = c1Sf1sxd
0

D + c2S 0

f2sxd
D . s35d

From Eqs.s29d, we also can find the perturbed energies of
the resonances«±:

«± =
«1 + «2

2
±ÎS«1 − «2

2
D2

+ s1uV12u2d2, s36d

where the element of the complex matrix is defined by

s1uV12u2d =E
XL

XR

f1sxdV12sxdf2sxddx. s37d

Note that Eq.s36d is written using complex parameterss«±

=E±
R− iG±

Rd, even though it looks like the usual expression for
splitting and degenerate energy levels in perturbation theory.
This equation describes the interaction of poles in the com-
plex energy plane. Thus, the solutions of Eq.s36d give the
position and the width of the resonances. Applying a stan-
dard method, we can find two orthogonal wave functionsF±
for the complex eigenvalues«±. Using these functions, we
can expand the transmission amplitude near the resonances
as is done in Eq.s31d. Therefore, in the first scattering chan-
nel we have

t11 <
i"2k1e

−ik2XR

m
SF+sXRdF+sXLd

E − E+
R + iG+

R +
F−sXRdF−sXLd
E − E−

R + iG−
R D .

s38d

Each term in Eq.s38d describes a resonance with a Lorentz-
ian line shape. Because the wave functions are complex,
phase interference of resonances in the transmission is pos-
sible. An example of this type of interference is presented in
Fig. 9 for different positions of the antidots, with the distance
between the antidotsL=36.46 nm. There is a dip in the first
channel of the transmission due to the interference of two
resonances between the first and second channels. The dip is
located near the bare energy«1,3

s0d =«2,1
s0d =43.36 meV sg1,3

R

=1.34 meV,g2,1
R =0.13 meVd. The resonance in the second

channel shows an asymmetric shape in Fig. 9scd. The con-
ductance of the waveguide, which is the sum of the transmis-
sion of the different channels, as a function of Fermi energy
in the regime of overlapping resonance is shown in Fig. 10,
where the dip near«1,3

s0d =«2,1
s0d =43.36 meV disappears.

The interference of the resonances is defined by two fac-
tors: sid direct interference of two resonance states andsii d
interference through the background. The direct interference
is the main effect for the chosen parameters of the antidots. It
is easy to prove that KP states may be characterized by a
parity so thatVnn8sxd=Vnn8s−xd. The matrix element in Eq.
s37d for the quasibound states depends on the parities of the
wave functions. For instance, there is a strong interference
between the firstsevend resonance of the second channel and
the thirdsevend resonance of the first channelsFig. 10d. If the
distance between the antidots isL=29.25 nm, there is an
overlap of the secondsoddd resonance of the second channel
and the thirdsevend resonance of the first channel for the
energy«2,2

s0d =«1,3
s0d =60.62 meV. In this case, the resonances do

not interact directly but there is weak interaction of the levels
as a result of the interference through the background.

Notice that the formation of a miniband in the transmis-
sion resonances can be obtained if we consider a superlattice
of antidots in the waveguide. For example, Joeet al.35 have
investigated the characteristics of transmission resonance in
a quantum-dot superlattice, considering the aspect-ratio
variation of two alternating potential heights in the quantum
channel. In this system, well-arranged resonant peaks in the
first miniband of each plateau are divided into paired peaks
of two groups, which produce an extra gap inside each mini-
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band. As follows from our consideration, the phase structure
of the resonances plays an important role in the formation of
the band structure in open systems.

B. Multiresonant interference in the continuum

A more general scenario of overlapping resonances is pos-
sible for three antidots in the waveguide. To understand the

main idea, we study the solutions of the KP equation for
three antidots with a matrix potential given by Eq.s27d.
Again, we begin by considering the case where the coupling
matrix element is equal to zerosYc=0.5Wd, and we assume
that the intermediate barrier is very high. In this case, there is
a group of nearly degenerate statessset of coupled narrow
resonances in each open channeld. We may consider a cross-
ing of two group resonances by changing the distance be-
tween the antidots. Using a perturbation, we can have a lin-
ear combination of four waves and find four complex
energies. This solution may be easily investigated numeri-
cally.

In Fig. 11, we have displayed the conductance of the
waveguide with three antidotssdistance between dots isL
=33.3 nm; the amplitude of the intermediate antidot potential
is chosen as 1.25 larger than the othersd. When there is a
crossing of levels with the same parities, the Fano interfer-
ence of two nearly degenerate resonances completely sup-
presses the pair resonances in the transmission.fThe position
of the second resonancesodd peakd in the second channel is
indicated by an arrow in Fig. 11.g This is due to the different
parities of the quasibound states, which indicates that the
effective interaction of the resonances depends on the parity
of the quasibound levels. The interference from the group of
resonances also depends on the parities of the KP states.

V. CONCLUSION

Interference effects have been investigated in a quantum
waveguide with repulsive potentialssantidotsd. In a wave-
guide with two antidots, we have observed interesting phe-
nomena: the interference between the quasibound states of
one channel and background states of the second channel,
and the interference of resonant group states of different
channels. In this case, the zero of the Fano resonance is
shifted to the complex plane and the coupling parameter be-
comes complex. We have used the KP theory for the calcu-
lation of quasibound states and have developed a perturba-
tion theory for nearly degenerate levels in the continuum.

FIG. 9. Interference of two resonances in the transmission
T1→1,2 and T2→2,1 for different positions of two antidots. The dis-
tance between the antidots isL=36.46 nm, and the scattering pa-
rameter isaV0=0.5 eV nm.sad There is a crossing of two BW reso-
nances with the bare energy«1,3

s0d =«2,1
s0d =43.36 meV forYc=0.5W.

The overlapping of resonances in the first and the second channels
produces a dip in the first channel of the transmission for both
Yc5sbd 0.4W and scd 0.3W.

FIG. 10. sad Conductance as a function of Fermi energy in the
regime of the overlapping resonancessbare energies are«1,3

s0d =«2,1
s0d

=43.36 meVd, presented in different channels.sbd Expanded plot of
the conductance near the crossing of resonances is shown forYc

=0.3W. Parameters of the system are the same as in Fig. 9.

FIG. 11. Conductance of the waveguide with three antidotssdis-
tance between the dots isL=33.5 nm, and amplitude of the inter-
mediate antidot potential is chosen to be 1.25 times larger than the
others; Yc=0.25Wd. Fano interference of two nearly degenerate
resonances results in full suppression of pair resonances as a result
of different parities of the quasi bound states.fHere, the position of
the second resonancesodd peakd in the second channel is indicated
by an arrow.g
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Degeneracy of two quasibound states takes place in a
waveguide with three antidots, where the interference of de-
generate states may be considered. The Fano interference of
two nearly degenerate resonances fully suppresses pair reso-
nances in the transmission. We have found that this could be
explained by the parities of the quasibound states. Our re-
sults have shown that the zero of the Fano resonance, arising
from the interference between groups of statessquasibound
or resonant statesd with the continuum, is generally placed in
the complex plane. It was shown that the profile of the Fano
line in the transmission depends on the phase difference be-
tween the paths. The Fano resonance in the transmission may
disappear for some parameters of the system. The operation
of resonances in transmission gives a method of controlling
quantum interference in nanostructures. The application of
Fano resonances has been discussed in many
references,15,21,22and a tunable Fano interferometer consist-
ing of a quantum dot via tunneling to a 1D channel has been
realized in an experiment to observe the Fano resonance
which coexists with an interaction in the form of the Cou-
lomb blockade.36
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APPENDIX A: KAPURA-PEIERLS APPROACH FOR
ONE-CHANNEL SYSTEMS

Among many different approaches for investigating reso-
nant states,25,31,32 we use Kapura’s and Peierls’ approach25

which gives orthogonal functions of the quasibound states.
sFor comparison, a nonorthogonal basis is obtained by
Sigert’s approach.32d. In order to find the KP basis, we solve
an auxiliary equations10d in the potential regionsXL,x
,XRd with boundary conditionssthe left and right sides of
the antidots are used as the lines which pass through the
pointsx=XL andx=XRd

US ]

]x
+ ik2Df jsxdU

x=XL

= 0 US ]

]x
− ik2Df jsxdU

x=XR

= 0,

sA1d

wherek2=Î2msE−E2d /" is the wave vector of electrons in
the second band, and« j denotes the complex eigenvalues.
Because the boundary conditions Eq.sA1d are complex and
uniform, the solutions of Eq.s10d have an infinite set of
complex functionsf jsxd s j =1,2,…d with the orthogonality
conditions

suf juf j8d ; E
XL

XR

f jsxdf j8sxddx= d j j 8. sA2d

The orthogonality condition of Eq.sA2d can be obtained
from the following steps:sad write two KP equations forf j
and f j8 from Eq. s10d, sbd multiply each equation by an
orthogonal function, eitherf j8 or f j, scd integrate both equa-
tions in the intervalXL,x,XR taking into account Eq.sA1d,

andsdd substitute from one equation to the other. Notice that
Eq. sA2d is the direct product of two functionssnot the prod-
uct of the one with the complex conjugate of the otherd.25

Using Eqs.s10d and sA1d, it is easy to show that the eigen-
values may be written as

« j = « j
R − ig j

R, sA3d

where« j
R are the real energies of the resonances, andg j

R are
the realsand positived widths of the resonances which are
defined as

g j
R =

"2k2fuf jsXLdu2 + uf jsXRdu2g

2mE
XL

XR

uf jsxdu2dx

ù 0. sA4d

The wave functionc2
0sxd for the second decoupled chan-

nel is the solution of the equation

S−
"2

2m

]2

]x2 + V22sxdDc2
s0dsxd = sE − E2dc2

s0dsxd. sA5d

On the other hand, the wave functionc2
s0dsxd may be ex-

panded in the intervalXL,x,XR as

c2
s0dsxd = o Aj

s0df jsxd. sA6d

Multiplying Eq. s10d by c2
s0dsxd and Eq.sA5d by f jsxd, sub-

tracting one from the other after the integration of each equa-
tion over the intervalXL,x,XR, and using the orthogonal-
ity conditionsfEq. sA2dg, the amplitudeAj

s0d can be written as

Aj
s0d =

i"2k2

m

f jsXLd
E − « j

R + ig j
R . sA7d

Therefore, the wave function in the potential region may be
written as

c2
s0dsxd =

i"2k2

m
o

j

f jsxdf jsXLd
E − « j

R + ig j
R . sA8d

The transmission amplitudet2, defined by t2e
ik2XR

=c2
s0dsXRd, can be expressed as

t2 =
i"2k2e

−ik2XR

m
o

j

f jsXRdf jsXLd
E − « j

R + ig j
R . sA9d

Notice that this transmission amplitude has resonant terms
with a Lorentzian line shape.

APPENDIX B: KAPURA-PEIERLS APPROACH FOR
COUPLED SYSTEMS

In this appendix, we extend the KP approach for two
coupled resonant systemsfEqs. s29dg with boundary condi-
tions

US ]

]x
+ ik1Df1jsxdU

x=XL

= 0, US ]

]x
− ik1Df1jsxdU

x=XR

= 0,

sB1d
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US ]

]x
+ ik2Df2jsxdU

x=XL

= 0, US ]

]x
− ik2Df2jsxdU

x=XR

= 0.

sB2d

The orthogonality conditions can now be chosen as

suf1juf1j8d + suf1juf1j8d = d j j 8. sB3d

The complex eigenenergies have been written in the form
« j =Ej

R− iG j
R ssee Sec. IVd, where the width of the resonances

is defined by

G j
R =

"2fk1uf1jsXLdu2 + k2uf2jsXRdu2g

2mhE
XL

XR

fuf1jsxdu2 + uf2jsxdu2gdxj
. sB4d

Now, we focus on the scattering matrix when the electron
waves are in two open channels. As a result of the linearity
of the Schrödinger equation, we can consider the scattering
of the two channels independently. For instance, if the in-
coming wave is only in the first scattering channel, the
boundary conditions for the electron wave functions may be
written as

US ]

]x
+ ik1Dc1sxdU

x=XL

= 2ik1, US ]

]x
− ik1Dc1sxdU

x=XR

= 0,

sB5d

US ]

]x
+ ik2Dc2sxdU

x=XL

= 0, US ]

]x
− ik2Dc2sxdU

x=XR

= 0.

sB6d

The wave functions in the inner potential region may be
expanded as Eqs.s30d. By doing the same procedure as ex-
plained in Appendix A, we can find the amplitudesAj

Aj =
i"2k1

m

f1jsXLd
E − Ej

R + iG j
R . sB7d

Then the wave functions in the inner region can be written as

c1sxd =
i"2k1

m
o

j

f1jsXLdf1jsxd
E − Ej

R + iG j
R ,

sB8d

c2sxd =
i"2k1

m
o

j

f1jsXLdf2jsxd
E − Ej

R + iG j
R .

Therefore, the transmission amplitudest11,t12,t21, andt22 can
be obtained from the boundary conditions, where the expres-
sions for transmission amplitudest11 andt21 are given in Eq.
s31d in Sec IV.
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