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A zone-folding construction is applied to the honeycomb lattice band structure to yield explicit expressions
for the Hückelp-molecular orbitals, energies and symmetries of trivalent polyhedra consisting of hexagons
and squaresfs4,6d cagesg with octahedral symmetry. TheA1, A2, andE representations are accessible in this
way, but not theT1 andT2 representations. Therefore, we have also performed numerical Hückel calculations
on a large set of cages. A clear distinction in electronic structure between leapfrog, nonleapfrog type 1 and
nonleapfrog type 2 cages is revealed. The results are relevant both for carbon cages and alternating boron-
nitride cages. Quantum chemical calculations on C24, C56, C72, and B36N36 confirm the results.
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I. INTRODUCTION

In this work we are concerned withs4,6d cages, which are
defined as trivalent cages consisting of hexagons and
squares. For a cage withv atoms the number of squares
always equals 6, while the number of hexagons is given by
v /2−4. In thecarbon family, the most famous trivalent cage
type is of course the fullerene, defined as a carbon cage
consisting of 12 pentagonal faces andv /2−10 hexagonal
faces. Therefore we can call it also as5,6d cage. For most
stable fullerenessv=60,vù70d it has been found that they
obey the isolated pentagon rulesIPRd: no two pentagons can
share a bond.1,2 But trivalent cages withv,60 or 60,v
,70 must necessary violate the IPR ruleor have faces other
than pentagons and hexagons. Several theoretical studies3–10

indicate that one or two four-membered rings can play a part
in these fullerenes. Qianet al.11 synthesized a nonclassical
fullerene C62 with one four-membered ring. So squares can
be important in carbon cages, but for a cage consisting of
only squares and hexagons, one has to look for another start-
ing material instead of carbon.

Several alternant boron-nitridesBNd analogs to carbon
structures have been synthesized, for example analogs to
benzene,12 graphite,13 and diamond14 and more recently to
nanotubes15,16 and nanocages.17,18 For the latter, two distinct
plausible classes have been investigated theoretically. The
first class consists ofs5,6d cages like the classical fullerenes
which necessarily have some unfavorable homonuclear
B-B or N-N bonds.19 The second class ares4,6d cages20–27

with a rigorous BN alternation that compensates for the
strain-inducing squares. Theoretical studies disagree about
which class delivers the most stable cages.28–31A systematic
study has shown that within the class of thes4,6d BN cages,
the ones without adjacent squares are the most stable.32

In this study we will focus on octahedrals4,6d cages—
both carbon and BN structures—as defined by Zhuet al.20,21

These structures are in their BN form often of special stabil-
ity compared to others4,6d BN cages.27,33We will show that
analytical expressions for nondegenerate or doubly degener-
ate eigenvalues and molecular orbitalssMOd can be obtained
within the Hückel approximation, by means of a zone-
folding procedure similar to that applied previously to
nanotubes,34 nanotori,35 and s3,6d cages.36

The paper is organized as follows. Section II explains
how the Hückel spectra of both carbon and BNs4,6d cages
are related to the eigenvalues of the adjacency matrix of the
underlying graph. Section III introduces the central geo-
metrical relationship by which an octahedrals4,6d cage can
be unfolded into as2,6d cage which in turn can provide a
covering of the honeycomb lattice. This relationship defines
a zone-folding procedure which generates analytical expres-
sions for MOs transforming according to theA1, A2 and E
irreducible representations of the octahedral cage. The ex-
plicit derivation of these MOs is done in Sec. IV and of their
symmetries in Sec. V. Section VI focuses on the MOs of the
A+E group that are close to nonbonding. The MOs of sym-
metry T1 and T2 of a s4,6d cage cannot be obtained by the
zone-folding method. Instead, we have performed numerical
Hückel calculations on a large set of cages and the results are
presented in Sec. VII. Section VIII compares the Hückel re-
sults with DFT-B3LYP calculations. The general conclusions
are given in Sec. IX.

II. RELATION BETWEEN HÜCKEL SPECTRA OF C AND
BN (4,6) CAGES

In the simple Hückel approximation, the Hamiltonian for
carbon allotropes takes the following form:

HC = aCI + bCCA , s1d

with aC the Coulomb integral andbCC the hopping integral.
As bCC represents a bonding interaction we havebCC,0. I
is the unit matrix andA the connectivity matrix of the sys-
tem, representing a graph. The orbital energies ofHC can be
expressed in function of the eigenvaluesl of A:

EC = aC + bCCl, s2d

while the eigenfunctions ofA and HC are the same. Each
cage discussed here is an alternant: its vertices can be di-
vided into two equal sets, black and white, such that every
vertex of one set is only surrounded by members of the other.

As pointed out by Zhuet al.,20 the Hamiltonian of a rig-
orously alternating BN allotrope is equal to
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HBN = D + bBNA , s3d

with D a diagonal matrix whose elements areaB for a boron
atom, which takes the place of a black vertex, andaN for a
nitrogen atom, which takes the place of a white vertex. The
orbital energies ofHBN are20

EBN = aBN ± ÎD2 + bBN
2 l2,

aBN =
aB + aN

2
,

D =
aB − aN

2
. s4d

Since l2 cannot be lower than zero, the minimal HOMO-
LUMO gap of an alternating BN system is 2uDu, with D
nearly the size ofbBN.37

We will from now on work only with the graph—i.e.,
black and white atoms each have the same diagonal element
0 in the connectivity matrix—and express the MO energies
by the dimensionless quantityl. EC or EBN can always be
found by using Eqs.s2d and s4d, respectively.

III. RELATIONSHIP BETWEEN THE EIGENVALUE
PROBLEM OF OCTAHEDRALLY SYMMETRIC

(4,6) CAGES, (2,6) CAGES AND TORI

An octahedrally symmetrics4,6d cage can be imagined as
a honeycomb lattice inscribed on a master octahedron. The
symmetry will be lowered to tetrahedral symmetry for a BN
cage. Figure 1sad shows a patch consisting of eight equilat-
eral triangles drawn on the honeycomb lattice. Upon folding
this patch an octahedrally symmetrics4,6d cage is obtained

fFig. 1sbdg as was described in Ref. 20. The cage is com-
pletely defined by the vectorN along one edge of a constitu-
ent equilateral triangle

N = n1a1 + n2a2, s5d

with n1, n2 integers anda1, a2 the basis vectors of the hon-
eycomb lattice,

a1 = aSÎ3

2
ex +

1

2
eyD ,

a2 = aSÎ3

2
ex −

1

2
eyD , s6d

wherea=Î33 rCC, with rCC the nearest neighbor distance.
To construct all possibilities—omitting enantiomers—it is
sufficient to considern1ùn2ù0. One can distinguish the
following types:

n2 = 0: zigzag,

n2 = n1: armchair,

n1 − n2 = 3q: leapfrog,

n1 − n2 = 3q + 1: nonleapfrog type 1,

n1 − n2 = 3q − 1: nonleapfrog type 2. s7d

The first two definitions are similar to the ones commonly
used for nanotubes.34 A more general definition of leapfrogs
and nonleapfrogs—not confined to octahedrals4,6d cages—
can be found in Ref. 38. Zigzag and armchair cages haveOh
symmetry while the other cages are chiral and haveO sym-
metry. Considering BN cages, the symmetry is lowered toTd
for zigzag,Th for armchair andT otherwise. Note that arm-
chair cages are always leapfrogs. Profound differences in the
electronic structure have often been encountered between
leapfrog and nonleapfrog members of graphitic species, such
as nanotubes,34 fullerenes,39 s3,6d cages,36 and nanotori.35 In
the case of octahedrals4,6d cages, we will show that there
are also important differences between nonleapfrogs of type
1 and type 2.

The number of verticesvs4,6d of the s4,6d cage is equal to

vs4,6d = 8sn1
2 + n2

2 + n1n2d. s8d

The operationsC4x
2 , C4y

2 andC4z
2 —the three twofold rota-

tional axes going through the square centers—can be used to
construct a so-calleds2,6d cage40 corresponding to the origi-
nal s4,6d cage with onlyvs2,6d=vs4,6d /4 vertices. First, one
chooses two triangles of the master octahedron sharing a
side, labeling themA andB, respectively. The other triangles
can be related to these two by the operationsC4x

2 , C4y
2 andC4z

2

and can also be labeledA or B in this way fFig. 2sadg.
Each triangleA has now a triangleB as neighbor along

each of its edges and vice versa. Let us take two neighboring
trianglesA and B and fold them together as shown in Fig.
2sbd. The triangleA sBd is then “surrounded” by the triangle
BsAd along each of its edges in the same way as for Fig. 2sad.

FIG. 1. Octahedrals4,6d cage, unfolded on the honeycomb plane
sad and in the folded statesbd. N=n1a1+n2a2 defines the cage. For
the cage shown indices correspond ton1=1 and n2=1, and the
number of carbon atoms is 24. The vectorsa1 and a2 are the unit
vectors of the honeycomb lattice.
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So MOs of thes4,6d cage that are totally symmetric with
respect to the three generatorsC4x

2 , C4y
2 andC4z

2 correspond to
eigenfunctions of thes2,6d cage. These MOs have symmetry
label A1, A2 or E swe limit ourselves to symmetry labels of
the point groupO in this sectiond and we call this group the
A+E group. The other MOs have symmetry labelT1 andT2
sthe T groupd.

The triangle pairA/B can further be used as a building
block to fill the plane. Again, this can be done in such a way
that each triangleA is surrounded by the triangleB along

each of its edges and vice versa. The resulting structure is the
honeycomb lattice with a pattern inscribed that is totally
symmetric with respect to trigonal periodic boundary condi-
tions, with periodically placedC3 axesfFig. 2scdg. The peri-
odic boundary conditions are represented by a hexagonal
patch in Fig. 2scd; each pair of opposite sides of the patch
defines a cyclic boundary condition. The patch consists of
threeA/B triangle pairs. By this construction, the center and
the corners of the patch coincide with the centers of hexa-
gons. For simplicity, the center of the hexagonal patch is
taken as the origin of the honeycomb lattice. The periodically
placedC3 axes are also present at the center of the hexagonal
patch and at its corners. Note that theC3 axes at the corners
are implied by the existence of the centralC3 axis and the
periodic boundary conditions. This basically shows that the
electronic spectrum of as2,6d cage is contained in that of the
honeycomb lattice and that it can be selected by applying
both periodic and threefold rotational boundary conditions.

Cutting the hexagonal patch in Fig. 2scd and gluing the
pairs of opposite edges—e.g., applying the periodic but not
the rotational boundary conditions—results in atorus.41 Tori
have been investigated by Ceulemanset al.35 with the zone-
folding method. The torus was obtained by gluing a patch in
the form of a general parallelogram, defined by two nonpar-
allel vectors. The Hückel spectrum of this torus can then be
derived from that of the honeycomb lattice by selecting the
band orbitals of the honeycomb lattice that are periodic along
the two nonparallel vectors.

The hexagonal patch in Fig. 3sad is equivalent to a special
type of parallelogram: a rhombus with angles ofp /3 and
2p /3 fFig. 3sbdg. The two vectors defining this rhombus,C
andT, are totally determined by the indicesn1, n2

C = sn1 − n2da1 + sn1 + 2n2da2,

T = Ĉ6C. s9d

The torus constructed from this rhombus is always a leap-

frog. Note that the periodicity overC and Ĉ6C also implies

periodicity overĈ6
2C, sinceĈ6

2C=Ĉ6C−C. This proves the
equivalence of the two patches in Fig. 3.

So applying only the periodic and not the threefold rota-
tional boundary conditions on the honeycomb lattice results

FIG. 2. sad A folded octahedrals4,6d cage with the 8 master
triangles labeledA andB in such a way that the resulting pattern is
totally symmetric with respect to the operationsC4x

2 , C4y
2 , andC4z

2 .
sbd A s2,6d cage, defined by folding the two neighboring master
trianglesA and B, presented unfoldedsleft, sides with the same
number should be glued togetherd and foldedsrightd. scd One can fill
the plane—using as tile the pair of triangles fromsbd sleftd—to
obtain the honeycomb plane with a pattern inscribed that is totally
symmetric with respect to periodically placedC3 axes—represented
by black triangles—and periodic boundary conditions, represented
by the hexagonal patch. Opposite sides of the hexagonal patch
should be glued together.

FIG. 3. Patch in the form ofsad a regular hexagon andsbd a

rhombus with angles ofp /3 and 2p /3. The vectorsC, T =Ĉ6C and

Ĉ6
2C indicate periodic boundary conditions. Both patches define a

torus with the same connectivity.
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in a torus instead of as2,6d cage. Hence the spectrum of a
s2,6d cage is contained in that of this torus.

Summarizing, we have shown that an octahedrally sym-
metric s4,6d cage has a part of its Hückel spectrum in com-
mon with that of a special kind of torus by using the concept
of a s2,6d cage. Since the Hückel eigenvalues and eigenfunc-
tions of any torus are directly retrievable from those of the
honeycomb lattice by applying a zone-folding procedure,35

this part can be found analytically. This will be done in the
following section.

IV. ELECTRONIC STRUCTURE OF (2,6) CAGES

A. Electronic structure of the honeycomb lattice

In this section we briefly recall the basic results of the
electronic structure of the honeycomb lattice.42 A unit cell
contains two vertices which can be labelled black and white.
The basis orbitals that correspond to an irreducible represen-
tation k of the translation group are

ukl1 =
1

ÎN
o
r 1

expsik · r 1dur 1l,

ukl2 =
1

ÎN
o
r 2

expsik · r 2dur 2l. s10d

The origin is placed at the center of a hexagon.r 1 denotes
the position of a black vertex andr 2 the position of a white
vertex

r 1 = m1a1 + m2a2 +
1

3
sa1 + a2d,

r 2 = m18a1 + m28a2 −
1

3
sa1 + a2d, s11d

with m1, m2, m18 , m28 integers.ur jl s j =1,2d is a vertex cen-
tered at positionr . N is the number of unit cells. The Bril-
louin zonesBZd takes the shape of a regular hexagon with
corners at ±s4p /3adey and ±s2p /Î3adex ±s2p /3adey and
has basis vectorsb1 andb2 sFig. 4d

b1 =
2p

a
S 1

Î3
ex + eyD ,

b2 =
2p

a
S 1

Î3
ex − eyD . s12d

The interaction matrix element between the basis orbitals in
Eq. s10d, 1kk uAukl2, is given by

hk = exp„iksa1 + a2d/3… + exp„iks− 2a1 + a2d/3…

+ exp„iksa1 − 2a2d/3…. s13d

hk obeys the following relations

hĈ6k = hk
* = h−k , s14d

with C6 a sixfold rotational axis through the originG=0 of
the BZ. The eigenfunctions read

uk,sl =
1
Î2
SsÎ hk

uhku
ukl1 +Î hk

*

uhku
ukl2D , s15d

with s=1 for a bonding band orbital and −1 for an antibond-
ing band orbital. The energy belonging to a stateuk ,sl is
equal to

lsk,sd = suhku = sÎ1 + 4 cos
Î3kxa

2
cos

kya

2
+ 4 cos2

kya

2
,

k = kxex + kyey. s16d

This dispersion relation hasC6v symmetry with respect to the
principal C6 axis and the six mirror planessi going through
the pointG,

lsĈ6k,sd = lsk,sd,

lsŝik,sd = lsk,sd. s17d

Special points with respect to the symmetry of the BZ are
sFig. 4d as follows.

s1d The center of the zoneG, with lsG ,sd=s3.
s2d The centers of the edges, corresponding to three dis-

tinct states: M =s2p /Î3adex, Ĉ3M , and Ĉ3
2M , with

lsĈ6
j M ,sd=s.

s3d The corners of the BZ, correspond to two distinct

states, K =s2p /Î3adex+s2p /3adey and Ĉ6
5K , with

lsĈ6
j K ,sd=0. At these points,hk =0 hence Eq.s15d cannot

be used ands is not relevant. We use instead as band orbitals

uK l1, uK l2, uĈ6
5K l1, uĈ6

5K l2.
In Ref. 36, the band orbitals were distinguished further by

their parity with respect to theC2 axis at the origin. We take
this now one step further by symmetrizing the band orbitals
with respect to theC6 axis at the origin:

FIG. 4. Brillouin zone of the honeycomb lattice.b1 andb2 are

the basis vectors.G, K , Ĉ6
5K , M , Ĉ3M , and Ĉ3

2M are special sym-
metry points.

S. COMPERNOLLE AND A. CEULEMANS PHYSICAL REVIEW B71, 205407s2005d

205407-4



uk,s, jl =
1
Î6

o
t=0

5

Ĉ6
t e jtuk,sl, s18d

wheree=expsi2p /6d, and j =0,1, . . . ,5. TheK points give
rise to the following symmetrized band orbitals

uK , jl1,2=
1
Î6

o
t=0

5

Ĉ6
t e jtuK l1,2. s19d

The domain of distinctk states is 1/6 of the original BZ

and is given by the gray triangleGK sĈ6
5K d in Fig. 4. For

eachk point, one has six band orbitals atulku sone for each
value that j can taked, and six band orbitals at −ulku. The
exceptions are the special symmetry points of the BZ. The
distinct possibilities ofj given by

uG,s, jl: e j = s,

uM ,s, jl: e3j = − s,

uK , jl1: e2j = exps− i2p/3d,

uK , jl2: e2j = expsi2p/3d. s20d

Use of other symmetry points does not lead to new states.
We can further symmetrize the basis orbitals with respect

to the mirror symmetry of the honeycomb latticesthis will
only be relevant for cages withOh symmetryd:

uk,s, j , ± ,vl =
1

2
fsuk,s, jl ± uk,s,− jld

+ vsuŝxk,s, jl ± uŝxk,s,− jldg, s21d

with v= ±1 and

j = 0,1,2,3 foruk,s, j , + ,vl,

j = 1,2 for uk,s, j ,− ,vl. s22d

sx is a mirror plane in reciprocal space containing thekx
axis. v indicates the parity of the orbital with respect to the
mirror plane in direct space containing thex axis. The do-
main of distinctk states is 1/12 of the original BZ and is
given by the hatched triangleGKM in Fig. 4.

B. Electronic structure of the torus

The band orbitalsuk ,sl of the honeycomb lattice obeying
the following periodicity relation,

C ·k = 2plc,

T ·k = 2pl t, s23d

with lc, l t integers, are plane waves that coincide with the
MOs of the torus defined byC andT.35 Only a discrete grid
of k points fulfills these conditions.

For the special class of tori obeying Eq.s9d, this selection
is given by

kx =
2p

Î3a

lcn1 + l tn2

n1
2 + n1n2 + n2

2 ,

ky =
2p

a

1

3

− lcsn1 + 2n2d + l ts2n1 + n2d
n1

2 + n1n2 + n2
2 . s24d

Since the eigenstates of these tori incorporate sixfold sym-
metry they can be obtained in symmetrized form asuk ,s , jl
states. Only points within the gray triangle of Fig. 4 must be
considered. The special pointsG, K andM on this triangle
are represented by the followinglc, l t numbers:

G = 0 ⇔ lc = 0, l t = 0,

K ⇔ lc = n1, l t = n1 + n2,

M ⇔ lc = n1 +
1

2
n2, l t =

1

2
n1 + n2. s25d

From Eq.s25d it is clear that theG point and theK point are
included for anyn1, n2, but theM point is only included
whenn1 andn2 are both even. Most energy levels occur in
sextets—one for each value ofj—or multiples thereof. The
only exceptions are the levels due to theG point sa singlet at
±3d, the M point sif included, contributing a triplet at ±1d,
and theK point sa quartet at 0d, as is clear from Eq.s20d.

The degeneracy can even be higher for tori withn2=0 and
n2=n1, becauseuk ,s , j , ± ,vl has the same energy forv=1
or −1. A k point strictly inside the hatched triangle of Fig. 4
corresponds now to a twelvefold degenerate level.k points
on the special symmetry linesGM ,GK andKM that are no
special symmetry points correspond still to sextets.

C. Electronic structure of the (2,6) cage

To obey the boundary conditions for as2,6d cage, we
require in addition to the cyclic boundary conditions that the
MO given in Eq.s18d be totally symmetricwith respect to
the centralC3 axis, i.e.,j =0 or j =3. So for eachk point, the
allowed MOs areuk ,s ,0l and uk ,s ,3l. This reduces the
number of allowed MOs to 1/3 compared to those of the
torus. The selection of the electronic spectrum when passing
from the torus to thes2,6d cage is given in Table I. Mostk
points of thes2,6d cage will give rise to doublets, but there
are a few exceptions. Atl= ±3 there is always a nondegen-
erate energy level due to theG point. Forn1, n2 both even,
there exists an odd-degenerate level atl= ±1 because theM
point contributes one single MO at this energy, while otherk
points can possibly contribute to this energy, but only with

TABLE I. Selection of the electronic spectrum when as2,6d
cage is constructed from a torus.

k point

Multiplicity MOs

EigenvalueTorus s2,6d cage

k ÞG ,M ,K 6 2 0, ulu,3

G 1 1 ulu=3

M sn1, n2 both
evend

3 1 ulu=1

K 4 0 ulu=0
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an even number of MOs. Allk points on straight lines be-
tween neighboringM points and their antipodessthe dashed
line in Fig. 4d belong to the eigenvaluel= ±1. It is sufficient
to consider the points inside the gray triangle of Fig. 4, or
equivalently all points on the dashed line betweenM and

Ĉ6M . The necessary and sufficient condition for theslc, l td
pair to generate a MO with eigenvalue ±1 and that is noM
point is

3sn1
2 + n1n2 + n2

2d = 2flcsn1 − n2d + l tsn1 + 2n2dg,

1

2
sn1 − n2d , lc , n1 +

1

2
n2,

1

2
n1 + n2 , l t , n1 +

1

2
n2. s26d

It is clear that bothn1 and n2 must be even, otherwise no
levels atl= ±1 will be present. For the special casesn2=0
andn2=n1 one has

n2 = 0 ⇒ slc,l td = Slc,
3

2
n1 − lcD, with

1

2
n1 , lc , n1,

n2 = n1 ⇒ slc,l td = Slc,
3

2
n1D, with 0 , lc ,

3

2
n1. s27d

Adding the single contribution from theM point, the degen-
eracies atl= ±1 are forn1 even

n2 = 0 ⇒ 1 + 2S1

2
n1 − 1D = n1 − 1,

n2 = n1 ⇒ 1 + 2S3

2
n1 − 1D = 3n1 − 1. s28d

As for theK points, since Eq.s20d shows that they cannot
be totally symmetric with respect to theC3-axis, the energy
level ulu=0 is never included. In other words, octahedrally
symmetrics4,6d cages will never have a nonbonding MO of
the A+E group.

For n2=0 and n2=n1, all k points strictly inside the
hatched triangle of Fig. 4 correspond to quartets. The points
on the borders of this triangle that are no special symmetry
points, correspond to doublets; on the lineGM v can only be
unity, on the lineGK e j 3v must be equal tos and on the
line KM e j 3v must be equal to −s.

Summarizing, by combining Eqs.s16d, s18d, ands24d, the
eigenvalues and eigenvectors ofA1, A2, andE symmetry of
octahedrally symmetrics4,6d cages can be obtained. In the
following section we will show how to make a distinction
between these three representations.

V. IRREDUCIBLE SYMMETRY REPRESENTATIONS

Simple counting of orbitsssets of equivalent positionsd
allows a complete breakdown of the eigenvector symmetries
in all O andOh cages. There are five cases.

s1d Nonleapfrog cage,O symmetry

Gs =
1

3
S1

8
vs4,6d + 2DA1 +

1

3
S1

8
vs4,6d + 2DA2

+
2

3
Svs4,6d

8
− 1DE +

vs4,6d

8
T1 +

vs4,6d

8
T2. s29d

s2d Leapfrog cage,O symmetry

Gs =
vs4,6d

24
A1 +

vs4,6d

24
A2 +

vs4,6d

12
E +

vs4,6d

8
T1 +

vs4,6d

8
T2.

s30d

s3d Nonleapfrog zigzag cage,Oh symmetry

Gs =
sn1 + 1dsn1 + 2d

6
A1g +

sn1 − 1dsn1 − 2d
6

A2g

+
sn1 + 1dsn1 − 1d

3
Eg +

n1sn1 − 1d
2

T1g +
n1sn1 + 1d

2
T2g

+
sn1 − 1dsn1 − 2d

6
A1u +

sn1 + 1dsn1 + 2d
6

A2u

+
sn1 + 1dsn1 − 1d

3
Eu +

n1sn1 + 1d
2

T1u +
n1sn1 − 1d

2
T2u.

s31d

s4d Leapfrog zigzag cage,Oh symmetry

Gs =
n1sn1 + 3d

6
A1g +

n1sn1 − 3d
6

A2g +
n1

2

3
Eg +

n1sn1 − 1d
2

T1g

+
n1sn1 + 1d

2
T2g +

n1sn1 − 3d
6

A1u +
n1sn1 + 3d

6
A2u

+
n1

2

3
Eu +

n1sn1 + 1d
2

T1u +
n1sn1 − 1d

2
T2u. s32d

s5d Leapfrog armchair cage,Oh symmetry,

Gs =
n1sn1 + 1d

2
A1g +

n1sn1 + 1d
2

A2g + n1sn1 + 1dEg

+
n1s3n1 − 1d

2
T1g +

n1s3n1 − 1d
2

T2g +
n1sn1 − 1d

2
A1u

+
n1sn1 − 1d

2
A2u + n1sn1 − 1dEu +

n1s3n1 + 1d
2

T1u

+
n1s3n1 + 1d

2
T2u. s33d

Because thes4,6d cage is an alternant, its spectrum is
bipartite: for each bonding MO at +ulu there exists an anti-
bonding MO at −ulu with the same coefficient on white ver-
tices but an opposite value on black vertices.43,44 This im-
plies an opposite behavior of both MOs with respect to the
C4 axes which interchange black and white vertices. So the
following relationships between the symmetries of the two
MOs at opposite energy exist:

A1 ↔ A2,
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E ↔ E,

T1 ↔ T2. s34d

When the point group isOh, we have also the additional
relation

zigzag cage:Gg ↔ Gu8, s35d

armchair cage:Gg ↔ Gg8, s36d

with G and G8 symmetry labels ofO, obeying the relation-
ship s34d.

The energy levels of theA+E group can be obtained ana-
lytically. Counting degeneracies explicitly, they cover 1/4 of
the spectrum of thes4,6d cage. Using Eqs.s29d or s30d and
counting symmetry—but not accidentally—degenerate ei-
genvalues as one, they correspond to 2/5 of the distinct ei-
genvalues of a leapfrogs4,6d cage, and f2svs4,6d /8d
+1g / f5svs4,6d /8d+1g of a nonleapfrog.

To determine whether a given MO of thes2,6d cage cor-
responds to anA1, A2 or E representation of thes4,6d cage,
we first note that most MOs are doubly degenerate, i.e., one
MO for j =0 and one forj =3. A MO of the s2,6d cage with
j =0 corresponds to a MO of the foldeds4,6d cage that is
symmetric with respect to allC4 axes of thes4,6d cage, while
a MO of thes2,6d cage withj =3 corresponds to a MO of the
folded s4,6d cage that is antisymmetric with respect to allC4
axes of thes4,6d cage. Hence all these doubly degenerate
levels havexsC4d=0. From the octahedral character one ob-
tains

xA1sC4d = 1,

xA2sC4d = − 1,

xEsC4d = 0, s37d

which implies that the doublets must have eitherA1+A2 or E
symmetry.

These two possibilities can be distinguished by their char-
acter under any threefold rotation axis inO:

xA1+A2sC3d = 2,

xEsC3d = − 1. s38d

TheseC3 axes of thes4,6d cage run through the triangle
midpoints of the master octahedron. They run through an
atom in the case of a nonleapfrog cage and through the cen-
ter of a hexagon in the case of a leapfrog cage. On the un-
folded hexagonal patch of the torus on the honeycomb lattice
they can be identified with the threefold axes at positions

Ĉ6
j s 1

3Cd, j =0,1, . . . ,5. Figure 5sad gives two examples—
corresponding to nonleapfrogsleftd and leapfrog srightd
cages—where these threefold axes are presented by gray tri-
angles. Take a MO of the honeycomb lattice that obeys the
periodicity conditions of the hexagonal patch defined by
C fbig black hexagon in Fig. 5sadg and that is totally sym-
metric with respect to the threefold axes at the center and the
corners of this patchfblack triangles in Fig. 5sadg. When this

MO is also totally symmetric with respect to the threefold
axes at the corners of the hexagonal patch defined byN fgray
triangles in Fig. 5sadg, it will automatically obey the period-
icity conditions of this smaller hexagonal patchfsmall gray
hexagon in Fig. 5sadg. So MOs that areA1 andA2 represen-
tations in thes4,6d cage, correspond to MOs of the honey-

comb lattice that are periodic overN andĈ6N. Each hexago-
nal patch defines a torus, and the bigger one, defined byC
=sn1−n2da1+sn1+2n2da2, is the leapfrog of the smaller one,
defined byN=n1a1+n2a2. The periodic boundary conditions
of the small hexagonal patch defines the following grid ofk
points:

kx =
2p

Î3a

lc8s2n1 + n2d + l t8sn2 − n1d
n1

2 + n1n2 + n2
2 ,

FIG. 5. Two examples on how to distinguish theA1 and A2

representations of as4,6d cage from theE representations. The left
part treats a nonleapfrogs4,6d cage with indicesn1=2, n2=1 and
the right part a leapfrogs4,6d cage with indicesn1=4, n2=1. sad The
honeycomb lattice. As we have seen before, MOs that obey the
periodicity conditions defined by the larger black hexagonal patch
and that are totally symmetric with respect to the central threefold
axis, correspond to MOs of theA+E group of thes4,6d cage. The
smaller gray hexagonal patch defines a torus that is the parent of the
torus defined by the larger black hexagonal patch. MOs that obey
the periodicity conditions defined by this smaller patch correspond
to theA1 andA2 representations.sbd k points in the Brillouin zone
that obey the periodicity conditions of the larger black hexagonal
patch insad. The heavy dots obey the periodicity conditions of the
smaller gray hexagonal patch and hence correspond toA1 and A2

representations, the small dots toE representations.kA andkB cor-
respond to the MOs with the two energies closest to zero. They
correspond respectively to oneE representation and oneA1+A2

couple in the case of the nonleapfrog cage, and to twoE represen-
tations in the case of the leapfrog cage.
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ky =
2p

a

− lc8n2 + l t8sn1 + n2d
n1

2 + n1n2 + n2
2 , s39d

with lc8 , l t8 any integer. This grid is a subspace of the finer
grid defined by Eq.s24d. The selection rule for states to be a
A1+A2 couple is

lc + l t = 3lc8,

− lc + 2l t = 3l t8. s40d

About one third of the states is selected in this way, in ac-
cordance with Eqs.s29d and s30d. An example is shown in
Fig. 5sbd. For eachA1+A2 couple, the MO withj =0 corre-
sponds to theA1 representation and the MO withj =3 corre-
sponds to theA2 representation.

TheG point and, if allowed, theM point, always obey Eq.
s40d. Since they correspond to only one MO each at one
energy, they will give rise toeither A1 or A2 representations.
Inspection of the symmetry parameterj and the indexs in
Eq. s20d reveals that the totally bonding MO at theG point
will always be ofA1 symmetry and the totally antibonding
MO always ofA2 symmetry. If present, the bonding MO at
the M point is always ofA2 symmetry and the antibonding
MO of A1 symmetry.

For zigzag cages withn1 even, one has—apart from the
MO due to theM point—sn1−2d MOs at energies ±1fEq.
s28dg. Combining Eqs.s27d and s40d it is clear that they
correspond tosn1/2−1d doublets ofA1+A2 symmetry. In
other words, this class of cages has a very high density ofA
states at this energy.

The zigzag and armchair cages haveOh symmetry. Their
MOs are given byuk ,s= ±1, j =0 or 3, + ,v= ±1l. Eachk
point that is strictly inside the triangleGKM corresponds to
an accidentally degenerateA1g+A2g+A1u+A2u quartet or to
anEg+Eu quartet for both types of cages. The representation
of a MO of a zigzag cagesarmchair caged is gerade whene jv
svd is equal to 1 and ungerade whene jv svd is equal to −1.
In Table II an overview is given of the possible symmetry
representations ofk points on the borders of the triangle
GKM for the zigzag and armchair cages.

Note that Eq.s40d is always fulfilled for points on the
borderGM for zigzag cages and for points on the borders
GK or KM for armchair cages.

VI. ENERGY AND SYMMETRY OF FRONTIER ORBITALS
OF THE A+E GROUP

In this section we will deduce the value and the symmetry
of MOs of theA+E group that are closest tol=0.

In the grid of allowedk statesfEq. s24dg, the six points
closest to aK point will correspond to the energies closest to
zero. Only two of these points are within the gray zone in
Fig. 4 and will give rise to nonidentical MOs in thes4,6d
cage. Their position is given by

lc = n1, l t = n1 + n2 − 1, for kA, the point nearK ,

lc = n2 + n1 − 1, l t = n2, for kB, the point nearĈ6
5K .

s41d

Examples are shown in Fig. 5sbd. The energy corresponding
to these two points can be found by combining Eqs.s16d,
s24d, ands41d. However, the expression is easier to interpret
if we make first a Taylor expansion oflsk ,sd in the pointsK

and Ĉ6
5K :

l2sK + Dk,sd <
3

4
sDkx

2 + Dky
2da2 +

Î3

8
DkysDky

2 − 3Dkx
2da3,

s42d

l2sĈ6
5K + Dk,sd <

3

4
sDkx

2 + Dky
2da2 −

Î3

8
DkysDky

2 − 3Dkx
2da3.

s43d

For points given ins41d, Dk is equal to

Dk = −
2p

Î3a

n2

n1
2 + n1n2 + n2

2ex −
2p

3a

2n1 + n2

n1
2 + n1n2 + n2

2ey, for kA,

Dk = −
2p

Î3a

n1

n1
2 + n1n2 + n2

2ex +
2p

3a

n1 + 2n2

n1
2 + n1n2 + n2

2ey, for kB.

s44d

We find for l2

l2skA,sd <
4p2

3

1

n1
2 + n1n2 + n2

2

3S1 −
p

3Î3

s2n1 + n2dsn1 + 2n2dsn1 − n2d
sn1

2 + n1n2 + n2
2d2 D

=
4p2a2

3d2 S1 −
2pa

3Î3d
sin 3uD , s45d

TABLE II. Symmetry labels ofOh s4,6d cages for MOs resulting
from k points on the borders of the triangleGKM . Symbols like
gGM f denote allk points on the line betweenG andM , theG and
M end points not included.

k s Zigzag Armchair

G 1 A1g A1g

G −1 A2u A2g

M 1 A2u A2g

M −1 A1g A1g

gGM f 1 or −1 A1g+A2u A1g+A2g or Eg

gGK f 1 A1g+A2g or Eg A1g+A2u

gGK f −1 A1u+A2u or Eu A1u+A2g

gKM f 1 A1u+A2u or Eu A1u+A2g

gKM f −1 A1g+A2g or Eg A1g+A2u
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l2skB,sd <
4p2

3

1

n1
2 + n1n2 + n2

2

3S1 +
p

3Î3

sn1 + 2n2ds2n1 + n2dsn1 − n2d
sn1

2 + n1n2 + n2
2d2 D

=
4p2a2

3d2 S1 +
2pa

3Î3d
sin 3uD , s46d

where we have used the geometrical parametersd—the dis-
tance between the centers of two nearest-neighbor squares
and proportional to the number of atoms—andu, the chiral
angle betweenN and thex axis:

d = uNu = În1
2 + n1n2 + n2

2a, s47d

tanu =
1
Î3

n1 − n2

n1 + n2
. s48d

Note that the dependence oflskA,B,sd on the chiral angleu
is only a higher order effect. By definitions48d, u=0 for
armchair cages andu=p /6 for zigzag cages. Thus we find
for the energy of the two levels closest to energy zero that
belong to theA+E group

lskA,B,sd < s
2pa
Î3d

Î1 ±
2pa

3Î3d
sin 3u, s49d

where the2 sign refers tokA and the1 sign tokB. We note
that ulkA

uø ulkB
u if we confine ourselves to the sufficient do-

main n1ùn2ù0 or equivalentlyp /6ùuù0. The splitting
between the two energies is equal to

ulskB,sdu − ulskA,sdu <
2pa
Î3d

SÎ1 +
2pa

3Î3d
sin 3u

−Î1 −
2pa

3Î3d
sin 3uD

<
4p2a2

9d2 sin 3u. s50d

A fourfold degenerate level is obtained for armchair cages
while the splitting is maximal for zigzag cages.

Apart from the energy of the MO, also its shape is impor-
tant. Consider the atomic orbital coefficient at position
r 1= 1

3sa1+a2d. This atom is part of a square in the folded
s4,6d cage. From Eq.s18d, one finds that this coefficient is
equal to

Kr 1 =
1

3
sa1 + a2duk,s, jL

=
1

Î12N
SsÎ hk

uhku
hk + e jÎ hk

*

uhku
hk

*D . s51d

Like lsk ,sd, hk goes to zero whenk approachesK :

hK+Dk <
3

4S1 +
i

Î3
Ds− Dkx + iDkyda,

→0 for Dk → 0. s52d

It follows that MOs of theA+E group close to energy zero
have a very low value around the squares, with the MOs
corresponding tokA and kB as the most extreme cases. An
example is shown in Fig. 6.

The symmetries of the energy levelslskB,sd and
lskA,sd can be found by confronting the expression forlc, l t
with the selection rules40d.

For the leapfrogs4,6d cages both energy levels correspond
to E representations, while for the nonleapfrogs type 1stype
2d the energy level closest to energy zero corresponds to anE
representationsA1+A2 coupled and the next level to anA1
+A2 couplesE representationd. Exceptions to this rule are the
smallest cagesn1=1, n2=0, n1=1, n2=1 and n1=2, n2=0
becausekA and kB are symmetry related and/or correspond
to the special symmetry pointsG or M .

kAP gKM g andsxkBP fGK f for zigzag cages. Hence the
bondingsantibondingd energy level of theA+E group closest
to energy zero is ungeradesgeraded while the next bonding

FIG. 6. Plot of the highest bonding MO of theT group and the
highest bonding MO of theA+E group of the s4,6d cage
n1=13, n2=10. Only one master triangle of the cage is shown.
x, y, z denote the positions of the threeC4 axes. The precise con-
ditions used to extract the shown MO are also given. Top: this MO
is the HOMO and hasT2 symmetry. TheT2z component is shown.
The MO is enhanced around the squares going through thex andy
axes, but is vanishing around the squares going through thez axis.
Bottom: this MO is the HOMO−4 and hasE symmetry. It is van-
ishing around all the squares.
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santibondingd energy level is geradesungeraded. Armchair
cages have one fourfold degenerate level with symmetry la-
bels Eg+Eu, due to the fact thatkA and kB are symmetry
related.

Note that there is no important difference between leap-
frog and nonleapfrogs4,6d cages with respect to the position
of the energy levels of theA+E group close tol=0. This is
in contrast with the very different electronic structure for
leapfrogs and non-leapfrogs close tol=0 in the case of
fullerenes,39 s3,6d cages,36 nanotubes,34 and tori.35 On the
other hand, as we will see in the next section, the position of
energy levels of theT group close tol=0 are clearly differ-
ent for leapfrog and nonleapfrogs4,6d cages.

VII. MOs OF THE T GROUP: NUMERICAL HÜCKEL
CALCULATIONS

A general treatment of the MOs of theT group poses a
problem that was not met for MOs of theA+E group. Take
for example they component of a MO of theT group: the
MO should be even under action of theC4y

2 axis but odd
under action of theC4x

2 andC4z
2 axissFig. 7d. Let us label two

adjacent triangles of the master octahedronA andB, respec-
tively; the other triangles are labeled by action of the 3C4

2

axes. The triangle ±A has7B as two of its neighbors and ±B
as the third. A similar condition applies for the triangle ±B. It
is not possible to place a periodic pattern on the plane, using
as tiles the triangles ±A and ±B, where each triangle has the
same neighbors as for the octahedron. So the zone-folding
procedure applied previously to MOs of theA+E group can-
not be used for theT group. However, the frontier orbitals of
the octahedrals4,6d cages will always be ofT symmetry, as
shown in Ref. 45. We have therefore performed numerical
Hückel calculations on all octahedrals4,6d cages with
n2øn1ø29.

A. Position of the HOMO

Let us denote the smallest positive eigenvalue of a graph
aslHOMO. The HOMO-LUMO gap is then equal to

Eg = 2ubCCulHOMO for carbon cages, s53d

Eg = 2ÎD2 + bBN
2 lHOMO

2 for BN cages. s54d

In Fig. 8, lHOMO
2 of the s4,6d cages is plotted versus

1/sn1
2+n2

2+n1n2d=1/d2 for different classes of cages. It is
immediately clear thatlHOMO of nonleapfrog cages is
smaller than that of leapfrog cages with a similar size, as
already noted in Ref. 21. A detailed analysis of the data leads
to the following conclusions.

s1d Leapfrog cages: the data pointsstriangles in Fig. 8d
follow more or less a smooth line which means thatlHOMO is
determined mostly byd and only slightly byu. lHOMO is

FIG. 7. An octahedron with aA/B pattern inscribed that is even
under action of theC4y

2 axis but odd under action of theC4x
2 andC4z

2

axis.

FIG. 8. Data plot oflHOMO

versus 1/sn1
2+n2

2+n1n2d for leap-
frog cagesstrianglesd, nonleapfrog
cages type 1sblack pointsd and
type 2 sgray pointsd. Leapfrog
cages, upper line: zigzag leapfrog
cages. Leapfrog cages, lower line:
armchair cages. Nonleapfrog
cages, black line: zigzag nonleap-
frog cages type 1. Nonleapfrog
cages, gray line: zigzag nonleap-
frog cages type 2. Black dashed
line: cages corresponding to
n1−n2=1. Gray dashed line: cages
corresponding ton1−n2=2.
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maximal for zigzag cages and minimal for armchair cages.
The distribution of the data points in Fig. 8 suggests that
lHOMO

2 can be approximated in the following way:

lHOMO
2 sd,ud <

b0sud
d2 +

b1sud
d3 +

b2sud
d4 +

b3sud
d5 + ¯ .

s55d

Equations55d has the same formal form as the Taylor expan-
sion used in Eq.s45d to obtain the minimal eigenvalue of the
A+E group, but the coefficientsb0,b1, . . . areunknown. Fit-
ting lHOMO

2 to Eq.s55d using groups of cages with varyingd
but fixedu gives forb0

b0sud = b0 < 1.368, s56d

i.e., the lowest order term in Eq.s55d is independent ofu.
b1sud is negative and varies between

b1s0d < − 1.881, b1s0 , u , p/6d , b1sp/6d < − 1.174.

s57d

s2d Nonleapfrog cages: the points are more widely scat-
tered. lHOMO is higher for nonleapfrogs of type 1sblack
points in Fig. 8d than for cages of type 2sgray points in Fig.
8d. Zigzag nonleapfrog cages of type 1stype 2d have a maxi-
mal sminimald lHOMO. lHOMO is more or less in the middle of
these two extremes for cages with a minimalu sn1−n2=1 or
2d. Fitting lHOMO

2 to Eq. s55d for nonleapfrog cages of one
type and with fixedu gives the following result forb0

b0sud = b0 < 0.153, s58d

so again the lowest order term is independent ofu. b1 is
positive for nonleapfrog cages of type one and negative for
nonleapfrog cages of type two. The absolute value varies
between

ub1su → 0du < 0 , ub1s0 , u , p/6du , ub1sp/6du < 0.556.

s59d

B. Shape of the frontier orbitals

From Fig. 6 one can see that the MOs of theT group close
to energy zero are enhanced in the neighborhood of some of
the squares. More precisely, theTz component is vanishing
around the squares going through thez axis but enhanced
around the squares going through thex and y axes. This
behavior holds both for leapfrog and nonleapfrog cages and
is clearly different to that of the MOs of theA+E group
close to energy zerosvide suprad.

C. Symmetry of the frontier orbitals

Finally we give an overview of the symmetries of the
bonding MOs close to energy zero.

s1d Leapfrog cages: The HOMO and HOMO−1 of leap-
frog cages are both ofT2 symmetry. The HOMO is ofT2u
and the HOMO−1 ofT2g symmetry for armchair cages,
while the reverse is true for zigzag cages. There can be zero,
one or two MOs ofT1 symmetry between the HOMO−1 and
the first MO of theA+E group.

s2d Nonleapfrog cages: the HOMO is always ofT1 sym-
metry sT1u for zigzag nonleapfrogs type 1 andT1g for zigzag
nonleapfrogs type 2d. Excluding the smallest cages
n1=1,n2=0 and n1=2,n2=0, the HOMO−1 and the
HOMO−2 are ofT1 andT2 symmetry respectivelysT1g,T2u
for zigzag nonleapfrogs type 1 andT1u,T2g for zigzag non-
leapfrogs type 2d. The next level is of theA+E group.

By using relation Eq.s34d, one can find the rules for the
lowest antibonding MOs. The rules for identifying HOMO
−1, HOMO, LUMO and LUMO+1 in the case of leapfrog
cages, and for identifying HOMO and LUMO in the case of
nonleapfrog cages, are rigorously proven in Ref. 45 using
group theory.

So it is clear that leapfrog and non-leapfrog cages are
different not only with respect to the position of the frontier
orbitals, but also with respect to their symmetries. The origin
of this difference is clarified in Ref. 45.

VIII. COMPARISON WITH QUANTUM CHEMICAL
CALCULATIONS

In order to test the validity of the simple tight-binding
approximation, we have performed a standard density-
functional theorysDFTd calculation on several octahedral
s4,6d cages. The B3LYP functional was used, in combination
with the split-valence basis sets from Schäferet al.46 ex-
tended with a polarization function with exponent 0.80. This
DFT calculation was performed with the Turbomole code.47

The smallest leapfrog octahedrals4,6d cage is the trun-
cated octahedron C24 sn1=1,n2=1d. This cage was optimized
underOh symmetry constraints. The total binding energy per
carbon atom is 6.22 eV. The symmetry of the energy levels
from HOMO−1 to LUMO is the same as those from the
Hückel calculations. The symmetry of both the highest bond-
ing and lowest antibonding MO of theA+E group isEg, as
predicted by the Hückel model.

Next we have investigated theO cage C56 sn1=2,n2=1d,
which is a nonleapfrog. In this case the binding energy per
carbon atom is higher, 6.83 eV, which reflects that the strain
in this larger cage is relaxed as compared to C24. The sym-
metries of HOMO and LUMO are the same as those obtained
from the Hückel calculations. The symmetry of both the
highest bonding and lowest antibonding MO of theA+E
group isE, as predicted for a nonleapfrog cage type 1.

Finally we have also investigated the C72 zigzag leapfrog
cagesn1=3,n2=0d and its BN counterpart. The binding en-
ergy per carbon atom is again higher, 6.93 eV per carbon
atom. Comparing DFT with Hückel, the symmetry of the
energy levels agrees from HOMO−6 to LUMO for the car-
bon cagessee Table IIId. The LUMO+1 and LUMO+2 cal-
culated with DFT have switched position compared to the
Hückel results, but are still very close in energy. Fitting the
DFT and Hückel results by Eq.s2d provides us with the
fitting parametersaC=−4.58 eV andbCC=−2.87 eV and a
R2 value of 0.96. The agreement is even better for the BN
cage; there is a symmetry match of the energy levels from
HOMO−6 to LUMO+2. Fitting the DFT and Hückel results
by Eq. s4d gives the following parameters:aBN=−3.77 eV,
bBN=−2.67 eV anduDu=2.47 eV.
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IX. CONCLUSIONS

The Hückel energies, MOs and their symmetry labels of
octahedrally symmetrics4,6d cages have been found for the
A1, A2 andE representationsstheA+E groupd by applying a
zone-folding procedure, similar to the one applied previously
to s3,6d cages.36 Within the Hückel approximation, most en-
ergy levels of theA+E group are twofold degenerate, either
imposed by symmetrysE representationsd, or accidentally

sA1+A2 coupled. For cages with mirror symmetry also acci-
dental fourfold degeneracies occursEg+Eu or A1g+A2g
+A1u+A2ud. The twosbonding or antibondingd energy levels
closest to energy zero from theA+E group are bothE rep-
resentations for leapfrog cages, while the closest energy level
of nonleapfrogs of type 1stype 2d is an E representation
sA1+A2 coupled and the second aA1+A2 couplesE represen-
tationd. The MOs of theA+E group close to energy zero
have a low density at the squares.

It should be noted that the zone-folding technique cannot
be extended to cages with higher-order defects, such as pen-
tagons and heptagons. The reason is that unfolding such
structures cannot lead to a regular tessellation of the graphite
sheet.

It follows from numerical Hückel calculations that the
HOMO-LUMO gap of leapfrog cages is bigger than that of
nonleapfrog cages type 1, which is itself bigger than that of
type 2. The gap is primarily dependent on the size of the
cage and less on the chiral angle. HOMO and HOMO−1 of
leapfrog cages are both ofT2 symmetry while LUMO and
LUMO+1 are both ofT1 symmetry. HOMO and LUMO of
nonleapfrog cages are ofT1 and T2 symmetry, respectively.
MOs of theT group close to energy zero are enhanced in the
neighborhood of some of the squares.

The Hückel model gives satisfactory results for both car-
bon and BN cages, when compared to the more sophisticated
DFT method.
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