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7r electronic structure of octahedral trivalent cages consisting of hexagons and squares
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A zone-folding construction is applied to the honeycomb lattice band structure to yield explicit expressions
for the Hickel7-molecular orbitals, energies and symmetries of trivalent polyhedra consisting of hexagons
and square§(4,6) cages with octahedral symmetry. Tha;, A,, andE representations are accessible in this
way, but not theT,; andT, representations. Therefore, we have also performed numerical Huckel calculations
on a large set of cages. A clear distinction in electronic structure between leapfrog, nonleapfrog type 1 and
nonleapfrog type 2 cages is revealed. The results are relevant both for carbon cages and alternating boron-
nitride cages. Quantum chemical calculations gn, Csg, C;5, and BygN3g confirm the results.
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I. INTRODUCTION The paper is organized as follows. Section Il explains

In this work we are concerned wit4,6) cages, which are how the Hiickel spectra of both carbon and BN6) cages
defined as trivalent cages consisting of hexagons an@'® relqted to the elgenyalues Qf the adjacency matrix of the
squares. For a cage with atoms the number of squares Underlylng graph. Section Il introduces the central geo-
always equals 6, while the number of hexagons is given bynetrical relationship by which an octahedtal6) cage can
v/2-4. In thecarbon family, the most famous trivalent cage be unfolded into &a2,6) cage which in turn can provide a
type is of course the fullerene, defined as a carbon cageovering of the honeycomb lattice. This relationship defines
consisting of 12 pentagonal faces anf2—-10 hexagonal a zone-folding procedure which generates analytical expres-
faces. Therefore we can call it also(%,6) cage. For most sions for MOs transforming according to tihg, A, and E
stable fullerenegv=60,0=70) it has been found that they irreducible representations of the octahedral cage. The ex-
obey the isolated pentagon rlR): no two pentagons can plicit derivation of these MOs is done in Sec. IV and of their
share a bond? But trivalent cages withv <60 or 60<v  symmetries in Sec. V. Section VI focuses on the MOs of the
<70 must necessary violate the IPR rolehave faces other A+E group that are close to nonbonding. The MOs of sym-
than pentagons and hexagons. Several theoretical sttllies metry T, and T, of a (4,6) cage cannot be obtained by the
indicate that one or two four-membered rings can play a partone-folding method. Instead, we have performed numerical
in these fullerenes. Qiaat al!! synthesized a nonclassical Hiickel calculations on a large set of cages and the results are
fullerene G, with one four-membered ring. So squares canpresented in Sec. VII. Section VIII compares the Hiickel re-
be important in carbon cages, but for a cage consisting ofults with DFT-B3LYP calculations. The general conclusions
only squares and hexagons, one has to look for another stadre given in Sec. IX.
ing material instead of carbon.

Several alternant boron—nitridéBN) analogs to carbon Il RELATION BETWEEN HUCKEL SPECTRA OF C AND
structures have been synthesized, for example analogs to BN (4,6) CAGES
benzené? graphite'® and diamon&* and more recently to ’
nanotube¥'®and nanocages:* For the latter, two distinct In the simple Hiickel approximation, the Hamiltonian for
plausible classes have been investigated theoretically. Thearbon allotropes takes the following form:
first class consists db,6) cages like the classical fullerenes
which necessarily have some unfavorable homonuclear He=acl + BecA, (1)

B-B or N-N bonds'® The second class aré,6) caged®2?’

with a rigorous BN alternation that compensates for thewith ac the Coulomb integral an@.c the hopping integral.
strain-inducing squares. Theoretical studies disagree abolis Bcc represents a bonding interaction we hgg<O0. |
which class delivers the most stable ca¢fed' A systematic  is the unit matrix andA the connectivity matrix of the sys-
study has shown that within the class of {4¢6) BN cages, tem, representing a graph. The orbital energiell gfcan be
the ones without adjacent squares are the most stAble.  expressed in function of the eigenvaluesf A:

In this study we will focus on octahedréd,6) cages—
both carbon and BN structures—as defined by 2hal2%:21 Ec=ac+ Bco\, (2
These structures are in their BN form often of special stabil-
ity compared to othef4,6) BN cages’’>3We will show that  while the eigenfunctions oA and H. are the same. Each
analytical expressions for nondegenerate or doubly degenetage discussed here is an alternant: its vertices can be di-
ate eigenvalues and molecular orbitéM0) can be obtained vided into two equal sets, black and white, such that every
within the Huckel approximation, by means of a zone-vertex of one setis only surrounded by members of the other.
folding procedure similar to that applied previously to  As pointed out by Zhet al,?° the Hamiltonian of a rig-
nanotubes? nanotori® and(3,6) cages® orously alternating BN allotrope is equal to
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@ N D \ VLN [Fig. 1(b)] as was described in Ref. 20. The cage is com-
Lo ‘\\ 4 < < pletely defined by the vectdd along one edge of a constitu-
_.%‘1\_': S »d = ent equilateral triangle
Ml >IN s > 3 .
VWA Wa W N5 YV WA N =ma; + nya,, (5)
VANV W W AN with ny, n, integers andy,, a, the basis vectors of the hon-
N VN SNV eycomb lattice,
. . - ’. . . an <\”§ + 1 )
a;=al — -e,
1 5 € 5
®)
!/_ 1
\J
a=al —e--¢], 6
2 ( 2 %72 ) ©
wherea=\3Xrcc, with rec the nearest neighbor distance.
To construct all possibilities—omitting enantiomers—it is
sufficient to considem;=n,=0. One can distinguish the
following types:
FIG. 1. Octahedral4,6) cage, unfolded on the honeycomb plane n,=0: zigzag,
(a) and in the folded statéb). N=n,a;+n,a, defines the cage. For
the cage shown indices correspondritp=1 andn,=1, and the n, =n,: armchair,
number of carbon atoms is 24. The vectajsand a, are the unit
vectors of the honeycomb lattice. n, —n, = 3q: leapfrog,
Hgn =D + BenA, (3) n, —n,=3qg+ 1: nonleapfrog type 1,

with D a diagonal matrix whose elements angfor a boron
atom, which takes the place of a black vertex, apdfor a
nitrogen atom, which takes the place of a white vertex. ThelThe first two definitions are similar to the ones commonly
orbital energies ofgy are?® used for nanotube¥.A more general definition of leapfrogs
and nonleapfrogs—not confined to octahedvgb) cages—
can be found in Ref. 38. Zigzag and armchair cages laave
symmetry while the other cages are chiral and haveym-

ag + ay metry. Considering BN cages, the symmetry is lowereti to
BN = 2 for zigzag, T, for armchair andrl otherwise. Note that arm-

chair cages are always leapfrogs. Profound differences in the

electronic structure have often been encountered between
. (4) leapfrog and nonleapfrog members of graphitic species, such

2 as nanotube¥ fullerenes®® (3,6) cages’® and nanotor#® In

Since A2 cannot be lower than zero, the minimal HOMO- the case of octahedrad,6) cages, we will show that there
LUMO gap of an alternating BN system igA4, with A are also important differences between nonleapfrogs of type

nearly the size of3gy.%’ 1 and type 2. _ _
We will from now on work only with the graph—i.e.,, ~ 1he number of vertices,  of the (4,6) cage is equal to

n; —n, = 3g - 1: nonleapfrog type 2. (7)

Egn = agy £ VAZ+ ,BEN)\Zv

ag ~ an

A=

black and white atoms each have the same diagonal element —ain2 a2
- - ) . =8(n7+n3+n¢ny). 8
0 in the connectivity matrix—and express the MO energies Vg = 8N+ M+ 1yny) ®
by the dimensionless quantity. Ec or Egy can always be The operation<s,, C3, and Ci,—the three twofold rota-
found by using Eqs(2) and(4), respectively. tional axes going throug¥1 the square centers—can be used to

construct a so-callet?,6) cagé® corresponding to the origi-
nal (4,6) cage with onlyv, g=v4g/4 vertices. First, one
chooses two triangles of the master octahedron sharing a
side, labeling then® andB, respectively. The other triangles
can be related to these two by the operatiGfs C;, andC5,

An octahedrally symmetri¢4,6) cage can be imagined as and can also be labeled or B in this way[Fig. 2(@)].
a honeycomb lattice inscribed on a master octahedron. The Each triangleA has now a triangl®3 as neighbor along
symmetry will be lowered to tetrahedral symmetry for a BN each of its edges and vice versa. Let us take two neighboring
cage. Figure (B) shows a patch consisting of eight equilat- trianglesA and B and fold them together as shown in Fig.
eral triangles drawn on the honeycomb lattice. Upon folding2(b). The triangleA (B) is then “surrounded” by the triangle
this patch an octahedrally symmetfi4,6) cage is obtained B(A) along each of its edges in the same way as for Fig). 2

Ill. RELATIONSHIP BETWEEN THE EIGENVALUE
PROBLEM OF OCTAHEDRALLY SYMMETRIC
(4,6) CAGES, (2,6) CAGES AND TORI
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FIG. 3. Patch in the form ofa) a regular hexagon antb) a
rhombus with angles of/3 and 27/3. The vectors, T=C¢C and

ééC indicate periodic boundary conditions. Both patches define a
torus with the same connectivity.

each of its edges and vice versa. The resulting structure is the
honeycomb lattice with a pattern inscribed that is totally
symmetric with respect to trigonal periodic boundary condi-
tions, with periodically place®€; axes[Fig. 2(c)]. The peri-
odic boundary conditions are represented by a hexagonal
patch in Fig. 2c); each pair of opposite sides of the patch
defines a cyclic boundary condition. The patch consists of
threeA/B triangle pairs. By this construction, the center and
the corners of the patch coincide with the centers of hexa-
gons. For simplicity, the center of the hexagonal patch is
taken as the origin of the honeycomb lattice. The periodically
placedC; axes are also present at the center of the hexagonal
patch and at its corners. Note that {igaxes at the corners
are implied by the existence of the centt axis and the
periodic boundary conditions. This basically shows that the
electronic spectrum of €,6) cage is contained in that of the
honeycomb lattice and that it can be selected by applying
both periodic and threefold rotational boundary conditions.

Cutting the hexagonal patch in Fig(c2 and gluing the
pairs of opposite edges—e.g., applying the periodic but not
the rotational boundary conditions—results itoaus** Tori

FIG. 2. (a) A folded octahedral4,6) cage with the 8 master have been investigated by Ceulemansl3® with the zone-
triangles labeledh andB in such a way that the resulting pattern is folding method. The torus was obtained by gluing a patch in
totally symmetric with respect to the operatio®§, Cj,, andC3,.  the form of a general parallelogram, defined by two nonpar-
(b) A (2,6 cage, defined by folding the two neighboring master g|le| vectors. The Hiickel spectrum of this torus can then be
trianglesA and B, presented unfoldedeft, sides with the same  qearjved from that of the honeycomb lattice by selecting the
number should be glued togethand foldedright). (c) One canffill 1,54 orpjtals of the honeycomb lattice that are periodic along
the plane—using as tile the pair of triangles frab) (left)—to the two nonparallel vectors.

obtain the honeycomb plane with a pattern inscribed that is totally The hexagonal patch in Fig(& is equivalent to a special
symmetric with respect to periodically plac€d axes—represented type of parallelogram: a rhombus with angles f3 and

by black triangles—and periodic boundary conditions, represente ) . .
by the hexagonal patch. Opposite sides of the hexagonal patc /3 [Fig. 3b)]. The two vectors defining this rhombus,

should be glued together andT, are totally determined by the indices, n,

So MOs of the(4,6) cage that are totally symmetric with C=(n—npay +(ny +2ny)a;,

respect to the three generat@s, C3, andC2, correspond to A

eigenfunctions of th€2,6) cage. These MOs have symmetry T=C4C. 9
Lﬁzeégﬂt'agrgsé(ivr\]lethl;gqlstezltjigs; Q/r(]ads \Evoesgglr; Th?;rérlgsslfhgf The torus constructed from this rhomblﬂs is always a leap-
A+E group. The other MOs have symmetry lafiglandT, ~ frog. Note that the periodicity ove€ and CeC also implies
(the T group. periodicity overC:C, sinceC3C=C4C-C. This proves the

The triangle pairA/B can further be used as a building equivalence of the two patches in Fig. 3.

block to fill the plane. Again, this can be done in such away So applying only the periodic and not the threefold rota-
that each triangleA is surrounded by the trianglB along tional boundary conditions on the honeycomb lattice results
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in a torus instead of §,6) cage. Hence the spectrum of a
(2,6) cage is contained in that of this torus.

Summarizing, we have shown that an octahedrally sym-
metric (4,6) cage has a part of its Hiickel spectrum in com-
mon with that of a special kind of torus by using the concept
of a(2,6) cage. Since the Hiickel eigenvalues and eigenfunc-
tions of any torus are directly retrievable from those of the
honeycomb lattice by applying a zone-folding procediire,
this part can be found analytically. This will be done in the
following section.

IV. ELECTRONIC STRUCTURE OF (2,6) CAGES
A. Electronic structure of the honeycomb lattice

In this section we briefly recall the basic results of the
electronic structure of the honeycomb lattféeA unit cell
contains two vertices which can be labelled black and white.
The basis orbitals that correspond to an irreducible represen-

tationk of the translation group are FIG. 4. Brillouin zone of the honeycomb lattice, andb, are
1 the basis vectord’, K, C3K, M, C;M, and GM are special sym-
k), = —rE explik -ry)[ry), metry points.
\"N ry
1 h h,
1 _ _1 Kk K
|k>2:/__2 qu'k 'r2)|r2>- (10) |k’0-> E(O- |h ||k>1+ |h ||k>2)y (15)
VN r N k k

with o=1 for a bonding band orbital and -1 for an antibond-

The origin is pl h fah
e origin is placed at the center of a hexagopdenotes ing band orbital. The energy belonging to a stiteos) is

the position of a black vertex ang the position of a white

vertex equal to
l3ka ka k,a
ri=ma, + mya, + %(al +ay), AK,0) = olh|= 0'\/1 +4 cos” 2X cos—2L +4 cog _ZL
k=ke+ke,. (16)

1
rp=mpay + mya, - ~(ap +ay), (11
3 This dispersion relation ha3s, symmetry with respect to the
with my, m,, m}, m integers.|rj) (j=1,2 is a vertex cen- principal Cg axis and the six mirror planes going through
tered at positiorr. N is the number of unit cells. The Bril- the pointI’,
louin zone(BZ) takes the shape of a regular hexagon with

corners at #4w/3a)e, and #2w/\3a)e, +(2w/3a)e, and MCek, ) =\ (K,0),
has basis vectors; andb, (Fig. 4)
27 1 Mok, 0) =\(K,0). (17)
b1= ?(Eeﬁ e”)’ Special points with respect to the symmetry of the BZ are
(Fig. 4) as follows.
oml 1 (1) The center of the zonE, with N(I',0)=03.
b, = ?(Téex_ ey>- (12) (2) The centers of the edges, corresponding to three dis-
N

tinct states: M =(2m/\3a)e,, é3M, and égM, with
The interaction matrix element between the basis orbitals irx(é%M L0)=0.

Eq. (10), y(k|Alk),, is given by (3) The corners of the BZ, correspond to two distinct
h, = exp(ik(a, + a,)/3) + explik (- 2a; + a,)/3) staAtgs, K=(2w/\3a)e+(2m/3a)e, and CK,  with
+ explik(a, - 2a,)/3). (13) AMCEK ,a):O..At these pointsh, =0 hgnce Eq(15 cannot
be used and is not relevant. We use instead as band orbitals
h, obeys the following relations K1, [K)z, [CEK)1, [CEK),.
héek — hf( =h_, (14) In Ref. 36, the band orbitals were distinguished further by

their parity with respect to th€, axis at the origin. We take
with Cg a sixfold rotational axis through the origii=0 of  this now one step further by symmetrizing the band orbitals
the BZ. The eigenfunctions read with respect to theCg axis at the origin:

205407-4



7 ELECTRONIC STRUCTURE OF OCTAHEDRAL TRIVALENT CAGES PHYSICAL REVIEW B 71, 205407(2005

5 . TABLE 1. Selection of the electronic spectrum when(26)
2 Cgelt|k,a>, (18 cage is constructed from a torus.
t=0

l|'—‘

k,o,j) =

()

v

where e=exp(i27/6), andj=0,1, ...,5. TheK points give Multiplicity MOs

rise to the following symmetrized band orbitals k point Torus (2,6) cage Eigenvalue
5
, 1w~y k#T,M,K 6 2 0<]\|<3

K127 EE Cee'[K) 12 (19 r 1 1 A|=3
O t=0

_ o . o M (n4, n, both 3 1 A]=1

The domain of distinck states is 1/6 of the original BZ even
and is given by the gray trianglEK (C3K) in Fig. 4. For K 4 0 [\]=0

eachk point, one has six band orbitals [a§| (one for each
value thatj can take, and six band orbitals at|x|. The
exceptions are the special symmetry points of the BZ. The 2w 1=l (ng +2ny) +1(2n; + ny)
distinct possibilities off given by ky = a3 '

24
% +nyn, + N 249
T,0.)): € =0, Since the eigenstates of these tori incorporate sixfold sym-
metry they can be obtained in symmetrized formkasr, j)

M, a,j): =~0, states. Only points within the gray triangle of Fig. 4 must be
_ considered. The special poirks K andM on this triangle
K, j)1: €)= exp-i2n/3), are represented by the followidg, |, numbers:
IK,j)y: € = expli2ni3). (20) I'=0<1.=01=0,
Use of other symmetry points does not lead to new states. K = l.=ng, l;=n;+ny,

We can further symmetrize the basis orbitals with respect
to the mirror symmetry of the honeycomb latti¢is will

. 1 1
only be relevant for cages witQ, symmetry: M e l.=n;+ Enz, I = Enl +n,. (25)
1
k,o,j, +,0)= 5[(|k,0',j> t|k,0,—j)) From Eq.(25) it is clear that thd" point and theK point are

included for anyn;, n,, but theM point is only included
+o(|oyk,0,j) = |0k, 0,— ()], (21)  whenng andn, are both even. Most energy levels occur in
sextets—one for each value pfor multiples thereof. The

with »=+1 and only exceptions are the levels due to Higoint (a singlet at
i=0,1,2,3 fork,o,j, +,0), +3), the M point (if included, contributing a triplet at 41

and theK point (a quartet at ) as is clear from Eq(20).
i=1,2 forlk,o,j,~ ). (22) The degeneracy can even be higher for tori wifk 0 and

n,=n,, becausék,a,j, +,w) has the same energy far=1
oy Is a mirror plane in reciprocal space containing #je or —1. Ak point strictly inside the hatched triangle of Fig. 4
axis. w indicates the parity of the orbital with respect to the corresponds now to a twelvefold degenerate lekghoints
mirror plane in direct space containing thkeaxis. The do- on the special symmetry lindSM ,I'K andKM that are no
main of distinctk states is 1/12 of the original BZ and is special symmetry points correspond still to sextets.
given by the hatched trianglEKM in Fig. 4.

B. Electronic structure of the torus C. Electronic structure of the (2,6) cage
The band orbital$k , o) of the honeycomb lattice obeying ~ To obey the boundary conditions for @,6) cage, we
the following periodicity relation, require in addition to the cyclic boundary conditions that the
MO given in Eq.(18) be totally symmetricwith respect to
C-k=2ml, the centralC; axis, i.e.,j=0 orj=3. So for eaclk point, the
allowed MOs arelk,o,0) and |k,o,3). This reduces the
T -k =2y, (23)  number of allowed MOs to 1/3 compared to those of the

with I, I, integers, are plane waves that coincide with thetorus. The selection of the electronic spectrum when passing

MOs of the torus defined bg and T .35 Only a discrete grid from the torus to th€2,6) cage is given in Table |. Mosk
of k pOintS fulfills these conditions. pOintS of the(2,6) cage will give rise to doublets, but there

For the special class of tori obeying E§), this selection ~ar€ @ few exceptions. At=+3 there is always a nondegen-
erate energy level due to tHé point. Forn,, n, both even,

is given b )
g y there exists an odd-degenerate level att1 because thi¥
K = 2m g +1iny point contributes one single MO at this energy, while other
X~ \Ea ni*’ nyn, + ng’ points can possibly contribute to this energy, but only with
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an even number of MOs. Ak points on straight lines be- 1/1 1/1

tween neighborindg/ points and their antipodeshe dashed r,= 5(50(4,6) + Z)Al + 5(50(4,6) + 2>A2

line in Fig. 4 belong to the eigenvalue=t1. It is sufficient

to consider the points inside the gray triangle of Fig. 4, or 2( Ve V(4,6 V(4,6
equivalently all points on the dashed line betwéénand 3\ g ~ +TT1+?T2' (29

CgM. The necessary and sufficient condition for tihgl;)

pair to generate a MO with eigenvalue +1 and that isvho (2) Leapfrog cageO symmetry

pointis V@49 V40 V4o, V4o RG]
2 2 I,= 1t A+ E+ 1t Ta.
3(n1+nyny +n3) = 2l (ng — ny) + 1i(ng +2n,)], 24 24 12 8 8
(30
1 1 ,
5(”1 -y <lc<ng+ P (3) Nonleapfrog zigzag cag€), symmetry
r = (ny+1)(ny +2) + (N —1)(n; - 2)

1 1 o~ 6 19 6 29

5n1+ n2<|t<n1+§n2. (26)

) _ (N +1)(n, - 1) E + ny(n— 1) ny(n +1)

It is clear that bothn; and n, must be even, otherwise no 3 g 2 19 2 29
levels atA==x1 will be present. For the special cases-0
andn,=n, one has Lo D=2) (D +2)
6 1u 6 2u
3 1
n,=00 (Il = (IC,Enl— |C), with Enl <l.<nyg, . (ny + 1)(n, - 1)E . ny(ny + 1)1' . ny(n, — 1)
3 u 2 1u 2 2u-
3 3
n,=n, 0 (I,l) = (Ic,—nl), with 0 <1, < =n;. (27) (39)
2 2 (4) Leapfrog zigzag cage), symmetry
Adding the single contribution from the point, the degen- 5
eracies ah=+1 are forn; even r = ny(ny + 3)A L M - 3)A M, MT
o 6 1g 6 29 3 9 2 1g
1
n,=00 1+2(—n—1):n—1, ny(n, + 1 n,(n, -3 n,(n; +3
2 21 1 +1(1 )ng+ 1(ny )Alu+ 1(ny )A2u
2 6 6
3 n?_ nyn+1 ny(n;— 1
np=ny U 1"'2(5”1‘1):3”1_1- (28) +§1Eu+ al ; ) wt i ; )T2u- (32)

As for theK points, since Eq(20) shows that they cannot (5) Leapfrog armchair cagé),, symmetry,
be totally symmetric with respect to th@;-axis, the energy
level [\|=0 is never included. In other words, octahedrally _ny(ng+1) ny(ny + 1)
symmetric(4,6) cages will never have a nonbonding MO of o= 1wt 5 Agt ny(ng + 1Eg
the A+E group.

For n,=0 and n,=n,, all k points strictly inside the LM -Yo mBm-o m(y -1
hatched triangle of Fig. 4 correspond to quartets. The points 2 19 2 29 2 lu
on the borders of this triangle that are no special symmetry ny(ng - 1) ny(3n; + 1)
points, correspond to doublets; on the Ikl o can only be + A+ ny(ng - DE, + Ty,
unity, on the linel'K € X w must be equal ter and on the 2 2
line KM € X w must be equal to ¢ ny(3n; + 1)

Summarizing, by combining Eq§16), (18), and(24), the + =T, (33

eigenvalues and eigenvectors Af, A,, andE symmetry of 2

octahedrally symmetri¢4,6) cages can be obtained. In the  Because thg4,6) cage is an alternant, its spectrum is
following section we will show how to make a distinction pipartite: for each bonding MO at|¥ there exists an anti-

between these three representations. bonding MO at fA| with the same coefficient on white ver-
tices but an opposite value on black verti¢g$! This im-
V. IRREDUCIBLE SYMMETRY REPRESENTATIONS plies an opposite behavior of both MOs with respect to the

C, axes which interchange black and white vertices. So the

Simple counting of orbitgsets of equivalent positions following relationships between the symmetries of the two
allows a complete breakdown of the eigenvector symmetriegOs at opposite energy exist:

in all O andO,, cages. There are five cases.
(1) Nonleapfrog cageQ® symmetry A= Ay,

205407-6
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E—E, (a)

T]_ — Tz. (34)

When the point group i©,, we have also the additional
relation

zigzag cagel’y I}, (35

armchair cagel’y — Fé, (36)

with I" andI'” symmetry labels of, obeying the relation-
ship (34).

The energy levels of tha+E group can be obtained ana-
lytically. Counting degeneracies explicitly, they cover 1/4 of
the spectrum of thé4,6) cage. Using Eqs29) or (30) and
counting symmetry—but not accidentally—degenerate ei-
genvalues as one, they correspond to 2/5 of the distinct ei-
genvalues of a leapfrog(4,6) cage, and[2(v(e/8)
+1]/[5(v(4,6/8)+1] of a nonleapfrog.

To determine whether a given MO of tli2,6) cage cor-
responds to ai\;, A, or E representation of th&4,6) cage,
we first note that most MOs are doubly degenerate, i.e., one
MO for j=0 and one forj=3. A MO of the (2,6) cage with FIG. 5. Two examples on how to distinguish tidg and A,
j=0 corresponds to a MO of the foldgd,6) cage that is representations of &,6) cage from theE representations. The left
symmetric with respect to al, axes of the4,6) cage, while  part treats a nonleapfro@,6) cage with indicesn;=2, n,=1 and
a MO of the(2,6) cage withj =3 corresponds to a MO of the the right part a leapfrog4,6) cage with indices; =4, n,=1. (a) The
folded (4,6) cage that is antisymmetric with respect to@Jl honeycomb lattice. As we have seen before, MOs that obey the
axes of the(4,6) cage. Hence all these doubly degenerateperiodicity conditions defined by the larger black hexagonal patch

levels havey(C,)=0. From the octahedral character one ob-and that are totally symmetric with respect to the central threefold
tains axis, correspond to MOs of the+E group of the(4,6) cage. The

smaller gray hexagonal patch defines a torus that is the parent of the
A/*l(C4) =1, torus defined by the larger black hexagonal patch. MOs that obey

the periodicity conditions defined by this smaller patch correspond

XAZ(C4) =-1, to the A, and A, representationgb) k points in the Brillouin zone

that obey the periodicity conditions of the larger black hexagonal
XE(C4) =0, (37) patch in(a). The heavy dots obey the periodicity conditions of the

smaller gray hexagonal patch and hence corresporf tand A,

which implies that the doublets must have eitAgtA, or E  representations, the small dotsEaepresentationk, andkg cor-

(b)

symmetry. respond to the MOs with the two energies closest to zero. They
These two possibilities can be distinguished by their chareorrespond respectively to orfe representation and ong; +A,
acter under any threefold rotation axis@ couple in the case of the nonleapfrog cage, and toEwepresen-

tations in the case of the leapfrog cage.

)fl“Az(CS) =2,
E(Ca)=—1. (38) MO is also totally symmetric with respect to _the threefold
axes at the corners of the hexagonal patch defined fgray

TheseC, axes of the(4,6) cage run through the triangle triangles in Fig. $a)], it will automatically obey the period-
midpoints of the master octahedron. They run through ancity conditions of this smaller hexagonal pat@mall gray
atom in the case of a nonleapfrog cage and through the cefexagon in Fig. &)]. So MOs that aré\; and A, represen-
ter of a hexagon in the case of a leapfrog cage. On the urations in the(4,6) cage, correspond to MOs of the honey-
folded hexagonal patch of the torus on the honeycomb latticeomb lattice that are periodic ovrandCgN. Each hexago-
tpey can be identified with the threefold axes at positionsal patch defines a torus, and the bigger one, define@ by
C%(%C), j=0,1,...,5.Figure Fa) gives two examples— =(n;—nya;+(n;+2ny)ay, is the leapfrog of the smaller one,
corresponding to nonleapfrodleft) and leapfrog (right) defined byN=n,;a; +n,a,. The periodic boundary conditions
cages—where these threefold axes are presented by gray taf the small hexagonal patch defines the following grick of
angles. Take a MO of the honeycomb lattice that obeys thgoints:
periodicity conditions of the hexagonal patch defined by
C [big black hexagon in Fig.(®)] and that is totally sym- ) )
metric with respect to the threefold axes at the center and the = 2T lc(2ny + ny) +1; (N — ny)
corners of this patcfblack triangles in Fig. &)]. When this " 3a nZ+n.n, + N3
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TABLE Il. Symmetry labels of;, (4,6) cages for MOs resulting Note that Eq.(40) is always fulfilled for points on the

from k points on the borders of the triangleKM . Symbols like  porderI'M for zigzag cages and for points on the borders
J'M[ denote allk points on the line betweeli andM, theI" and  T'K or KM for armchair cages.
M end points not included.

k p Zigzag Armchair VI. ENERGY AND SYMMETRY OF FRONTIER ORBITALS
OF THE A+E GROUP
r 1 Agg Agg
r -1 Aoy Agg In this section we will deduce the value and the symmetry
M 1 A A of MOs of theA+E group that are closest %0=0.
2u 29 . . .
M 1 A A In the grid of allowedk states[Eqg. (24)], the six points
™ 1or-1 A :‘/’A\ A +A19 E closest to & point will correspond to the energies closest to
rmi or 197 e 1972 OF g zero. Only two of these points are within the gray zone in
K[ 1 Aqg+Agg OT By Arg* Aoy Fig. 4 and will give rise to nonidentical MOs in thd,6)
K[ -1 Ay +Ay, or E, ArtAgg cage. Their position is given by
]KM [ 1 A1u+A2u or Eu Alu+A29
KM [ -1 Ayt Ay or Eg AggtAy, l.=n;, lLi=n;+n,—-1, fork,, the point neak,
2w =1y +1{(ny + ny) lc=ny+n,—1, l=n, forkg, the point neaCK
ky=""73 2 (39) (42)
a ni+nn,+n;
with |, |, any Integer This grld is a subspace of the flnerExamp|eS are shown in F|g([5 The energy Correspondmg
grld deflned by EQ(24) The selection rule for states to be a to these two pomts can be found by Combmmg E@ﬁ)
A;+A; couple is (24), and(41). However, the expression is easier to interpret
| +1.=3 if we make first a Taylor expansion afk , o) in the pointsK
e and CK:
—lg+2,=3l. (40) —

V3
About one third of the states is selected in this way, in ac- N (K +Ak,0) = —(Ak2+Aky)a + _Aky(Aky 3Ak%)a’
cordance with Eqs(29) and (30). An example is shown in
Fig. 5(b). For eachA;+A, couple, the MO withj=0 corre- (42)
sponds to thé\; representation and the MO wifk3 corre-
sponds to thé\, representation.

TheTI point and, if allowed, th&/ point, always obey Eq. )\2(C5K +Ak,0) = § (AKZ + Aky 3Aky(Ak§ - 3AK)a’,
(40). Since they correspond to only one MO each at one
energy, they will give rise teither A or A, representations. (43)

Inspection of the symmetry paramefeand the indexs in
Eq. (20) reveals that the totally bonding MO at tliepoint  For points given in41), Ak is equal to
will always be ofA; symmetry and the totally antibonding
MO always ofA, symmetry. If present, the bonding MO at 2m N, 2m 20+,
the M point is always ofA, symmetry and the antibonding Ak =-
MO of A; symmetry.

For zigzag cages with; even, one has—apart from the
MO due to theM point—(n;—2) MOs at energies +1Eq. -
(28)]. Combining Eqgs.(27) and (40) it is clear that they = Ak=-
correspond to(n;/2-1) doublets of A;+A, symmetry. In
other words, this class of cages has a very high density of (44)
states at this energy.

The zigzag and armchair cages hagesymmetry. Their  We find for \?
MOs are given bylk,o=+1,j=0 or 3,+ w=+*1). Eachk
point that is strictly inside the triangIEKM corresponds to 4772 1
an accidentally degenerafgy+Ayy+A,+Ay, quartet or to N(Kp,0) =
anEg+E, quartet for both types of cages. The representation

56y, forkap,

o ST_MtNy
27 3an2+nyny+n2

\Sa nl + n1n2 + nz

nl 2’7T nl + 2n2

— e +— for kg.
Bar+mny+ 2 3an+nny+

3 s +nyn, + N

ofa MO of a zigzag cagermchair caggis gerade whe®! _m (2ng+ny)(Ng + 2n,)(Ng = Ny)

(w) is equal to 1 ano! ungerade whelw (o) is e_:qual to -1. xX|1- 3\5 (ni’f NN, + ng)z

In Table Il an overview is given of the possible symmetry 5

representations ok points on the borders of the triangle _ 478 _ 2ma sin30), (45)
I’'KM for the zigzag and armchair cages. 3d? 3\,§d
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47° 1
N e e —

3 ni+nn,+n;

X (1 + iF (ng + 2”2)(2n1 + nz)gnzl - Ny )
3V3 (ng + NNy +n3)

Ar?a? (
= 1
3d

2ma

+——sin 36) , (46)
3V3d

where we have used the geometrical parameaterthe dis-

tance between the centers of two nearest-neighbor squares

and proportional to the number of atoms—afdhe chiral
angle betweeMN and thex axis:

ZIN =
d=|N|=VnZ+nn,+na, (47)
ng—n
tang=—= 1 2 (48)
3N+

Note that the dependence ©fkg,0) on the chiral angled
is only a higher order effect. By definitio48), §=0 for
armchair cages and=/6 for zigzag cages. Thus we find

for the energy of the two levels closest to energy zero that

belong to theA+E group

Akan o) = 0272 1427 G 3g (49)
O) = 0= - 7 l
A8 V3d 34/3d

where the— sign refers td, and the+ sign tokg. We note
that |\ | <[\ | if we confine ourselves to the sufficient do-
main n;=n,=0 or equivalentlyw/6=#=0. The splitting
between the two energies is equal to

2ma 2ma
Nkg,0)| =N Ky, 0)| = —= 1+———sin30
IN(kg,0)[ = [N(ka, 0] \,3d(\/ 3v3d
2ma . )
-4/1-—=sin 30
3y3d

ma?

9d?

sin 36.

(50)
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HOMO-4

Yo P
C,. ¥ =™y,

3xyz

FIG. 6. Plot of the highest bonding MO of tiegroup and the
highest bonding MO of theA+E group of the (4,6) cage
n,=13, n,=10. Only one master triangle of the cage is shown.
X, Y, z denote the positions of the thr€g axes. The precise con-
ditions used to extract the shown MO are also given. Top: this MO
is the HOMO and ha3, symmetry. TheT,, component is shown.
The MO is enhanced around the squares going througk #mely
axes, but is vanishing around the squares going through #xés.
Bottom: this MO is the HOMO-4 and hds symmetry. It is van-
ishing around all the squares.

3 .
hicak = Z(l +\’I,_§)(_ Ak + iAky)a,

—0 for Ak — 0. (52
It follows that MOs of theA+E group close to energy zero
have a very low value around the squares, with the MOs

corresponding tk, and kg as the most extreme cases. An

A fourfold degenerate level is obtained for armchair cagesxample is shown in Fig. 6.

while the splitting is maximal for zigzag cages.

The symmetries of the energy levels(kg,o) and

Apart from the energy of the MO, also its shape is impor-) (k&) can be found by confronting the expressionlforl,
tant. Consider the atomic orbital coefficient at position,iih the selection rulé40).

r1=§(a1+a2). This atom is part of a square in the folded

(4,6) cage. From Eq(18), one finds that this coefficient is
equal to

1 .
<|'1= é(al+az)|k10'al>

1 h o,
:,=<o\/—khk+e'\/—khk>. (51)
V12N Ihy| [yl

Like \(k,0), h, goes to zero whek approache&:

For the leapfrodg4,6) cages both energy levels correspond
to E representations, while for the nonleapfrogs typéype
2) the energy level closest to energy zero corresponds B an
representatiorfA; +A, couple and the next level to ad;
+A, couple(E representation Exceptions to this rule are the
smallest cages;=1, n,=0, n;=1, n,=1 andn;=2, n,=0
becausek, and kg are symmetry related and/or correspond
to the special symmetry poinis or M.

kpe KM ] andoykg € [I'K] for zigzag cages. Hence the
bonding(antibonding energy level of thé\+E group closest
to energy zero is ungeradgerade while the next bonding

205407-9
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_B VIl. MOs OF THE T GROUP: NUMERICAL HUCKEL
CALCULATIONS

C2 A general treatment of the MOs of the group poses a
& ) problem that was not met for MOs of thfet E group. Take
C4 for example they component of a MO of th& group: the
X : X MO should be even under action of ti@, axis but odd
e v 4 under action of th&€3, andC3, axis (Fig. 7). Let us label two
\\ A S adjacent triangles of the master octahedfoandB, respec-
a0 Py tively; the other triangles are labeled by action of thé:ﬁs
) 4 axes. The triangle A has=B as two of its neighbors andBt
A - m y - —_— A as the third. A similar condition applies for the triangIB.t
1 o ‘m - is not possible to place a periodic pattern on the plane, using
2 # kS as tiles the trianglesA and B, where each triangle has the
C4ZA’ It ) same neighbors as for the octahedron. So the zone-folding
ot _V kS procedure applied previously to MOs of thAe-E group can-
At 4 * not be used for th& group. However, the frontier orbitals of
the octahedral4,6) cages will always be of symmetry, as
shown in Ref. 45. We have therefore performed numerical
Hiickel calculations on all octahedrdh,6) cages with

B n,<n;<29.

FIG. 7. An octahedron with A/B pattern inscribed that is even A. Position of the HOMO

under action of the4, axis but odd under action of @, andC;, Let us denote the smallest positive eigenvalue of a graph
axis. as\yomo- The HOMO-LUMO gap is then equal to

(antibonding energy level is geradéungeradg Armchair Ey=2|BccdMomo  for carbon cages, (53
cages have one fourfold degenerate level with symmetry la-

bellstE3+ E,, due to the fact thak, and kg are symmetry E,= Zvr’m for BN cages. (54)
related.

Note that there is no important difference between leapin Fig. 8, Moy Of the (4,6) cages is plotted versus
frog and nonleapfrog4,6) cages with respect to the position 1/(n?+n3+nn,)=1/d? for different classes of cages. It is
of the energy levels of th&+E group close to.=0. Thisis immediately clear that\,ouyo Of nonleapfrog cages is
in contrast with the very different electronic structure for smaller than that of leapfrog cages with a similar size, as
leapfrogs and non-leapfrogs close Xe=0 in the case of already noted in Ref. 21. A detailed analysis of the data leads
fullerenes®® (3,6) cages® nanotubes? and tori®® On the to the following conclusions.
other hand, as we will see in the next section, the position of (1) Leapfrog cagesthe data pointgtriangles in Fig. 8
energy levels of th& group close to\=0 are clearly differ-  follow more or less a smooth line which means thggyo is
ent for leapfrog and nonleapfrdg,6) cages. determined mostly byd and only slightly by 6. Nyomo IS

2
A A HOMO
0.01}

FIG. 8. Data plot of\yomo
versus 1(n3+n3+n;n,) for leap-
frog cagedtriangles, nonleapfrog
cages type l(black points and
type 2 (gray points. Leapfrog
cages, upper line: zigzag leapfrog
cages. Leapfrog cages, lower line:
armchair cages. Nonleapfrog
___n—n,= cages, black line: zigzag nonleap-
frog cages type 1. Nonleapfrog
cages, gray line: zigzag nonleap-
frog cages type 2. Black dashed
n 1, n,=0 line: cages corresponding to
.0.605. s .0.61 At .0.(515. — 00; n,—n,=1. Gray dashed line: cages

1

0.008

0.006 |

0.004 |

0.002}

corresponding ta;—n,=2.

2, .2
n; +ny tnn,

205407-10



7 ELECTRONIC STRUCTURE OF OCTAHEDRAL TRIVALENT CAGES

maximal for zigzag cages and minimal for armchair cages

PHYSICAL REVIEW B 71, 205407(2005

(2) Nonleapfrog cagesthe HOMO is always off; sym-

The distribution of the data points in Fig. 8 suggests thametry (T, for zigzag nonleapfrogs type 1 aiid, for zigzag

)\ﬁOMO can be approximated in the following way:

bo(6)  bi(6)  by(6)  bs(6)

Aaorvlo(‘i 0) ~

(55)

Equation(55) has the same formal form as the Taylor expan-
sion used in Eq(45) to obtain the minimal eigenvalue of the
A+E group, but the coefficientisy, by, ... areunknown. Fit-
ting Miomo to EQ. (55) using groups of cages with varyird
but fixed 6 gives forb,

i.e., the lowest order term in E@55) is independent of.
b,(6) is negative and varies between
b,(0) = - 1.881< by (0 < 0 < 7/6) < by(7/6) = - 1.174.
(57)

(2) Nonleapfrog cagesthe points are more widely scat-
tered. A\yomo is higher for nonleapfrogs of type (black
points in Fig. 8 than for cages of type @ray points in Fig.
8). Zigzag nonleapfrog cages of typdtipe 2 have a maxi-
mal (minimal) A\yomo- Momo 1S more or less in the middle of
these two extremes for cages with a minimgh;—n,=1 or

2). Fitting N2omo to Eq. (55) for nonleapfrog cages of one
type and with fixedd gives the following result fob,

bo(6) = by~ 0.153, (59)

so again the lowest order term is independentdob; is
positive for nonleapfrog cages of type one and negative fo
nonleapfrog cages of type two. The absolute value varie
between

by (68— 0)] = 0 < |by(0< 6 < 7/6)| < |by(7/6)| =~ 0.556.
(59

B. Shape of the frontier orbitals

From Fig. 6 one can see that the MOs of Thgroup close

nonleapfrogs type )2 Excluding the smallest cages
n,=1,n,=0 and n;=2,n,=0, the HOMO-1 and the
HOMO-2 are ofT; and T, symmetry respectivelyT,q, Ty,
for zigzag nonleapfrogs type 1 afd,, Toq for zigzag non-
leapfrogs type 2 The next level is of thé\+E group.

By using relation Eq(34), one can find the rules for the
lowest antibonding MOs. The rules for identifying HOMO
-1, HOMO, LUMO and LUMO+1 in the case of leapfrog
cages, and for identifying HOMO and LUMO in the case of
nonleapfrog cages, are rigorously proven in Ref. 45 using
group theory.

So it is clear that leapfrog and non-leapfrog cages are
different not only with respect to the position of the frontier
orbitals, but also with respect to their symmetries. The origin
of this difference is clarified in Ref. 45.

VIIl. COMPARISON WITH QUANTUM CHEMICAL
CALCULATIONS

In order to test the validity of the simple tight-binding
approximation, we have performed a standard density-
functional theory(DFT) calculation on several octahedral
(4,6) cages. The B3LYP functional was used, in combination
with the split-valence basis sets from Schagétral*® ex-
tended with a polarization function with exponent 0.80. This
DFT calculation was performed with the Turbomole cébe.

The smallest leapfrog octahedr@,6) cage is the trun-
cated octahedron£(n;=1,n,=1). This cage was optimized
underOy, symmetry constraints. The total binding energy per
carbon atom is 6.22 eV. The symmetry of the energy levels
from HOMO-1 to LUMO is the same as those from the
fliickel calculations. The symmetry of both the highest bond-
ing and lowest antibonding MO of th&+E group isE,, as
predicted by the Hiickel model.

Next we have investigated th@ cage Gg (n;=2,n,=1),
which is a nonleapfrog. In this case the binding energy per
carbon atom is higher, 6.83 eV, which reflects that the strain
in this larger cage is relaxed as compared tg. The sym-
metries of HOMO and LUMO are the same as those obtained
from the Huckel calculations. The symmetry of both the

to energy zero are enhanced in the neighborhood of some ?ﬁghest bonding and lowest antibonding MO of theE

the squares. More precisely, tiie component is vanishing
around the squares going through thexis but enhanced
around the squares going through theand y axes. This
behavior holds both for leapfrog and nonleapfrog cages an
is clearly different to that of the MOs of thA+E group
close to energy zertvide supra.

C. Symmetry of the frontier orbitals

Finally we give an overview of the symmetries of the
bonding MOs close to energy zero.

(1) Leapfrog cagesThe HOMO and HOMO-1 of leap-
frog cages are both of, symmetry. The HOMO is off,,
and the HOMO-1 ofT,; symmetry for armchair cages,
while the reverse is true for zigzag cages. There can be zer
one or two MOs ofT; symmetry between the HOMO-1 and
the first MO of theA+E group.

group isk, as predicted for a nonleapfrog cage type 1.
Finally we have also investigated theZigzag leapfrog
cage(n;=3,n,=0) and its BN counterpart. The binding en-
grgy per carbon atom is again higher, 6.93 eV per carbon
atom. Comparing DFT with Hickel, the symmetry of the
energy levels agrees from HOMO-6 to LUMO for the car-
bon cagesee Table Il). The LUMO+1 and LUMO+2 cal-
culated with DFT have switched position compared to the
Huckel results, but are still very close in energy. Fitting the
DFT and Huckel results by Eq2) provides us with the
fitting parametersac=-4.58 eV andB.c=-2.87 eV and a
R? value of 0.96. The agreement is even better for the BN
cage; there is a symmetry match of the energy levels from
6lOMO-6 to LUMO+2. Fitting the DFT and Huckel results
by Eq. (4) gives the following parametersigy=—3.77 eV,
Ben=—2.67 eV andA|=2.47 eV.
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TABLE IIl. Orbital energies and symmetries for£and B;gNsg (A;+A, couple. For cages with mirror symmetry also acci-
calculated by DFT and compared to the Hiickel Hamiltonian. Thedental fourfold degeneracies occ[ﬁEg+ E, or Ayg+Ay
Hickel parameters were fitted from HOMO-6 to LUMO for the +A,,+A,,). The two(bonding or antibondingenergy levels
carbon cage and from HOMO-6 to LUMO+2 for the BN cage. closest to energy zero from the+E group are bottE rep-

The HOMO and LUMO are between the two vertical spaces. resentations for leapfrog cages, while the closest energy level
of nonleapfrogs of type 1type 2 is an E representation

Css BaeN3g (A;+A, couple and the second A;+A, couple(E represen-
DFT Hickel ~ DFT+Huckel ~ DFT  Huckel  tation). The MOs of theA+E group close to energy zero
' Eev) T E(eV r E(eV) E (eV) have a low density at the squares.
It should be noted that the zone-folding technique cannot

Ty —2467 E; -2.049 = -0.604 -0.368  pe extended to cages with higher-order defects, such as pen-
Eg -2524 T,y -3.298 Ty -0.692 -1.034  tagons and heptagons. The reason is that unfolding such
T, -3257 T, -3.673 T, 1250 —1.166 :thrgg:.ures cannot lead to a regular tessellation of the graphite
Tag 75907 Tpy —5.482 T2 —6.368  -6.380 It follows from numerical Hiickel calculations that the
T,, -6.346 T, -5.856 T -6.566 -6.512 HOMO-LUMO gap of leapfrog cages is bigger than that of
E, -6764 E, -7.105 E ~7183 -7.179 nonleapfrog cages type 1, _Whlch is itself bigger thgn that of
Ty -7.460 Ty -7.452 T 7397 —7.408 type 2. The gap is pnm'anly dependent on the size of the

Y lu 2 cage and less on the chiral angle. HOMO and HOMO-1 of
Tyg —7.667 Ty —7.994 T =7.720  =7.791 " |eapfrog cages are both @, symmetry while LUMO and
Ty —8346 T,y -8.162 T -8.007 -7.915 | UMO+1 are both ofT; symmetry. HOMO and LUMO of
E, -8.426 Ey -8.450 E -8.094 -8.133 nonleapfrog cages are @} and T, symmetry, respectively.

MOs of theT group close to energy zero are enhanced in the
neighborhood of some of the squares.
IX. CONCLUSIONS The Huckel model gives satisfactory results for both car-

The Hiickel energies, MOs and their symmetry labels ofoon and BN cages, when compared to the more sophisticated
octahedrally symmetri¢4,6) cages have been found for the DFT method.
A;, A, andE representationghe A+E group by applying a
zone-folding procedure, similar to the one applied previously
to (3,6) cages’® Within the Huickel approximation, most en- Financial support from the Belgian Government through
ergy levels of theA+E group are twofold degenerate, either the Concerted Action Schemi&OA) and from the KULeu-
imposed by symmetrfE representations or accidentally ven Research CoundiBOF) is gratefully acknowledged.
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