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We propose to use a parametric amplification regime for small charge or potential difference detection in
electric force microscopy. First we give a simple method to accurately estimate the instability domains of the
oscillating system. Then we establish general and fully analytical expressions of the parametric amplification
gain, and discuss the optimal parameter values which must be used for voltage or charge detection. We show
that even in conventional Kelvin probe force microscopy the parametric effect should be taken into account.
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I. INTRODUCTION

Probing very small charge or electrostatic potential varia-
tions has become a key aspect in various fields of solid-state
physics. For instance, such measurements are required for
characterizing nanostructures or devices involving a small
number of elementary charges,1–7 detecting surface potential
variations in a number of materials at the nanometer
scale,8–13 assessing dipole-dipole interactions14 or studying
electron transport in quantum structures.15 For its ability to
measure small variations of local properties, the atomic force
microscopesAFMd has proven a powerful tool.16 As a spe-
cialized technique, electric force microscopysEFMd, a deri-
vate of dynamic force microscopy is actively investigated for
its capacity to explore charge distributions in nanostructures.
Typically, EFM is performed as a dynamic method.2 A sinu-
soidal electric signal is applied to the investigated substrate
at a frequencyvel below the natural cantilever resonancev0,
whereas a piezoelectric bimorph excites a metallized cantile-
ver close tov0, so as to separate the frequency bands carry-
ing the electrostatic and the mechanical signals, respectively.
The electric force between the sample and the metallized tip
results in a modulation of the amplitude oscillations at both
vel and 2vel.

In this paper we propose to select adequate electric signal
frequencies, so as to parametrically amplify the piezoelectric
excitation, with the electric signal acting as a pump. In such
a case, topography and electrical information cannot be ac-
quired simultaneously, as usually achieved, but, e.g., in the
lift mode technique. However, only one lock-in detection at a
frequency aroundv0 is required. Parametric amplification
has indeed already been observed in microactuators,17 and
has been used once in an AFM configuration in order to
experimentally demonstrate thermomechanical noise
squeezing.18 Recently, it was explicitly demonstrated for me-
chanical excitation of the sample.19 To the best of our knowl-
edge no detailed theory of this phenomenon has been pub-
lished in the case of an electrostatic force. Just to mention an
already-existing technique, in the case of Kelvin probe force
microscopysKFM or KPFMd the electric signal is usually
imposed close tov0. Although it is not ignored that there is
a force component at 2vel, its effects are usually neglected,

and only thevel component is considered.8–13 However, the
2vel component does lead to parametric amplification of the
electric force component atvel. It is therefore necessary to
ensure that this component does not appreciably modify the
usual calculations. We will demonstrate in this paper that in
many instances the parametric effect can drastically modify
the magnitude of the oscillation usually expected in KFM.

To be able to use a parametric regime in EFM first re-
quires a thorough understanding of its various effects, and it
is our aim in this paper to provide such an understanding
through a completely analytical approach, as well as some
experimental evidence of the model validity. Then, we pro-
pose to use it for improving the sensitivity of charge detec-
tion or surface potential measurement. The article is struc-
tured as follows: Starting from the differential equation of
the system, we describe a simple numerical method to cal-
culate the instability domains of the cantilever oscillations,
whatever is the form of the electric signal applied to the
substrate, and to any degree of accuracy. The description of
these instability domains leads to the extraction of conditions
that are well adapted for charge or voltage detection. A fully
analytical solution of the differential equation in the paramet-
ric regime withvel around 2v0 is given in the spirit of the
treatment described by Rugar and Grütter some years ago,18

yet with contrasting conclusions. The optimal setting of
phase and voltage offset for voltage or charge detection are
deduced as a function of the main physical parameters of the
system. We show that if thermomechanical noise is not the
prevailing noise source, the predicted sensitivity for charge
detection can be increased by several orders of magnitude in
comparison with the usual low frequency detection scheme.
Although this paper is rather inclined toward treating the
theoretical aspects of the problem, we report some experi-
ments, conducted on a simple system, so as to illustrate the
validity of our model and to show the relevance of our cal-
culations. We also treat the case of an electric signal applied
aroundv0, which induces as well parametric amplification,
and which is actually used in KFM. Treating this case along
with previous results will eventually permit us to discuss the
impact of thermal noise.
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II. DETERMINATION OF THE INSTABILITY DOMAINS
OF THE CANTILEVER OSCILLATIONS

To find conditions suitable for charge detection the insta-
bility domains of the parametric system will be explored
first. The general equation that governs the flexural cantile-
ver vibrations is a fourth order one,20 and in the high fre-
quency range it is mandatory to consider all vibration
modes.20–22 Nevertheless, it is possible to model the cantile-
ver as a harmonic oscillator driven by both an external driv-
ing forceFpstd resulting from a piezoelectric bimorph and an
electric forceFelstd exerted via the scanned substrate, as long
as the investigated frequencies remain substantially lower
than the second flexural vibration mode of the cantilever.20,21

For a rectangular beam geometry the ratio between the fre-
quencies of the two first flexural modes is 6.267,20 and in
order to exploit the parametric regime we are interested in
frequencies up to 2v0. In our case the harmonic point-mass
model is thus a reasonable approximation. The substrate is
modeled as a metal plane above which a fixed chargeQF can
be located, at a given distancez1 from the metal plane. The
equation of the cantilever motion is

d2z

dt2
+

k0

m
z+

v0

Q

dz

dt
=

Fpstd
m

+
Felsz,td

m
, s1d

with cantilever displacementzstd, spring constantk0, massm
and quality factorQ. The resonant frequencyv0 is given by
v0

2=k0/m. In the general case the electrical forceFel does
not necessarily behave as the force exerted between two per-
fect conductors,10 most notably in the case of a low-doped
semiconducting substrate,23,24and in some cases several mu-
tual capacitances must be taken into account.25 However, in
most theoretical instances and in practice, the force is usually
approximated as26

Fel =
1

2

]C

]z
sV + FST+ VCd2, s2d

whereFST denotes the work function difference between the
metal plane and the metallized cantilever andC is the capaci-
tance between the substrate and the cantilever.Vstd repre-
sents the voltage applied to the substrate, whileVC is an
equivalent voltage which results from the presence of the
fixed chargeshence, as in the modeling of MOS capacitors,
adding a fixed charge is equivalent to a flat-band voltage
shift26,27d. We will keep this approximation throughout, so as
not to obscure the principles involved in the discussion by
too great a bulk of numerical analysis. In the case of a plane-
plane geometry, Eq.s2d is rigorous and becomes

Fel = −
«S

2
1V + FST+

QFz1

«S

z+ z0
2

2

, s3d

where« is the dielectric constant of the medium between the
metal plate and the tip. The average distancez0 accounts for
the position of the conducting plane set on a defined poten-
tial. A development of the electrical force to first order inz
turns Eq.s1d into

d2z

dt2
+ Sv0

2 −
1

m

]Fel

]z
Dz+

v0

Q

dz

dt
=

Fpstd
m

+
Fels0,td

m
. s4d

If the applied voltageV is an arbitrary periodic signal with
pulsationv and periodT, the homogeneous equation of mo-
tion thus has the form

d2z

dt2
+ sv0

2 − gstddz+ b
dz

dt
= 0, s5d

with b=mv0/Q. Due to the periodicity ofV,gstd is also a
periodic function of the time, and is defined ins4d. By chang-
ing the variable toy=zexpsbt /2d we obtain

d2y

dt2
+ Sv0

2 −
b2

4
− gstdDy = 0 s6d

which can be further cast into the form

d2y

dt2
+ ustdy = 0, s7d

whereustd is periodic. This form is that of a Hill equation,
and if the functionustd is given by a simple sine function,
this equation further reduces to the well known Mathieu
equation.28

In this parametric regime the solutions of the differential
Eq. s7d are of the formy=ustdexpsmtd, whereustd is a peri-
odic function of time.28 Instability domains, corresponding to
m.0, can form in the frequency-amplitude plane ofustd,
under the form of instability tongues around the frequencies
v=2v0/n, with an n integer.28 Inside such instability do-
mains, the oscillation amplitude is considerably increased
with respect to the harmonic regime, and is indeed deter-
mined by the nonlinear terms neglected in Eq.s4d. These
instability domains have already been evidenced in the case
of microactuators.17

Notably, it is also well known that the Mathieu equation is
formally similar to a one-dimensional Schrödinger equation
with a periodic sine potentialsreplacet by xd. Indeed, deter-
mining the instability domains of Eq.s7d is formally identi-
cal to determine the energy band structure of an arbitrary
one-dimensional periodic lattice. Moreover, it is of great in-
terest to solve Eq.s7d for any arbitrary signal, as electric
losses in the substrate changing the signal shape might have
to be accounted for, or the use of electric pulses might be
favorable. We are thus led to adapt a method originally pro-
posed by Lee and Kalotas in the case of the Schrödinger
equation.29 We just outline its essential features and adapt
them to the case discussed here in the Appendix. For each set
of parameters, the stability conditionsA12d is tested to map
the instability domains in the corresponding planes. The ex-
amples given below will permit us to introduce the paramet-
ric conditions for charge detection.

In Fig. 1, conditionsA12d has been used to map the in-
stability domains in the voltage-frequency plane with the set
of physical parameters listed in the figure caption. The black
domains show the instability areas for a fixed charge equal to
150 elementary charges. In contrast, the superimposed grey
domains are calculated for the same structure, free of any
fixed charge. In both cases the electrical signal is sinusoidal.
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The grey domains which are only due to the alternative part
Vp sinsveltd of the signal are almost the same in both cases,
and superimposed. The highest frequency instability tongue
due toVP is obtained forvel=v0, since it gives a force com-
ponent oscillating at 2v0 ssee Eq.s3dd. In contrast, adding a
constant offset through the introduction of the fixed charge
gives rise to a force component atvel, and a new instability
tongue thus appears atvel=2v0. This is also quite clear in
Fig. 2, for which the signal is now a sawtooth periodic volt-
age. For low voltage values the two first instability domains
never exactly occur atv0 and 2v0, but rather take place at
frequencies located below those valuesssee Figs. 1 and 2d,
because the resonance frequency of the cantilever is lowered
by the constant part of the first order term inz of the elec-
trical force. As detailed below, this is a favorable point for
charge detection.

To enhance or lower drastically the natural oscillation am-
plitude of the cantileverA0 through the action of a fixed

charge or substrate voltage, the largest effect will clearly be
obtained in the instability domains described above, since in
such a case the oscillations are controlled by the nonlinear
terms in Eq.s1d. But these oscillations can indeed also be-
come spontaneous and difficult to control if the tip is posi-
tioned close to the sample. Hence it isa priori preferable to
stay out of the instability domain, but sufficiently close to it
so as to remain in a parametric amplification regime, which
is amenable to analytical calculations. This is for instance the
case if one takes a sinusoidal signal with an electrical pulsa-
tion vel=2v0. As illustrated by Fig. 1 forvel=2v0, as VP
increases from zero to upper values, one progressively gets
closer to the instability domain, up to a voltage above which
one begins to go away from it. We thus expect an optimal
amplification at a preciseVP value. A similar behavior is
obtained in the frequency-position plane, as shown by Fig. 3.
We will show that all quantities of interest can be accurately
approached by simple analytical expressions.

III. CANTILEVER OSCILLATIONS WITH vel=2„v0+Dv…

A. Theory

First we derive the gain in amplification obtained
in the case of a sinusoidal electrical excitation
Vstd=V0+VP sins2sv0+Dvdtd, with Dv small againstv0.
Here, V0 includes either an offset voltage, a work function
difference, a fixed charge or a combination of the three
terms. We will follow below an analysis very similar in spirit
to that conducted by Rugar and Grütter in Ref. 18. As in Ref.
18, we introduce a new complex variable,

a =
dz

dt
+ jv1

*z, s8d

a* =
dz

dt
− jv1z, s9d

with

FIG. 1. Instability domains in the electric signal frequency-
pump voltage plane, as calculated by applying the stability
criterion of Eq. sA12d to a sinusoidal electric signal. Parameters:
S=2.25310−14 m2,m=10−11 kg,k=2.23N/m,Q=300, 150 fixed
elementary charges atz1=25 nm,z0=50 nm.

FIG. 2. Instability domains in the electric signal frequency-
pump voltage plane, as calculated by applying the stability criterion
of Eq. sA12d to a sawtooth electric signal with a linearly rising part
and an abrupt falling part. HereVP is defined as the amplitude of
the sawtooth pulse and the base level is equal to0 V. Parameters:
S=2.25310−14 m2,m=10−11 kg,k=2.23N/m,Q=300, no fixed
charges.

FIG. 3. Instability domains in the electrical signal frequency-
displacement plane, as calculated by applying the stability criterion
given by Eq. sA12d to a sinusoidal electric signal. Parameters:
S=6.25310−14 m2,m=10−11 kg,k=2 N/m,Q=300, 200 elemen-
tary charges atz1=20 nm, pump voltageVP=5 V.
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v1 = v0SÎ1 −
1

4Q2 +
j

2Q
D , s10d

from which the inverse relations

z=
a − a*

jsv1 + v1
*d

, s11d

dz

dt
=

v1a + v1
*a*

v1 + v1
* , s12d

can be obtained. Substitutings11d ands12d into Eq. s1d then
yields

da

dt
= jv1a + j

kpstd
m

a − a*

v1 + v1
* +

Fpiezostd
m

+
Fel

0 std
m

, s13d

wherekpstd is the modification of the spring constant induced
by the electrical force andFel

0std is the zeroth order term in
z of the electrical force, depending onz0. Equations13d is
similar to what was already obtained by Rugar and Grütter.
However, we will not neglect any term in the first order
expression of the electrical force as made in Ref. 18ssee our
remark laterd. We make the additional hypothesis that the
piezoelectric stimulation is ensured at a frequency half of the
electrical excitation, so that parametric amplification acts on
the piezoelectric oscillation,

Fpstd = F0sinssv0 + Dvdt + Fd. s14d

Here we note an important difference with the treatment al-
ready given in Ref. 18: the authors assume that the frequency
v0 involved in their equations is not the natural resonance
frequency of the free cantilever, but rather the resonance fre-
quency obtained with an offset voltageV0 and pump voltage
VP already appliedbetween the substrate and the cantilever.
In other words, they implicitly include the constant part of
kpstd in the spring constant of the original system, and ne-
glect the variation of the quality factor, which is also a func-
tion of V0 andVP. This is different from what we do in this

article, since in their case, imposingvel=2v0 means that the
signal lies exactly below the instability tongue, so that as the
pump voltage is increased, the gain continuously grows until
spontaneous oscillations appear. They also make the hypoth-
esis that the pump voltage remains negligible in front of the
offset voltage, which is maintained constantsas achieved in
their experimentd. In our case, we seek a general solution for
an arbitrary frequency around 2v0, and arbitrary voltages.
Looking for a steady-state oscillation component of the form
a=a0 exps jsv0+Dvdtd, Eq. s25d leads to

jsv1 − v0 − Dvda0 −
ja

msv1 + v1
*d
SSV0

2 +
Vp

2

2
Da0 −

V0VP

j
a0

*D
+

F0

2m
ejsF+p/2d = 0, s15d

where

a =
1

2

]2C

]z2 . s16d

By noting that to first order in 1/Q,v1
* +v1<2v0 and

v1−v0< jv0/2Q,18 and defining

b1 =
v0

2Q
, s17d

b2 = a

V0
2 +

VP
2

2

2mv0
, s18d

b3 =
aV0VP

2mv0
, s19d

b4 =
F0

2m
, s20d

we find after some calculation thata0 can be expressed as

a0 = b4
sb1 + b3dsinF − sb2 + DvdcosF − jssb2 + DvdsinF + sb1 − b3dcosFd

b1
2 + sb2 + Dvd2 − b3

2 , s21d

so that the oscillation amplitudeA at v0+Dv is

A =
b4

v0

sb1
2 + sb2 + Dvd2 + b3

2 − 2b3sb1cos 2F + sb2 + Dvdsin 2Fdd1/2

b1
2 + sb2 + Dvd2 − b3

2 s22d

sin s22d A is simply obtained from Eq.s21d by taking
A= ua0u /v0d. Equations22d provides the ability to calculate
analytically almost any quantity of interest in the parametric
amplification conditionvel=2sv0+Dvd. Formulas22d is dif-
ferent from its counterpart derived in Ref. 18, since, as we
will see below,A does not necessarily go to infinity when

increasingVP. Besides, for arbitraryVP and V0 values, the
maximum amplitude is in general not obtained for a phase
shift F=p /2, as in Ref. 18. This can be seen in Figs. 4sad
and 4sbd, where the amplitude of the oscillations has been
plotted in thesV0,VPd plane forF=0 andp /2, respectively,
andDv=0, the other parameters being analogous to that cho-
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sen in Fig. 1. In many areas the amplitude withF=0 is
larger than withF=p /2.

From Eq. s22d it is straightforward to derive that if the
condition

]2C

]z2 ù
2k

QuV0VPu
s23d

is fulfilled, i.e., if the tip position gets close enough to the
sample, then the analytical gain goes to infinity ifDv is
comprised in a frequency interval given by the bottom and
upper limits written below:

Dv`
± =

1

2mv0
S− aSV0

2 +
VP

2

2
D ±Îa2VP

2V0
2 −

k2

Q2D .

s24d

For a sinusoidal electrical excitation, those two limits ana-
lytically define the instability domains described in a more
general way in the previous section. In the case of a plane
capacitor conditions23d becomes

z, S4«SQuV0VPu
k

D1/3

. s25d

An important quantity is the maximum negative frequency
shift Dvmax which can be imposed without entering into the
instability domain during an approach-retract curve. Finding
the value ofa which rendersDv`

+ minimum and recalculat-
ing the corresponding frequency shift leads to

Dvmax= −
v0

4Q
Î4SV0

VP
D2

+ SVP

V0
D2

. s26d

Formulass22d, s23d, s24d, s25d, ands26d give the opportunity
to precisely select voltage, position and frequency conditions
for which one can get as close as desired to the instability
domain. The most favorable conditions for charge or poten-
tial detection are such that the gain is maximized without
entering into the domain characterized by spontaneous oscil-
lations. The closer to the instability domain one operates, the
more sensitive is the method. A trade-off has thus to be cho-
sen between gain and stability. For instance, a quite safe but
somewhat restrictive measuring protocol might be to choose
Dv=0, because the system never gets unstable and it even
lends itself to a full analytical treatment: One must seek the
condition for which a small variation in charge or potential
si.e., a change inV0d induces the largest change in the oscil-
lation amplitude, everything otherwise fixed. Hence one
must solve]A/]V0=0 sor s]A/]V0d /A=0 if one is interested
in maximizing a relative variationd. But before determining
this condition, we will first illustrate the precision of the
analytical result through a comparison of formulas22d with a
numerical integration of Eq.s1d.

Equations1d was numerically integrated in a number of
realistic situations. The relative variation ofA versusthe
number of elementary fixed charges added to the system is
plotted in Fig. 5, withDv=0,z0=50 nm,z1=25 nm,V0=0

FIG. 4. Oscillation amplitude in the pump voltage
VP-offset voltage V0 plane, as calculated from the analytical
model of Sec. III. The isoamplitude line values are given in nm
sfrom 0 to 4 nm with 0.2 nm stepsd. Parameters:vel =2v0,vpiezo

=v0, S=2.25310−14 m2,z0=50 nm,k=2.23N/m,m=10−11 kg, Q
=300,Fpiezo=2310−11 N, f0=75.16 kHzsad F=0 andsbd F=p /2.

FIG. 5. Relative variation of the cantilever oscillation amp-
litude at v0 versus the number of elementary charges added to a
plane at z1=25 nm from the substrate plane. Points: numerical
integration of Eq. s1d and solid line: analytical model. Cal-
culation parameters:vel=2v0, vpiezo=v0,S=2.25310−14 m2, z0

=50 nm,VP=VPC=3.0567 V,F=−3p /8 ,k=2.23N/m,m=10−11

kg,Q=300,Fpiezo=2310−11 N, f0=75.16 kHz.
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andF=−3p /8 sas shown later on thisF value indeed gives
the highest variation forV0=0d. The agreement with the nu-
merical calculations is excellent. Even for one elementary
charge and a small surface capacitance, the variation in am-
plitude is around 1%. In Fig. 6 we simulated the variation of
the amplitude with vertical displacementz0. Once again the
agreement between the numerical simulation and analytical
result is excellent.

Figures 7sad and 7sbd give the variation of the sensitivity
s]A/]V0d /A in the sV0,VPd plane, for the same parameters as
in Fig. 4, and for two different phase values. There are al-
ways some extrema of sensitivity in the plane. Although in
the general case their determination requires to solve an al-
gebric equation of order 7 inVP, simplifying assumptions
given the opportunity to find analytical expressions for all
parameters. Below we will focus on the caseV0=0. Deriving
Eq. s22d versusV0 and makingV0=0 leads to the expression

U ]A

]V0
U

V0=0
= −

F0aVP

4m2v0
2

−
v0

Q
coss2Fd +

a

2mv0
VP

2 sins2Fd

Sv0
2

Q2 +
a2

4m2v0
2VP

4D3/2 .

s27d

Equations27d exhibits a maximumversusthe phase if the
relationship below is obeyed:

VP
2 = −

2k

aQ
tans2Fd. s28d

Here we note that Eq.s28d is also the condition for a maxi-
mum sensitivity, i.e., a maximum ofs]A/]V0d /A. Substitut-
ing VP in Eq. s27d by the expression above, deriving versus
F and finding the zeros of the resulting equation gives the
conditions for which the phase and the pump voltage maxi-
mize ]A/]V0 at V0=0:

FC1 =
p

12
+ n

p

2
, s29d

VPC1 =Î 2k

aQÎ3
, s30d

with n integer.]A/]V0 is then given by

U ]A

]V0
U

V0=0

max

=
±F0

2
SQ

k
D3/2Î2aÎ3S1 +

1

3
D−1/2

. s31d

Quite similar conditions are obtained for maximizing
s]A/]V0d /A:

FC2 =
p

8
+ n

p

2
, s32d

FIG. 6. Cantilever oscillation amplitude atv0 versus displace-
ment z0, for various pump voltage values. Points: Fourier compo-
nent atv0 derived from a numerical integration of Eq.s1d and solid
lines: analytical model. Parameters:vel=2v0,vpiezo=v0,S
=2.25310−14 m2,V0=−1.2 V,F=0,k=2.23N/m,m=10−11 kg,Q
=300,Fpiezo=2310−11 N, f0=75.16 kHz.

FIG. 7. Derivative of the oscillation amplitude divided
by the amplitude in the offset voltageV0-pump voltageVP plane,
as calculated from the analytical model of Sec. III. The solid
lines are for positive values and the dashed lines are
for negative values. Parameters:vel=2v0,vpiezo=v0,S=2.25
310−14 m2, z0=50 nm,k=2.23N/m, m=10−11 kg,Q=300,Fpiezo

=2310−11 N, f0=75.16 kHz.sad F=−3p /8 andsbd F=0. Taking
F=−3p /8 gives rise to a maximum on the lineV0=0 at VP

=VPC2 sEq. s32dd, whose position is indicated by a black point.
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VPC2 =Î 2k

aQ
, s33d

1

A
U ]A

]V0
U

V0=0

max

= ±ÎaQ

k
= ±ÎQ

2k

]2C

]z2 . s34d

For a givenz0 andV0=0, Eq.s34d gives the highest pos-
sible sensitivity to a small charge or potential change which
can be obtained withDv=0. It is worth noticing that a high
sensitivity is not restricted to a narrow voltage range.
As illustrated by Fig. 7sad, for VP=VPC2, the maximum
sensitivity given by Eq.s34d is reduced by a factor of 2 for
V0=1.315 V andV0=−1.639 V, thus giving an acceptable
operating window of almost 3 V. This would provide the
provision necessary for operating the AFM without going out
of the high sensitivity window. In the plane capacitor model,
the maximum sensitivity varies asz0

−3/2. Now suppose that a
value of VP has been fixed andF=FC2. There is indeed a
given value ofz for which s1/Ad]A/]V0 is equal to expres-
sion s34d. This is not the point where a maximum sensitivity
is reached in the approach-retract curvessee Fig. 8 for an
exampled, but interestingly enough, this maximum of sensi-
tivity is located close to that value. Easy calculations show
that with a fixedVP andF=FC2, the maximum sensitivity of
the approach-retract curve is obtained for

aC =
2s1 +Î2dk

QVP
2 s35d

and then is equal to

1

A
U ]A

]V0
U V0=0

F=FC2

f ixed Vp

max

= S1 +
1
Î2

D 1

VP
<

1.707

VP
. s36d

For a plane capacitor, the tip position for which this maxi-
mum is obtained is

z0
C = S «SQVP

2

2ks1 +Î2dD
1/3

. s37d

A possible way to measure the equivalent voltage differ-
ence between two points or resulting from charge injection
into the structure is to measure the maximum difference be-
tween the amplitude with and without charge in an approach-
retract curve. The equivalent voltage differenceDV0

eq is sim-
ply given by

uDV0
equ V0=0

F=p/8
=

VP

1.707
MaxSDA

A
D , s38d

where DA/A is the relative oscillation amplitude variation
between the two approach-retract curves. The lower isVP,
the higher will be the maximum sensitivity but it will then be
obtained for a closer distance between the tip and the sample,
so that a trade-off must be chosen in order not to get influ-
enced by additional forces and effectsssee Fig. 8d.

Finally we will illustrate through Fig. 9 the gain brought
by the choicevel=2v0 in comparison with the usual low
frequency modulation of the cantilever oscillation which is
obtained for vel,v0. We take vel=2p310 kHz and all
other parameters equal to the ones chosen in Fig. 5, and we
add a single fixed charge to the system atz1=2.5 nm. Figure
9 shows the power frequency spectrum of the cantilever os-
cillations, as calculated from a numerical integration of the
equation of movement, Eq.s1d. In Fig. 9 there is an eight-
orders of magnitude difference between the line at10 kHz
and the line atv0. This is to be compared with the1%
increase of the line atv0 in the case of parametric amplifi-
cation ssee Fig. 5d. Thus in this example we predict that the
latter method gives six orders of magnitude improvement in

FIG. 8. Relative variation of the oscillation amplitude atv0

calculated for an approach-retract curve without charge and with ten
added elementary charges. The dashed line represents the maximum
variation which might be obtained by adjusting the pump voltage
versusdisplacementz0 according to Eq.s37d. The two curves al-
most coincide whenz0 is such thatVP=VPC2. Parameters:vel

=2v0,vpiezo=v0,S=2.25310−14 m2,z0=50 nm,z1=25 nm,VP=2,
3, 4, 5 and 6 V, F=p /8 ,k=2.23N/m,m=10−11 kg,Q
=300,Fpiezo=2310−11 N, f0=75.16 kHz.

FIG. 9. Power frequency spectrum of the cantilever oscillations
as calculated from a numerical integration of Eq.s1d with the same
parameters as in Fig. 5, butvel=2p310 kHz,VP=VPC2=3.056 V
ssolid lined andVP=10 V sdotted lined.

THEORY OF ELECTRIC FORCE MICROSCOPY IN THE… PHYSICAL REVIEW B 71, 205404s2005d

205404-7



sensitivity in comparison with the former, if one takes into
account all noise sources but thermal noisesto be treated in
the last sectiond. IncreasingVP so as to improve the sensitiv-
ity of the low frequency modulation does not substantially
modify this ratioscaseVP=10 V in Fig. 8d. Besides, increas-
ing F0 or selecting a frequency in between 2v0 and 2sv0

+Dvmaxd could still greatly enhance the sensitivity without
suffering from spontaneous oscillations.

B. Experiment

The preliminary data reported below are aimed at demon-
strating the validity of our parametric amplification model.
We use a homemade AFM head under construction, piloted
by a Nanotec™ electronics system and equipped with At-
tocube™ micromotors. The piezoelectric signal is picked up
by a homemade electronic circuit which exactly doubles the
input signal frequency, with adjustable phase, offset and
level outputs. The output signal is then applied to the sample,
whereas the tip is connected to the electric ground. The
approach-retract curves are obtained by using the Wsxm™
software. The optical detection is ensured by a Fabry-Perot
cavity made up of the optic fiber extremity and the
cantilever.30 The cavity is adjusted through the application of
a constant bias to a piezoelectric bimorph inserted in be-
tween the optic fiber head and the fixed setup.

Figure 10 shows typical experimental approach-retract
curves, the sample being a flat gold surface, with an electric
signal frequency chosen to lie slightly below 2v0. As can be
seen in Fig. 10, the application of Eq.s34d with parameters
either experimentally extractedsv0,Q,kd or chosen very
close to the parameter values given by the tip supplierscan-
tilever dimensions, etc.d allows us to obtain very reasonable

fits of the experimental curves, whatever is the offset voltage
V0. Here the capacitance is modeled as resulting from the
parallel combination of a sphere1cone systemstipd and a
plane capacitorscantileverd. For the tip we use the analytical
electric force model proposed by Hudletet al.31 It is worth
noticing that a perfect fit cannot be obtained for a number of
reasons: for instance we do not take into account the 10 deg
cantilever angle, and the sphere1cone model is only an ap-
proximation of the real geometry. Besides, the phase is also
fitted because in practice there is a slight, constant dephasing
between the electric signal applied to the piezoelectric bi-
morph which itself excites the cantilever, and the resulting
cantilever oscillation. But even with such an approximate
capacitance model, it is quite remarkable that the whole set
of curves can be fitted with only one set of parameters. Close
to the sample, the capacitance is dominated by the tip con-
tribution, but far from it the cantilever influence prevails.
Figure 11 gives the variation of the oscillation amplitude
versusthe offset voltage, now maintaining constant the po-
sition of the tip with respect to the sample. It also illustrates
the nice agreement which can be obtained between the ex-
periment and model. It is worth noticing that if the paramet-
ric effect was ignored, and just taking into account a “con-
ventional” excitation close to 2v0, i.e., quite far from the
resonance, the experimental approach-retract curves should
be almost entirely determined by the piezoelectric excitation
alone, and should remain almost unaffected by the sinusoidal
electrical force. This is obviously not the case in Fig. 10.

As a last comment we note that we presented data ob-
tained with a frequency just below 2v0, but when still reduc-
ing the electric signal frequency we did observe the nonlin-
ear instability regime and all its characteristic features:
frequency bifurcation with the apparition of a subharmonic
component, strong and exponential increase of the oscillation
amplitude, etc. This will be described elsewhere.

IV. CANTILEVER OSCILLATIONS WITH vel=„v0+Dv…

Here we treat more briefly the case where the electric
signal frequency is chosen to lie close tov0. First we note

FIG. 10. Experimental approach-retract curves of an Au/Si
plane in parametric amplification conditions, along with their fit
with the analytical model. The fitting parameters are either experi-
mentally extractedsv0,k,Qd or chosen to be very close to the val-
ues given by the tip supplierscantilever dimensionsd. The electric
signal frequency is slightly below 2v0. The fitting voltage values
are all shifted by the same amount to take into account the contact
potential difference between the tip and sample materials. The
tip capacitance is modeled as a sphere and a cone, put in
parallel with a plane capacitor corresponding to the cantilever
area. f0=57.402 kHz,k=4 N/m,Q=200,fel=2sf0−42 Hzd , fpiezo

= f0−42 Hz,F=0.904p.

FIG. 11. Experimental variation of the oscillation amplitude as a
function of offset voltage, with the tip positioned at 0.33mm from
the sample surface. The same parameters as in Fig. 10.
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that we deal with a very particular situation, since in this case
both the excitation atv0 and the parametric amplification
gain contain voltage terms. Second, it is worth noticing that
this is not a mere academic problem, for this is the condition
which is usually chosen in the case of KFM.8–13,32 In this
case we consider that both the piezoelectric excitation and
the substrate voltage are applied at a frequencyv0+Dv. De-
fining

g =
1

2

]C

]z
, s39d

b5 =
g

m
V0VP, s40d

b6 =
aVP

2

8mv0
, s41d

with calculations strictly similar to that conducted in Sec.
III A, we find that the oscillation amplitude atv0+Dv is

A =
Îb5

2sb1
2 + sb2 − b6 + Dvd2d + b4

2sb1
2 + b6

2 + sb2 + Dvd2 − 2b6sb2 + Dvdcoss2Fd + 4b1b6 sins2Fdd + 2b4b5s2b1b6 sinsFd + ssb2 + Dv − b6d2 + b1
2dcossFdd

v0sb1
2 − b6

2 + sb2 + Dvd2d
.

s42d

We will not study formulas42d with the same detail as its
counterpart of Sec. III, but here we will rather discuss its
implications on KFM, which is now an established tech-
nique. In general, the piezoelectric excitation is ensured at a
frequency different from the electric one, the latter being
aroundv0, so as to separate the two components, and the fact
that the electric component at 2v0 parametrically amplifies
the v0 component is not taken into account. From Eq.s42d,
makingDv=0 and Fpiezo=0 leads to

ADv=0

Fpiezo=0
=

b5
Îb1

2 + sb2 − b6d2

v0sb1
2 − b6

2 + b2
2d

. s43d

From Eq.s43d one can easily find conditions for which the
parametric effect is not at all negligible. However, forV0
close to zero, the formula above simplifies to

AV0→0 > 2uguV0VP
Q

k

Î1 +SaQVP
2

4k
D2

1 + 3SaQVP
2

4k
D2 . s44d

If VP itself is small, this further reduces to

AV0,VP→0 > −
]C

]z
V0VP

Q

k
. s45d

Formally the expression above is exactly the same as the one
which is usually considered in KFM.8 However, if VP is
large, or ifz0 gets small, Eq.s44d becomes

AV0,z0→0 > −
8

3

V0

VP

]C

]z
S ]2C

]z2 D−1

, s46d

which means that when the tip gets close enough to the
sample the oscillation amplitude will start to decrease. In the
plane capacitor case, the amplitude becomes proportional to
the tip-sample distanceA>4V0z0/3VP. This is in complete
contrast with the conventional approach, which predicts that

the amplitude continuously increases as one gets closer to the
sample, until the tip begins to tap the substrate or becomes
sensitive to shorter range forces. On the other hand, in KFM
the signal frequency is not necessarily equal to the natural
frequency of the cantilever, but can be chosen so as to maxi-
mize the oscillation amplitudesi.e., at the resonanced. What
has been calculated here is an amplitude which is always
calculated at the natural cantilever resonance frequency;
without the parametric effect the amplitude atv0 should be
lowered in comparison with Eq.s45d, but here even for small
VP andV0 values it is maintained constant by the parametric
amplification. To find the best conditions for a Kelvin probe
experiment we should use the frequency shiftDv which
makes the amplitude reaching a maximum. And in this case
one recovers a situation similar to that discussed in the pre-
vious section. Depending on the parameter values and fre-
quency, the parametric effect can considerably enhance the
oscillation amplitude and one can even enter into the insta-
bility domain described in Sec. II. Without piezoelectric ex-
citation at the same frequency the instability domain is
reached if the inequality

VP ù VPC =Î8
k

Q
S ]2C

]z2 D−1

s47d

is verified andDv is comprised in the interval given by

Dv`
± =

1

2mv0
S− aSV0

2 +
VP

2

2
D ±Îa2VP

4

16
−

k2

Q2D . s48d

Close to such a domain the value of the amplification gain
can become very high. Hence it is quite clear that in realistic
systems the discrepancy between a simple-minded approach
and the parametric solution can become extremely large. The
experimental conditions should thus be carefully analyzed
when the aim is to extract quantitative information from
KFM, and to optimize the experimental conditions. An illus-
tration of the quite substantial discrepancy which can arise
between a conventional modeling and the parametric ap-

THEORY OF ELECTRIC FORCE MICROSCOPY IN THE… PHYSICAL REVIEW B 71, 205404s2005d

205404-9



proach is given by Fig. 12, which represents theoretical
approach-retract curves calculated for a realistic system and
using both models. From the numerical integration of the full
differential equation, it is quite clear from Fig. 12 that the
parametric approach is the correct one. Here we chose to use
vel=v0, and Fig. 12 illustrates that close to the sample, i.e.,
in the most sensitive measurement domain, and well before
the onset of tapping, the usual formula, Eq.s45d, is consid-
erably off the mark, and largely overestimates the oscillation
amplitude. We note that the opposite situationsunderesti-
mated amplituded could also be easily obtained, just by re-
ducing the electric signal frequency slightly belowv0, and
closer tov0−Dv`

+. With incommensurate piezoelectric and
electric frequencies, a good approximation of the resonance
amplitudeAM can be found by makingb4=0 and taking the
frequency which minimizes the denominator in Eq.s42d. We
obtain

AM > 8
g

a
V0VP

ÎVP
4 + VPC

4

VPC
4 − VP

4 . s49d

From s49d, whenVP gets close toVPC, the resonance ampli-
tude largely exceeds the conventional one and is no longer
proportional toVP. This might explain the usual practice of
operating with smallVP values, which here is justified by the
concern for avoiding premature tapping due to the paramet-
ric effect. This might also explain some dependence of the
measured potential on the driving amplitude, if this potential
is not obtained by finding the value ofV0 which makes the
amplitude vanish.

V. THERMOMECHANICAL NOISE

As already noted by Rugar and Grütter,18 if one is inter-
ested in extracting data from theexcitation which is para-
metrically amplified, there is no gain to expect from the
usual thermomechanical noise limit, because both the useful

excitation and the thermal fluctuations are amplified in the
same way. However, in this section we wish to point out that
the actual situation is somewhat more subtle, because in our
case we do not want to extract information from an arbi-
trarily small excitation directly imposed upon the cantilever.
We rather seek to obtain information which is contained in
the gain, and not in the excitation to be amplified, and thus
the latter can be made much larger than the thermomechani-
cal noise. Here we briefly discuss this problem in a rather
general way. Suppose that one wants to determine the value
of a physical parametern which enters into the parametric
force gradient, and not into the primary excitation. IfA0 is
the amplitude of the piezoelectric excitation before amplifi-
cation, much larger than the thermal noise amplitudeAB at
v0+Dv, and if G is the parametric gain, a small changeDn
in n leads to an overall oscillation amplitude,

A > SG +
]G

]n
DnDA0 + GAB. s50d

The lowest detectable change inn is thus

Dnmin =
G

]G

]n

AB

A0
. s51d

From s51d one can enhance the sensitivity just by increasing
the piezoelectric excitation, and the sensitivity is ultimately
controlled by the maximum excitation value which can be
safely chosensfor instance it cannot exceed the tip-sample
distanced, and by finding the conditions which maximize the
relative variation of the gain with respect to the measured
parameter, without entering into the spontaneous oscillation
regime. To compare parametric amplification with other
methods therefore requires us to compare expressions51d
with the sensitivity given by the other technique, andnot to
calculate the smallest, preamplified excitation that exceeds
the thermomechanical noise level. In the conventional case
one must evaluate the minimum detectable amplitude when
the force is now modulated atv0. The minimum detectable
value nmin is given by FsnmindQ/k=AB, and must be com-
pared to Eq.s51d. In fact, in the regions where the amplifi-
cation gain grows very rapidly, i.e., at the limit of the insta-
bility domains, it is in general possible to find conditions for
which Eq. s51d is indeed better than the conventional limit.
But it must be noted that on the one hand the system is not
necessarily easy to control in those areas, and on the other
hand the gain may be limited by the nonlinear terms in the
differential equation. Hence in practice it may become rather
difficult to select a measurement domain in which the para-
metric amplification gives better results than the conven-
tional method with respect to thermal noise, and yet avoids
the spontaneous oscillation regime. In the case of the electri-
cal force the situation is particularly tricky, since the electric
signal has components both atvel and 2vel, and thus even
the casevel=v0 leads to parametric amplification. A detailed
study of such a problem is beyond the scope of the present
paper, and will be the subject of a future publication.

FIG. 12. Cantilever oscillation amplitude atv0 versus displace-
ment z0, for various offset voltage values. Points: Fourier compo-
nent atv0 derived from a numerical integration of Eq.s1d; solid
lines: analytical parametric model, Eq.s42d, and dashed lines: usual
Kelvin probe approximation, Eq.s44d. Parameters:vel=v0,S=4
310−14 m2,V0=0, 0.1, 0.2, 0.3, 0.4and 0.5 V sfrom the lower to
upper curvesd, VP=2 V,k=2.5 N/m,m=10−11 kg,Q=200.
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VI. CONCLUSION

Parametric amplification of a piezoelectric excitation by
an electrical force may considerably enhance the sensitivity
of AFM tip oscillations to small changes in charge or offset
voltage between the tip and sample. In most interesting cases
the amplification gain is amenable to accurate analytical cal-
culations, and thus this method could lead to practical appli-
cations in EFM microscopy. Adapting this technique to
charge detection is actually in progress in our laboratory.
Besides, in this article we restricted ourselves to one Fourier
component of the oscillation, but in most cases the spectrum
is extremely rich and all other components may also include
useful information, and can be analytically calculated. We
also did not detail the nonlinear regime appearing in the
instability domains, but we did observe it experimentally.
Although more delicate to manage, the parametric effect
could also be used in this regime. Eventually, we want to
insist upon the fact that even if parametric amplification with
vel=2sv0+Dvd is not used, this phenomenon isnot an aca-
demic problem, but is very relevant in practice: the force
resulting from an alternating electric signal intrinsically con-
tains two frequencies, the value of the latter being exactly
twice that of the former. Hence in EFM with sinusoidal elec-
tric excitation there isalwaysparametric amplification, and
its effects must be carefully analyzed, depending on the mea-
surement conditions. In contrast to a widespread belief thev
component of the cantilever oscillation is not at all indepen-
dent of the 2v component of the electric force. We found that
in KFM, the parametric effect prevails and determines the
oscillation amplitude whenever the tip gets close to the
sample. To the best of our knowledge this point seems to
have been dismissed by previous authors in the AFM field. In
the parametric amplification case, we also showed that cal-
culating the thermomechanical noise limit is not as simple as
with conventional techniques. This point will be the subject
of a forthcoming publication.
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APPENDIX: DETERMINATION OF THE INSTABILITY
DOMAINS

In this Appendix we summarize and adapt a method origi-
nally described by Lee and Kalotas to determine the band
structure of one-dimensional solid lattices. Here we adapt it
so as to determine the instability domains of Eq.s5d. The
method consists in calculating the exact solution of Eq.s7d
for a suitably chosen periodic function which can be made
arbitrarily close to the originalustd function, and then rigor-
ously discuss the stability of this particular solution.

We break the functionustd over each periodt=t to t=t
+T into N constant segments of equal widthw=T/N and
heights taken as the linearly interpolated meanui =sustid

+usti+1dd /2 Eq. s7d in the ith segment becomes

d2y

dt2
+ uiy = 0. sA1d

Defininggi =Î−ui, we express the solution in theith segment
as

yi = ai coshsgist − tidd +
bi

gi
sinhsgist − tidd. sA2d

We define as in Ref. 15 thes2,2d unitary matrix

Ksg,wd = 1 coshsgwd −
sinhsgwd

g

− g sinhsgwd coshsgwd
2 . sA3d

Imposing the continuity of the solution and its derivative at
the boundary of each segment leads straightforwardly to the
following condition:

Sa1

b1
D = Ps1dSaN+1

bN+1
D , sA4d

wherePs1d stands for the product of theK matrices:

Ps1d = p
n=1

N

Ksgn,wd. sA5d

Since the solutions of Eq.s6d are of the form
y=ustdexpsmtd with ustd periodic, the solutionszstd of Eq. s5d
are such that

zst + Td = zstdesm−b/2dT. sA6d

Hence, forz not to grow exponentially one must fulfill the
condition

uemTu , ebT/2, sA7d

which restated in terms of the functiony gives

yst + Td = lystdebT/2, sA8d

wherel is a complex factor such thatuluø1. Rewriting Eq.
sA6d in terms of the coefficientsai and bi, and taking also
Eq. sA4d into account, one arrives at the linear equation
system

SPs1d −
e−bT/2

l
IDSa1

b1
D = 0, sA9d

whereI is the identity matrix. This system admits nontrivial
solutions only if

detSPs1d −
e−bT/2

l
ID = 0. sA10d

Defining Tr as the trace of theK-matrices product, and taking
into account the unitarity of theK matrices, we arrive at the
stability condition

uTr ± ÎTr2 − 4u , 2ebT/2, sA11d

which can easily be turned into
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uTru , 2 coshSbT

2
D . sA12d

Verifying the stability conditionsA12d provides the ability to

determine the instability domains for any kind of electric
signal. It is trivial to numerically implement this method, and
the accuracy of the calculation only depends upon the preci-
sion chosen for segmenting the voltage over one period.
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