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Theory of electric force microscopy in the parametric amplification regime
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We propose to use a parametric amplification regime for small charge or potential difference detection in
electric force microscopy. First we give a simple method to accurately estimate the instability domains of the
oscillating system. Then we establish general and fully analytical expressions of the parametric amplification
gain, and discuss the optimal parameter values which must be used for voltage or charge detection. We show
that even in conventional Kelvin probe force microscopy the parametric effect should be taken into account.
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I. INTRODUCTION and only thew, component is consideréd'® However, the

Probing very small charge or electrostatic potential varia2®@e component does lead to parametric amplification of the
tions has become a key aspect in various fields of solid-stat@lectric force component abg. It is therefore necessary to
physics. For instance, such measurements are required fensure that this component does not appreciably modify the
characterizing nanostructures or devices involving a smallisual calculations. We will demonstrate in this paper that in
number of elementary charges,detecting surface potential many instances the parametric effect can drastically modify
variations in a number of materials at the nanometethe magnitude of the oscillation usually expected in KFM.
scale’~** assessing dipole-dipole interactiéher studying To be able to use a parametric regime in EFM first re-
electron transport in quantum structufésor its ability to  guires a thorough understanding of its various effects, and it
measure small variations of local properties, the atomic forces oyr aim in this paper to provide such an understanding

microscope(AFM) has proven a powerful todf.As a spe- through a completely analytical approach, as well as some

cialized techm.que, elec'grlc force m|cro§co®FM), a deri- experimental evidence of the model validity. Then, we pro-
vate of dynamic force microscopy is actively investigated for

. 4 A . ose to use it for improving the sensitivity of charge detec-
Its capacity to e_xplore charge d|str|but|ons n nanostructure%)on or surface potential measurement. The article is struc-
Typically, EFM is performed as a dynamic method.sinu- i ) . . .
soidal electric signal is applied to the investigated substrat ured as follows: Star'tmg fro.m the d|ﬁergntlal equation of
at a frequencyy, below the natural cantilever resonaneg € system_, we O_'?SC”be a simple numer!cal methqd tp cal-
whereas a piezoelectric bimorph excites a metallized cantile€ulate the instability domains of the cantilever oscillations,
ver close tow,, SO as to separate the frequency bands CarryWhatever is the form of the electric signal applied _to_the
ing the electrostatic and the mechanical signals, respectivelguPstrate, and to any degree of accuracy. The description of
The electric force between the sample and the metallized tigwese instability domains leads to the extraction of conditions
results in a modulation of the amplitude oscillations at boththat are well adapted for charge or voltage detection. A fully
we and 2oy, analytical solution of the differential equation in the paramet-
In this paper we propose to select adequate electric sign&ic regime with wg around 2o, is given in the spirit of the
frequencies, so as to parametrically amplify the piezoelectritreatment described by Rugar and Gritter some years®ago,
excitation, with the electric signal acting as a pump. In suchyet with contrasting conclusions. The optimal setting of
a case, topography and electrical information cannot be aghase and voltage offset for voltage or charge detection are
quired simultaneously, as usually achieved, but, e.g., in thdeduced as a function of the main physical parameters of the
lift mode technique. However, only one lock-in detection at asystem. We show that if thermomechanical noise is not the
frequency aroundwg is required. Parametric amplification prevailing noise source, the predicted sensitivity for charge
has indeed already been observed in microactudtemsd detection can be increased by several orders of magnitude in
has been used once in an AFM configuration in order tacomparison with the usual low frequency detection scheme.
experimentally demonstrate thermomechanical noisélthough this paper is rather inclined toward treating the
squeezind® Recently, it was explicitly demonstrated for me- theoretical aspects of the problem, we report some experi-
chanical excitation of the sampt&To the best of our knowl- ments, conducted on a simple system, so as to illustrate the
edge no detailed theory of this phenomenon has been pubalidity of our model and to show the relevance of our cal-
lished in the case of an electrostatic force. Just to mention aculations. We also treat the case of an electric signal applied
already-existing technique, in the case of Kelvin probe forcearound wg, which induces as well parametric amplification,
microscopy(KFM or KPFM) the electric signal is usually and which is actually used in KFM. Treating this case along
imposed close ta,. Although it is not ignored that there is with previous results will eventually permit us to discuss the
a force component atd,, its effects are usually neglected, impact of thermal noise.
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Il. DETERMINATION OF THE INSTABILITY DOMAINS &z 19F wodz F)  Fu(0.0)
OF THE CANTILEVER OSCILLATIONS — | wf- =)z 2= ()
dt? ° m Jz Qdt m m

To find conditions suitable for charge detection the instaw the applied voltagey is an arbitrary periodic signal with

?ility dr?mains Ofl the pgrarr;]etric systemhwil]ll be eTpIore]d pulsationw and periodT, the homogeneous equation of mo-
irst. The general equation that governs the flexural cantileg . thus has the form

ver vibrations is a fourth order orf€,and in the high fre- ,

quency range it is mandatory to consider all vibration d“z 2 dz _
modes?®-22Nevertheless, it is possible to model the cantile- a2’ (0§-gv)z+ ,8& =0, 5)
ver as a harmonic oscillator driven by both an external driv- o ]

ing forceF(t) resulting from a piezoelectric bimorph and an With 8=mew,/Q. Due to the periodicity oV, g(t) is also a
electric forceF(t) exerted via the scanned substrate, as longPeriodic function of the time, and is defined(#). By chang-
as the investigated frequencies remain substantially lowdfPd the variable toy=z exp(Bt/2) we obtain

than the second flexural vibration mode of the cantilé¥ét. d?y , B

For a rectangular beam geometry the ratio between the fre- a2 + (wo— i g(t))y= 0 (6)
quencies of the two first flexural modes is 6.287nd in
order to exploit the parametric regime we are interested inwhich can be further cast into the form

frequencies up to &,. In our case the harmonic point-mass P
model is thus a reasonable approximation. The substrate is _32/ +6(ty=0, 7
modeled as a metal plane above which a fixed ch@gean dt

be located, at a given distanzefrom the metal plane. The

: i FUE where 6(t) is periodic. This form is that of a Hill equation,
equation of the cantilever motion is

and if the functiond(t) is given by a simple sine function,

0z ky wedz F,(t) Fuzt) this equation further reduces to the well known Mathieu
Stz = e (1)  equatior?®
d m Qdt m m

In this parametric regime the solutions of the differential
with cantilever displacementt), spring constank,, massm  EQ. (7) are of the formy=u(t)exp(ut), whereu(t) is a peri-
and quality factoQ. The resonant frequenay, is given by odic function of time?8 Instability domains, corresponding to
we?=ko/m. In the general case the electrical forlgg does 4> 0, can form in the frequency-amplitude plane @t),
not necessarily behave as the force exerted between two pétader the form of instability tongues around the frequencies
fect conductord® most notably in the case of a low-doped @=2wo/n, with an n integer?® Inside such instability do-
semiconducting substrat&24and in some cases several mu- mains, the oscillation amplitude is considerably increased
tual capacitances must be taken into acc@tihtowever, in ~ With respect to the harmonic regime, and is indeed deter-
most theoretical instances and in practice, the force is usualljpined by the nonlinear terms neglected in E4). These

approximated &8 instability domains have already been evidenced in the case
of microactuators’
_10C 2 Notably, it is also well known that the Mathieu equation is
Fer= EE(\H Ps+ Vo), ) formally similar to a one-dimensional Schrodinger equation

with a periodic sine potentidteplacet by x). Indeed, deter-
where®grdenotes the work function difference between themining the instability domains of Eq7) is formally identi-
metal plane and the metallized cantilever &his the capaci- cal to determine the energy band structure of an arbitrary
tance between the substrate and the cantilevé. repre-  one-dimensional periodic lattice. Moreover, it is of great in-
sents the voltage applied to the substrate, whijeis an  terest to solve Eq(7) for any arbitrary signal, as electric
equivalent voltage which results from the presence of théosses in the substrate changing the signal shape might have
fixed charge(hence, as in the modeling of MOS capacitors,to be accounted for, or the use of electric pulses might be
adding a fixed charge is equivalent to a flat-band voltagdavorable. We are thus led to adapt a method originally pro-
shift?6:2%. We will keep this approximation throughout, so as posed by Lee and Kalotas in the case of the Schrédinger
not to obscure the principles involved in the discussion byequatior?® We just outline its essential features and adapt
too great a bulk of numerical analysis. In the case of a planethem to the case discussed here in the Appendix. For each set

plane geometry, Eq2) is rigorous and becomes of parameters, the stability conditidA12) is tested to map
5 the instability domains in the corresponding planes. The ex-
V+ O+ Qrzy amples given below will permit us to introduce the paramet-
_ &S £ ric conditions for charge detection.
Fei=- ) z+7, ' S In Fig. 1, condition(A12) has been used to map the in-

stability domains in the voltage-frequency plane with the set
wheree is the dielectric constant of the medium between theof physical parameters listed in the figure caption. The black
metal plate and the tip. The average distagcaccounts for domains show the instability areas for a fixed charge equal to
the position of the conducting plane set on a defined potent50 elementary charges. In contrast, the superimposed grey
tial. A development of the electrical force to first orderan domains are calculated for the same structure, free of any
turns Eq.(1) into fixed charge. In both cases the electrical signal is sinusoidal.
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FIG. 1. Instability domains in the electric signal frequency- ELECTRIC SIGNAL FREQUENCY (kHz)
pump voltage plane, as calculated by applying the stability
criterion of Eq.(A12) to a sinusoidal electric signal. Parameters:  FIG. 3. Instability domains in the electrical signal frequency-
S$=2.25x 10 m?,m=10"1 kg,k=2.23N/m,Q=300, 150 fixed displacement plane, as calculated by applying the stability criterion
elementary charges at=25 nm z,=50 nm. given by Eqg.(A12) to a sinusoidal electric signal. Parameters:
S=6.25x 1014 m?,m=10" kg,k=2 N/m,Q=300, 200 elemen-
The grey domains which are only due to the alternative partay charges at;=20 nm, pump voltag®/p=5 V.
V, sin(wet) of the signal are almost the same in both cases,
and superimposed. The highest frequency instability tongugharge or substrate voltage, the largest effect will clearly be
due toVp is obtained forwe=wq, Since it gives a force com- obtained in the instability domains described above, since in
ponent oscillating at @&, (see Eq.(3)). In contrast, adding a such a case the oscillations are controlled by the nonlinear
constant offset through the introduction of the fixed charggerms in Eq.(1). But these oscillations can indeed also be-
gives rise to a force component @f, and a new instability come spontaneous and difficult to control if the tip is posi-
tongue thus appears at,=2w,. This is also quite clear in tioned close to the sample. Hence itaigriori preferable to
Fig. 2, for which the signal is now a sawtooth periodic volt- stay out of the instability domain, but sufficiently close to it
age. For low voltage values the two first instability domainsso as to remain in a parametric amplification regime, which
never exactly occur ab, and 2w, but rather take place at is amenable to analytical calculations. This is for instance the
frequencies located below those valisse Figs. 1 and)2  case if one takes a sinusoidal signal with an electrical pulsa-
because the resonance frequency of the cantilever is lowerd®n we=2w,. As illustrated by Fig. 1 forwg=2w,, asVp
by the constant part of the first order termzrof the elec- increases from zero to upper values, one progressively gets
trical force. As detailed below, this is a favorable point for closer to the instability domain, up to a voltage above which
charge detection. one begins to go away from it. We thus expect an optimal
To enhance or lower drastically the natural oscillation am-amplification at a precis&p value. A similar behavior is
plitude of the cantilevery, through the action of a fixed obtained in the frequency-position plane, as shown by Fig. 3.
We will show that all quantities of interest can be accurately

25 . . approached by simple analytical expressions.
20 T Ill. CANTILEVER OSCILLATIONS WITH  wg=2(wp+Aw)
15 | ©o 20, | A. Theory

First we derive the gain in amplification obtained
10 in the case of a sinusoidal electrical excitation
V(t) =Vo+Vp sin(2(wp+ Aw)t), with Aw small againstw,.
Here, V; includes either an offset voltage, a work function
difference, a fixed charge or a combination of the three
terms. We will follow below an analysis very similar in spirit
%020 60 80 100 120 140 160 to that conducted by Rugar and Griitter in Ref. 18. As in Ref.

ELECTRIC SIGNAL FREQUENCY (kHz) 18, we introduce a new complex variable,

Sr SAWTOOTH .
PULSES

PUMP VOLTAGE AMPLITUDE V, (V)

FIG. 2. Instability domains in the electric signal frequency- a= d—z+jw12, (8)
pump voltage plane, as calculated by applying the stability criterion dt
of Eqg. (A12) to a sawtooth electric signal with a linearly rising part
and an abrupt falling part. Helé is defined as the amplitude of . dz .
the sawtooth pulse and the base level is equdl Y Parameters: a =gyt et 9)
S=2.25x 10 m? m=10"1 kg ,k=2.23N/m,Q=300, no fixed
charges. with
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w1=wo< 1—4—QZ+$), (10)

from which the inverse relations
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article, since in their case, imposing,= 2w, means that the
signal lies exactly below the instability tongue, so that as the
pump voltage is increased, the gain continuously grows until
spontaneous oscillations appear. They also make the hypoth-

esis that the pump voltage remains negligible in front of the
offset voltage, which is maintained constdas achieved in
their experiment In our case, we seek a general solution for
an arbitrary frequency aroundwg, and arbitrary voltages.
Looking for a steady-state oscillation component of the form
a=ay exp(j(wp+Aw)t), Eq. (25) leads to

a-a

z=—, (11
j(w1+ wg)

dz_ wa+ a)*la*

P 12

: 2
can be obtained. Substitutirigl) and(12) into Eq. (1) then j(0, - wp— Aw)ag - Ja _ <<V§+ V—‘-’)ao— VO_VPa;)
yields M(w; + w,) 2 i
-3 ) 0 F,

_a — J wla+ . kp(t) a—a 4 FpleZC(t) + F€‘|(t) , (13) + _Oe]((l)+77-/2) — 0’ (15)

dt m o, +w; m m 2m
wherek(t) is the modification of the spring constant inducedwhere
by the electrical force anB,(t) is the zeroth order term in 15C

z of the electrical force, depending @g. Equation(13) is a=-—.
similar to what was already obtained by Rugar and Grutter. 207
However, we will not neglect any term in the first order By noting that to first order in 1Q,w;,"+w;~2w, and
expression of the electrical force as made in Ref(sE& our w1—wp= | wo/ 2Q,18 and defining

remark latey. We make the additional hypothesis that the

(16)

piezoelectric stimulation is ensured at a frequency half of the B = o (17)
electrical excitation, so that parametric amplification acts on ! 2Q’
the piezoelectric oscillation,
F (1) = Fosin((wp + Aw)t + B). (14) VIR
Here we note an important difference with the treatment al- Bo=a 2 , (18)
ready given in Ref. 18: the authors assume that the frequency 2Max
wq involved in their equations is not the natural resonance
frequency of the free cantilever, but rather the resonance fre- _aVoVp (19)
quency obtained with an offset voltayg and pump voltage Ps= 2Mawg '
Vp already appliedbetween the substrate and the cantilever.
In other words, they implicitly include the constant part of Fo
ko(t) in the spring constant of the original system, and ne- Ba= om’ (20)

glect the variation of the quality factor, which is also a func-
tion of Vy andVp. This is different from what we do in this we find after some calculation thag can be expressed as

(B1+ B3)SIND — (B, + Aw)cosd — j((B, + Aw)sind + (B, — B3)cosD)

= 21
fo=fu Bi+ (By+ Aw)*~ B3 D

so that the oscillation amplitudé at wg+Aw is
ne Ba(BL+ (Bo+ Aw)+ 55— 2B5(8,005 2 + (B, + Aw)sin 2)) 12 22

o Bi+ (By+ Aw)? - B3

(in (22) A is simply obtained from Eq(21) by taking increasingVp. Besides, for arbitrary/ps and V, values, the
A=|ag|/ wp). Equation(22) provides the ability to calculate maximum amplitude is in general not obtained for a phase
analytically almost any quantity of interest in the parametricshift ®=/2, as in Ref. 18. This can be seen in Fig&)4
amplification conditionwg=2(wy+Aw). Formula(22) is dif- and 4b), where the amplitude of the oscillations has been
ferent from its counterpart derived in Ref. 18, since, as weplotted in the(Vy,Vp) plane ford=0 and/2, respectively,
will see below,A does not necessarily go to infinity when andAw=0, the other parameters being analogous to that cho-
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FIG. 5. Relative variation of the cantilever oscillation amp-

= litude at wg versus the number of elementary charges added to a

>° plane atz;=25 nm from the substrate plane. Points: numerical

'(-'DJ integration of Eq.(1) and solid line: analytical model. Cal-

< culation parametersivg=2wg, wpiez6= g, S=2.25X 1074 m?, 7,

2 =50 nm,Vp=Vpc=3.0567 V,d=-37/8,k=2.23N/m,m=10"11

S kg,Q=300 Fpie,=2X 10711 N, f;=75.16 kHz.

|_

l:"L’J 4eSQVoVp| |1

: (e
6o 1 2 3 4 5 6 7 8 An important quantity is the maximum negative frequency

(b) PUMP VOLTAGE V, (V) shift Awnya, Which can be imposed without entering into the

instability domain during an approach-retract curve. Finding
FIG. 4. Oscillaton amplitude in the pump voltage the value ofa which renders\w..* minimum and recalculat-
Vp-offset voltage V, plane, as calculated from the analytical ing the corresponding frequency shift leads to

model of Sec. Ill. The isoamplitude line values are given in nm VAVENAVAE:
(from 0 to 4 nm with 0.2 nm stepsParametersig = 2wy, piezo Awmay=— Yo 4(_0) n <_P> _ (26)
=wg, S=2.25X 10714 m?,25=50 nmk=2.23N/m,m=10"1 kg, Q 4Q Vp Vo

= PO 1 = = =
=300 Fpiezg=2x 107N, fo=75.16 kHz() ®=0 and(b) =/2. Formulas(22), (23), (24), (25), and(26) give the opportunity

o ] . to precisely select voltage, position and frequency conditions
sen in Fig. 1. In many areas the amplitude With=0 is  for which one can get as close as desired to the instability

larger than withd=7/2. _ _ domain. The most favorable conditions for charge or poten-
From Eq.(22) it is straightforward to derive that if the tjg| detection are such that the gain is maximized without
condition entering into the domain characterized by spontaneous oscil-
lations. The closer to the instability domain one operates, the
(92_C __ (23 ~ more sensitive is the method. A trade-off has thus to be cho-
02 Q|VoVe| sen between gain and stability. For instance, a quite safe but

somewhat restrictive measuring protocol might be to choose
is fulfilled, i.e., if the tip position gets close enough to the Aw=0, because the system never gets unstable and it even
sample, then the analytical gain goes to infinityAifo is lends itself to a full analytical treatment: One must seek the

comprised in a frequency interval given by the bottom andcondition for which a small variation in charge or potential

upper limits written below: (i.e., a change V) induces the largest change in the oscil-
lation amplitude, everything otherwise fixed. Hence one
1 2 12 must solvedA/ V=0 (or (dAl V) A=0 if one is interested
Aws = P (— a<V§+ —P> + 2V,23V§— &> in maximizing a relative variation But before determining
0

this condition, we will first illustrate the precision of the
(24) analytical result through a comparison of form(22) with a
numerical integration of Eq1).
For a sinusoidal electrical excitation, those two limits ana- Equation(1) was numerically integrated in a number of
lytically define the instability domains described in a morerealistic situations. The relative variation &f versusthe
general way in the previous section. In the case of a planaumber of elementary fixed charges added to the system is
capacitor condition(23) becomes plotted in Fig. 5, withAw=0,2;=50 nm z;=25 nm V,=0
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FIG. 6. Cantilever oscillation amplitude afy versus displace-
ment z,, for various pump voltage values. Points: Fourier compo-
nent atwg derived from a numerical integration of Ed.) and solid
lines: analytical model. Parameterswe=2wg, wpiez0= wo,S
=2.25x 10 m?,Vy=-1.2 V,®=0 ,k=2.23N/m,m=10 kg,Q

=300 Fpie;c=2X 1071 N, f5=75.16 kHz.

andd=-37/8 (as shown later on thi$ value indeed gives
the highest variation fo¥,=0). The agreement with the nu-
merical calculations is excellent. Even for one elementary
charge and a small surface capacitance, the variation in am-
plitude is around 1%. In Fig. 6 we simulated the variation of
the amplitude with vertical displacement Once again the .
agreement between the numerical simulation and analytical o 1 2 3 4 5 6 7 8
result is excellent. (b) PUMP VOLTAGE V,, (V)
Figures Ta) and 1b) give the variation of the sensitivity _— I . -
) FIG. 7. Derivative of the oscillation amplitude divided
(9A/ Ng)/Ain the (Vo, V) plane, for the same parameters 8Spy the amplitude in the offset voltagé:-pum voltl?el eVp plane
in Fig. 4, and for two different phase values. There are al-” P /oltagéypump g Pane.
9- % Nt pha ’ —as calculated from the analytical model of Sec. Ill. The solid
ways some extrema of sensitivity in the plane. Although in

. Y ° lines are for positive values and the dashed lines are
the general case their determination requires to solve an g, negative values. Parametersig =2y, wpieze= wo, S=2.25

gebric equation of order 7 iVp, simplifying assumptions  » 10-14 2, 7,=50 nm,k=2.23N/m, m=10"11 kg,Q=300 Fpiezo
given the opportunity to find analytical expressions for all=2x 1071 N, f,=75.16 kHz.(a) ®=-37/8 and(b) =0. Taking
parameters. Below we will focus on the cagg=0. Deriving  ¢=-3x/8 gives rise to a maximum on the ling,=0 at Vp
Eq. (22) versusV, and makingV,=0 leads to the expression =v,, (Eq. (32)), whose position is indicated by a black point.

OFFSET VOLTAGE V (V)

ar a
— 200g2d) + —— V2 sin(2d) dey = +n, (29
IA __FeaVp Q 2May 12 2

oV, _ - 4m2(1)2 wz a,Z 3/2
01Vgy=0 0 *o + VAF,’

Q? 4m2a)g ~ 2k
(27) Vec1 = 4/ aQ\e‘E’ (30)

Equation(27) exhibits a maximunmversusthe phase if the

relationship below is obeyed: with n integer.dA/ dV, is then given by
V2——2—ktar‘(2(D) (28) IA max iFO Q 3/2 — 1 -1/2
g AR R R

Here we note that Eq28) is also the condition for a maxi-

mum sensitivity, i.e., a maximum @BA/V,)/A. Substitut- Quite similar conditions are obtained for maximizing
ing Vp in Eq. (27) by the expression above, deriving versus (IA/ Vo) /A:
& and finding the zeros of the resulting equation gives the
cqnditions for which the phase and the pump voltage maxi- Dy = T, n7—T, (32)
mize 0A/ VvV, at V,=0: 8 2
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max

1 0A 1\1 1.707
~ | veeo = l+—=|—= . (36)
A &VO ‘D:‘bcz \'2 Vp Vp

fixed Vo

For a plane capacitor, the tip position for which this maxi-

mum is obtained is
Zg:( eSQ\é )1/3
2k(1+V2)/)

A possible way to measure the equivalent voltage differ-
ence between two points or resulting from charge injection
into the structure is to measure the maximum difference be-
tween the amplitude with and without charge in an approach-
retract curve. The equivalent voltage differerddé,*%is sim-

ply given by

(37

. - I . Vp AA
FIG. 8. Relative variation of the oscillation amplitude @ ——Max| —

X( ) ’
calculated for an approach-retract curve without charge and with ten 1.707 A

added elementary charges. The dashed line represents the maximw,p'ere AA/A is the relative oscillation amplitude variation
variatioq which might be obt_ained by adjusting the pump voltagebetWeen the two approach-retract curves. The lowerpis
versusdisplacement, according to Eq(37). The two curves al- ihe higher will be the maximum sensitivity but it will then be
T; st coincide Vér]_ezng)f ﬁ;ﬁh tzhat\_/gav"cz' E’g;amet\e/rs_u? obtained for a closer distance between the tip and the sample,
g e e 8 o0 23N [ o 1O bq SO that a trade-off must be chosen in order not to get influ-
—300 F. =2% 10" N f.=75.16 kHz. ' ' enced by additional forces and effe¢see Fig. 8

n e 0 Finally we will illustrate through Fig. 9 the gain brought

2k by the choicewg=2w, in comparison with the usual low

v o=
d=mn/8

(38)

Vee2= 1\ 5 (33) frequency modulation of the cantilever oscillation which is
obtained for wg<wg. We take wg=27X 10 kHz and all
other parameters equal to the ones chosen in Fig. 5, and we

1 9A |max aQ Q #C add a single fixed charge to the systenza2.5 nm. Figure
INEVA == M == K" (34) 9 shows the power frequency spectrum of the cantilever os-
01Ve=0 cillations, as calculated from a numerical integration of the

For a givenz, and V=0, Eq.(34) gives the highest pos-

equation of movement, Eql). In Fig. 9 there is an eight-

sible sensitivity to a small charge or potential change whicHPrders of magnitude difference between the ”'f'ém'k"(gz
can be obtained withw=0. It is worth noticing that a high and the line atw,. This is to be compared with th2%
sensitivity is not restricted to a narrow voltage range.increase of the line ab, in the case of parametric amplifi-

As illustrated by Fig. 7a), for Vp=Vpc,, the maximum
sensitivity given by Eq(34) is reduced by a factor of 2 for
Vp=1.315V andV,=-1.639 V, thus giving an acceptable
operating window of almost 3 V. This would provide the
provision necessary for operating the AFM without going out
of the high sensitivity window. In the plane capacitor model,
the maximum sensitivity varies ag 2. Now suppose that a
value of Vp has been fixed and=®,. There is indeed a
given value ofz for which (1/A) dA/ 3V, is equal to expres-
sion (34). This is not the point where a maximum sensitivity
is reached in the approach-retract cufgee Fig. 8 for an
example, but interestingly enough, this maximum of sensi-

tivity is located close to that value. Easy calculations show

that with a fixedVp and® =®,, the maximum sensitivity of
the approach-retract curve is obtained for

2(1+\2)k

ac = QV|2: (35

and then is equal to

cation(see Fig. 5 Thus in this example we predict that the
latter method gives six orders of magnitude improvement in

\vp=vpc=3.05l7v
10°

POWER SPECTRUM (m?Hz)

FREQUENCY (Hz)

FIG. 9. Power frequency spectrum of the cantilever oscillations
as calculated from a numerical integration of Ef. with the same
parameters as in Fig. 5, buiy=27x10 kHz Vp=Vpc,=3.056 V
(solid line) andVp=10 V (dotted line.
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FIG. 10. Experimental approach-retract curves of an Au/Si
plane in parametric amplification conditions, along with their fit ~ FIG. 11. Experimental variation of the oscillation amplitude as a
with the analytical model. The fitting parameters are either experifunction of offset voltage, with the tip positioned at 0.8& from
mentally extractedwy,k,Q) or chosen to be very close to the val- the sample surface. The same parameters as in Fig. 10.
ues given by the tip supplidcantilever dimensions The electric
signal frequency is slightly belowds. The fitting voltage values fits of the experimental curves, whatever is the offset voltage
are all shifted by the same amount to take into account the contagy, Here the capacitance is modeled as resulting from the
potential difference between the tip and sample materials. Th%arallel combination of a sphet@one systemtip) and a
tip capacitance is modeled as a sphere and a cone, put ifjane capacitofcantilevel. For the tip we use the analytical
parallel with a plane capacitor corresponding to the cantilevely|actric force model proposed by Hudlet al3! It is worth
area. fo=57.402 kHzk=4 N/m Q=200 fe=2(fo=42 H2,fpiez0  noticing that a perfect fit cannot be obtained for a number of
=fo=42 Hz ©=0.904r. reasons: for instance we do not take into account the 10 deg
cantilever angle, and the sphereone model is only an ap-
sensitivity in comparison with the former, if one takes into proximation of the real geometry. Besides, the phase is also
account all noise sources but thermal ndigebe treated in fitted because in practice there is a slight, constant dephasing
the last section Increasingvp so as to improve the sensitiv- petween the electric signal applied to the piezoelectric bi-
ity of the low frequency modulation does not substantiallymorph which itself excites the cantilever, and the resulting
modify this ratio(caseVp=10 V in Fig. 8. Besides, increas- cantilever oscillation. But even with such an approximate
ing Fo or selecting a frequency in betweem@and 2wy  capacitance model, it is quite remarkable that the whole set
+Awnay could still greatly enhance the sensitivity without of curves can be fitted with only one set of parameters. Close

suffering from spontaneous oscillations. to the sample, the capacitance is dominated by the tip con-
tribution, but far from it the cantilever influence prevails.
B. Experiment Figure 11 gives the variation of the oscillation amplitude

versusthe offset voltage, now maintaining constant the po-
sition of the tip with respect to the sample. It also illustrates
Hwe nice agreement which can be obtained between the ex-
periment and model. It is worth noticing that if the paramet-

The preliminary data reported below are aimed at demon
strating the validity of our parametric amplification model.
We use a homemade AFM head under construction, pilote
by a Nanotec™ electronics system and equipped with Att ; . 2 ;
tocube™ micromotors. The piezoelectric signal is picked ugiC €ffect was ignored, and just taking into account a “con-

by a homemade electronic circuit which exactly doubles thé"f’ntlonal excitation (_:Iose 10 d, 1.e., quite far from the
input signal frequency, with adjustable phase, offset an esonance, the experimental approach-retract curves should

level outputs. The output signal is then applied to the sampl e almost entirely determined by the piezoelectric excitation

whereas the tip is connected to the electric ground. Thé&lone, and should remain almost unaffected by the sinusoidal

approach-retract curves are obtained by using the stmTﬁlectrical force. This is obviously not the case in Fig. 10.
software. The optical detection is ensured by a Fabry-Perot .AS a .IaSt comment we note that we present_ed data ob-
cavity made up of the optic fiber extremity and the _tamed with afreq_uencyjust belowsg, b.Ut when still reduc—.
cantilever?® The cavity is adjusted through the application of Ing the ele.c'tnc S'gf‘a' frequency we did obser_vg the nonlln?
a constant bias to a piezoelectric bimorph inserted in pe€ar instability regime and all its characteristic features:
tween the optic fiber head and the fixed setup.

frequency bifurcation with the apparition of a subharmonic
Figure 10 shows typical experimental approach-retracf:omponent' strong and exponential increase of the oscillation

curves, the sample being a flat gold surface, with an electri@MPlitude, etc. This will be described elsewhere.
signal frequency chosen to lie slightly belowg As can be
seen in Fig. 10, the application of E4) with parameters
either experimentally extractetwy,Q,k) or chosen very
close to the parameter values given by the tip supjptien- Here we treat more briefly the case where the electric
tilever dimensions, ettallows us to obtain very reasonable signal frequency is chosen to lie close dg. First we note

IV. CANTILEVER OSCILLATIONS WITH = wg=(wot+Aw)
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that we deal with a very particular situation, since in this case %

both the excitation at, and the parametric amplification Bs= n—quVP: (40)
gain contain voltage terms. Second, it is worth noticing that

this is not a mere academic problem, for this is the condition
which is usually chosen in the case of K232 In this

. . . . 2
case we consider that both the piezoelectric excitation and aVp

the substrate voltage are applied at a frequangyAw. De- Pe= 8mwy’ (41)
fining
y= 14C (39) with calculations strictly similar to that conducted in Sec.
20z’ Il A, we find that the oscillation amplitude aéy+Aw is

_ VBB (B~ Bo+ Aw)?) + BT+ BE+ (Bo+ Aw)® ~ 2Be(B; + Aw)cOS2D) + 4B, B SIN2P)) + 28485218 SIN(P) + (B + Aw = Bp)? + f)c0g D))

A
wo( B3~ B+ (B + Aw)?)

(42)

We will not study formula(42) with the same detail as its the amplitude continuously increases as one gets closer to the
counterpart of Sec. lll, but here we will rather discuss itssample, until the tip begins to tap the substrate or becomes
implications on KFM, which is now an established tech-sensitive to shorter range forces. On the other hand, in KFM

nique. In general, the piezoelectric excitation is ensured at the signal frequency is not necessarily equal to the natural

frequency different from the electric one, the latter beingfrequency of the cantilever, but can be chosen so as to maxi-
aroundwy, SO as to separate the two components, and the fachize the oscillation amplitudé.e., at the resonanteéwWhat

that the electric component atvg parametrically amplifies has been calculated here is an amplitude which is always
the wg component is not taken into account. From ER), calculated at the natural cantilever resonance frequency;

making Aw=0 and F;e,~0 leads to without the parametric effect the amplitude @y should be
s lowered in comparison with E¢45), but here even for small
roso _ BsVBi+ (B2~ Bo) (43) Vp andV, values it is maintained constant by the parametric

Foiezd®  wo(B2— B2+ B3) amplification. To find the best conditions for a Kelvin probe
o . ) experiment we should use the frequency shifb which
From Eq.(43) one can easily find conditions for which the \51es the amplitude reaching a maximum. And in this case

parametric effect is not at all negligible. However, 5 e recovers a situation similar to that discussed in the pre-

close to zero, the formula above simplifies to vious section. Depending on the parameter values and fre-
aQV2\2 qguency, the parametric effect can considerably enhance the
1 +(—P> oscillation amplitude and one can even enter into the insta-
Ay o= 2|7|V0Vp9 4k _ (44) bility domain described in Sec. II. Without piezoelectric ex-
o~ k aQV3\? citation at the same frequency the instability domain is
1+3 ik reached if the inequality
If Vp itself is small, this further reduces to Vo= Voo 85<@)—1 “
Q\ 97
aC Q
AvoVp—0= = EVOVP;' (45 s verified andAw is comprised in the interval given by

Formally the expression above is exactly the same as the one Aot = 1 (_ a(vz " V_!2>> + A /ivé - k_z) (48)
which is usually considered in KF¥.However, if Vp is 7 2mawy " 2)” 16 Q?/°
large, or iz, gets small, Eq(44) becomes Close to such a domain the value of the amplification gain
8V,dC[#C\ ™ can become very high. Hence it is quite clear that in realistic
- gv_PE 92 (46) systems the discrepancy between a simple-minded approach
and the parametric solution can become extremely large. The
which means that when the tip gets close enough to thexperimental conditions should thus be carefully analyzed
sample the oscillation amplitude will start to decrease. In thavhen the aim is to extract quantitative information from
plane capacitor case, the amplitude becomes proportional ®FM, and to optimize the experimental conditions. An illus-
the tip-sample distancA=4Vyz,/3Vp. This is in complete tration of the quite substantial discrepancy which can arise
contrast with the conventional approach, which predicts thabetween a conventional modeling and the parametric ap-

AV 20 =
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30 T . — excitation and the thermal fluctuations are amplified in the
" LR VEI=2€/ same way. However, in this section we wish to point out that

251 ] P the actual situation is somewhat more subtle, because in our
-i =_‘;7;_CV0VP% ] case we do not want to extract information from an arbi-
V= nu:q arical trarily small excitation d_|re_ctly |mp(_)sed upon_the can_tlleve_r.
15 We rather seek to obtain information which is contained in

the gain, and not in the excitation to be amplified, and thus

/ integration

OSCILLATION AMPLITUDE (nm})

10 the latter can be made much larger than the thermomechani-
cal noise. Here we briefly discuss this problem in a rather
5| general way. Suppose that one wants to determine the value
of a physical parameter which enters into the parametric
0 ’ N . . . . . .
0 25 50 75 100 force gradient, and not into the primary excitation Ay is

the amplitude of the piezoelectric excitation before amplifi-
TIP POSITION (nm) cation, much larger than the thermal noise amplitégeat
wotAw, and if G is the parametric gain, a small chanje

FIG. 12. Cantilever oscillation amplitude at versus displace- . o .
in v leads to an overall oscillation amplitude,

ment z,, for various offset voltage values. Points: Fourier compo-
nent atwg derived from a numerical integration of E(fl); solid
lines: analytical parametric model, E42), and dashed lines: usual A= (G + EAv)AO +GAg. (50)
Kelvin probe approximation, Eq44). Parameterswg=wqg, S=4 v

X 10 m?,V,=0, 0.1, 0.2, 0.3, 0.4nd 0.5V (from the lower to

upper curvel Vp=2 V,k=2.5 N/m m=10""' kg,Q=200. The lowest detectable change iris thus
proach is given by Fig. 12, which represents theoretical G A
approach-retract curves calculated for a realistic system and Avmin = EE (52)

using both models. From the numerical integration of the full
differential equation, it is quite clear from Fig. 12 that the

parametric approach is the correct one. Here we chose to use . ) )
we=wo, and Fig. 12 illustrates that close to the sample, i.e.F'rom (51) one can enhance the sensitivity just by increasing

in the most sensitive measurement domain, and well befor1® Piezoelectric excitation, and the sensitivity is ultimately
the onset of tapping, the usual formula, E45), is consid- controlled by the maximum excitation value which can be
erably off the mark, and largely overestimates the oscillatiorsafely choserifor instance it cannot exceed the tip-sample
amplitude. We note that the opposite situati@mderesti- distance, and by finding the conditions which maximize the
mated amplitudecould also be easily obtained, just by re- relative variation of the gain with respect to the measured
ducing the electric signal frequency’ slightly bélcaw and Parameter, without entering into the spontaneous oscillation
closer towy—Aw,.*. With incommensurate piezoelectric and '€9ime. To compare parametric amplification with other
electric frequencies, a good approximation of the resonanc@€thods therefore requires us to compare expres&iah
amplitudeA,, can be found by making,=0 and taking the with the sensitivity given by the 'olther teghn!que, arat to
frequency which minimizes the denominator in E42). We calculate the smallest, preamplified excitation that exceeds

v

obtain the thermomechanical noise level. In the conventional case
one must evaluate the minimum detectable amplitude when

y W+ Vi the force is now modulated ay,. The minimum detectable

Ay = 8;V0me- (49 value v, is given by F(vy,;)Q/k=Ag, and must be com-

pared to Eq(51). In fact, in the regions where the amplifi-
From (49), whenV; gets close td/pc, the resonance ampli- cation gain grows very rapidly, i.e., at the limit of the insta-
tude largely exceeds the conventional one and is no longdsility domains, it is in general possible to find conditions for
proportional toVp. This might explain the usual practice of which Eg.(51) is indeed better than the conventional limit.
operating with smalVp values, which here is justified by the But it must be noted that on the one hand the system is not
concern for avoiding premature tapping due to the parametecessarily easy to control in those areas, and on the other
ric effect. This might also explain some dependence of théiand the gain may be limited by the nonlinear terms in the
measured potential on the driving amplitude, if this potentialdifferential equation. Hence in practice it may become rather
is not obtained by finding the value & which makes the difficult to select a measurement domain in which the para-

amplitude vanish. metric amplification gives better results than the conven-
tional method with respect to thermal noise, and yet avoids
V. THERMOMECHANICAL NOISE the spontaneous oscillation regime. In the case of the electri-

cal force the situation is particularly tricky, since the electric
As already noted by Rugar and Gruttdif one is inter-  signal has components both @}, and 2v,, and thus even
ested in extracting data from thexcitationwhich is para- the casawe=wq leads to parametric amplification. A detailed
metrically amplified, there is no gain to expect from the study of such a problem is beyond the scope of the present
usual thermomechanical noise limit, because both the usefylaper, and will be the subject of a future publication.
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VI. CONCLUSION +6(7,1))/2 EQ.(7) in theith segment becomes
Parametric amplification of a piezoelectric excitation by d?y
an electrical force may considerably enhance the sensitivity o 6y=0. (A1)

of AFM tip oscillations to small changes in charge or offset -

voltage between the tip and sample. In most interesting casd3efining v, = -6, we express the solution in thih segment
the amplification gain is amenable to accurate analytical calas

culations, and thus this method could lead to practical appli- b

cations in EFM microscopy. Adapting this technique to ¥i =& cosh{y(t—t;) + —sinh((t - t)). (A2)
charge detection is actually in progress in our laboratory. "

Besides, in this article we restricted ourselves to one FourieWe define as in Ref. 15 th@,2) unitary matrix
component of the oscillation, but in most cases the spectrum

is extremely rich and all other components may also include coshiyw) - sinh(yw)
useful information, and can be analytically calculated. We K(y,w) = Y : (A3)
also did not detail the nonlinear regime appearing in the — ysinh(yw)  coshyw)

instability domains, but we did observe it experimentally. ) o ) ) o
Although more delicate to manage, the parametric effectmposing the continuity of the solution an_d its derivative at
could also be used in this regime. Eventually, we want tofh€ boundary of each segment leads straightforwardly to the
insist upon the fact that even if parametric amplification withfollowing condition:

we=2(wp+Aw) is not used, this phenomenonrist an aca- a

demic problem, but is very relevant in practice: the force ( 1) =H(1)(aN+1),

resulting from an alternating electric signal intrinsically con- by

tains two frequencies, the value of the latter being exactlyyhere ]V stands for the product of thé matrices:
twice that of the former. Hence in EFM with sinusoidal elec-

tric excitation there isalwaysparametric amplification, and N

its effects must be carefully analyzed, depending on the mea- I =TT K(yw). (A5)
surement conditions. In contrast to a widespread beliefsthe n=1

component of the cantilever oscillation is not at all indepen-gince the solutions of Eq.(6) are of the form
dent of the 2 component of the electric force. We found that y = (t)exp( ut) with u(t) periodic, the solutions(t) of Eq. (5)
in KFM the parametric effect prevalls_ and determines théyre sych that

oscillation amplitude whenever the tip gets close to the

sample. To the best of our knowledge this point seems to Z(t+T) = z(t)ew AT, (AB)
have been dismissed by previous authors in the AFM field. | . .

the parametric amplification case, we also showed that Car’jenc_e_, forz not to grow exponentially one must fulfill the
culating the thermomechanical noise limit is not as simple agondltlon

with conventional techniques. This point will be the subject lerT| < 872, (A7)
of a forthcoming publication.

(A4)
bN+1

which restated in terms of the functigngives
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where\ is a complex factor such that|<1. Rewriting Eq.
(A6) in terms of the coefficients; and b;, and taking also
Eq. (A4) into account, one arrives at the linear equation
system

~-BT/2
- 0 (3 ) <o (A9)
APPENDIX: DETERMINATION OF THE INSTABILITY A b, !

DOMAINS - . . . . - . .
. _ . ~wherel is the identity matrix. This system admits nontrivial
In this Appendix we summarize and adapt a method origisolutions only if

nally described by Lee and Kalotas to determine the band
structure of one-dimensional solid lattices. Here we adapt it de(H(l) - e_ﬁT/2|> =0
so as to determine the instability domains of E§). The '
method consists in calculating the exact solution of &Q. o , ,
for a suitably chosen periodic function which can be madéd efining Tr as the trace of the-matrices product, and taking
arbitrarily close to the origina#(t) function, and then rigor- Nto account the unitarity of the matrices, we arrive at the
ously discuss the stability of this particular solution. stability condition

We break the functiord(t) over each period=7to t=7 |Tr + \Wﬂ < 28712 (A11)
+T into N constant segments of equal widih=T/N and B '
heights taken as the linearly interpolated mgaité(n)  which can easily be turned into

(A10)
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B

2)

ITrj <2 cosk( (A12)

Verifying the stability condition(A12) provides the ability to

PHYSICAL REVIEW B 71, 205404(2005

determine the instability domains for any kind of electric
signal. It is trivial to numerically implement this method, and
the accuracy of the calculation only depends upon the preci-
sion chosen for segmenting the voltage over one period.
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