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Junctions of one-dimensional quantum wires: Correlation effects in transport
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We investigate transport of spinless fermions through a single site dot junctidh ohe-dimensional
guantum wires. The semi-infinite wires are described by a tight-binding model. Each wire consists of two parts,
the noninteracting leads and a region of finite extent in which the fermions interact via a nearest-neighbor
interaction. The functional renormalization group method is used to determine the flow of the linear conduc-
tance as a function of a low-energy cutoff for a wide range of parameters. Several fixed points are identified
and their stability is analyzed. We determine the scaling exponents governing the low-energy physics close to
the fixed points. Some of our results can already be derived using the non-self-consistent Hartree-Fock
approximation.
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I. INTRODUCTION simplified effective low-energy modei-1°as well as for a

- i i 12

In one spatial dimension correlation effects strongly influ-Ticroscopic lattice modef
ence the low-energy physics of many-fermion systems. Such Recently single-walled carbon nanotubes were used to ex-
systems cannot be described as Fermi liquids, but are clas§jgrimentally  realize ]_uggtllgns of several - quasi-one-
fied as Tomonaga-Luttinger liquidLLs), which are char- dimensional quantum wir€s: They might form the basis
acterized by a vanishing quasiparticle weight and power-layf future nanoelectronic devices. Taking into account the fer-
scaling of correlation functiorsFor spin rotationally invari- Mion interaction, models for different types of junctions and
ant interactions and spinless fermions, on which we focuQ€WOrks of TLLs ha‘g_gee” investigated theoretically using
here, the exponents of the different correlation functions cafl Vanety of methods>“* These studies left open several

be expressed in terms of a single number, the TLL paramet interesting questions. Already the low-energy physics of the

Shree wire Y-junction is much richer than that of the single
K. It depends on the parameters of the chosen model, 'n‘npurity problem.

part.icullar .the strgngth of th_e two-particle interaqtion. FOr' \we here study the transport through a single site dot junc-
vanishing interactiorK=1, while 0<K <1 for repulsive in-  in of M=2, 3, ... semi-infinite wires, each described by a
teraction anK>1 in the attractive case. As indicated by the microscopic lattice model, at temperatdie0. To obtain the
singular behavior of the density response function at momensgnductance between tihé legs we mainly use an approxi-
tum transfer &¢,>* with ke the Fermi momentum, a TLL  mate technique that is based on the functional renormaliza-
reacts quite differently to an inhomogeneity than a Fermition group(fRG) method?3-251t has earlier been successfully
liquid. The physics of inhomogeneous TLLs can conve-applied to describe the transport in a TLL with a single
niently be studied investigating transport properties. impurity'1?and a double barrié??¢the latter allowing for
The simplest junction is a single impurity in an infinite resonant tunneling. The approximations lead to reliable re-
TLL wire. The transport through such a system has intensults for not too strong interactions with TLL parameter
sively been studied in the past. Using the renormalizatiorl/2<K=3/2. In particular, for a single impurity the power-
group (RG) language the single impurity problem can belaw scaling of the conductance discussed above is repro-
characterized by two fixed point§P9.* One is the “perfect duced with exponents that agree with the exact ones to lead-
chain” FP at which the impurity effectively vanishes and theing order in the interaction. For th&l-leg junction we
conductance takes its maximal value. For TLL wires that arénvestigate the RG flow for a wide range of parameters and
“smoothly” coupled to noninteracting leads, a situation weidentify the FPs. We numerically determine the exponents of
consider here, the latter is given BFe?/h.> The correction  the power-law corrections to the FP conductances that gov-
to the FP conductance asymptotically scales’®s?, withs  ern the low-energy physics close to the FPs. They depend on
being the largestbut still asymptotically smallenergy scale the interaction and the number of wirdé. Most of these
(e.g., temperature, bias voltage, external infrared cutBfir ~ exponents have not been determined before. As in our ap-
0<K<1 the exponent is negative and the FP is unstableproximation terms of second order in the interaction are only
while it is stable forK >1. The other FP is the “decoupled partly included the exponents can only expected to be correct
chain” FP at whichG=0. The correction scales a&®, with to leading order in the interaction. In a short publication we
ag=1/K-1. The FP is stable for repulsive interactions andhave earlier verified that for a specific type of triangular three
unstable in the attractive case. The expongntharacterizes wire junction (not discussed in the present publicajiofor
the power-law behavior of the local one-particle spectrawhich an exact result is availabtéwe indeed reproduce the
weight of a TLL with an open boundary close to the scaling exponent to leading ord@r.
boundary*® The flow from one to the other FP is described  For a specific set of junction parameters the fRG study is
by a K-dependent one-parameter scaling function. The scakupplemented by results for the conductance obtained using
ing behavior of the conductance has been demonstrated fortae non-self-consistent Hartree-Fock approximatietiA)
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V*ﬂ// wire v, respectively. From now on we set1, i.e., measure
\ . energies in units of.
LR P As the part of the Hamiltonian containing the interaction
®e % we take
‘iooooooo<t—1> vV M N-1
N....21 ‘\}' Hin= 2 2 Ujjualny, = 1/2] [Nj4g, - 1/2], ©)
e ® =1 j=1
¢ ® [
0 o’ with the local densitw,-,,,:c;ryycj,v. The interactionU; ;,; is
N= assumed to be independent of the wire index and acts only

between the bonds of the sites 1No that define the inter-
FIG. 1. A single site dot junction ofl quantum wires. Across acting wire. Within this region it is allowed to depend on the
the bonds of the lattice sitgs=1,... N (small filled circle the ~ POSItion. By subtracting the average filling 1/2 from the den-
fermions interact via a nearest-neighbor interaction, while they ar&ity nj , we prevent a depletion of the interacting part of the
noninteracting in the leads with>N (solid line).. The hopping Wire. The chemical potential corresponding to half-filling is
amplitude between the first site of wire=1, ... M and the dot site x#=0. To avoid any fermion backscattering at the contact
is t,. The on-site energy on the dot siarge filled circle is V. between the lead and the interacting widg; ., is turned on
smoothly starting at zero across the bofd,N+1) and ap-

and Fermi's golden rule like arguments. The HFA allows usProaching its bulk valudJ at bond(N-js,N=js+1).1+1228
to analytically calculate one of the scaling exponents. It hadlore explicitly we use

earlier been shown that this approximation leads to meaning- N+
ful results for the power-law scaling of the one-particle spec- Ujjer= U( _ arctasm(2]j = N] ]S)/JS]> (4)
tral weight in a TLL with an open boundafy. arctars]

The paper is organized as follows. In Sec. Il we introducefor j=N-jg, ... ,N andU; j.,=U for 1<j<N-j The larger
our model of theM-wire junction. The fRG based approxi- N the smoother the interaction must be switched on. We here
matlon_scheme |s'd|sgussed'|n Sec. lll. Using smgle-partlcl%onsider interacting wires of up ti=1C sites for which
scattering theory in this section we also derive equations rej =32 ands=2 turned out to be sufficient. For these param-
lating the conductance to matrix elements of an auxiliaryeters the backscattering at the lead-interacting wire contact is
Green function and the dot Green function. They can be usegss than 1% and can thus be neglected. The results do not
to reduce the numerical effort for solving the fRG flow equa-gepend on the detailed shape of the envelope function as
tions and to gain a deeper understanding of our findings fogyng as it is sufficiently smooth.
the conductance. In Sec. IV we apply the HFA to determine  The model corresponding to the Hamiltoniay,+Hi,
scaling exponents for a certain class of symmetric junctionsyjith interactionU across all bondgnot only the ones within

Our fRG results for the FPs, the scaling exponents of the; N1) andM=1 shows TLL behavior foju| < 2 with a TLL
corrections to the FP conductances, and the general RG ﬂo%ramete(for half-filling),2°

are presented in Sec. V. We conclude with a summary and an

i . . 2 U -1
outlook in Sec. VI K= {_ arcco{— E)} . )
Il. THE MODEL ™

Each of theM quantum wires that meet at that single siteT0 leading order in the interaction it is given by

dot junction is described by the lattice model of spinless U
fermions with nearest-neighbor hopping. The semi-infinite K=1-—=+0(U?, (6)
wires can be divided in two sections, the lead with lattice 7

sitesj >N in which the fermions are assumed to be nonin-an expression we repeatedly refer to further down.
teracting and the interacting wire with nearest-neighbor in- The junction we model by

teraction across the bonds of the sijes[1,N]. Figure 1

M
shows a sketch of our system. We here focus on the half- o T + t
filled band case. The results are generic also for other fill- Fune = zt”(cwdm C1,) +Vdid, (@)
ings.
The Hamiltonian reads with d" andd being creation and annihilation operators on

the dot site, respectively. It is parametrized by the hopping

H = Hyin + Hint * Hjunc- (1) amplitudest,=0 connecting the wires to the dot and the
The kinetic energy is modeled by on-site energy=0 on the dot. ForM =2 the junction is
equivalent to a local impurity in an infinite wire. Applying
B T T the fRG for this case we recover the results for the conduc-

Hiin = _tZ Z (C41,C10 * €1uCj10) (2) " tance obtained earligsee below!112
L Note that in our Hamilltonian the fermions on the dot site

where we used standard second-quantized notationoMth do not interact with the fermions on the first lattice sites of
andc;, , being creation and annihilation operators on §itd  the wires. Including such additional interactions does not

M o
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lead to any changes of the FP structure and scaling exponengssition, as an additional approximation we apply EL)
investigated here, as we have verified explicitly. We excluddocally for each bond. As a consequence of the assumed fre-
such terms from our model as otherwise we later would haveuency independence of the effective interaction also the
to introduce renormalized junction parameters which wouldself-energy does not depend an In the exact solution an

lead to an unnecessary proliferation of symiéls. w-dependence is generated to ortér(bulk TLL behavioy.
This exemplifies that in our approximation for the self-
Il. THE METHOD energy terms of orde? are only partly included.

) ) ) With these approximations the self-energy is diagonal in
At T=0 all inelastic processes are frozen out and the linthe wire indexv and tridiagonal in the lattice site indgxIn
ear conductance,,,, from wire v to wire v’ can exactly be 5 next step the noninteracting leads are projected?dliis

expressed in terms of a real space matrix element of thgesults in an additional diagonal and Matsubara frequency
one-particle  Green function G(e+i0) evaluated at -dependent one-particle potential

e=pu=01230

, N () 4
h . <JaV|VIeao(|w)|J WV >:_ 1- 1+_2 5j,j’5j,N5u,u’
26w =t 2= 4N, 2/G(0 +i0)|N, )2 (€S 2 @
e (11)

\';'vﬁge|l\;'n’g| tdequgiﬁgif\f/gig\%e{r;astriigigﬁﬁg;:’ﬁ;ﬁ on siteN of each wirev. The conductance of the infinite
er 04 f . system Eq.(1) can then be calculated considering a finite
v, with v# v’ andv, v’ € [1,M]. Note thatG(e+i0) must be ' :

. . X %ystem ofMN+1 lattice sites.
calculated in the presence of the noninteracting leads, th The flow equations of the matrix elements withj+1
junction, and the interaction. c[1.N] are B

A. The functional renormalization group izv,/\__i E E Ul G+r v|gA(iw)|j +1,0)
Jujr ’ ) ’

To obtain an approximation for the Green function we use oA 2T (A r=£1
the fRG. A detailed account of the method was given in Refs. (12)
12 and 31. We here only present the approximate flow equa-
tions (which are then integrated numericallydescribe the J i U'A-+1
most important steps to derive them, and give details specific &—Aiﬁ]ﬂ = —é“‘— 2 GgMiwli£ly), (19
to the present junction geometry. T w=tA
An infrared cutoffA is introduced by replacing the non- \ith the propagator
interacting imaginary frequency propagatgy of the system
by the A dependent propagator, GMiw) =[GoY(iw) = Vieadiw) =S4T, (14)

Gh(iw) = O(|w| = A)Gyliw). (9) vyhich is a(MN+1) X (MN+1)-matrix, and the initial condi-
tion
The cutoff runs fromA=c down to A=0, at which " "
Gy=%iw)=Gy(iw) is reached and the cutoff-free problem is ST =0=20. (15
recovered. Using the generating functional for one-particl8ye introduced the notation
ireducible vertex functions, witlgy as the noninteracting A _
propagator, an infinite hierarchy of coupled flow equations 2;‘1, =(j, 2N v).

for the self-energy, the effective two-particle interaction, and . ) .
higher order vertex functions is derivé#25 It is truncated The matrix elements of the self-energy between the first sites

by neglecting the three-particle vertex, which is a valid ap_of the wire and the dot site vanish as there is no interaction

roximation as long as the two-particle vertex does not be&Cf0SS these ponds. .
P J P In a numerical solution of Eq912) and (13) the flow

come too large. The two-particle vertex projected on the AR .
Fermi points is parametrized by an effective nearestStarts at a large finite initial cutoff,. One must take into

neighbor interactiorU®. The flow equation for the latter is @ccount that, due to the slow decay of the right-hand side

; < . .
obtained by considering a single infinite chain with interac-("9 of the flow equation for=", the integration from

tion across all bonds and neglecting seIf—energyA=°° to A=A, yields a contributipr] which does not vanish
corrections’® It can be integrated and at half-filling” is for Ag— ¢, but rather tends to a finite constdhtThe result-

ing initial condition atA=Ay— o° reads

given by
v,Ag —
U 2770= (U + Uj a2,
UA = Y : (10) )
1+ (A - —ﬁ)uuzm side=0, (16)
V4 + A?

As we show in the next section the inversion of the
The A-dependent two-particle vertex is then approximated MN+ 1) X (MN+ 1)-matrix on the rhs of Eq912) and (13)
by a frequency independent nearest-neighbor interaction afan be reduced to the inversion & matrices of size
strengthU™. In the case where the interaction depends orNx N.
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At the end of the fRG flow the self-ener@*= presents particle Hamiltonianhy,(z) with a Hilbert space of size
an approximation for the exact self-energy and will be delNM+1. A single-particle basis is given by the states
noted byZ. in the following. In a last step to obtain the Green {|j, v),|d)}, where|d) denotes the Wannier state centered on
function G(2) which enters Eq(8) we must invert the matrix the dot site. The single-particle version of the junction
Gol(2—Viead?) -2, i.e., solve the single-particle scattering Hamiltonian Eq.7) is
problem with and the unrenormalized junction as poten-
tials. ForU#0, due to the fRG procedur&, and thus the
Green function as well as the conductance explicitly depend Pjunc == > t,(|11,»Xd| + H.c) +V|dXd|. (18
on the number of sites in the interacting part of the wire =l
and the number of wirel. These dependences are Sup-The resolvent can be decomposed as
pressed in the notation we use. Similar to the case of a lo-
calized impurity in a single infinite wife*1*2in each wirev G(2) = Gad2) + Gad DNunG(2) (19
the real space matrix elemerli§; and/,;,; have an impor-
tant spatial dependence. They show a long-range oscillatonyith G4(z) being the resolvent of the disconnected wires
behavior around an average value with an amplitude which

M

slowly decays with increasing distance from the junction. Gad2) =[z- M), (2] (20)
The scattering off this potential leads to the power-law scal- 0 .
ing of the conductance. The Hamiltonianhy, follows from h,, after takingt,=0

Considering different type of geometries of inhomoge-for_ all ». ~Applying ~the projector P=3L,P, with
neous TLLs (single impurity, double barrier, triangular P»=2jz1li.#)i.7|, to the left- and right-hand sides in Eq.
Y-junction with a magnetic fluxit was earlier shown that the (19) one obtains
above approximation scheme leads to accurate results for ,
weak to intermediate  interactions such that PG@P=2 G+ Gy(@ X tt,Gid2)[1,0X(1,1'|GE(2)
1/2<K=<3/211222.262831.3n particular, in cases where v
exact expressions for scaling exponents are known from field (21)
theoretical models they are reproduced to leading order in
the interaction. with

Instead of analyzing the scaling of the conductance as a
function of A for a given set of junction parameters as well Gy(2) = (z— V- t§<1,1/|gc”,c(z)|l,u>>_l (22
as fixedU and N, we always integrate the flow equations v
down to A=0 and use the energy scale

’
v,V

and

S5y = % (17) Gio=P.Gad2P,=[2P,- P, (2P,]7T. (23

as our scaling variable. It constitutes an infrared cutoff ofCalculating Gy, for fixed v requires the inversion of a
any power-law scaling with interaction dependentNXxN matrix.
exponents? This procedure has the advantage that each The steps leading to E(R1) can also be performed at any
value of the scaling variable corresponds to a physical sydinite cutoff scaleA. To determine the matrix elements @t
tem. entering the rhs of the flow equations for the self-end gy
and (13) thus requires the knowledge of the tridiagonal
B. Scattering theory parts of the inverse ofM tridiagonal NXN-matrices
) ) ) i ) zP,- thtl)p(z)PV and a single column of each of these matri-
In this section we use sm_gl_e particle scattering theory Qs Numerically both can be computedciN) time 3! We
reach two goals(i) We are aiming at an expression for f[he can therefore easily treat a fairly large numidérof wires
matrix elements of the\-dependent Green_ f“”C“OF‘ entering o4ch of up taN=10 lattice sites with nonvanishing nearest-
the rhs of Eqs(12) and(13) that only requires the inversion neighbor interaction.
of M matrices of siz& X N. This way the numerical effort to x50 the lines of Eqs(19)—(24) of Ref. 12 it is straight-
integrate the flow equations can conmd_erably be_ redt{_ue_d._ forward to derive the relations
Similarly to the case of resonant tunneling in a single infinite
wirelzlwe want to derive equations using E8) in which the It, ,()]2= 4A (£)A,/()|Gq(e +i0)[? (24)
effective transmission is expressed in terms of the diagonal ’
matrix elements of an auxiliary Green function at site 1 ofgng
each wire and the dot site Green function. We derive two

relations of this type that will be helpful to gain a deeper (o) 4A (e)A, ()

understanding of our results. In the case of a symmetric junc- [t/ (8)[°= 5 o

tion one of them directly leads to our first result for the [S_V_EV"Q'/’(S)] +[21/'A1/’(8)]
conductance. (25)

The Green functiorG(2) =[G4 (2) ~Viead2 —2]7* can be
understood as the resolvent matrix of an effective singlewith real functions(},(e) andA,(g) given by
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Q,(e) —iA(e) :t§<1,,,|ggc(8 +i0)[1,v). (26) not included®? One can expect that the HFA leads to mean-
ingful results in all models of inhomogeneous TLLs with
Equations(24) and (25) are the expressions for the effective repulsive interaction in which such a flow is unimportant.
transmission which can be used instead of @4. Later we  For attractive interactions the HFA cannot be used even for
make extensive use of these relations. ~ the boundary problem ag" «|U| >0, while the exact expo-
For V=0 due to particle-hole symmetfy,(0)=0 at arbi-  npent g is negative. We note in passing that for inhomoge-
trary U. If we furthermore consider a symmetric junction neous TLL the application of the self-consistent HFA leads to

with t;=t,=--- =ty =T (Zy-symmetric junctionall A,(0) are  unphysical results. As an artifact, the iteration of the Hartree-
equal and Eq(25) simplifies tolt,,(0)[*=4/M? indepen-  Fock equations generates a ground state with charge-density
dently of U andN. The resulting conductance wave order.

The above insights motivate us to study the spectral func-

G,, = e_zi (27) tion p, on lattice site 1(of one of the wiresfor a symmetric
' h m? junction of M wires, with t,=t for »=1,... M and V=0
with »,»"=1,... M and v+, not only follows in the case ;z;r;%titgle HFA. We show analytically that at the chemical

of a junction witht=1, but for all'T>0. This can be ex-
plained as a resonance phenomenon. Within our approxima- o 5—0);{ (29)
tion scheme we thus obtained our first result for the conduc- pL=On T

tance of an interacting system. &, , is independent oy with a scaling exponent{;” that depends oM andU. In the

we identify the above case as a FP. More precisely it correfollowing we refer to the spectral function evaluated at the
sponds to a one-parameter line of FPs as the hofipiag be  chemical potential=0 as “the spectral weight.”

varied freely. When considering this case we most of the In the HFA and fort,=t as well asv=0 the Hamiltonian
time leave the dependence dimplicit and refer to it as a (1) reads
FP. ForM noninteracting wirege?/h)(4/M?) is the conduc-

M o«
tance maximally allowed by the unitarity requirement of the St +
. . . . = - " .+ C .
S-matrix. We thus denote this FP as the “perfect junction” FP. Hir 1;1 z )(Cje1,C0 + Cj i)
As our approximation is correct to orderwe can conclude "

that if there is any interaction dependent correction to Eq. ~ + +
(27) it must be at least of ordey?. -tZ (cp, d+d'cy,), (30)
To gain additional analytical insight we next study the =t
one-particle spectral function for a symmetric junctionlMdf  where
wires. From the spectral function th-dependence of the + .
t(j) = {1 +Ujj4(Ci1,C 000 for 1<j<N,

conductance from one of the equivalent wires to an addi- (31)

tional wire that is only weakly coupled to the junction can be 1 otherwise,
deduced. with the HFA self-energysi'h,,=U; 1,1(cl,; ¢ )o. The ex-
pectation valug---), is taken with the many-body ground
IV. THE HARTREE-FOCK APPROXIMATIOI:I FOR state of Hkin+Hjunc(vzo):HHF(U:O)- As we shifted the
SYMMETRIC JUNCTIONS WITH V=0 density by its average value the Hartree term vanishes.
The one-particle spectral functiop,,. of a TLL with The normalized single-particle eigenstafds,,l) of the

an open boundary, taken at the chemical potential an@ne-particle versiorh,e of the Hartree-Fock Hamiltonian
close to the boundary, shows power-law scaling as a functiogan be classified according to their behavior in/®1 rota-
of &y with the exponentig=1/K -1463L32Remarkably, for  tions (Zy-symmetric casewhich leads to the expansion

U >0 this behavior of the spectral function can already be M o
g)t:tame?ﬁfrom the non-self-consistent HFA, with a scaling W1y = 8 gag(e)|d) + > 2 eiZWIV/MaJ(I)(S)“,w’ (32)
pone v=1j=1
oHF = Ul (29) with coefficientsag')(s) and ay(e). For odd values of\
B - .
1+Ulnw

one hasl=0,+1,...,4{M-1)/2, while for even values

Using Eq.(6) it is straightforward to show that5"™ and ag 120,21, ..., M/2=1 M/2.

agree to leading Qrder 'in'the interactibh The appearance A. The eigenstates forU=0

of power-law scaling within the HFA can be traced back to i ) )

the spatial dependence of the self-energy. Similar to the fRG [N @ first step we determine the eigenstates of the
approximation of the self-enerdy? the HFA self-energy Noninteracting system. The energies ares(k)=—-2 cogk).
shows a long-range oscillatory dependencs dmat implies ~ For fixed energy the wave number is thus given by
power-law scaling of the spectral weiglsee below In con-  k(g)=arcco$-&/2). Using Eq.(32),

trast to the boundary problem in the single impurity problem hye(U = O, 1% = &, 1)

the HFA does not reproduce the correct exponent even to HF e1/0~ El¥ e /0
leading order irJ as the essential RG flow of the impurity is yields
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sa'(e) = —ally(e) —a’1(e) (1 - 8j2) ~T6,08)130() p 2t =2 OF @D
(33
- — - o To avoid proliferation of symbols or indices the expansion
LOJJ gtei 0(;;08ff|C|entS of¥,.,1)o- Forl =0 there is an additional coefficients of the interacting HFA eigenstates are denoted by
the same symbola!’ andag as the coefficients of the non-

gag(e) = - I\/ﬁa(lo)(s). (34 interacting eigenstates in the preceding section. With the ex-

The solution of Eqs(33) and (34) is pansion Eq(32) the stationary Schrédinger equation
e Ve=0,1) = 0

a'(s) = A(M,e)sin{jk(e) + 8[k(s)]} (39
leads to coupled equations for the coefficierds (0).
The =0 equation(34) also holds forU # 0 which for e=0
ap(e) = A(M, e)sin{ 5, k(e) ]}, (36) leads toa(lo)(O):O. Only thel=0 eigenstatgV¥,_,,0) has a
nonvanlshmg amplitude on the dot site which implies that
the a (0) for | #0 can be calculated as for a semi-infinite
chaln Forj=2 ande=0 the Schrddinger equation gives

(37) G, ANeel W o) = 0= —t()ally(0) - t(j - D)al’;(0).

This relation can be solved |terat|vely leading to
the normalization factor
t(2i - 1)

. 1ial(o0 . 42
AMLe) = [2 | - al),; = (- 'af ()If{ 2 (42
7Mu(e)

Because of

and

with the phase shifts

MT?
5(k) = arctar<2_ _t,ztan(k)> for1=0,

0 otherwise,

and the velocity(g)=2|sink(e)]|. ~ 0
The resulting single-particle staté®,,1), can then be (1,1 W ,o=0,1) =0 = -t(1)a;'(0),
used to calculate the ground-state expectation value that eqt(0)=0 for all even;.

ters the HFA Hamlltonlan, Without loss of generality we now consider the case

" i of even N. As the interactionU, d+l vanishes forj=N,
(e]1,1,000= 2 d8a1+1(8)aj (e) t(2i—1)=t(2i) for i=N/2+1 and|a2 | is independent of
-BI2 . ; ) .
for j=N/2+1. Together with the asymptot|c scattering state
1 F : form of the ag')(O) Eq. (35) this implies that with respect to
2 f dk{cogk] - cogk(2] +1) the 5N-depen]dence we find
N/2 .
+25(K)]}, 39 t(2i)
) %9 pro 2 faP e | 1T (43
with the Fermi wave numbek.= /2 and bandwidttB=4. | = 2=

As described below to determine the scaling of the spectr
weight of the interacting system fdi,— 0 we only need to
know the behavior of this expectation value fok1<N,

a\}\/e next evaluate the rhs of this expression for laxgéNe
do this separately for the numerator and denominator. Using
Eqg. (40) one obtains

1 (= 1)j( 2 ) 5 ] N2 N2
-\ iy ) : N U
(Cfe1.4Cid0= { 2j+1\7 M o6 In[Ht(Zi)} => In[t(2i)]=Eln<1+—>
i=1 i=1 s
This asymptotic behavior can be obtained from E8P) | |
using integration by parts anddy(ke)=+w/2. For _Ea (1——>InN+O(N°)
1<j=<N-jsthe interactiorlJ; ;;; Eq.(4) takes its bulk value 478

U and it follows that The first two terms follow from the factors of the product in

(=1 +E U= 1)) 2 which t(2i) can be replaced by E¢40). The remaining fac-
()= T w2j+1 M tors lead to the last summand of ordé. Similarly one gets
; /2 N/2
u (- 1)’( 2) e _ N ( u)
=(1+=[1-afF——(1-=]], 40 -1 = -D]== =
( 77){ %5\ (40) In gt(Zl 1) 21 In[t(2i = )] = > In{ 1+—

for 1<j<N-j 1
° +>afff 1—— In N+ O(NO).
B. Spectral weight for U#0 4
Within the HFA the spectral weight on the first site of one Combining these two asymptotic expressions leads to the
of the equivalent legs is determined by the amplitudes of th@power-law scaling of the spectral weight on the first lattice
£=0 eigenstatesV._q,l) of hyg, site of each wire,
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HF —aHF F e
py o NOW oc 5 M (44) 04l¢ & & & ® # @ *® i
with
5 Ul [ 2 & & & & ® 8 @ ® ©
aW:aEF(——l):—”(——l). (45)
M 1+U/m\M I

This derivation shows that the power-law scaling of the spec-
tral weight directly follows from the long-range spatial os-
cillations of the self-energy.

Using Egs(21) and(22) it is straightforward to show that

exponent
o
T
|

for a symmetric junction the spectral weight on the first lat- 01 * B % % % 8 ¢ ]
tice site p; and the spectral weight on the dot sjig are e )
inversely proportional to each other. It thus follows that 10 10 10 10
HF 8N
Pg > S\M - (46)

L . o _ FIG. 2. Effective exponents ¢#/(M-1)2]-|t, ,.|? (circles and
For M=1 the dot site is the last site of a semi-infinite cham‘t ul? (stars as a function ofdy for M=5 =1 ty=1073, and

with open boundary conditions amﬁ"z agrees WitmgF' For different values ofU=-1,-0.5,0.5,1 from top to bottom. On the
M=2 the dot site corresponds to a bulk lattice site of a hoxcgle of the plot the results obtained frga/(M-1)2]-]t, |2 and
mogeneous TLL. As long a¥=0 this holds even fot#1 |t 2 are indistinguishable. The scaling exponent is read-off when
due to a resonance. In a homogeneous TLL the spectralplateau is reached fé,<5x 1074, which roughly corresponds to
weight scales asy, with a=(K™1+K-2)/2! ReplacingK in N> 10",

this expression by the leading order term E&). it follows

that «=0O(U?). The HFA exponent can only be expected to Going beyond the symmetric junction with=0 and an ad-
be correct to leading order it). Consistently we find gitional weak link, we study the conductance for general

azizo- At M=2 andU>0 the sign ofajj changes from junction parameters. The fRG can also be usedferO.

alF>0 for M=1 to aff <0 for M=3.

V. FRG RESULTS
C. The conductance across a weak link ) ]
In this section we present the results for the FPs and the

~We next consider a junction dl wires, M—1 of them  gcaing of the conductance obtained from numerically solv-
with hoppingt from the first lattice sites of the wires to the g the fRG flow equations of Sec. Il fdd #0. In Secs.
dot s.|te, wh|le~the leg withv=M is coupled by the h_opplng V A and V B we investigate two specific classes of junction
amplitudety <t. The HFA result for the spectral weight can parameters. The results from these cases can be combined

be used to determine the scaling exponent of the conductanggd lead to the comprehensive picture for arbitrary junction
from one of theM -1 eqUiValent wires to the wiré. Ap' parameters presented in Sec. VC.
plying Fermi’s golden rule one can argue that in this tunnel-
ing limit the scaling of the conductance across the weak link A A ic iuncti ith dified link
is determined by the product @f,. and p4 leading to -/ Symmetric junction with one modiied fin
HE We here consider a junction &fl =2 wires, M -1 with
G,m = St ™) (47 hoppingt (not necessarily=1) between the first site of the
for v=1 M=1 with Wire~and the dot, while the additional one has hopping
B ' ty # t. The dot site energy we set to zero and the real part
7?F(|v|) = ZaE”:/(M -1). (48) Q,(0) of the auxiliary Green function Eq26) vanishes. In

. . addition A,(0)=A,(0)=A for all v,»’<M-1. Two cases
This constitutes our second result for the transport through an be distinguished.

dot junction. ForM =2 the junction problem is equivalent to
the single impurity problem in the limit of a weak link
(strong impurity which is characterized by the exponent
2ag.* We reproduce this result to leading ordernAntici- The first one is the weak link situation already treated by
pating the RG language E(47) indicates that folU>0 a  the HFA with 7=ty /T<1. We thus slightly perturb the “per-
weak link of a symmetrigM—1)-leg junction to an addi- fect junction” FP of a M —1)-wire system in a specific way.
tional wire is an irrelevant perturbation. The exponentAs expected we numerically find that the effective transmis-
)/fF(M)>O, i.e.,G,»— 0 and with decreasingy the system  sion between theM -1 legs witht is close to the perfect
“flows back” to the “perfect junction” FP of theM —1)-wire  transmission 4M-1)2 For U>0 and decreasing the
system with the conductance EQY7). fRG data forlt, ,,|? approach this value, while they leave it
Without using the golden-rule-like argument and applyingfor U<0. At U=0, |t, ,,|? is independent ofsy. Similarly
the fRG we next numerically confirm the power-law scaling|t, y|>— 0 for U>0, while it takes a small increasing value
of G, as well as the RG interpretation of the HFA results.for U<0. We thus analyze the power-law scaling|gf,|?

1. A weak link
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1 2 3 4 8 100
M-1
SN/SO(tM)
FIG. 3. Scaling exponent of the conductance for a weak link as

a function ofM -1 (symbols for differentU. Note the reciprocal FIG. 4. One-parameter scaling plot of the effective transmis-
scale of thex axis. The lines showy,(M)=8s/(M-1). sions |t, u|*> (lower curve and |t,,,/|? with »,»’<M-1 (upper

curve for M=4,U=-1, andt=1. The variable isS/ dy(ty), with a
and|t, |? as a function ofsy with respect to 4M -1)? and nonuniversal scaléy(ty). The asymptotic values of the transmis-
! . . . i —1)2 2
0, respectively. The effective exponents as a functiodypf Sion 4AM—-1)% and 0 reached foby/ 5(ty) — as well as 4M
obtained by taking the log derivative of the fRG data calcu-"¢ached fordy/d(ty) — 0 are indicated on thg axis.
lated forM=5,T=1, t,,=10°3, and differentU is shown in
Fig. 2 on a log-linear scale. For smafl, and allU both  tained for differenty, € ]0,1[ using a one-parameter scaling
exponents approach the sartkedependent plateau value, ansatz. For fixed) the conductance is only a function of
which is our fRG approximation for the scaling exponent. oy/ d(tw), with an appropriately chosen nonuniversal energy
Even for larger arguments the twé\-dependent effective scaledy(ty) and the different data sets can be collapsed on a
exponents are indistinguishable on the scale of the plot. single curve. This is shown in Fig. 4 for the two different
TheM-dependence of the scaling exponent for diffetént effective transmissionf,, |2 (lower curve andlt,, |2 with
is shown in Fig. 3 on a reciprocal-linear scédgmbols. The  v,»' <M-1 (upper curvg andM=4, U=-1,7=1 on a log-

data can be fitted bylines linear scale. It is important to note that the effective trans-
mission 4M? between all legs is not achieved by an increase
n(M)=8J/M-1), (49) of ty,. As there is no interaction across the links of the dot to

with B being the U-dependent fRG approximation for the first sites of the wires, the hopping across these links is
2ap=2(1/K-1) obtained in Ref. 12 for a weak linfstrong independent of the RG (_:utothere on)- The transmi_ssion
impurity) in an infinite wire, i.e., theVi=2 case. The expo- 4/M? follows from the build up of a self-energy during the
nent B, agrees with &g to leading order irlJ. It has higher RG flow, that, interpreted as an eﬁeptlve scattgnng potential,
order corrections which bring it close taxg even for inter-  |€ads to a resonance at the chemical potential. f;610,
mediateU. For the four interactions)=-1,-0.5,0.5,1 the thatisU<O0, the plateau reached in Fig. 2 does not present
value for s can be read off from Fig. 3. AU=1 the relative the asymptotic behavior fosy—0 and considering even
difference between the exact exponent obtained from(@q. Smalleréy a deviation from the plateau valug can be ob-
and our approximation is roughly 5%. A detailed comparisorseérved. . _
of s and 2 is given in Fig. 5 of Ref. 12. To leading order Ve next show that the scaling behav!or of the conduc-
in U Eq. (49) confirms the result deduced from the combinedt@nce can be understood from the scaling of the spectral
use of the HFA and Fermi’s golden rule arguments @8&). v_velgh_ts on the first site of one of the equivalent legs and the
For M=2, the fRG approximatioy, is generically closer to first site of the additional wire. Fot=0 we get from Eq.
the exact exponenta than 25" 25),

For U>0, y;>0 and the “perfect junction” FP of the 4
(M-1)-wire system is stable towards weakly coupling an It,,./|?= 5= 3
additional wire, while foru<0, y;<0 and the FP is un- M- (M-1)
stable. In the latter case the system effectively incorporatefpr 1+ ' andv,»’ <M-1, as well as
the weakly coupled leg and flows to the “perfect junction”
FP for M wires. For small to intermediatg| and starting _ 4 8
close to the “perfect junction” FP of tHi —HliJ)|-wire system, towl*= (M - 1)2D - (M - 1)3D2 +O(7), (51)
i.e., forty <1, exponentially smallsy are required to reach i
the FP. Even though we can treat very lafgesuch small  for ¥<M~-1, with
scales are beyond the possibilities of our method. Similar to _
the single impurity problef®12the flow from one to the D= Ay (0)/A = 7. (52)
other FP can be shown considering data &8ys|t, ,.|? ob-  For the reflection back into wire<M-1 it follows

D+ O(7), (50)
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0.3 l . effective transmission within the subsystem of the-1
! e U=-1 equivalent wires and into the leg with the modified hopping
s+ U=-05 X g
» U=05 with respect to the transmission Mf of the perfect case.
0.15 e U=1 |7 Similarly to Fig. 2 exponents can reliably be extracted for

sufficiently largeN.

For M =3 the exponents oft, > and [t, |2 with v,’
e[1,M-1] turn out to be equal. For severd) the
M-dependence of the scaling exponent is shown in Fig. 5 on
a reciprocal-linear scale. To first order W it is given by

'0'15‘ —Bs/ M. More accurately the data can be fitted by
Bs , But Ps
- ! ! M)=-—+2 , 56
0.3 4 N 5 01 v(M)=-1 V2 (56)

with the exponeng,, found in Ref. 12 for the scaling of the
FIG. 5. Scaling exponent of the conductance for a slightly modi-transmission through a local weak impurity. To leading order
fied link as a function ofM for different U. Note the reciprocal in U, g,, agrees with the exact weak single impurity expo-

scale of thex-axis. The lines show the fit E(ﬁ56) nent ZK—]_) A Comparison of g(-l) and our fRG ap-
proximation is given in Fig. 7 of Ref. 12.
,_ (M -3)? 4 2 For U>0, v,<0 and the “perfect junction” FP of the
R,=1- > [ty [*= (M- 1)2 + (M- 1)2<1 - (M- 1)>D M-wire system is unstable towards changing one of the hop-
! #

ping amplitudes. Foty, <t the system flows to the “perfect
8 5 junction” FP of M -1 wires. This follows from the build up
+ WD +0(1°). (53 of a self-energy during the RG flow, that leads to a vanishing
transmission from wiree<M -1 to wire M, but to a reso-
As discussed in Sec. lll the auxiliary Green function isnance with perfect transmission betweenlthe 1 equivalent
calculated with a self-energy which has been determined itegs. Forty,>T the flow is to a FP with vanishing conduc-
the presence of the weak link. Thust? and the spectral tance between all wires—the “decoupled chain” FP. The van-
weight p, of a perfect(M - 1)-leg junction differ to order?. ishing of the conductance follows from the long-range oscil-
If corrections of orderr? are neglected i\ and A, (0), D latory behavior of the self-energy generated in the RG flow.
can be replaced by,.,J/p;. We numerically find that for In both cases the flow from one to the other FP can again be
M=1,2,... thespectral weight on the first site of a perfect SNOWN Using a one-parameter scaling ansatz. Ber0,
l\7|-|eg junction scales as v,>0 and the “perfect Jungtlog FP of thiel-wire system is
stable, regardless of the sign ofty,.

_Re For M=2 there is nolt,,/|* and 1t,y|* scales with
pr= O M, (54) 2v,(2). The appearance of the factor 2 can be explained by
with considering an expansion M,MF similar to Egs.(50) and
(51) (which is valid for allM = 2)
aL;G:%S(%—l), (55) " |2_i+4(D—1)<1_3>_4(D—1)2<2_g>
M U VARV M M3 M)
consistent with the derivation using the HFA in E45). The (57)

above replacement thus leadshie 29", where we used o _
Pobe® 365/2_ Inserting this expression in Eq&0) and(51) we with D as deflr)ed in Eq(52). The differenceD-1 shows
reproduce the results directly obtained from calculating the?ower-law scaling with exponent(M). For M=2 the pref-
effective transmission. Note that ff =3 the second term in actor of the leading order term linear -1 vanishes and
Eqg. (53) cancels and the reflection scales with an exponerithe scaling exponent df, ,|* is doubled. Inserting=2 in
that is twice as large as the one of the transmission. Furthded- (56) gives 2y,(2) =, as the exponent characterizing the
down we encounter another case in which the prefactor ofleviation from transmission 1. This result is expected since
the leading order term vanishes for specific parameterghe caseM=2 corresponds to the situation of a perfect infi-
which leads to a doubling of the scaling exponent. nite wire interrupted by a small impurity characterized by the
In the limit M — o the dot site is coupled to so many legs scaling exponeng,,~2(K-1).
that it creates an infinite barrier. Consistently Esp) gives In the single impurity problem the fRG approximatiofs
limy_... aiR®=-B,/2 and the spectral weight on the first sites for 2ag=2(1/K-1) and g,, for 2(K-1) are correct to order
scales as the weight next to an open boundary. U. To leading order K -1)~-2(1/K-1) [see Eq(6)] and
the second term in E¢56) is of orderU?. As terms of order
U? are only partly included in our approximation scheme it is
As the second example with a single modified link we questionable if a term similar to the second one will be
consider|ty, 1| /T=7< 1. We now analyze the scaling of the present in thgunknown exact expression foy,. To derive

2. A slightly modified link
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5
(b} Reg
sol M=10 |
60 1
o
£ 40} 1
% ] 5

FIG. 6. Flow ofg Eq. (59) for the case of a symmetric junction
with on-site energy V=0.5,1,1.5,2, differentt<[0.01,0.7,
M=2,3,10legs, andU=-1. The arrows indicate the direction of

the flow forU<0. ForU>0 it is reversed.

the dependence of; and y, on K and M presents a chal-
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_’_\'\-._\,__‘_’”\;'
0.5F .
(2] e U=-1
= ol 4 U=-05]
s U=0.5
* U=1
-0.5f ) -
2 3 4 8 100

FIG. 7. Scaling exponent of the conductance for a small on-site
energy as a function d1 (symbols for different U. Note the re-
ciprocal scale of the axis. The lines show the fit E¢60).

g=V+MQ(0) - iMA(0) = - (59)

G4(0+i0)’

which itself is a function of the junction parametdisV)
andM. Via the RG flow of the self-energy fdJ # 0 it more-
over develops a dependence &nand the interactiot. The
RG flow can nicely be visualized by plottirgyin the com-
plex plane withdy as a parametéf-?2 This is done in Figs.
6(a)—6(c) for M=2,3,10,V=0.5,1,1.5,2, and different
€[0.01,0.7. For decreasingy e [5X10%4,2.5x 1071] and

U # 0 each fixed parameter ggtV) leads to a flow line. The
general form of the flow diagrams is independent of the ab-
solute value ofJ. The data of the figures were calculated for
U=-1, which leads to the flow direction indicated by the
arrows. ForU>0 the direction is reversed. On the line
Im g=0 the conductance vanishes and trexis forms a line
of “decoupled chain” FPs. For Rg=0 the transmission is
4/M? and all points on the axis are “perfect junction” FPs
(line of FP3. The “perfect junction” transmission ¥4? is
also reached aj= provided that this point is approached

lenge for any method which does not require approximation§uch that —Ing—c and Reg goes to a constant.

in the strength of the interaction.

B. A symmetric junction with a dot site energy

As our second specific case we study a symmairileg
junction with t,=t for »=1,... M and a nonvanishing dot
site energyV. Then, due to symmetry, a{l,(0) and A,(0)
[see Eq(26)] are equal and we suppress the indequa-

tion (25) simplifies to

4
tP=—5

M2A2(0)

M2[V +MQ(0)]?+ M2A2(0)

For M=2 the flow approximately follows a section of a
circle centered around the origin with a radMsFor U<0
the direction is counter-clockwise and the line of “perfect
junction” FPs(y axis) is stable. The on-site energy does
not get renormalized in the RG flow as the interaction be-
tween the dot site and the first sites of the wires is assumed
to be 0. The perfect transmissionM# does thus not follow
from a decrease o¥ during the RG flow but is a conse-
quence of the spatial structure of the self-energy, which leads
to a resonance at the chemical potential. Bor 0 the flow
is clockwise and the line of “perfect junction” FPs is un-
stable. The system flows to the line of stable “decoupled
chain” FPs. The vanishing of the conductance is a conse-
guence of the long-range oscillatory dependence of the self-
energy onj. For M=3, U<0, andéy— 0, —Img diverges
while Reg goes to a constant, which implies that the system

The transmission is determined by the single complex pareaches a “perfect junction” FP. F&f>0 all trajectories

rameter

approach the axis atV and the conductance vanishgiae
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of “decoupled chain” FBs To determine scaling exponents vanishes with exponeny;(2)=y,=8.. If the hopping be-

we next separately consider small and laxge tween the first site of wirey/=M and the dot site is larger
_ thant for 6y— 0 and allM=2 the “decoupled chain” FP is
1. A small on-site energy reached. To analyze the scaling of the conductance close to

For smallV, the transmission between all the equivalentthis FP we start out from Eq25) and use an expansion
wires is close to the perfect valueM?. The dependence on Similar to Egs.(50) and (51). The small parameter of the
& can be described by a power law. In Fig. 7 the scalingexpansion iD=A/Ay. The numerics shows that it asymp-
exponent as a function d¥l is shown for differentU. To totically vanishes asgs. For v<M~-1 this leads to

leading order irJ it is independent oM. The exponent can G S8 62
be fitted by vM % ON (62)
while for v,v’ e[1,M-1] we find
(M) =-p +418W+183<1_i)' (60) Pz
S M M GVYV/ X oN (63

In accordance with the stability properties of the line of “per-In the caseii) the RG flow also ends at the “decoupled
fect junction” FPs discussed in connection with Figs.chain” FP and all conductances vanish with expongnt
6(a)—6(c), y3<0 for U>0 andy3>0 for U<0. TheM=2 We next perturb the “perfect junction” FP of thé-leg
case is equivalent to the problem of a single weak site imsystem by slightly modifying more than one of the hopping
purity interrupting an otherwise perfect infinite chain and matrix elements. If = M; <M -1 of thet, are reduced com-
¥3(2) is equal to the respective scaling expongpt(similar ~ pared to the hopping across the remaining/,=M-M,

as for a slightly modified link in Sec. V A Within our ap-  links the system flows to the “perfect junction” FP of the
proximation scheme the second term in E8p) is thus im-  My-leg system. IfM; of thet, are increased compared to
portant to reproduce a result obtained earlierNbr2. As it the system generically approaches the “decoupled chain” FP.
is of order U? it is nonetheless unclear if a similar term This behavior is changed l~ﬂl>2 of theM, increased hop-
occurs in the(unknown exact expression foys. pings are equal and larger than all the others. In this case the

system flows to the “perfect junction” FP ff, legs. If allt,
are different the “decoupled chain” FP is reached.

In the limit of largeV the transmission between all the If the perturbation of the “perfect junction” FP of the
wires is small and we analyze the scaling with respect to zerd/-leg system consists of an on-site eneMyand one or
transmission. The scaling exponent is independemMi @nd  more modified hoppings the system flows to the “decoupled

2. A large on-site energy

up to our numerical accuracy given by chain” FP.
From these considerations we conclude that for the ma-
V4= B, (62) jority of possible junction parameters of tewire junction,
i.e., the strong impurityweak link) exponent for a single for éy— 0 the system flows to the “decoupled chain” FP. On
infinite wire (see Fig. 5 of Ref. 12 asymptotically small scales the conductance vanishes as

G, * &Fs. (64)
C. Fixed points and renormalization group flow for general
junction parameters Depending on the junction parameters as well as on the wire

. indicesv andv’, ¢ might be 1 or Afor examples, see abone
The RG flow, FP structure, and scaling exponents for ar- Only for V=0 and ifM,,..=2 of theM links between the

:Jét;ﬁlré Jggt(:ilﬁg d%?)rratw:t:t;zvcea?wzecIigggrssgz‘qgnzgzid g?a”}fot site and the first lattice sites of the wires have hopping
J param ax Where tp,=max,; wiit,}, the system flows to the

eters. To shorten the discussion we here focus on the morg foct | e f I hi h
important caséJ >0. Results forld <0 can be deduced by Iper ect junction FP forMmay l€gs. In this case the power-
inverting the direction of the flow. aw scalln_g of the _CondU(_:tan_ce between two wires coupled to
As found in Secs. V A and V B the “perfect junction” FP the dot with hoppingma is given by
of the M-leg system with effective transmissionM? is un- e 4 SPIM
stable towards the two possible perturbations in which only hMZ Gy o O (65
one junction parameter is modifie) a single modified max
hopping andii) a nonvanishing on-site energy. These insta-The conductance between one wire coupledfy and the
bilities are characterized by the two exponeméM) (modi-  other byt,<t.,, vanishes as
fied link) and 73_(M) (on-site energ}/ _ G,, = 8&5/Mmax’ (66)
In the case(i), for M=3, andt larger than the single ’
modified hopping the system flows to the “perfect junction” while it goes like
FP for M—1 legs. Foréy—0 the conductance across the G, o §2PMmax (67)
modified link vanishes with exponent (M), while the con- wr! N
ductance within the subsystem of the-1 equivalent wires if both wiresv and v’ have a hopping to the dot site smaller
approaches 4M -1)? with the same exponent. FM=2the  thant,,,, As in Eq.(63) the factor 2 in Eq(67) follows from
flow is to the “decoupled chain” FP and the conductancean expansion similar to the one used in E@€) and (51).
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VI. SUMMARY AND PERSPECTIVES Using the fRG and HFA we obtained expressions for the

In this paper we studied the conductar®g, for a dot ~ Scaling exponents which we expect to be cortatteast to
junction of M semi-infinite quantum wires. The junction as €&ding order irlJ. Itis very desirable to derive the exact
well as the wires are described by a microscopic latticetnd M-dependence of these exponents. For increasing com-
model. In a finite section dfl sites the fermions in each wire Plexity of the junctions obtaining such expressions for sim-
are modeled to interact via a nearest-neighbor interactioflified, effective, but still generic models requires very so-
which smoothly vanishes close to the lattice sitesN phisticated methods, even if only specific parts of the
(smooth contagt Investigating the scaling of the conduc- parameter space are consideted.
tance as a function ofy<1/N led to a comprehensive pic- We considered a dot junction model in which the interac-
ture of the FP structure, scaling exponents, and RG flow ofion between fermions on the dot site and the first lattice sites
the model studied. We mainly used an approximation schemef the wires is set to zero. We also investigated the case in
that is based on the fRG method and provides reliable resultghich this interaction does not vanish. The additional
for weak to intermediate interactions with 1K <3/2. At  nearest-neighbor interaction across tebonds does not
half-filling this corresponds to bulk nearest-neighbor interac-alter the results presented here.
tions —1.5<U=2. Additional insights were obtained using  An extension of our method to the case in which the
the HFA. strength of the bulk interaction depends on the wire index
Compared to the well studied single impurity problem for is straightforward and might lead to new insights. As exem-
M =3 the low-energy physics of th&l-wire junction is plified in Ref. 22 the fRG can also be used to investigate
much richer, allowing for a variety of FPs and scaling expo-other types of junctionge.g., ringlike geometrigswith dif-
nents. Furthermore favl =3 one of them, the “perfect junc- ferent FPs and scaling exponents.
tion” FP, is characterized by two exponentg,(M) and For the complex junction studied here the temperaiure
v3(M). They can individually be read off from the scaling of and the infrared cutofisy present equivalent scaling vari-
the conductance if the FP is perturbed in a specific way. Idbles only on asymptotically small scales. The fRG method
contrast to the single impurity problem, in which the FP can be set up for finitd and leads to reliable results also for
reached is solely determined by the sign of the interactionintermediate to large temperatufég® For two wires our
for junctions of three and more wires this in addition de-model is equivalent to the one considered to study resonant
pends on the junction parameters. Depending on the wirtunneling through a quantum dot embedded in a TLL, with a
indices between which the conductance is calculated thene lattice site dot. In this case, for fix& and fy<T<B
scaling exponents close to a FP might differ by factors of 2the conductance as a function Dshows a very rich behav-
This can have two reason@) in an expansion of the effec- ior. Depending on the dot parameters, temperature regimes in
tive transmission in terms of a small parameter that carriewhich G(T) follows “universal” power laws as well as non-
the power-law scalingsee e.g. Eqg50) and(51)], depend-  universal regimes were identifiéé?®We thus expect to find
ing on v and v’ the first or second order term might be the similar rich behavior fotM = 3. The conductance as a func-
first nonvanishing ondii) For certainM the prefactor of the tion of temperature is easily accessible in transport experi-
leading order term might vanish. ments. Investigating,, ,.(T) might thus also become impor-
Junctions and networks of TLLs were earlier studigd?  tant for the interpretation of future transport experiments on
The method and model used in Ref. 17 come closest to ourfunctions of quasi-one-dimensional quantum wires. We will
The authors apply a fermionic poor-man’s like RG originally present results fo,, ,,(T) in an upcoming publication.
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