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We investigate transport of spinless fermions through a single site dot junction ofM one-dimensional
quantum wires. The semi-infinite wires are described by a tight-binding model. Each wire consists of two parts,
the noninteracting leads and a region of finite extent in which the fermions interact via a nearest-neighbor
interaction. The functional renormalization group method is used to determine the flow of the linear conduc-
tance as a function of a low-energy cutoff for a wide range of parameters. Several fixed points are identified
and their stability is analyzed. We determine the scaling exponents governing the low-energy physics close to
the fixed points. Some of our results can already be derived using the non-self-consistent Hartree-Fock
approximation.
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I. INTRODUCTION

In one spatial dimension correlation effects strongly influ-
ence the low-energy physics of many-fermion systems. Such
systems cannot be described as Fermi liquids, but are classi-
fied as Tomonaga-Luttinger liquidssTLLsd, which are char-
acterized by a vanishing quasiparticle weight and power-law
scaling of correlation functions.1 For spin rotationally invari-
ant interactions and spinless fermions, on which we focus
here, the exponents of the different correlation functions can
be expressed in terms of a single number, the TLL parameter
K. It depends on the parameters of the chosen model, in
particular the strength of the two-particle interaction. For
vanishing interactionK=1, while 0,K,1 for repulsive in-
teraction andK.1 in the attractive case. As indicated by the
singular behavior of the density response function at momen-
tum transfer 2kF,2,3 with kF the Fermi momentum, a TLL
reacts quite differently to an inhomogeneity than a Fermi
liquid. The physics of inhomogeneous TLLs can conve-
niently be studied investigating transport properties.

The simplest junction is a single impurity in an infinite
TLL wire. The transport through such a system has inten-
sively been studied in the past. Using the renormalization
group sRGd language the single impurity problem can be
characterized by two fixed pointssFPsd.4 One is the “perfect
chain” FP at which the impurity effectively vanishes and the
conductance takes its maximal value. For TLL wires that are
“smoothly” coupled to noninteracting leads, a situation we
consider here, the latter is given byG=e2/h.5 The correction
to the FP conductance asymptotically scales ass2sK−1d, with s
being the largestsbut still asymptotically smalld energy scale
se.g., temperature, bias voltage, external infrared cutoffd. For
0,K,1 the exponent is negative and the FP is unstable,
while it is stable forK.1. The other FP is the “decoupled
chain” FP at whichG=0. The correction scales ass2aB, with
aB=1/K−1. The FP is stable for repulsive interactions and
unstable in the attractive case. The exponentaB characterizes
the power-law behavior of the local one-particle spectral
weight of a TLL with an open boundary close to the
boundary.4,6 The flow from one to the other FP is described
by a K-dependent one-parameter scaling function. The scal-
ing behavior of the conductance has been demonstrated for a

simplified effective low-energy model4,7–10 as well as for a
microscopic lattice model.11,12

Recently single-walled carbon nanotubes were used to ex-
perimentally realize junctions of several quasi-one-
dimensional quantum wires.13,14 They might form the basis
of future nanoelectronic devices. Taking into account the fer-
mion interaction, models for different types of junctions and
networks of TLLs have been investigated theoretically using
a variety of methods.15–22 These studies left open several
interesting questions. Already the low-energy physics of the
three wire Y-junction is much richer than that of the single
impurity problem.

We here study the transport through a single site dot junc-
tion of M =2,3, . . . semi-infinite wires, each described by a
microscopic lattice model, at temperatureT=0. To obtain the
conductance between theM legs we mainly use an approxi-
mate technique that is based on the functional renormaliza-
tion groupsfRGd method.23–25It has earlier been successfully
applied to describe the transport in a TLL with a single
impurity11,12 and a double barrier,12,26 the latter allowing for
resonant tunneling. The approximations lead to reliable re-
sults for not too strong interactions with TLL parameter
1/2øKø3/2. In particular, for a single impurity the power-
law scaling of the conductance discussed above is repro-
duced with exponents that agree with the exact ones to lead-
ing order in the interaction. For theM-leg junction we
investigate the RG flow for a wide range of parameters and
identify the FPs. We numerically determine the exponents of
the power-law corrections to the FP conductances that gov-
ern the low-energy physics close to the FPs. They depend on
the interaction and the number of wiresM. Most of these
exponents have not been determined before. As in our ap-
proximation terms of second order in the interaction are only
partly included the exponents can only expected to be correct
to leading order in the interaction. In a short publication we
have earlier verified that for a specific type of triangular three
wire junction snot discussed in the present publicationd, for
which an exact result is available,19 we indeed reproduce the
scaling exponent to leading order.22

For a specific set of junction parameters the fRG study is
supplemented by results for the conductance obtained using
the non-self-consistent Hartree-Fock approximationsHFAd
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and Fermi’s golden rule like arguments. The HFA allows us
to analytically calculate one of the scaling exponents. It has
earlier been shown that this approximation leads to meaning-
ful results for the power-law scaling of the one-particle spec-
tral weight in a TLL with an open boundary.27

The paper is organized as follows. In Sec. II we introduce
our model of theM-wire junction. The fRG based approxi-
mation scheme is discussed in Sec. III. Using single-particle
scattering theory in this section we also derive equations re-
lating the conductance to matrix elements of an auxiliary
Green function and the dot Green function. They can be used
to reduce the numerical effort for solving the fRG flow equa-
tions and to gain a deeper understanding of our findings for
the conductance. In Sec. IV we apply the HFA to determine
scaling exponents for a certain class of symmetric junctions.
Our fRG results for the FPs, the scaling exponents of the
corrections to the FP conductances, and the general RG flow
are presented in Sec. V. We conclude with a summary and an
outlook in Sec. VI.

II. THE MODEL

Each of theM quantum wires that meet at that single site
dot junction is described by the lattice model of spinless
fermions with nearest-neighbor hopping. The semi-infinite
wires can be divided in two sections, the lead with lattice
sites j .N in which the fermions are assumed to be nonin-
teracting and the interacting wire with nearest-neighbor in-
teraction across the bonds of the sitesj P f1,Ng. Figure 1
shows a sketch of our system. We here focus on the half-
filled band case. The results are generic also for other fill-
ings.

The Hamiltonian reads

H = Hkin + Hint + Hjunc. s1d

The kinetic energy is modeled by

Hkin = − to
n=1

M

o
j=1

`

scj+1,n
† cj ,n + cj ,n

† cj+1,nd, s2d

where we used standard second-quantized notation withcj ,n
†

andcj ,n being creation and annihilation operators on sitej of

wire n, respectively. From now on we sett=1, i.e., measure
energies in units oft.

As the part of the Hamiltonian containing the interaction
we take

Hint = o
n=1

M

o
j=1

N−1

Uj ,j+1fnj ,n − 1/2g fnj+1,n − 1/2g, s3d

with the local densitynj ,n=cj ,n
† cj ,n. The interactionUj ,j+1 is

assumed to be independent of the wire index and acts only
between the bonds of the sites 1 toN, that define the inter-
acting wire. Within this region it is allowed to depend on the
position. By subtracting the average filling 1/2 from the den-
sity nj ,n we prevent a depletion of the interacting part of the
wire. The chemical potential corresponding to half-filling is
m=0. To avoid any fermion backscattering at the contact
between the lead and the interacting wire,Uj ,j+1 is turned on
smoothly5 starting at zero across the bondsN,N+1d and ap-
proaching its bulk valueU at bondsN− js,N− js+1d.11,12,28

More explicitly we use

Uj ,j+1 =
U

2
S1 −

arctanfsps2f j − Ng + jsd/ jsg
arctanfspg D s4d

for j =N− js, . . . ,N andUj ,j+1=U for 1ø j ,N− js. The larger
N the smoother the interaction must be switched on. We here
consider interacting wires of up toN=105 sites for which
js=32 ands=2 turned out to be sufficient. For these param-
eters the backscattering at the lead-interacting wire contact is
less than 10−4% and can thus be neglected. The results do not
depend on the detailed shape of the envelope function as
long as it is sufficiently smooth.

The model corresponding to the HamiltonianHkin+Hint
with interactionU across all bondssnot only the ones within
f1,Ngd andM =1 shows TLL behavior foruUu,2 with a TLL
parametersfor half-fillingd,29

K = F 2

p
arccosS−

U

2
DG−1

. s5d

To leading order in the interaction it is given by

K = 1 −
U

p
+ OsU2d, s6d

an expression we repeatedly refer to further down.
The junction we model by

Hjunc = − o
n=1

M

tnsc1,n
† d + d†c1,nd + Vd†d, s7d

with d† and d being creation and annihilation operators on
the dot site, respectively. It is parametrized by the hopping
amplitudestnù0 connecting the wiren to the dot and the
on-site energyVù0 on the dot. ForM =2 the junction is
equivalent to a local impurity in an infinite wire. Applying
the fRG for this case we recover the results for the conduc-
tance obtained earlierssee belowd.11,12

Note that in our Hamilltonian the fermions on the dot site
do not interact with the fermions on the first lattice sites of
the wires. Including such additional interactions does not

FIG. 1. A single site dot junction ofM quantum wires. Across
the bonds of the lattice sitesj =1, . . . ,N ssmall filled circlesd the
fermions interact via a nearest-neighbor interaction, while they are
noninteracting in the leads withj .N ssolid lined. The hopping
amplitude between the first site of wiren=1, . . . ,M and the dot site
is tn. The on-site energy on the dot siteslarge filled circled is V.
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lead to any changes of the FP structure and scaling exponents
investigated here, as we have verified explicitly. We exclude
such terms from our model as otherwise we later would have
to introduce renormalized junction parameters which would
lead to an unnecessary proliferation of symbols.12

III. THE METHOD

At T=0 all inelastic processes are frozen out and the lin-
ear conductanceGn,n8 from wire n to wire n8 can exactly be
expressed in terms of a real space matrix element of the
one-particle Green function Gs«+ i0d evaluated at
«=m=0,12,30

h

e2Gn,n8 = utn,n8u
2 = 4ukN,nuGs0 + i0duN,n8lu2. s8d

Here uN,nl denotes the Wannier state centered on siteN of
wire n andutn,n8u

2 is the effective transmission from wiren to
n8, with nÞn8 andn ,n8P f1,Mg. Note thatGs«+ i0d must be
calculated in the presence of the noninteracting leads, the
junction, and the interaction.

A. The functional renormalization group

To obtain an approximation for the Green function we use
the fRG. A detailed account of the method was given in Refs.
12 and 31. We here only present the approximate flow equa-
tions swhich are then integrated numericallyd, describe the
most important steps to derive them, and give details specific
to the present junction geometry.

An infrared cutoffL is introduced by replacing the non-
interacting imaginary frequency propagatorG0 of the system
by theL dependent propagator,

G0
Lsivd = Qsuvu − LdG0sivd. s9d

The cutoff runs from L=` down to L=0, at which
G0

L=0sivd=G0sivd is reached and the cutoff-free problem is
recovered. Using the generating functional for one-particle
irreducible vertex functions, withG0

L as the noninteracting
propagator, an infinite hierarchy of coupled flow equations
for the self-energy, the effective two-particle interaction, and
higher order vertex functions is derived.23–25 It is truncated
by neglecting the three-particle vertex, which is a valid ap-
proximation as long as the two-particle vertex does not be-
come too large. The two-particle vertex projected on the
Fermi points is parametrized by an effective nearest-
neighbor interactionUL. The flow equation for the latter is
obtained by considering a single infinite chain with interac-
tion across all bonds and neglecting self-energy
corrections.31 It can be integrated and at half-fillingUL is
given by

UL =
U

1 +SL −
2 + L2

Î4 + L2DU/s2pd
. s10d

The L-dependent two-particle vertex is then approximated
by a frequency independent nearest-neighbor interaction of
strengthUL. In the case where the interaction depends on

position, as an additional approximation we apply Eq.s10d
locally for each bond. As a consequence of the assumed fre-
quency independence of the effective interaction also the
self-energy does not depend onv. In the exact solution an
v-dependence is generated to orderU2 sbulk TLL behaviord.
This exemplifies that in our approximation for the self-
energy terms of orderU2 are only partly included.

With these approximations the self-energy is diagonal in
the wire indexn and tridiagonal in the lattice site indexj . In
a next step the noninteracting leads are projected out.12 This
results in an additional diagonal and Matsubara frequency
v-dependent one-particle potential

k j ,nuVleadsivdu j8,n8l =
iv

2
S1 −Î1 +

4

v2Dd j ,j8d j ,Ndn,n8

s11d

on site N of each wiren. The conductance of the infinite
system Eq.s1d can then be calculated considering a finite
system ofMN+1 lattice sites.

The flow equations of the matrix elements withj , j ±1
P f1,Ng are

]

]L
S j ,j

n,L = −
1

2p
o

v=±L
o
r=±1

Uj ,j+r
L k j + r,nuGLsivdu j + r,nl,

s12d

]

]L
S j ,j±1

n,L =
Uj ,j±1

L

2p
o

v=±L

k j ,nuGLsivdu j ± 1,nl, s13d

with the propagator

GLsivd = fG0
−1sivd − Vleadsivd − SLg−1, s14d

which is asMN+1d3 sMN+1d-matrix, and the initial condi-
tion

S j ,j
n,` = 0 =S j ,j±1

n,` . s15d

We introduced the notation

S j ,j8
n,L = k j ,nuSLu j8,nl.

The matrix elements of the self-energy between the first sites
of the wire and the dot site vanish as there is no interaction
across these bonds.

In a numerical solution of Eqs.s12d and s13d the flow
starts at a large finite initial cutoffL0. One must take into
account that, due to the slow decay of the right-hand side
srhsd of the flow equation forSL, the integration from
L=` to L=L0 yields a contribution which does not vanish
for L0→`, but rather tends to a finite constant.31 The result-
ing initial condition atL=L0→` reads

S j ,j
n,L0 = sUj−1,j + Uj ,j+1d/2,

S j ,j±1
n,L0 = 0. s16d

As we show in the next section the inversion of the
sMN+1d3 sMN+1d-matrix on the rhs of Eqs.s12d and s13d
can be reduced to the inversion ofM matrices of size
N3N.
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At the end of the fRG flow the self-energySL=0 presents
an approximation for the exact self-energy and will be de-
noted byS in the following. In a last step to obtain the Green
functionGszd which enters Eq.s8d we must invert the matrix
G0

−1szd−Vleadszd−S, i.e., solve the single-particle scattering
problem withS and the unrenormalized junction as poten-
tials. For UÞ0, due to the fRG procedure,S and thus the
Green function as well as the conductance explicitly depend
on the number of sites in the interacting part of the wireN
and the number of wiresM. These dependences are sup-
pressed in the notation we use. Similar to the case of a lo-
calized impurity in a single infinite wire9,31,32in each wiren
the real space matrix elementsS j ,j

n andS j ,j±1
n have an impor-

tant spatial dependence. They show a long-range oscillatory
behavior around an average value with an amplitude which
slowly decays with increasing distance from the junction.
The scattering off this potential leads to the power-law scal-
ing of the conductance.

Considering different type of geometries of inhomoge-
neous TLLs ssingle impurity, double barrier, triangular
Y-junction with a magnetic fluxd it was earlier shown that the
above approximation scheme leads to accurate results for
weak to intermediate interactions such that
1/2øKø3/2.11,12,22,26,28,31,32In particular, in cases where
exact expressions for scaling exponents are known from field
theoretical models they are reproduced to leading order in
the interaction.

Instead of analyzing the scaling of the conductance as a
function of L for a given set of junction parameters as well
as fixedU and N, we always integrate the flow equations
down toL=0 and use the energy scale

dN =
pvF

N
s17d

as our scaling variable. It constitutes an infrared cutoff of
any power-law scaling with interaction dependent
exponents.12 This procedure has the advantage that each
value of the scaling variable corresponds to a physical sys-
tem.

B. Scattering theory

In this section we use single particle scattering theory to
reach two goals.sid We are aiming at an expression for the
matrix elements of theL-dependent Green function entering
the rhs of Eqs.s12d ands13d that only requires the inversion
of M matrices of sizeN3N. This way the numerical effort to
integrate the flow equations can considerably be reduced.sii d
Similarly to the case of resonant tunneling in a single infinite
wire12 we want to derive equations using Eq.s8d in which the
effective transmission is expressed in terms of the diagonal
matrix elements of an auxiliary Green function at site 1 of
each wire and the dot site Green function. We derive two
relations of this type that will be helpful to gain a deeper
understanding of our results. In the case of a symmetric junc-
tion one of them directly leads to our first result for the
conductance.

The Green functionGszd=fG0
−1szd−Vleadszd−Sg−1 can be

understood as the resolvent matrix of an effective single-

particle Hamiltonianh1pszd with a Hilbert space of size
NM+1. A single-particle basis is given by the states
hu j ,nl , udlj, whereudl denotes the Wannier state centered on
the dot site. The single-particle version of the junction
Hamiltonian Eq.s7d is

hjunc = − o
n=1

M

tnsu1,nlkdu + H.c.d + Vudlkdu. s18d

The resolvent can be decomposed as

Gszd = Gdcszd + GdcszdhjuncGszd s19d

with Gdcszd being the resolvent of the disconnected wires

Gdcszd = fz− h1p
0 szdg−1. s20d

The Hamiltonianh1p
0 follows from h1p after taking tn=0

for all n. Applying the projector P=on=1
M Pn with

Pn=o j=1
N u j ,nlk j ,nu, to the left- and right-hand sides in Eq.

s19d one obtains

PGszdP = o
n

Gdc
n + Gdszdo

n,n8

tntn8Gdc
n szdu1,nlk1,n8uGdc

n8szd

s21d

with

Gdszd = Sz− V − o
n

tn
2k1,nuGdc

n szdu1,nlD−1
s22d

and

Gdc
n = PnGdcszdPn = fzPn − Pnh1p

0 szdPng−1. s23d

Calculating Gdc
n for fixed n requires the inversion of a

N3N matrix.
The steps leading to Eq.s21d can also be performed at any

finite cutoff scaleL. To determine the matrix elements ofGL

entering the rhs of the flow equations for the self-energys12d
and s13d thus requires the knowledge of the tridiagonal
parts of the inverse ofM tridiagonal N3N-matrices
zPn−Pnh1p

0 szdPn and a single column of each of these matri-
ces. Numerically both can be computed inOsNd time.31 We
can therefore easily treat a fairly large numberM of wires
each of up toN=107 lattice sites with nonvanishing nearest-
neighbor interaction.

Along the lines of Eqs.s19d–s24d of Ref. 12 it is straight-
forward to derive the relations

utn,n8s«du2 = 4Dns«dDn8s«duGds« + i0du2 s24d

and

utn,n8s«du2 =
4Dns«dDn8s«d

f« − V − on9
Vn9s«dg2 + fon9

Dn9s«dg2
,

s25d

with real functionsVns«d andDns«d given by
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Vns«d − iDns«d = tn
2k1,nuGdc

n s« + i0du1,nl. s26d

Equationss24d ands25d are the expressions for the effective
transmission which can be used instead of Eq.s8d. Later we
make extensive use of these relations.

For V=0 due to particle-hole symmetryVns0d=0 at arbi-
trary U. If we furthermore consider a symmetric junction
with t1= t2=¯ = tM = t̃ sZM-symmetric junctiond all Dns0d are
equal and Eq.s25d simplifies to utn,n8s0du2=4/M2 indepen-
dently of U andN. The resulting conductance

Gn,n8 =
e2

h

4

M2 , s27d

with n ,n8=1, . . . ,M andnÞn8, not only follows in the case
of a junction with t̃=1, but for all t̃.0. This can be ex-
plained as a resonance phenomenon. Within our approxima-
tion scheme we thus obtained our first result for the conduc-
tance of an interacting system. AsGn,n8 is independent ofdN

we identify the above case as a FP. More precisely it corre-
sponds to a one-parameter line of FPs as the hoppingt̃ can be
varied freely. When considering this case we most of the
time leave the dependence ont̃ implicit and refer to it as a
FP. ForM noninteracting wiresse2/hds4/M2d is the conduc-
tance maximally allowed by the unitarity requirement of the
S-matrix. We thus denote this FP as the “perfect junction” FP.
As our approximation is correct to orderU we can conclude
that if there is any interaction dependent correction to Eq.
s27d it must be at least of orderU2.

To gain additional analytical insight we next study the
one-particle spectral function for a symmetric junction ofM
wires. From the spectral function thedN-dependence of the
conductance from one of the equivalent wires to an addi-
tional wire that is only weakly coupled to the junction can be
deduced.

IV. THE HARTREE-FOCK APPROXIMATION FOR
SYMMETRIC JUNCTIONS WITH V=0

The one-particle spectral functionrobc of a TLL with
an open boundary, taken at the chemical potential and
close to the boundary, shows power-law scaling as a function
of dN with the exponentaB=1/K−1.4,6,31,32Remarkably, for
U.0 this behavior of the spectral function can already be
obtained from the non-self-consistent HFA, with a scaling
exponent27

aB
HF =

U/p

1 + U/p
. s28d

Using Eq.s6d it is straightforward to show thataB
HF andaB

agree to leading order in the interactionU. The appearance
of power-law scaling within the HFA can be traced back to
the spatial dependence of the self-energy. Similar to the fRG
approximation of the self-energy31,32 the HFA self-energy
shows a long-range oscillatory dependence onj that implies
power-law scaling of the spectral weightssee belowd. In con-
trast to the boundary problem in the single impurity problem
the HFA does not reproduce the correct exponent even to
leading order inU as the essential RG flow of the impurity is

not included.32 One can expect that the HFA leads to mean-
ingful results in all models of inhomogeneous TLLs with
repulsive interaction in which such a flow is unimportant.
For attractive interactions the HFA cannot be used even for
the boundary problem asaB

HF~ uUu.0, while the exact expo-
nent aB is negative. We note in passing that for inhomoge-
neous TLL the application of the self-consistent HFA leads to
unphysical results. As an artifact, the iteration of the Hartree-
Fock equations generates a ground state with charge-density
wave order.

The above insights motivate us to study the spectral func-
tion r1 on lattice site 1sof one of the wiresd for a symmetric
junction of M wires, with tn= t̃ for n=1, . . . ,M and V=0
using the HFA. We show analytically that at the chemical
potential

r1 ~ dN
−aM

HF

, s29d

with a scaling exponentaM
HF that depends onM andU. In the

following we refer to the spectral function evaluated at the
chemical potentialm=0 as “the spectral weight.”

In the HFA and fortn= t̃ as well asV=0 the Hamiltonian
s1d reads

HHF = − o
n=1

M

o
j=1

`

ts jdscj+1,n
† cj ,n + cj ,n

† cj+1,nd

− t̃o
n=1

M

sc1,n
† d + d†c1,nd, s30d

where

ts jd = H1 + Uj ,j+1kcj+1,n
† cj ,nl0 for 1 ø j , N,

1 otherwise,
J s31d

with the HFA self-energyS j ,j+1
HF =Uj ,j+1kcj+1,n

† cj ,nl0. The ex-
pectation valuek¯l0 is taken with the many-body ground
state of Hkin+HjuncsV=0d=HHFsU=0d. As we shifted the
density by its average value the Hartree term vanishes.

The normalized single-particle eigenstatesuC« , ll of the
one-particle versionhHF of the Hartree-Fock Hamiltonian
can be classified according to their behavior in 2p /M rota-
tions sZM-symmetric cased which leads to the expansion

uC«,ll = dl,0a0s«dudl + o
n=1

M

o
j=1

`

ei2pln/Maj
slds«du j ,nl, s32d

with coefficientsaj
slds«d and a0s«d. For odd values ofM

one has l =0, ±1, . . . , ±sM −1d /2, while for even values
l =0, ±1, . . . , ±M /2−1,M /2.

A. The eigenstates forU=0

In a first step we determine the eigenstates of the
noninteracting system. The energies are«=«skd=−2 cosskd.
For fixed energy the wave number is thus given by
ks«d=arccoss−« /2d. Using Eq.s32d,

hHFsU = 0duC«,ll0 = «uC«,ll0

yields
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«aj
slds«d = − aj+1

sld s«d − aj−1
sld s«ds1 − d j ,1d − t̃dl,0d j ,1a0s«d

s33d

for the coefficients ofuC« , ll0. For l =0 there is an additional
equation

«a0s«d = − Mt̃a1
s0ds«d. s34d

The solution of Eqs.s33d and s34d is

aj
slds«d = AsM,«dsinh jks«d + dlfks«dgj s35d

and

a0s«d = AsM,«dsinhd0fks«dgj/t̃, s36d

with the phase shifts

dlskd = 5arctanS Mt̃2

2 − Mt̃2
tanskdD for l = 0,

0 otherwise,
6 s37d

the normalization factor

AsM,«d =Î 2

pMvs«d
, s38d

and the velocityvs«d=2usinfks«dgu.
The resulting single-particle statesuC« , ll0 can then be

used to calculate the ground-state expectation value that en-
ters the HFA Hamiltonian,

kcj+1,n
† cj ,nl0 = o

l
E

−B/2

m

d«aj+1
sld s«daj

slds«d

=
1

pM
o

l
E

0

kF

dkhcosfkg − cosfks2j + 1d

+ 2dlskdgj, s39d

with the Fermi wave numberkF=p /2 and bandwidthB=4.
As described below to determine the scaling of the spectral
weight of the interacting system fordN→0 we only need to
know the behavior of this expectation value for 1! j ,N,

kcj+1,n
† cj ,nl0 =

1

p
F1 −

s− 1d j

2j + 1
S1 −

2

M
D + Os j−2dG .

This asymptotic behavior can be obtained from Eq.s39d
using integration by parts andd0skFd= ±p /2. For
1ø j øN− js the interactionUj ,j+1 Eq. s4d takes its bulk value
U and it follows that

ts jd = 1 +
U

p
−

U

p

s− 1d j

2j + 1
S1 −

2

M
D

= S1 +
U

p
DF1 − aB

HF s− 1d j

2j + 1
S1 −

2

M
DG , s40d

for 1! j øN− js.

B. Spectral weight for UÅ0

Within the HFA the spectral weight on the first site of one
of the equivalent legs is determined by the amplitudes of the
«=0 eigenstatesuC«=0, ll of hHF,

r1 ~ o
l

uk1,nuC«=0,llu2 = o
l

ua1
slds0du2. s41d

To avoid proliferation of symbols or indices the expansion
coefficients of the interacting HFA eigenstates are denoted by
the same symbolsaj

sld anda0 as the coefficients of the non-
interacting eigenstates in the preceding section. With the ex-
pansion Eq.s32d the stationary Schrödinger equation

hHFuC«=0,ll = 0

leads to coupled equations for the coefficientsaj
slds0d.

The l =0 equations34d also holds forUÞ0 which for «=0
leads toa1

s0ds0d=0. Only thel =0 eigenstateuC«=0,0l has a
nonvanishing amplitude on the dot site which implies that
the a1

slds0d for l Þ0 can be calculated as for a semi-infinite
chain. Forj ù2 and«=0 the Schrödinger equation gives

k j ,nuhHFuC«=0,ll = 0 = − ts jdaj+1
sld s0d − ts j − 1daj−1

sld s0d.

This relation can be solved iteratively leading to

a2j+1
sld = s− 1d ja1

slds0dp
i=1

j
ts2i − 1d

ts2id
. s42d

Because of

k1,nuhHFuC«=0,ll = 0 = − ts1da2
slds0d,

aj
slds0d=0 for all evenj .

Without loss of generality we now consider the case
of even N. As the interactionUj ,j+1 vanishes for j ùN,
ts2i −1d= ts2id for i ùN/2+1 andua2j+1

sld u is independent ofj
for j ùN/2+1. Together with the asymptotic scattering state
form of theaj

slds0d Eq. s35d this implies that with respect to
the dN-dependence we find

r1 ~ o
l

ua1
sldu2 ~ Up

i=1

N/2
ts2id

ts2i − 1dU2

. s43d

We next evaluate the rhs of this expression for largeN. We
do this separately for the numerator and denominator. Using
Eq. s40d one obtains

lnFp
i=1

N/2

ts2idG = o
i=1

N/2

lnfts2idg =
N

2
lnS1 +

U

p
D

−
1

4
aB

HFS1 −
2

M
Dln N + OsN0d.

The first two terms follow from the factors of the product in
which ts2id can be replaced by Eq.s40d. The remaining fac-
tors lead to the last summand of orderN0. Similarly one gets

lnFp
i=1

N/2

ts2i − 1dG = o
i=1

N/2

lnfts2i − 1dg =
N

2
lnS1 +

U

p
D

+
1

4
aB

HFS1 −
2

M
Dln N + OsN0d.

Combining these two asymptotic expressions leads to the
power-law scaling of the spectral weight on the first lattice
site of each wire,
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r1 ~ NaM
HF

~ dN
−aM

HF

, s44d

with

aM
HF = aB

HFS 2

M
− 1D =

U/p

1 + U/p
S 2

M
− 1D . s45d

This derivation shows that the power-law scaling of the spec-
tral weight directly follows from the long-range spatial os-
cillations of the self-energy.

Using Eqs.s21d ands22d it is straightforward to show that
for a symmetric junction the spectral weight on the first lat-
tice site r1 and the spectral weight on the dot siterd are
inversely proportional to each other. It thus follows that

rd ~ dN
aM

HF

. s46d

For M =1 the dot site is the last site of a semi-infinite chain
with open boundary conditions anda1

HF agrees withaB
HF. For

M =2 the dot site corresponds to a bulk lattice site of a ho-
mogeneous TLL. As long asV=0 this holds even fort̃Þ1
due to a resonance. In a homogeneous TLL the spectral
weight scales asdN

a, with a=sK−1+K−2d /2.1 ReplacingK in
this expression by the leading order term Eq.s6d it follows
that a=OsU2d. The HFA exponent can only be expected to
be correct to leading order inU. Consistently we find
a2

HF=0. At M =2 andU.0 the sign ofaM
HF changes from

aM
HF.0 for M =1 to aM

HF,0 for M ù3.

C. The conductance across a weak link

We next consider a junction ofM wires, M −1 of them
with hopping t̃ from the first lattice sites of the wires to the
dot site, while the leg withn=M is coupled by the hopping
amplitudetM ! t̃. The HFA result for the spectral weight can
be used to determine the scaling exponent of the conductance
from one of theM −1 equivalent wires to the wireM. Ap-
plying Fermi’s golden rule one can argue that in this tunnel-
ing limit the scaling of the conductance across the weak link
is determined by the product ofrobc andrd leading to

Gn,M ~ dN
g1

HFsMd s47d

for n=1, . . . ,M −1, with

g1
HFsMd = 2aB

HF/sM − 1d. s48d

This constitutes our second result for the transport through a
dot junction. ForM =2 the junction problem is equivalent to
the single impurity problem in the limit of a weak link
sstrong impurityd which is characterized by the exponent
2aB.4 We reproduce this result to leading order inU. Antici-
pating the RG language Eq.s47d indicates that forU.0 a
weak link of a symmetricsM −1d-leg junction to an addi-
tional wire is an irrelevant perturbation. The exponent
g1

HFsMd.0, i.e.,Gn,M→0 and with decreasingdN the system
“flows back” to the “perfect junction” FP of thesM −1d-wire
system with the conductance Eq.s27d.

Without using the golden-rule-like argument and applying
the fRG we next numerically confirm the power-law scaling
of Gn,M as well as the RG interpretation of the HFA results.

Going beyond the symmetric junction withV=0 and an ad-
ditional weak link, we study the conductance for general
junction parameters. The fRG can also be used forU,0.

V. FRG RESULTS

In this section we present the results for the FPs and the
scaling of the conductance obtained from numerically solv-
ing the fRG flow equations of Sec. III forUÞ0. In Secs.
V A and V B we investigate two specific classes of junction
parameters. The results from these cases can be combined
and lead to the comprehensive picture for arbitrary junction
parameters presented in Sec. V C.

A. A symmetric junction with one modified link

We here consider a junction ofM ù2 wires, M −1 with
hopping t̃ snot necessarilyt̃=1d between the first site of the
wire and the dot, while the additional one has hopping
tM Þ t̃. The dot site energyV we set to zero and the real part
Vns0d of the auxiliary Green function Eq.s26d vanishes. In
addition Dns0d=Dn8s0d=D for all n ,n8øM −1. Two cases
can be distinguished.

1. A weak link

The first one is the weak link situation already treated by
the HFA with t= tM / t̃!1. We thus slightly perturb the “per-
fect junction” FP of asM −1d-wire system in a specific way.
As expected we numerically find that the effective transmis-
sion between theM −1 legs with t̃ is close to the perfect
transmission 4/sM −1d2. For U.0 and decreasingdN the
fRG data forutn,n8u

2 approach this value, while they leave it
for U,0. At U=0, utn,n8u

2 is independent ofdN. Similarly
utn,Mu2→0 for U.0, while it takes a small increasing value
for U,0. We thus analyze the power-law scaling ofutn,n8u

2

FIG. 2. Effective exponents off4/sM −1d2g− utn,n8u
2 scirclesd and

utn,Mu2 sstarsd as a function ofdN for M =5, t̃=1, tM =10−3, and
different values ofU=−1,−0.5,0.5,1 from top to bottom. On the
scale of the plot the results obtained fromf4/sM −1d2g− utn,n8u

2 and
utn,Mu2 are indistinguishable. The scaling exponent is read-off when
a plateau is reached fordN,5310−4, which roughly corresponds to
N.104.
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and utn,Mu2 as a function ofdN with respect to 4/sM −1d2 and
0, respectively. The effective exponents as a function ofdN
obtained by taking the log derivative of the fRG data calcu-
lated for M =5, t̃=1, tM =10−3, and differentU is shown in
Fig. 2 on a log-linear scale. For smalldN and all U both
exponents approach the sameU-dependent plateau value,
which is our fRG approximation for the scaling exponent.
Even for larger arguments the twodN-dependent effective
exponents are indistinguishable on the scale of the plot.

TheM-dependence of the scaling exponent for differentU
is shown in Fig. 3 on a reciprocal-linear scalessymbolsd. The
data can be fitted byslinesd

g1sMd = bs/sM − 1d, s49d

with bs being the U-dependent fRG approximation for
2aB=2s1/K−1d obtained in Ref. 12 for a weak linksstrong
impurityd in an infinite wire, i.e., theM =2 case. The expo-
nentbs agrees with 2aB to leading order inU. It has higher
order corrections which bring it close to 2aB even for inter-
mediateU. For the four interactionsU=−1,−0.5,0.5,1 the
value forbs can be read off from Fig. 3. AtU=1 the relative
difference between the exact exponent obtained from Eq.s6d
and our approximation is roughly 5%. A detailed comparison
of bs and 2aB is given in Fig. 5 of Ref. 12. To leading order
in U Eq. s49d confirms the result deduced from the combined
use of the HFA and Fermi’s golden rule arguments Eq.s48d.
For M =2, the fRG approximationbs is generically closer to
the exact exponent 2aB than 2aB

HF.
For U.0, g1.0 and the “perfect junction” FP of the

sM −1d-wire system is stable towards weakly coupling an
additional wire, while forU,0, g1,0 and the FP is un-
stable. In the latter case the system effectively incorporates
the weakly coupled leg and flows to the “perfect junction”
FP for M wires. For small to intermediateuUu and starting
close to the “perfect junction” FP of thesM −1d-wire system,
i.e., for tM ! t̃, exponentially smalldN are required to reach
the FP. Even though we can treat very largeN such small
scales are beyond the possibilities of our method. Similar to
the single impurity problem4,10–12 the flow from one to the
other FP can be shown considering data setssdN, utn,n8u

2d ob-

tained for differenttM P g0,1f using a one-parameter scaling
ansatz. For fixedU the conductance is only a function of
dN/d0stMd, with an appropriately chosen nonuniversal energy
scaled0stMd and the different data sets can be collapsed on a
single curve. This is shown in Fig. 4 for the two different
effective transmissionsutn,Mu2 slower curved and utn,n8u

2 with
n ,n8øM −1 supper curved andM =4, U=−1, t̃=1 on a log-
linear scale. It is important to note that the effective trans-
mission 4/M2 between all legs is not achieved by an increase
of tM. As there is no interaction across the links of the dot to
the first sites of the wires, the hopping across these links is
independent of the RG cutoffshere dNd. The transmission
4/M2 follows from the build up of a self-energy during the
RG flow, that, interpreted as an effective scattering potential,
leads to a resonance at the chemical potential. Forg1,0,
that isU,0, the plateau reached in Fig. 2 does not present
the asymptotic behavior fordN→0 and considering even
smallerdN a deviation from the plateau valueg1 can be ob-
served.

We next show that the scaling behavior of the conduc-
tance can be understood from the scaling of the spectral
weights on the first site of one of the equivalent legs and the
first site of the additional wire. For«=0 we get from Eq.
s25d,

utn,n8u
2 =

4

sM − 1d2 −
8

sM − 1d3D + Ost4d, s50d

for nÞn8 andn ,n8øM −1, as well as

utn,Mu2 =
4

sM − 1d2D −
8

sM − 1d3D2 + Ost6d, s51d

for nøM −1, with

D = DMs0d/D ~ t2. s52d

For the reflection back into wirenøM −1 it follows

FIG. 3. Scaling exponent of the conductance for a weak link as
a function ofM −1 ssymbolsd for different U. Note the reciprocal
scale of thex axis. The lines showg1sMd=bs/ sM −1d.

FIG. 4. One-parameter scaling plot of the effective transmis-
sions utn,Mu2 slower curved and utn,n8u

2 with n ,n8øM −1 supper
curved for M =4, U=−1, andt̃=1. The variable isdN/d0stMd, with a
nonuniversal scaled0stMd. The asymptotic values of the transmis-
sion 4/sM −1d2 and 0 reached fordN/d0stMd→` as well as 4/M2

reached fordN/d0stMd→0 are indicated on they axis.
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Rn = 1 − o
n8Þn

utn,n8u
2 =

sM − 3d2

sM − 1d2 +
4

sM − 1d2S1 −
2

sM − 1dDD

+
8

sM − 1d3D2 + Ost6d. s53d

As discussed in Sec. III the auxiliary Green function is
calculated with a self-energy which has been determined in
the presence of the weak link. ThusD / t̃2 and the spectral
weight r1 of a perfectsM −1d-leg junction differ to ordert2.
If corrections of ordert2 are neglected inD and DMs0d, D
can be replaced byrobc/r1. We numerically find that for

M̃ =1,2, . . . thespectral weight on the first site of a perfect

M̃-leg junction scales as

r1 ~ d
N

−a
M̃

fRG

, s54d

with

a
M̃

fRG
=

bs

2 S 2

M̃
− 1D , s55d

consistent with the derivation using the HFA in Eq.s45d. The
above replacement thus leads toD~dN

bs/sM−1d, where we used
robc~dN

bs/2. Inserting this expression in Eqs.s50d ands51d we
reproduce the results directly obtained from calculating the
effective transmission. Note that forM =3 the second term in
Eq. s53d cancels and the reflection scales with an exponent
that is twice as large as the one of the transmission. Further
down we encounter another case in which the prefactor of
the leading order term vanishes for specific parameters,
which leads to a doubling of the scaling exponent.

In the limit M→` the dot site is coupled to so many legs
that it creates an infinite barrier. Consistently Eq.s55d gives
limM→` aM

fRG=−bs/2 and the spectral weight on the first sites
scales as the weight next to an open boundary.

2. A slightly modified link

As the second example with a single modified link we
considerutM − t̃u / t̃=t!1. We now analyze the scaling of the

effective transmission within the subsystem of theM −1
equivalent wires and into the leg with the modified hopping
with respect to the transmission 4/M2 of the perfect case.
Similarly to Fig. 2 exponents can reliably be extracted for
sufficiently largeN.

For M ù3 the exponents ofutn,n8u
2 and utn,Mu2, with n ,n8

P f1,M −1g turn out to be equal. For severalU the
M-dependence of the scaling exponent is shown in Fig. 5 on
a reciprocal-linear scale. To first order inU it is given by
−bs/M. More accurately the data can be fitted by

g2sMd = −
bs

M
+ 2

bw + bs

M2 , s56d

with the exponentbw found in Ref. 12 for the scaling of the
transmission through a local weak impurity. To leading order
in U, bw agrees with the exact weak single impurity expo-
nent 2sK−1d. A comparison of 2sK−1d and our fRG ap-
proximation is given in Fig. 7 of Ref. 12.

For U.0, g2,0 and the “perfect junction” FP of the
M-wire system is unstable towards changing one of the hop-
ping amplitudes. FortM , t̃ the system flows to the “perfect
junction” FP ofM −1 wires. This follows from the build up
of a self-energy during the RG flow, that leads to a vanishing
transmission from wirenøM −1 to wire M, but to a reso-
nance with perfect transmission between theM −1 equivalent
legs. FortM . t̃ the flow is to a FP with vanishing conduc-
tance between all wires—the “decoupled chain” FP. The van-
ishing of the conductance follows from the long-range oscil-
latory behavior of the self-energy generated in the RG flow.
In both cases the flow from one to the other FP can again be
shown using a one-parameter scaling ansatz. ForU,0,
g2.0 and the “perfect junction” FP of theM-wire system is
stable, regardless of the sign oft̃− tM.

For M =2 there is noutn,n8u
2 and 1−utn,Mu2 scales with

2g2s2d. The appearance of the factor 2 can be explained by
considering an expansion ofutn,Mu2 similar to Eqs.s50d and
s51d swhich is valid for allM ù2d

utn,Mu2 =
4

M2 +
4sD − 1d

M2 S1 −
2

M
D −

4sD − 1d2

M3 S2 −
3

M
D ,

s57d

with D as defined in Eq.s52d. The differenceD−1 shows
power-law scaling with exponentg2sMd. For M =2 the pref-
actor of the leading order term linear inD−1 vanishes and
the scaling exponent ofutn,Mu2 is doubled. InsertingM =2 in
Eq. s56d gives 2g2s2d=bw as the exponent characterizing the
deviation from transmission 1. This result is expected since
the caseM =2 corresponds to the situation of a perfect infi-
nite wire interrupted by a small impurity characterized by the
scaling exponentbw<2sK−1d.

In the single impurity problem the fRG approximationsbs
for 2aB=2s1/K−1d andbw for 2sK−1d are correct to order
U. To leading order 2sK−1d<−2s1/K−1d fsee Eq.s6dg and
the second term in Eq.s56d is of orderU2. As terms of order
U2 are only partly included in our approximation scheme it is
questionable if a term similar to the second one will be
present in thesunknownd exact expression forg2. To derive

FIG. 5. Scaling exponent of the conductance for a slightly modi-
fied link as a function ofM for different U. Note the reciprocal
scale of thex-axis. The lines show the fit Eq.s56d.
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the dependence ofg1 and g2 on K and M presents a chal-
lenge for any method which does not require approximations
in the strength of the interaction.

B. A symmetric junction with a dot site energy

As our second specific case we study a symmetricM-leg
junction with tn= t̃ for n=1, . . . ,M and a nonvanishing dot
site energyV. Then, due to symmetry, allVns0d and Dns0d
fsee Eq.s26dg are equal and we suppress the indexn. Equa-
tion s25d simplifies to

utu2 =
4

M2

M2D2s0d
fV + MVs0dg2 + M2D2s0d

. s58d

The transmission is determined by the single complex pa-
rameter

g = V + MVs0d − iMDs0d = −
1

Gds0 + i0d
, s59d

which itself is a function of the junction parametersst̃ ,Vd
andM. Via the RG flow of the self-energy forUÞ0 it more-
over develops a dependence ondN and the interactionU. The
RG flow can nicely be visualized by plottingg in the com-
plex plane withdN as a parameter.12,22 This is done in Figs.
6sad–6scd for M =2,3,10, V=0.5,1,1.5,2, and differentt̃
P f0.01,0.7g. For decreasingdNP f5310−4,2.5310−1g and
UÞ0 each fixed parameter setst̃ ,Vd leads to a flow line. The
general form of the flow diagrams is independent of the ab-
solute value ofU. The data of the figures were calculated for
U=−1, which leads to the flow direction indicated by the
arrows. ForU.0 the direction is reversed. On the line
Im g=0 the conductance vanishes and thex axis forms a line
of “decoupled chain” FPs. For Reg=0 the transmission is
4/M2 and all points on they axis are “perfect junction” FPs
sline of FPsd. The “perfect junction” transmission 4/M2 is
also reached atg=` provided that this point is approached
such that −Img→` and Reg goes to a constant.

For M =2 the flow approximately follows a section of a
circle centered around the origin with a radiusV. For U,0
the direction is counter-clockwise and the line of “perfect
junction” FPssy axisd is stable. The on-site energyV does
not get renormalized in the RG flow as the interaction be-
tween the dot site and the first sites of the wires is assumed
to be 0. The perfect transmission 4/M2 does thus not follow
from a decrease ofV during the RG flow but is a conse-
quence of the spatial structure of the self-energy, which leads
to a resonance at the chemical potential. ForU.0 the flow
is clockwise and the line of “perfect junction” FPs is un-
stable. The system flows to the line of stable “decoupled
chain” FPs. The vanishing of the conductance is a conse-
quence of the long-range oscillatory dependence of the self-
energy onj . For M ù3, U,0, anddN→0, −Img diverges
while Reg goes to a constant, which implies that the system
reaches a “perfect junction” FP. ForU.0 all trajectories
approach thex axis atV and the conductance vanishessline

FIG. 6. Flow ofg Eq. s59d for the case of a symmetric junction
with on-site energy V=0.5,1,1.5,2, different t̃P f0.01,0.7g,
M =2,3,10legs, andU=−1. The arrows indicate the direction of
the flow for U,0. ForU.0 it is reversed.

FIG. 7. Scaling exponent of the conductance for a small on-site
energy as a function ofM ssymbolsd for different U. Note the re-
ciprocal scale of thex axis. The lines show the fit Eq.s60d.
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of “decoupled chain” FPsd. To determine scaling exponents
we next separately consider small and largeV.

1. A small on-site energy

For smallV, the transmission between all the equivalent
wires is close to the perfect value 4/M2. The dependence on
dN can be described by a power law. In Fig. 7 the scaling
exponent as a function ofM is shown for differentU. To
leading order inU it is independent ofM. The exponent can
be fitted by

g3sMd = − bs + 4
bw + bs

M
S1 −

1

M
D . s60d

In accordance with the stability properties of the line of “per-
fect junction” FPs discussed in connection with Figs.
6sad–6scd, g3,0 for U.0 andg3.0 for U,0. TheM =2
case is equivalent to the problem of a single weak site im-
purity interrupting an otherwise perfect infinite chain and
g3s2d is equal to the respective scaling exponentbw ssimilar
as for a slightly modified link in Sec. V Ad. Within our ap-
proximation scheme the second term in Eq.s60d is thus im-
portant to reproduce a result obtained earlier forM =2. As it
is of order U2 it is nonetheless unclear if a similar term
occurs in thesunknownd exact expression forg3.

2. A large on-site energy

In the limit of largeV the transmission between all the
wires is small and we analyze the scaling with respect to zero
transmission. The scaling exponent is independent ofM and
up to our numerical accuracy given by

g4 = bs, s61d

i.e., the strong impuritysweak linkd exponent for a single
infinite wire ssee Fig. 5 of Ref. 12d.

C. Fixed points and renormalization group flow for general
junction parameters

The RG flow, FP structure, and scaling exponents for ar-
bitrary junction parameters can be understood based on the
results obtained for the above two classes of junction param-
eters. To shorten the discussion we here focus on the more
important caseU.0. Results forU,0 can be deduced by
inverting the direction of the flow.

As found in Secs. V A and V B the “perfect junction” FP
of the M-leg system with effective transmission 4/M2 is un-
stable towards the two possible perturbations in which only
one junction parameter is modified,sid a single modified
hopping andsii d a nonvanishing on-site energy. These insta-
bilities are characterized by the two exponentsg2sMd smodi-
fied linkd andg3sMd son-site energyd.

In the casesid, for M ù3, and t̃ larger than the single
modified hopping the system flows to the “perfect junction”
FP for M −1 legs. FordN→0 the conductance across the
modified link vanishes with exponentg1sMd, while the con-
ductance within the subsystem of theM −1 equivalent wires
approaches 4/sM −1d2 with the same exponent. ForM =2 the
flow is to the “decoupled chain” FP and the conductance

vanishes with exponentg1s2d=g4=bs. If the hopping be-
tween the first site of wiren=M and the dot site is larger
than t̃ for dN→0 and allM ù2 the “decoupled chain” FP is
reached. To analyze the scaling of the conductance close to
this FP we start out from Eq.s25d and use an expansion
similar to Eqs.s50d and s51d. The small parameter of the
expansion isD=D /DM. The numerics shows that it asymp-
totically vanishes asdN

bs. For nøM −1 this leads to

Gn,M ~ dN
g4 s62d

while for n ,n8P f1,M −1g we find

Gn,n8 ~ dN
2g4. s63d

In the casesii d the RG flow also ends at the “decoupled
chain” FP and all conductances vanish with exponentg4.

We next perturb the “perfect junction” FP of theM-leg
system by slightly modifying more than one of the hopping
matrix elements. If 2øM1,M −1 of thetn are reduced com-
pared to the hoppingt̃ across the remainingM2=M −M1
links the system flows to the “perfect junction” FP of the
M2-leg system. IfM1 of the tn are increased compared tot̃
the system generically approaches the “decoupled chain” FP.

This behavior is changed ifM̃1ù2 of theM1 increased hop-
pings are equal and larger than all the others. In this case the

system flows to the “perfect junction” FP forM̃1 legs. If all tn

are different the “decoupled chain” FP is reached.
If the perturbation of the “perfect junction” FP of the

M-leg system consists of an on-site energyV and one or
more modified hoppings the system flows to the “decoupled
chain” FP.

From these considerations we conclude that for the ma-
jority of possible junction parameters of theM-wire junction,
for dN→0 the system flows to the “decoupled chain” FP. On
asymptotically small scales the conductance vanishes as

Gn,n8 ~ dN
jbs. s64d

Depending on the junction parameters as well as on the wire
indicesn andn8, j might be 1 or 2sfor examples, see aboved.

Only for V=0 and ifMmaxù2 of theM links between the
dot site and the first lattice sites of the wires have hopping
tmax, where tmax=maxnPf1,Mghtnj, the system flows to the
“perfect junction” FP forMmax legs. In this case the power-
law scaling of the conductance between two wires coupled to
the dot with hoppingtmax is given by

e2

h

4

Mmax
2 − Gn,n8 ~ dN

bs/Mmax. s65d

The conductance between one wire coupled bytmax and the
other bytn, tmax vanishes as

Gn,n8 ~ dN
bs/Mmax, s66d

while it goes like

Gn,n8 ~ dN
2bs/Mmax s67d

if both wiresn andn8 have a hopping to the dot site smaller
thantmax. As in Eq.s63d the factor 2 in Eq.s67d follows from
an expansion similar to the one used in Eqs.s50d and s51d.
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VI. SUMMARY AND PERSPECTIVES

In this paper we studied the conductanceGn,n8 for a dot
junction of M semi-infinite quantum wires. The junction as
well as the wires are described by a microscopic lattice
model. In a finite section ofN sites the fermions in each wire
are modeled to interact via a nearest-neighbor interaction
which smoothly vanishes close to the lattice sitesj =N
ssmooth contactd. Investigating the scaling of the conduc-
tance as a function ofdN~1/N led to a comprehensive pic-
ture of the FP structure, scaling exponents, and RG flow of
the model studied. We mainly used an approximation scheme
that is based on the fRG method and provides reliable results
for weak to intermediate interactions with 1/2øKø3/2. At
half-filling this corresponds to bulk nearest-neighbor interac-
tions −1.5øUø2. Additional insights were obtained using
the HFA.

Compared to the well studied single impurity problem for
M ù3 the low-energy physics of theM-wire junction is
much richer, allowing for a variety of FPs and scaling expo-
nents. Furthermore forM ù3 one of them, the “perfect junc-
tion” FP, is characterized by two exponents,g2sMd and
g3sMd. They can individually be read off from the scaling of
the conductance if the FP is perturbed in a specific way. In
contrast to the single impurity problem, in which the FP
reached is solely determined by the sign of the interaction,
for junctions of three and more wires this in addition de-
pends on the junction parameters. Depending on the wire
indices between which the conductance is calculated the
scaling exponents close to a FP might differ by factors of 2.
This can have two reasons,sid in an expansion of the effec-
tive transmission in terms of a small parameter that carries
the power-law scalingfsee e.g. Eqs.s50d ands51dg, depend-
ing on n andn8 the first or second order term might be the
first nonvanishing one.sii d For certainM the prefactor of the
leading order term might vanish.

Junctions and networks of TLLs were earlier studied.15–21

The method and model used in Ref. 17 come closest to ours.
The authors apply a fermionic poor-man’s like RG originally
developed for the single impurity problem to the three- and
four-leg junction.9 They consider a microscopic dot junction
model to motivate the investigation but then leave the frame-
work of this model when studying the RG flow of an effec-
tive S-matrix. The results obtained in this paper for three legs
are partly equivalent to ours. In Refs. 12 and 26 a detailed
account of the differences of the poor-man’s RG and our
method is given for the single impurity case and resonant
tunneling in a TLL.

Using the fRG and HFA we obtained expressions for the
scaling exponents which we expect to be correctsat leastd to
leading order inU. It is very desirable to derive the exactK-
and M-dependence of these exponents. For increasing com-
plexity of the junctions obtaining such expressions for sim-
plified, effective, but still generic models requires very so-
phisticated methods, even if only specific parts of the
parameter space are considered.19

We considered a dot junction model in which the interac-
tion between fermions on the dot site and the first lattice sites
of the wires is set to zero. We also investigated the case in
which this interaction does not vanish. The additional
nearest-neighbor interaction across theM bonds does not
alter the results presented here.

An extension of our method to the case in which the
strength of the bulk interaction depends on the wire indexn
is straightforward and might lead to new insights. As exem-
plified in Ref. 22 the fRG can also be used to investigate
other types of junctionsse.g., ringlike geometriesd, with dif-
ferent FPs and scaling exponents.

For the complex junction studied here the temperatureT
and the infrared cutoffdN present equivalent scaling vari-
ables only on asymptotically small scales. The fRG method
can be set up for finiteT and leads to reliable results also for
intermediate to large temperatures.12,26 For two wires our
model is equivalent to the one considered to study resonant
tunneling through a quantum dot embedded in a TLL, with a
one lattice site dot. In this case, for fixedN, anddNøTøB
the conductance as a function ofT shows a very rich behav-
ior. Depending on the dot parameters, temperature regimes in
which GsTd follows “universal” power laws as well as non-
universal regimes were identified.12,26We thus expect to find
similar rich behavior forM ù3. The conductance as a func-
tion of temperature is easily accessible in transport experi-
ments. InvestigatingGn,n8sTd might thus also become impor-
tant for the interpretation of future transport experiments on
junctions of quasi-one-dimensional quantum wires. We will
present results forGn,n8sTd in an upcoming publication.
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