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The effects of the Wannier-Stark laddersWSLd resonance on the optical absorption spectra of strongly
biased superlattices are theoretically investigated. Exciton Fano resonancesFRd states in this system are
calculated based on the multichannel scattering theory. When the bias of a static electric fieldsFd is applied
such that a WSL subband state is energetically aligned with its adjacent ones, resulting in an anticrossing with
strong repulsion due to Zener resonance, we obtain the following findings.sid The onset of exciton absorption
noticeably shifts toward the lower energy side, accompanying the oscillation of the magnitude of the absorp-
tion tail with the change inF. However, for the anticrossing, this effect is limited to a small localized region
of F. In fact, a slight change inF away from the anticrossing leads to a peculiar suppression of the redshift of
the absorption tail edge.sii d The absorption intensities and the positions of the FR states vary in an irregular
manner due to the Zener breakdown asF traverses the anticrossing region. For instances in a certain WSL
state, the oscillator strength is reduced by a large extent only in the anticrossing region, followed by recovery
of the intensity out of this region. Moreover, the changes in Fano’sq values with respect toF are also
discussed. As described insid andsii d, these two effects on the exciton spectra are due to the delocalization of
WSL wave functions across several periods that accompany the strong anticrossing.
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I. INTRODUCTION

Wannier1 demonstrated that, on the basis of the single-
band approximationscorresponding to the Kane wave
function2 and the Houston wave function3d, an electron in a
crystalswith a spatial period ofdd under a static electric field
sFd—termed the Wannier-Stark laddersWSLd—has localized
wave functions and discrete energy spectra with equal spac-
ing, expressed as"VB=eFd, whereVB represents the Bloch
frequency," represents the Planck constant divided by 2p,
and e represents the elementary electric charge. Zak4 and
Avron et al.5 highlighted the problem underlying this as-
sumption and proved that energy spectra are always continu-
ous and the wave functions are neither localized nor square-
integrable due to an interband mixing effect that is ascribable
to the Zener tunneling.6 The problem arising when using the
WSL with the Zener effect was also discussed based on the
semiclassical picture.7 Thus, the Kane approximation and the
existence of equidistant energy spectra can be considered
accurate only if the spectral broadening due to the Zener
breakdown is much smaller than"VB for a very weak bias of
F. However, the existence of the WSL localization and its
relation with the Zener tunneling were still controversial
long after.8–12

However, apart from these theoretical predictions, it was
considered difficult to experimentally detect the WSL local-
ization and the related Bloch oscillation13 due to a rather
short scattering time of the carrier as compared to the tem-
poral period of 2p /VB. This issue was resolved with the
advent of the man-made semiconductor superlatticessSLsd
by Esaki and Tsu14 due to a largerd of the order of 100 Å. In
fact, the equidistant WSL energy spectra were measured by

photoluminescence and photocurrent spectroscopy,15,16 and
the Bloch oscillation was measured by time-resolved four-
wave mixing spectroscopy.17

The effects of the Zener breakdown under a relatively
strong bias on the WSL spectra and nonlinear transport,si.e.,
the Bloch oscillationd resulting in negative differential resis-
tance sNDRd, were later discussed by many authors.18–36

Hereafter, the resonant Zener tunneling between different en-
ergetically aligned subbands will be termed as Zener reso-
nance or WSL resonance. Delocalized electron states in
coupled WSL in biased SLs were first observed by photocur-
rent spectroscopy along with the measurement of the current-
voltage characteristics by Schneideret al.18 They observed
the delocalization of electrons and anticrossing behavior as-
cribable to the nearest- and the second-nearest-neighbor
resonant couplings induced by the Zener resonance. The
third-nearest-neighbor resonant coupling was also measured
by electroreflection spectroscopy.19 Resonant tunneling
across a maximum of five barriers was also observed in the
current-voltage characteristics.20 These interacting WSL
states were confirmed by a two-confined-subband
model.21–24 Moreover, the transitions into continuum states
in strongly coupled WSL were also observed by infrared
spectroscopy,25 and were theoretically investigated in com-
parison with the Kane approximation.26–28 In addition, the
Bloch oscillation damped by the Zener breakdown that was
associated with linewidth broadening due to field-induced
delocalization was observed using the time-resolved
measurement.29 On the other hand, the Zener resonance was
studied by the analysis of the photocurrent-voltage character-
istics and photoluminescence spectroscopy by addressing the
connection with the electric field domain formation,30,31 and
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through dc and microwave transport experiments.32 The co-
existence of WSL localization and NDR for electrons was
also experimentally demonstrated.33 Furthermore, midinfra-
red electroluminescence from coupled WSL was generated
through both intraladder and interladder transitions in the
two regions of strong WSL localization and WSL resonance
delocalization.34 The transition between coherent and inco-
herent transport in WSL was observed at different bias con-
ditions by hot electron spectroscopy.35 Additionally, the rela-
tion between the Zener tunneling and WSL states was
established by a general multiband and multichannel scatter-
ing theory in a bulk semiconductor.36

Although an exciton effect was overlooked in most of the
abovementioned studies, this effect is ascertained to be sig-
nificant in the linear optical transitions of WSL,37,38 specifi-
cally for the manifestation of the Fano resonancesFRd
spectra39 with characteristic asymmetric profiles.40–42 More-
over, the anomalous phenomena of WSL excitons, for ex-
ample, a prolonged lifetime of intraband polarization coher-
ence in the THz radiation and an asymmetric Autler-Townes
doublet observed by spectrally resolved four-wave mixing
spectroscopy, are also observed in nonlinear optical
responses.43–47 Nevertheless, these studies are limited to
WSL under a relativelyweakbias, where the Zener break-
down is negligible and the Kane approximation can be safely
applied. To the best of our knowledge, investigations on the
FR spectra of WSL excitons under astrong bias are quite
limited in number.48,49

The present paper demonstrates that the optical absorption
spectra due to excitonic FR in WSL are strongly modulated
by the alteration of the axial bias applied in the direction of
crystal growth due to the Zener breakdown. When neighbor-
ing WSL subband states are energetically aligned with each
other and the concomitant Zener resonance causes strong re-
pulsion of the concerned subband energies, the following
interesting effects can be observed:sid The absorption tail
edge shifts noticeably toward the lower-energy side and the
absorption in the higher-energy regionsabove the taild is re-
duced. This phenomenon can be observed in greater detail
when the magnitude of the absorption tail varies with respect
to F in an oscillating manner. Interestingly, this effect occurs
in the vicinity of the anticrossing; hence, it is suppressed
away from this localized region. The preliminary discussion
on the redshift of the absorption tail edge was made in Ref.
49. sii d Since the WSL subband wave functions are drasti-
cally modified, both the intensity and the position of the FR
spectral peak are also altered in an irregular manner asF
traverses the anticrossing region. The Zener resonance also
affects the shapes of the FR spectra represented by Fano’sq
values.

This paper is organized as follows: Sec. II presents meth-
ods of calculations. Section II A briefly discusses the nu-
merical method for solving the multichannel scattering prob-
lem of excitons in the coupled WSL as this has already been
dealt with in detail in the previous papers.47,50 Further, the
method of calculating the bound and continuum subband
states of the WSL is also provided. The boundary condition
for the WSL problem is discussed in Sec. II B. Section II C
presents, for subsequent discussion, the energy-fan diagrams
and the associated wave functions of the subband states ob-

tained by following the numerical methods described in Sec.
II A. In Sec. II D, the FR spectra corresponding to the three
existing results26,38,41are calculated and compared with the
reported spectra in order to demonstrate feasibility and va-
lidity of the present method of calculations. The results and
discussion are presented in Sec. III, where the calculated FR
spectra are first examined in a general overviewsSec. III Ad;
this is followed by a more detailed discussion on both the
redshift of the absorption tail edgesSec. III Bd and the spec-
tral modulationsSec. III Cd due to the Zener resonance. Sec-
tion IV is the summary. This paper also includes three ap-
pendices. In Appendix A, as a supplement to Sec. II A, a
method for calculating the WSL subband wave functions is
introduced based on the basis-splinesB-splined collocation
method sBSCMd51,52 and the Sturmian function expansion
method.53,54 Appendix B, as a supplement to Sec. II C, ex-
amines the numerical convergence of the WSL energies and
wave functions. In Appendix C, as a supplement to Sec.
III B, a mathematical formulation of the free spectra is de-
veloped for a more detailed examination of the redshift of
the absorption tail edge.

The sample of undopedf001g SLs employed for the cal-
culations is GaAs/Ga1−xAl xAs of 35/11 monolayerssML d
f1 ML=2.83 Åg for the well and barrier thickness withx
=0.25; this is similar to the sample used in Ref. 32. The
excitation densities of carriers by optical transitions are as-
sumed to be so low that the applied electric field is homoge-
neous throughout the SLs, and the formation of the electric
field domain30,31 is neglected. A set of quantum numbers of a
WSL subband state is given byje;nesbed f jh;nhsbhdg,
wherebe fbhg andne fnhg are a miniband index and a WSL
index of an electronfa holeg, respectively. These quantum
numbers, based on the Kane representation, will be adopted
hereafter for the convenience of designating the quantum
state, though, in actuality, meaningless for strongly coupled
WSL. In order to avoid a notational confusion, the label
ne fnhg of je f jhg is sometimes expressed as ‘ne8sbed f‘nh8sbhdg.
Similarly, the notation,j ;nsbe,bhd, wheren=nh−ne is used
to represent the joint WSL subband state of the electron and
the hole. Hereafter, this will be termed as a channel. Atomic
units are used throughout this paper unless stated otherwise.
The following units are used in this paper: 1 atomic unit is
equivalent to 0.52918 Å for length, 27.2116 eV for energy,
and 5.14220823106 kV/cm for electric field. Addition-
ally, the empirical parameters employed here are listed in
Table I for an electron massme, the Luttinger parameters
gi si =1–3d, an energy band gapEg, and a static dielectric
constante. me, gi, and Eg of the alloy Ga1−xAl xAs are lin-
early interpolated as a function of the Al concentrationx
between the values of GaAs and AlAs. A band offset rule is
adopted by which 68% of the total band gap difference be-
tween GaAs and Ga1−xAl xAs is allocated to the conduction
subband.

II. METHODS OF CALCULATIONS

A. Subband states and FR states of the coupled WSL

For the system under consideration, a set of coordinates
hr ,ze,zhj is defined, wherer=suru ,fd represents the in-plane
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relative vector between an electronsed and a holeshd, with f
representing the in-plane angular coordinate, andze and zh
represent thez coordinates ofe andh, respectively. Here, the
center-of-mass motion of an exciton in the plane of the layer
is removed. Moreover, valence-band mixing is neglected
and, for simplicity, the contribution of light holesslhd is
omitted, so that only thes-radial symmetry of the heavy hole
shhd exciton is taken into account, unless stated otherwise.
The effective-mass HamiltonianHex for the WSL exciton is
expressed as

Hexsr,ze,zhd = −
1

2mi

¹r
2 + Vsr,ze − zhd + hwslsze,zhd, s1d

whereV is the Coulomb potential between them, expressed
as

Vsr,ze − zhd = −
1

eÎr2 + sze − zhd2
. s2d

In addition,hwsl represents the Hamiltonian of the WSL for a
combined subband ofe andh, and is defined as

hwslsze,zhd = o
k=e,h

hwsl
skd szkd. s3d

Here,

hwsl
skd szkd = −

]

]zk
S 1

2mz
skdD ]

]zk
+ ukszkd 7 Fzk, s4d

where it is understood that the arithmetic operator before the
last term is “2” when k=e and “1” when k=h, andue/h is
the periodic potential of the associated SLs for the motion of
the particlee/h. Moreover,mz

se/hd is the mass of the particle
e/h in thez direction, andmi is the in-plane reduced mass of
e andh, where 1/mz

shd=g1−2g2 and 1/mi=g1+g2+1/me. It
should be noted thatmz

se/hd andmi are functions ofze andzh.
In particular, the latter mass plays a key role in the mass-
mixing effect, as will be discussed in Sec. III B.

An exciton envelope functionC following the effective-
mass model satisfies the Wannier equation

sHex− EdCsuru,Vd = 0, s5d

whereE is a given energy of the FR exciton, andV has been
defined as a lump of the coordinatesV=sf ,ze,zhd for con-
venience of presentation. According to the previous formal-
ism of Ref. 50, theath solution of Ca is expanded with

respect to a set of adiabatic channel functionshFmj given by
the following equation:

Casuru,Vd =
1

Îuru
o
m

Fmsuru;VdFma
E surud. s6d

Here,Fm is an eigenfunction of the Schrödinger equation

shwsl + VdFmsuru;Vd = UmsurudFmsuru;Vd, s7d

where the in-plane radius of the excitonuru is fixed as an
adiabatic parameter. The eigenvalue ofUm represents the
adiabatic potential, which is identical to themth WSL sub-
band energy associated withhwsl at the limit uru→` fsee Eq.
s14dg. An openfclosedg channelm is defined as an adiabatic
channel satisfyingE.Ums`d fE,Ums`dg. A radial wave
function Fma

E is provided by the use of theR-matrix propa-
gation technique.50

The dipole momentm̃asEd for an interband transition to
an FR state in theath open channel at a givenE is provided
by

m̃asEd = m0masEd. s8d

Here,m0 represents the dipole moment of an interband tran-
sition of the bulk crystal GaAs.masEd represents the contri-
bution of an exciton envelope function tom̃asEd:

masEd = o
m

N

wmfuru−1/2Fma
E surudguru=0, s9d

where

wm =E dzfFms0;Vdgz;ze=zh
, s10d

andN represents the total number of channels included. The
concerned photoabsorption spectra are proportional to the
quantity of IsEd and are expressed as

IsEd = o
a

N0

um̃asEdu2, s11d

whereN0 represents the total number of open channels at the
photon energy ofE.

Equations7d is solved by expanding the adiabatic channel
function Fm in the following equation:

Fmsuru;Vd = o
j

N

w jsVdcjmsurud, s12d

with respect to a set of wave functionshw jj defined by

w jsVd =
1

Î2p
expsimfdf jsze,zhd. s13d

Here, f j is a WSL subband wave function satisfying the
equation

shwsl − « jdf jsze,zhd = 0, s14d

where the indexj represents the subband state of the com-
bined WSL ofe andh, and is given byj =nsbe,bhd based on

TABLE I. Empirical parameters employed in the calculations.
Eg is expressed in the unit of eV.

GaAs AlAs

me 0.0665 0.15

g1 6.790 3.790

g2 1.924 1.230

g3 2.681 1.395

Eg 1.519 2.766

e 12.5 12.5
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the approximate Kane representation defined in Sec. I. The
prefactor ofs1/Î2pdexpsimfd in Eq. s13d represents a wave
function of an in-plane angular motion of thee and h pair
having an angular momentumm. In actuality, an excitonic
photoabsorption is dominated by thes-radial symmetry, i.e.,
m=0; hereafter, this condition will be applied. In Eq.s12d,
the coefficienthcjmj is determined at eachuru. f j is expressed
as a combined WSL subband wave function defined by37

f jsze,zhd =
1

ÎNsite
o

l

expsiKzlddflsbed
sed szedf‘ l+n8sbhd

shd szhd,

s15d

whereNsite is the number of WSL sites included in the cal-
culations, since there is an additional translational symmetry
due to the center-of-mass motion of a pair ofe andh in the
z direction, which conserves the associated center-of-mass
momentumKz. Hereafter, it is understood thatKz is set to
zero since onlyKz=0 contributes to photoabsorption.37 f jk

skd

szd is a WSL wave function, wherek=e,h, satisfying

shwsl
skd − e jk

df jk
skdszd = 0, s16d

where the notationjk=nksbkd is defined in Sec. I. The rela-
tions based on the Kane representation are clearly indicated
such that

fnksbkd
skd sz+ ldd = f‘nk−l8sbkd

skd szd, s17d

enksbkd = e‘nk−l8sbkd 7 lVB, s18d

«nsbe,bhd = enesbed + enhsbhd = «0sbe,bhd + nVB, s19d

where n=nh−ne. Note that the energy ofenksbkd is always
continuous4 and that the discrete labelnk has been adopted
for convenience. In Sec. II B, this issue will be commented
on in conjunction with the boundary conditions imposed on
the solutions of Eq.s16d.

The numerical method of solving Eq.s16d is summarized
here, while its details are presented in Appendix A. We em-
ployed the following stepwise procedure to obtain a set of
wave functionshf jk

skdj. sid Initially, a Sturmian basis set cor-
responding to a single quantum well system is calculated in
advance, where the set is expanded in terms of the
B-splines,51 following the BSCM.52 This Sturmian method
provides both discrete and pseudocontinuum spectra on an
equal footing, without the disadvantage of possessing the
real continuum spectra.53,54 sii d A Wannier function associ-
ated with the present SLs is expanded in terms of these Stur-
mian functions. By means of a standard algebraic equation,
the SL spectra for both bound state componentssbelow the
barrier of the confining potentiald and continuum compo-
nentssabove the barrier of the confining potentiald are pro-
vided by straightforward calculations.siii d The WSL wave
functions are obtained by using these SL wave functions as
an expansion basis set. Here, the notation WF-l is used for
approximate WSL wave functions obtained by expansion in
terms of the SL wave functions ranging from the lowest
miniband to thelth miniband. First, WF-1 are calculated by

including only the SL states pertaining to the lowest mini-
band and labeled asnksbkd, k=e,h based on the Kane repre-
sentation. The SL states pertaining to the first and the second
lowest minibands are subsequently used for more accurate
calculations of WSL wave functions of WF-2. Strictly speak-
ing, the resulting WF-2 can no longer be classified by the
Kane quantum number. However, the most suitable Kane
quantum number, though approximate, can always be as-
signed to any state of WF-2 by comparing the eigenvalues
relevant to WF-2 with those relevant to WF-1. The same
procedure is repeated to obtain WF-l by assigning them the
Kane quantum numbers in reference to those assigned to
WF-sl −1d. Finally, we obtain WF-Nb that are adopted for the
basis sethf jk

skdj, whereNb represents the maximum number of
SL minibands included in the calculations.

However, not only does the procedure described above
appear complicated, but its advantages are also rather un-
clear. Actually, there are other straightforward methods to
solve Eq.s16d. For instance, it can be solved by collocating a
set of knots of B-splines over a tilted WSL potential using
the generalized eigenvalue problem. It can also be solved
using the Runge-Kutta method by propagating the WSL
wave function from a high-potential region toward a low-
potential asymptotic region with an appropriate matching
procedure in terms of a set of Airy functions. The solutions
provided by these two methods are equivalent to those of the
procedure, described in the steps fromsid to siii d. However,
the former methods do not allow the practical classification
of every wave function on the basis of the approximate Kane
quantum numbers. Hence, it becomes difficult to obtain the
combined WSL wave function of the pair ofe andh in the
form of Eq. s15d, where the wave functionf jk

skd needs to be
described by bothnk andbk. This is the primary reason that
the procedure described in the steps fromsid to siii d is
adopted in this study.

We now discuss some advantages of the BSCM used in
stepsid over the usually adopted method, using the Kronig-
Penny model that is limited to a rectangular periodic
potential.38 The BSCM can be adopted for a wide range of
potentials, regardless of whether the potential is smooth or
discontinuous. In fact, for the present rectangular potential,
the BSCM provides a large number of highly accurate eigen-
values in one step, by introducing knot multiplicity51 at the
position corresponding to the boundary between the well and
the barrier where the potential is discontinuous. With minor
changes, the same computer program can be easily applied to
systems such as a sinusoidal potential that models the WSL
of optical lattices of ultracold atoms realized by laser-cooling
technology.55–59

B. Boundary conditions for the WSL problem

Prior to the discussion on the WSL subband energieshe jk
j

and the associated wave functionshf jk

skdj, herein termed as set
A, obtained by following the stepssid–siii d in Sec. II A, we
take into consideration the boundary conditions to be im-
posed on the solutions of Eq.s16d. The WSL subband ener-
gies thus obtained are always discrete because a limited
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number ofNb and a finite number ofNsite are employed along
with the vanishing boundary condition that is expressed as
f jk

skdsz−`d=f jk

skdsz̀ d=0. Here,z−` and z̀ are the left and right
end points, respectively, and are expressed asz−`=
−sNsite/2dd and z̀ =sNsite/2−1dd. Instead of this vanishing
boundary condition, an arbitrary boundary condition such as
the fixed boundary condition offdf je

sedszd /dzgz=z̀ =0 can also
be imposed on the wave function at the right and left end
points fork=e andk=h, respectively. However, the imposi-
tion of the different boundary condition leads to providing
another set of the WSL energy spectra that are different from
he jk

j. In this context, it could be stated that the discussion on
this particular set of the energy spectra makes little sense at a
glance. However, in reality, set A allows for a deep insight of
physics pertaining to the behavior of couplings betweenlo-
calizedKane subband states satisfying the vanishing bound-
ary conditions, eventually leading to field-induced delocal-
ization.

In view of the continuum feature of the WSL spectra, the
open boundary condition is more preferable, and the associ-
ated solutions, for example, set B:hfe

skdj, are practically cal-
culated using the Runge-Kutta method mentioned in Sec.
II A, where e is a given energy of the continuum state. For a
very largeNsite, the following statement holds; or else, the
open boundary condition should not be considered. Since
both of sets A and B satisfy the same Schrödinger equation
of Eq. s16d, the Hilbert space spanned by set B is of the same
size as that spanned by set A in spite of the different bound-
ary conditions being imposed, as long asNb is sufficiently
large. Specifically, the following closure relation exists:

o
jk

f jk
skdszdff jk

skdsz8dg* =E deDsedfe
skdszdffe

skdsz8dg* = dsz− z8d,

s20d

whereDsed represents the density of state determined by the
normalization condition offe

skd. Therefore, it is evident that
both of sets A and B are mathematically equivalent. On the
basis of this, it can be stated that the former set of discrete
wave functions is compatible with the latter set of continuum
wave functions.

Nevertheless, from a practical point of view, the discrete
set A is even more feasible and efficient than the continuum
set B, since all the wave functions of the former set can be
simultaneously provided in one calculation step by resorting
to the BSCM, and possible physical meanings can be implied
from every WSL subband state based on the approximate
Kane representation. On the other hand, with reference to the
latter set, the wave functions are provided individually by
using the Runge-Kutta routine; in practical calculations, it is
indispensable to discretize the entire continuum energy spec-
tra, for instance, in terms of an energy sampling based on the
Gaussian quadrature. In general, the number of the dis-
cretized basis functions of set B required to attain well con-
vergent results of the exciton FR spectra is greater than the
number of the discrete basis functions of set A. This is be-
cause the discretized basis functions of set B are arranged in
terms of the energy sampling method irrespective of the un-

derlying physics; hence, as a result, certain parts of the WSL
subband states included in it do not contribute much to the
exciton FR spectra. Therefore, it can be concluded that the
basis set A adopted in this study is considered optimal.

C. Energies and wave functions of the WSL subband states

Figure 1 shows six energy bandssbe/h=1–6d of the SLs
for e andh obtained by following stepsii d. With the excep-
tion of the first lowest band, the second and third lowest
bands are located below the confining potentials ofe andh,
respectively. Miniband widths ofh are much smaller than
those ofe due to a heavier effective mass ofh, as is ex-
pected.

The energy-fan diagram of the coupled WSL fore, calcu-
lated withNsite=20 andNb=6, is shown in Fig. 2sad.60 Prior
to examining the results of this figure, a brief remark is made
on the convergence of the present calculations based on Eq.
sA8d. Here, the convergence of numerical solutions with re-
spect toNb has been observed by varyingNb. The obtained
results are given in Appendix B. Furthermore, the conver-
gence is also confirmed by comparing the results withNb
=6 either with the results obtained from the direct BSCM
calculations or with those obtained from the Runge-Kutta
calculations mentioned in Sec. II A. As is shown in Appen-

FIG. 1. Energy band structures of the present SLs forsad the
electron andsbd the heavy hole. The horizontal dashed line indicates
the height of the confining potential barrier. The abscissae ofnK are
given bynK=NsiteKd/2p, whereK represents the Bloch momentum
of the SLs andNsite=20.
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dix B, the energies and wave functions of the coupled WSL
state of 0s1d to 0s4d indicate excellent convergence that is
warranted by the Rayleigh-Ritz variational principle.61 On
the other hand, while minor numerical errors are incurred in
0s5d and 0s6d, these may be due to the limited number ofNb

that is practically included. It was pointed out in Ref. 26 that
the convergence of the coupled WSL wave functions with
respect toNb seems doubtful, and hence, all the orders of
contributions from the interminiband interactions should be
incorporated, since Eq.sA8d results in

lim
D→0

o
Bk

o
K

ZKBke+D
* ZKBke = lim

D→0
dsDd = `, s21d

where the energy labeled ase jk
has been replaced by the

corresponding continuum energy ofe. However, despite the
comment of Ref. 26, this infinity does not matter in reality
because it arises simply from an energy-normalization con-
dition for the WSL wave functions. As mentioned in Sec.
II B, the set of wave functionsf jk

skd satisfying the vanishing
boundary condition is equivalent to that of wave functions
fskde satisfying the open boundary condition relevant to the
energy-normalization condition. Therefore, in the present
case, Eq.s21d is simply replaced by

o
Bk

o
K

uZKBkjk
u2 = 1, s22d

which is, needless to say, satisfied irrespective ofNb in the
formulation developed in this study. Hence, Eq.s21d does not
make sense for verifying the convergence of the coupled
WSL wave functions with respect to theNb.

We now examine Fig. 2sad. Anticrossings can be observed
in the vicinity of F=70, 100, and 180–200 kV/cm, where
the WSL subband states are energetically aligned with each
other, resulting in the Zener resonance. The series of the
anticrossings atF<70 kV/cm arises primarily from the in-
teractions between thels1d and ‘l +18s2d states. Hence, this
anticrossing is due to the lowest two bound state components
of the original SLsfsee Fig. 1sadg.32

On the other hand, the series of the anticrossings atF
<100 kV/cmsfour of which are indicated by dashed circlesd
is primarily governed by interactions among thels1d, ‘ l
+18s2d , ‘ l +28s3d, and ‘l +48s4d states, where the last two
states are associated with the continuum componentsfsee
Fig. 1sadg. In Fig. 2sbd, the anticrossing region—denoted by
the dashed circle at the bottom of Fig. 2sad—is expanded,
and the labels of the Kane quantum numbers of the 0s1d,
1s2d, 2s3d, 4s4d, and 6s5d states are specified, where the WSL
energies calculated under the Kane approximation are shown
by dotted lines for the sake of comparison. In this region,
there are three dominant anticrossings located in the vicinity
of F=95, 100, and 105 kV/cm, all of which are specified by
dashed circles: the first is located among the 0s1d, 2s3d, 4s4d,
and 6s5d states, the second lies between the 0s1d and 2s3d
states, and the third lies between the 1s2d and 4s4d states. The
manner of the interactions for the strongest anticrossing at
F=100 kV/cm is observed by examining each WSL wave
function for 0sbed, depicted in Fig. 3. Here the solid curve
indicates the wave function of the coupled WSL and the
dotted curve indicates the noninteracting Kane wave function
for the purpose of comparison. The difference between these
two wave functions represents the degree of magnitude of
the Zener tunneling. It should be noted that a wave function
of the statenesbed with neÞ0 is obtained from that of the
state 0sbed in Fig. 3 by using Eq.s17d. The strength of the
anticrossing is determined by the overlapping of the associ-
ated wave functions; in particular, the strength is dominated
by the overlapping between the 0s1d and 2s3d states. The
dominant part of this overlap corresponds to that between the
arrowed portions of the wave functions of 0s1d and 0s3d as

FIG. 2. sad The energy-fan diagramesed of the coupled WSL for
e as a function of the bias ofF. The lowest six minibands of the SLs
sNb=6d are included as a basis set for the calculations, withNsite

=20. Dashed circles indicate a series of anticrossings in the vicinity
of F=100 kV/cm.sbd Expanded view around the region indicated
by the dashed circles at the bottom of panelsad. Moreover, energies
calculated under the Kane approximation are also shown by dotted
lines. The approximate Kane quantum numbersnesbed participating
in this anticrossing region are indicated. The dominant anticrossings
in this region are also represented by a dashed circle each.
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shown in Fig. 3. Therefore, it is seen that the interaction
between these two states of 0s1d and 2s3d states causes anti-
crossing with conspicuous repulsion, though the other states
show a relatively small amount of these effects. By further
increasingF to more than 150 kV/cm, the anticrossings with
strong repulsion extend over a wider region of the WSL en-
ergy. This is especially noticeable in the vicinity ofF
=190 kV/cm.

The energy-fan diagram of the coupled WSL forh is de-
picted in Fig. 4, withNsite=20 andNb=6.60 Excluding the
smaller energy splittings accompanied by anticrossings, the
variance of the energy with respect toF is similar to that
seen in Fig. 2sfor ed. The series of anticrossings atF
<100 kV/cm arising from an interaction between thels1d
and ‘l −18s4d states are indicated by dashed circles. It should
be noted that the ‘l −18s4d state is pertinent to the continuum
subband state of the original SLs, as is seen in Fig. 1sbd.
Figure 5 indicates the associated wave functions atF
=100 kV/cm, where the solid and dotted lines indicate the
same functions as those shown in Fig. 3. A strong mixing
between the 0s1d and −1s4d states is observed in view of the
arrowed portions pertaining to thesad and sdd panels in Fig.

5. This is in contrast to our common understanding that a
hole wave function is almost localized to a single well re-
gion, and compared with that ofe, the mixing is negligible
even for a relatively largeF due to its heavier effective mass.

D. Demonstration of the present method

In order to demonstrate the feasibility and validity of the
present method described in Sec. II A, first, the photoabsorp-

FIG. 3. The wave functionsf0sbed
sed of the coupled WSL fore at

F=100 kV/cm. These are obtained by usingNb=6 andNsite=20,
and are indicated by solid lines. For the purpose of comparison, the
corresponding Kane wave functions are also indicated by dotted
lines. The subband indices of the wave functions are based on the
approximate Kane quantum number, being labeled as 0sbed, where
be of each panel is equal tosad 1, sbd 2, scd 3, sdd 4, sed 5, andsfd 6.
Refer to the text for portions indicated by arrows in the panelssad
and scd. Additionally, the spectra, which are represented by chain
lines and obtained from the model calculations, are included. Refer
to the text for further details. The geometry of the present WSL is
specified in each panel.

FIG. 4. The same as Fig. 2sad but for h.

FIG. 5. The same as Fig. 3 but forh.
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tion spectra of the same SL system as that used for Fig. 2sad
of Ref. 38, i.e., the 12/6-ML GaAs/AlAs SLs, are calculated
for a wide range ofF, as is shown in Fig. 6. Here, a 1s state
of hh-exciton FR pertaining to thens1,1d channel is labeled
ashhsnd, as shown in Figs. 6sad and 6sbd, and the locations
of M0 and M1 Van Hove critical points of the original SLs,
for example,«M0

and«M1
, respectively, are indicated by dot-

ted lines, and arrowed especially in Fig. 6sed. Note thatVB
,D1 in the concerned range ofF so that the Zener tunneling
is negligible, whereD1 is the width of the lowest joint mini-
band of the SLs; i.e.,D1= u«M1

−«M0
u=22.4 meV. The result-

ing natural spectra are convoluted by the Lorentzian func-
tion with the full width at half-maximumsFWHMd G
=0.1 meV, which is much smaller than a typical linewidth of
FR of the order of,1 meV.50 The alteration of these almost
natural FR spectra with respect toF is traced in order to
observe the dimensionality transition between the three-
dimensional limit sF=0d and the quasi-two-dimensional
limit sa largeFd. This purpose also motivated the calcula-
tions provided in Refs. 38 and 40. It is remarked that in the
theoretical method of Ref. 38 the multichannel continua
characteristic of FR were approximated by a discrete basis
set and the proper scattering boundary conditions were dis-

regarded from the beginning. Thus, obtaining a natural FR
spectra seems impossible based on this method, since such
an incomplete treatment of FR always requires an additional
empirical broadening. In fact, in Ref. 38, the Gaussian broad-
ening with G=3 meV was used, leading to the masking of
the detailed change in the FR spectra. The drawbacks that are
ascribable to such conventional methods for FR have been
discussed in detail in Refs. 40 and 50. Incidentally, for a
positivesnegatived q, a spectrum has a dipsa peakd, followed
by a peaksa dipd; the spectrum withuqu@1 is Lorentzian,
and that obtained withq=0 has a transparent windowsa dipd
without any peak.39,62

Although the results obtained in Fig. 6 are similar in part
to those of Ref. 40, we will now provide a detailed explana-
tion on the spectral modulation shown in this figure. In the
case of relatively large biases ofF=25 kV/cm sVB
=12.75 meVd and F=15 kV/cm sVB=7.65 meVd in Figs.
6sad and 6sbd, respectively, individual Rydberg series of FR
exciton states are clearly distinguishable, and each spectrum
is seen to possess a peak followed by a dip with a negative
Fanoq value. Moreover, the characteristic exciton asymme-
try between thehhs−1d andhhs1d spectra is manifested.37 As
is shown in Fig. 6scd, with F decreasing to 7 kV/cmsVB

=3.57 meVd, the positions of the main peaks are so close
that each Rydberg series is partially overlapped with its ad-
jacent one belonging to a different channel; each series, how-
ever, is still barely discernible. It is noteworthy that the en-
ergy of «M0

sharply delimits the boundary of two different
patterns of spectral modulation. In the photon energy region
E from «M0

to «M1
, apart from theq values of the spectra

remaining negative, the linewidths are obviously broadened
accompanying the reduction of the intensities. This is pre-
sumably due toconstructiveinterference with adjacent FR
spectra. Here, most of all the spectra thus featured are situ-
ated within the energy region of«M0

,E,«M1
. In contrast,

in the regionE,«M0
, the linewidths are prominently nar-

rowed, accompanying the enhancement of the intensities;
this is presumably due todestructiveinterference with adja-
cent FR spectra. In this case, by constructivesdestructived
interference, it can be considered that the overlap resonance
between the FR spectra pertaining to different channels63 has
a tendency to enhancesdiminishd the overall background
continuum.

As shown in Fig. 6sdd, at F=3 kV/cm sVB=1.53 meVd,
the abovementioned tendency observed in Fig. 6scd is even
more pronounced. In particular, in the regionE.«M0

, the
overlap resonance causes rather complicated spectral pro-
files; thus it is impossible to assign each peak to an appro-
priate exciton state, and the background continua ascribable
to the individual FR spectra seem to be amalgamated into a
single broad continuum by the constructive interference. Fur-
thermore, an envelope formed by a series of FR peaks inE
.«M0

appears to oscillate; this is reminiscent of the Franz-
Keldysh oscillation discussed in Ref. 38. As seen in Fig.
6sed, at F=1 kV/cm sVB=0.51 meVd, the overall spectral
shape becomes almost identical to that of the original SLs,
consisting of a Rydberg series of exciton bound states with
strong intensities below«M0

, followed by a broad continuum
characterized by both theM0 and M1 critical points. These

FIG. 6. Excitonic dimensionality transitions of FR spectra be-
tween the SLs and the WSL for the biased SLs of 12/6 ML
GaAs/AlAs with respect toF in such a small bias region that the
Kane approximation is still correct, whereF=sad 25 kV/cm, sbd
15 kV/cm,scd 7 kV/cm, sdd 3 kV/cm, andsed 1 kV/cm. The spec-
tra calculated withNsite=90 are convoluted by the Lorentzian func-
tion with G=0.1 meV. This system of the SLs is the same as that
observed in Fig. 2sad of Ref. 38. Refer to the text for the label of
hhsnd in panelssad and sbd. The locations of theM0 and M1 Van
Hove critical points of the original SLs are indicated by dotted
vertical lines, and are further indicated by arrows in panelsed,
where the location of the saddle point excitonsSPEd is also
specified.
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distinct exciton peaks are a result of the coalescence of a
large number of fine spectra with larger intensities and nar-
rower widths than those observed atF=3 kV/cm, which are
caused by the abovementioned destructive interference. On
the other hand, the broad continuum arises from the coales-
cence of a large number of fine spectra with smaller intensi-
ties and broader widths than those observed atF=3 kV/cm,
which are caused by the abovementioned constructive inter-
ference. Additionally, a faint hump is discerned just below
the slight dip at approximately 1.74 eV, which is relevant to
the M1 critical point modified by an exciton effect to a cer-
tain extent. This hump is considered as a sign of the forma-
tion of a saddle point exciton, which is a typical characteris-
tic of SL exciton states. The excitonic dimensionality
transition between the SLs and the WSL is likely to be un-
derstood as a spectral modulation of FR, as is described
above.

As the second demonstration, a comparison is made
with the experimental spectra of the 67/17-Å
GaAs/Ga0.7Al0.3As SLs with F=13.3 kV/cm given in Ref.
41. The calculated spectra convoluted by the Lorentzian
function with G=0.25 meV is shown in Fig. 7sad, where the
contributions of thelh excitons are also included. In this
case, each peak of anNs-state pertaining to thehhsnd flhsndg
channel is labeled byhhsndfNg hlhsndfNgj. This label ofN is
omitted for the sake of simplicity, in the case that there is no
confusion. The same spectra as those of Fig. 7sad but with
G=1.5 meV are shown in Fig. 7sbd, and the reported experi-
mental spectra—labeled E—to be compared with these are
cited in Fig. 7scd. On the basis of the method used in Ref. 40,
the theoretical spectra are also included in Fig. 7scd and la-
beled as T. In order to aid the presentation, eight dotted
vertical lines are depicted in Figs. 7sbd and 7scd and these
lines indicate the positions of the absorption peaks for
the hhs−3d, hhs−2df1g, hhs−1df1g+ lhs−3d, hhs−1df2g,
hhs−1df3g, hhs0df1g, hhs0df2g, and hhs1df1g transitions by
following the peak positions labeled in Fig. 7sad. The value
s1.5 meVd of the FWHM has been employed in Fig. 7sbd for
a good reproduction of the experimental width of the main
peak of hhhs−1df1g+ lhs−3dj in the E spectra. Further, the
overall spectral intensity of Fig. 7sbd is also normalized to
the height of this peak. By comparing the calculated spectra
shown in Fig. 7sbd with the E spectra, a slight redshift by
about 2 meV is observed at every peak position of the
former spectra; this discrepancy would arise from the empiri-
cal parameters adopted here in Table I. Furthermore, accord-
ing to the calculated results in Fig. 7sbd, the peak observed at
approximately 1.579 eV in the E spectra is assigned to a
lump of the subbands ofhhs−1dfNù2g in view of the
abovementioned redshift, whereas it was claimed that it
arose from thelhs−2d transition in Ref. 41. The peak of the
lhs−2d transition in Fig. 7sbd is located in the higher-energy
side by about 5 meV, as compared with the peak located at
approximately 1.579 eV in the E spectra. Since this is a blue-
shift in the opposite direction to the abovementioned red-
shift, the assignment of the peak concerned in the E spectra
to the lhs−2d transition appears questionable. Apart from
these discrepancies, it is observed that the peak positions, the
spectral profiles, and the height of the background continuum

are well reproduced in the calculated spectra. When the T
spectra are compared with the present spectra, the height of
the background continuum is too small; the reasons for this,
however, are unknown.

The last demonstration is devoted to a comparison of the
present calculated spectra, denoted by solid lines in Fig. 8sad,
with the existing theoretical spectra, denoted by the dark-
gray area in Fig. 8sbd. The latter is cited from Ref. 26, where
the concerned system is the 111/17-Å GaAs/Ga0.7Al0.3As
SLs with F=8, 40, and 80 kV/cm.G=2 meV is adopted in
both the calculated spectra. Further, the spectra convoluted
with G=0.3 meV are also represented by dotted lines in Fig.
8sad solely for the purpose of assigning the discernible peaks
to proper exciton 1s-states labeled bynsbe,bhd. As shown in
Fig. 8sbd, other traces of spectra with black and light-gray
areas for the optical density of states and the spectra of the
bulk GaAs, respectively, are not necessary for the present
discussion. Regarding the method of calculating the FR spec-
tra of Fig. 8sbd, it is stated that the theoretical drawbacks
similar to those commented on in the discussion of Fig. 6
would be more or less incurred. AtF=8 and 40 kV/cm, both
spectra given in Figs. 8sad and 8sbd are in good agreement

FIG. 7. The FR spectra of the 67/17-Å GaAs/Ga0.7Al0.3As with
F=13.3 kV/cm as a function of photon energyE. This system is
the same as that of Ref. 41.sad The calculated spectra withNsite

=20 and the Lorentzian broadening ofG=0.25 meV. Refer to the
text for the meanings of the labels.sbd The same as panelsad but
with G=1.5 meV.scd The experimental spectra reported in Ref. 41,
labeled by E. For the purpose of comparison, the calculated spectra
included in this reference are also shown with label T. In order to
aid the presentation, eight dotted vertical lines are depicted in pan-
els sbd and scd and these indicate the positions of the absorption
peaks for thehhs−3d, hhs−2df1g, hhs−1df1g+ lhs−3d, hhs−1df2g,
hhs−1df3g, hhs0df1g, hhs0df2g, andhhs1df1g transitions by follow-
ing the peak positions labeled in panelsad. The spectra given in
panelsbd are convoluted and normalized in order to reproduce the
spectral width and height of the main peak offhhs−1df1g+ lhs−3dg
in panelscd, respectively.
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with each other. AtF=80 kV/cm, where the Zener break-
down is considered significant, it is recognized that the onset
of absorption is noticed to shift toward the lower-energy side
below the energy«0s1,1d to some extent in Figs. 8sad and 8sbd.
This is due to the delocalization of the WSL subband wave
function across several periods. The following text consists
of a more detailed analysis of this effect, which is one of the
purposes of the present paper.

III. RESULTS AND DISCUSSION

A. Overview

The calculated spectra of the 35/11-ML
GaAs/Ga0.75Al0.25As SLs with F ranging widely from
10 to 200 kV/cm are shown in Fig. 9; the traces, represented
by solid, dotted, and chain lines, indicate the FR spectra with
coupled WSL channels, the FR spectra with noninteraction
WSL channelssunder the Kane approximationd, and the free
spectra without exciton effectsfby settingV to zero in Eq.
s1dg, respectively, usingNb=6 andNsite=20. Here, a peak of
the exciton 1s state supported by the channelj is labeled as
j =nsbe,bhd. Both these FR spectra, obtained by the full cal-
culation and approximation, are manipulated by convoluting
the original natural spectra by the Lorentzian function with
G=2 meV. The free spectra, however, remain unconvoluted
and they have a stepped shape. The reference spectra ob-
tained under the Kane approximation for the purpose of com-
parison are shown only in Fig. 9sad for F=10 kV/cm, 9scd
for 70 kV/cm, 9sfd for 100 kV/cm, and 9sid for 190 kV/cm.
As is seen in these figures, apart from minor changes, the
spectra remain almost unaltered aboveF=60 kV/cm with
respect to the variance inF. This is because the Kane wave
functions become localized in a single well, independent of
the variance inF.64 Therefore, the reference spectra have
been omitted in the other panels of Fig. 9.

At F=10 kV/cm fFig. 9sadg, the spectra obtained by both
the full calculation and the approximation are identical to
each other and the Zener tunneling is observed to be negli-
gibly weak. Although all spectra have not been shown here
in the region fromF=10 to 50 kV/cm, apart from the rela-
tively weaker transitions of −1s1,1d and −2s1,1d, a strong
absorption begins with the 0s1,1d transition.sHowever, this is
not always the case in the much weaker bias region ofVB
,D1, for instance, the one corresponding to that in Fig. 6,
since the transitions with negative WSL indices are domi-
nant.d In the region from F=60 to 80 kV/cm fFigs.
9sbd–9sddg, the FR spectral profiles are seen to be strongly
modulated with respect to the variance inF, differing con-
siderably from the FR spectra under the Kane approximation.
It is noteworthy that whenF traverses the anticrossing at
approximatelyF=70 kV/cm, the onset of absorption shifts
toward the lower-energy side below«0s1,1d and the absorption
intensities in the higher-energy region are reduced, probably
due to the Zener resonance. It is considered that the redshift
of the absorption tail edge always accompanies the intensity
reduction in the higher-energy region, as a result of the con-
servation rule of the optical oscillator strength; i.e., the sum
rule. A similar tendency is also observed in the region from
F=90 to 110 kV/cmfFigs. 9sed–9sgdg. In particular, the red-
shift of the absorption tail edge manifests itself more notice-
ably in the vicinity of the anticrossing atF=100 kV/cm,
whereas this phenomenon disappears atF=90 and
110 kV/cm, which is slightly away from the anticrossing
region; that is, the dominant absorption begins again with the
0s1,1d transition. Therefore, it is speculated that this effect
arises due to the Zener resonance. AsF increases to
200 kV/cm fsee Figs. 9shd–9sjdg, an energy splitting perti-
nent to the anticrossing becomes larger due to stronger cou-

FIG. 8. The FR spectra of the 111/17-Å GaAs/Ga0.7Al0.3As
with F=80, 40, and 8 kV/cm as a function of photon energyE.
This system is the same as that of Ref. 26.sad The calculated spec-
tra with Nsite=20 and with the Lorentzian broadening ofG
=2 meV sthe solid tracesd and 0.3 meVsthe dotted tracesd. In the
label of thensbebhd state, the comma separatingbe and bh is re-
moved merely for typographical reasons; this should read as
nsbe,bhd. Refer to the text for the meaning of this label.sbd The
calculated spectra reported in Ref. 26, indicated by the traces with a
dark gray area. In addition, the optical density of state and the
spectra of the bulk GaAs are also shown by the traces with black
and light-gray areas, respectively.
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plings among several WSL subband states, as is seen in Fig.
2sad. Similarly, the absorption edge is further shifted to the
lower-energy side in the vicinity of the anticrossing atF
=190 kV/cm, although this effect is also observed to some
extent atF=180 and 200 kV/cm, differing from the spectra
at F=90 and 110 kV/cm. However, it is remarked that using
Nb=6 to obtain the adopted WSL wave functions might not
be sufficient to attain well-convergent results in such a large
F region.

To the best of our knowledge, mention to the redshift of
the absorption tail edge was first made in Ref. 26. Neverthe-
less, the amount of this shift toward the lower-energy side
below «0s1,1d is very small, as is shown in the spectra atF
=80 kV/cm in Fig. 8sbd, compared with the spectra shown in
Fig. 9scd. In particular, the significant role of anticrossings in
conjunction with the Zener resonance has not been addressed
thus far.

The following issues have been ascertained from the re-
sults of Fig. 9. First, the onset of absorption noticeably shifts
toward the lower-energy side, accompanied by the reduction
of absorption intensities in the higher-energy region above
the tail. In other words, absorption strength is moved from
the upper continuum to the lower-energy absorption tail.
While tracing the changes in the reference free spectra of
Fig. 9 sthe dotted curvesd in the energy regionE,«0s1,1d with
respect toF, it is observed that the modulation pattern is in
harmony with that of the FR spectra under considerationsthe
solid curvesd. Second, the FR peak intensity and position for
the transitions in the energy regionE.«0s1,1d are noticeably

modulated with respect to the variance inF. A discussion on
the first issue is presented in Sec. III B, followed by another
discussion on the second issue in Sec. III C.

B. Redshift of the absorption edge

Figure 10 shows the change in the absorption intensity at
the photon energy ofE=1.47 eV as a function ofF from
10 to 112 kV/cm, where the result obtained by the full cal-
culation of the FR spectra is indicated by filled circles that
are connected by solid lines in order to aid the presentation.
The open circles, filled squares, and open squares represent
the other results obtained by model calculations, to be ex-
plained later, for the purpose of comparison with the result
concerned and for examining the pattern of variance in the
absorption intensity in further detail. It is evident that the
intensity of the tail region of the spectra changes in a com-
plex manner accompanying oscillations rather than in a
monotonic manner as a whole; this tendency stands out in
Figs. 10sbd and 10scd.

As seen in Fig. 10scd, there are three maxima of intensity
at the positions ofF=95, 100, and 104 kV/cmssee the filled
circlesd. Hereafter, the three biases in the ascending order are
denoted asF1, F2, andF3 for the sake of convenience. These
biases coincide perfectly with each location of the anticross-
ing shown by the dashed circle in Fig. 2sbd. Therefore, this
observation leads to the speculation that the Zener resonance
plays a decisive role in causing the redshift of the absorption
tail edge. Moreover, this effect is quite localized in the prox-

FIG. 9. The calculated FR spectra of the
present WSL withF=10–200 kV/cm are shown
in panelssad–sjd as a function of photon energyE.
The solid traces are obtained from the full calcu-
lations, including Nb=6, Nsite=20, and N
=70–90, while the dotted traces and the chain
traces of panelssad, scd, sfd, and sid indicate the
free spectra without exciton effects and the refer-
ence spectra given by the Kane approximation,
respectively, for the purpose of comparison. The
spectra indicated by the solid and chain lines are
convoluted by the Lorentzian function withG
=2 meV, while the free spectra are given with no
convolution. In the label of thensbebhd state, the
comma separatingbe andbh is removed for typo-
graphical reasons; this should read asnsbe,bhd.
Refer to the text for the meaning of this label.
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imity of each anticrossing. For instance, the first peak begins
at F=93 kV/cm and ends atF=96 kV/cm, followed by the
onset of the next rise. This succession of the localized peaks
and dips relevant to the anticrossings are thus understood to
give rise to the appearance of the oscillation structure in the
intensity. On the basis of the two-channel Landau-Zener
model applied to the anticrossing formation by channels of,
say,a andb, with diabatic energies of, say,easFd andebsFd,
an effective range of the anticrossing, denoted bydFc, is
given by dFc=4vc/ac at F=Fc sc=1–3d.65 In this case,vc

implies the strength of the coupling betweena and b, and
ac= udde /dFuF=Fc

, where de=ebsFd−easFd. Employing Eq.
s18d for eisFd si =a,bd, ac is approximated byac<udncud,
wherednc is the difference of the WSL indices of these two
channels. In actuality,dn1<4 betweena=0s1d andb=4s4d,
dn2=2 between 0s1d and 2s3d, dn3=3 between 1s2d and 4s4d,
and v1<v3,v2 at an estimate from the magnitude of the
energy splitting due to the anticrossing atF=Fc in Fig. 2sbd.
Hence, this leads to an estimation thatdF2 is greater than
dF1 and dF3, which is in good conformity with the oscilla-
tion structure seen in Fig. 10scd. Additionally, it is also re-
marked that the intensity almost vanishes away from the an-

ticrossing region that comprises these three main
anticrossings; i.e., it vanishes at approximatelyF=90 and
110 kV/cm.

A similar tendency of the oscillation is also observed in
Fig. 10sbd, where the anticrossings atF=65, 71, and
76 kV/cm are likely to dominate the intensities of the ab-
sorption tail. In contrast, in Fig. 10sad for the smaller bias
regime, a minute portion of the redshift of the absorption tail
edge is observed atE=1.47 eV. Furthermore, the intensity
only increases monotonically with an increase inF, without
resulting in an oscillating structure. The increase is despite
the fact that there are a large number of the anticrossings in
this region, as seen in Fig. 2sad, which intertwine as many
pairs of subband states with each other in a complex manner,
but with negligibly weak couplings. The same traces as those
observed in Fig. 10 for the change in the absorption intensity
are obtained also at the lower photon energy ofE=1.42 eV,
though not shown here. According to this observation, the
intensity of the absorption tail is reduced to a larger extent in
the region ofF=60–80 kV/cm as compared with that ob-
served in Fig. 10sbd, whereas the spectral intensity and alter-
ation in the other regions are similar to those in Figs. 10sad
and 10scd. This implies that the absorption tail does not ex-
tend down to such a lower-energy side yet forF
=60–80 kV/cm. Thus, the degree of the redshift of the ab-
sorption tail edge depends on the magnitude ofF causing the
delocalization of WSL subband wave functions.

As mentioned in Sec. III A, the modulation pattern of the
reference free spectra of Fig. 9sthe dotted curvesd in the
energy regionE,«0s1,1d, with respect toF, is qualitatively in
good accordance with that of the FR spectra under consider-
ation sthe solid curvesd. This allows us to qualitatively ob-
serve the concerned effect of the redshift based on the free
spectra. The mathematical formulation of the spectra re-
quired here is mentioned in Appendix C. As shown in Eq.
sC9d, the dipole moment of the noninteractinge-h pair,
ma

0sEd, is essentially governed by two factors—wj
0 and

UjaCa—where the former is the magnitude of overlap be-
tween the wave functions ofe and h belonging to thej th
subband and the latter is a product of a normalization con-
stant of the in-plane radial wave function of theath channel
Ca and a unitary matrixUja. This unitary matrix determines
the interchannel couplings betweenj anda through the mix-
ing of the reduced massmi in the region of the confining
potential well with that in the region of the potential barrier.
The eigenvaluesla of Eq. sC6d vary from 22.83 to 23.82 at
F=100 kV/cm; note that the inverse of the reduced mass
1/mi in the well region, hereafter denoted as 1/mi

0, equals
23.75. According to these calculations, for a certain channel
a whose eigenvaluela deviates considerably from 1/mi

0, the
diagonal elementUaa is drastically reduced to less than 0.5,
and instead, the off-diagonal elementsuUjau s j Þad are en-
hanced. This causes the interchannel coupling betweenj and
a.

Let the interchannel coupling effect due toUjaCa be ex-
amined in the following by separating it from the concerned
FR spectra,66 though both effects due towj

0 and UjaCa are
essentially attributed to the delocalization of WSL subband
wave functions across several periods. In order to examine

FIG. 10. Variance of the spectral intensity atE=1.47 eV in the
present WSL as a function ofF in the regions wheresad the Kane
approximation is still almost valid,sbd the anticrossing in the vicin-
ity of F=70 kV/cm is dominant, andscd the anticrossing in the
vicinity of F=100 kV/cm is dominant. Here, the filled and open
circles represent the FR spectra obtained by the full calculations and
the model calculations, respectively. Refer to the text for the details
on the calculations of the latter. These circles are connected by solid
and dashed lines in order to aid the presentation. Moreover, the
filled and open squares represent the free spectra without exciton
effects, corresponding to the full and model calculations indicated
by the filled and open circles, respectively.
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this coupling effect, the model calculations of the FR spectra
are implemented by artificially replacing the inverse of the
reduced mass 1/mi in the barrier region by 1/mi

0. Such a
manipulation bringsUjaCa to d ja

Îmi
0, leading to ma

0sEd
<wa

0Îmi
0 in Eq. sC9d. In order to make this treatment theo-

retically consistent, the inverse of the axial mass 1/mz
sed

s1/mz
shdd, although it is a function ofze szhd, is also replaced

by a constant value, for example, 1/mz
sed0 s1/mz

shd0d, which is
equal to the inverse of the axial mass in the well region. The
absorption intensities of the FR spectra thus modeled are
shown in Figs. 10sbd and 10scd by the open circles; these are
connected by dashed lines to aid the presentation. Hereafter,
the modeled spectra are termed as spectra B, while the spec-
tra represented by the filled circles are termed as spectra A.
In Figs. 10sbd and 10scd, the results of the free spectra with-
out exciton effectssdepicted in Fig. 9d are also represented
by the filled squares for some values ofF along with those
corresponding to spectra B with 1/mi=1/mi

0, 1 /mz
sed

=1/mz
sed0, and 1/mz

shd=1/mz
shd0, which are shown by the open

squares. The variance of spectra A and B with respect toF is
seen to be qualitatively consistent with that of the corre-
sponding free spectra. Therefore, the interchannel coupling
effect due to the reduced-mass mixing throughUjaCa would
be extracted by comparing spectra A with spectra B.

In order to ensure the validity of this statement, an effect
of the replacement of 1/mz

skd in the barrier region of the
confining potential by 1/mz

skd0 should be checked. According
to our calculations, this replacement results in an increase in
the WSL subband energiese jk

skd of k=e andh by the order of
1310−4 Ry and 1310−5 Ry, respectively; for instance, at
F=100 kV/cm, e0s1d

sed changes from −3.123310−3 Ry to

−2.959310−3 Ry, ande0s1d
shd changes from 3.993310−3 Ry to

4.021310−3 Ry. Just in such a slight degree as the subband
energies are changed, the locations of anticrossings seen in
Figs. 2 and 4 are modified. Similarly, the WSL wave func-
tions of f jk

skd remain almost unaltered, as shown by the chain
lines in Figs. 3 and 5, causing minute changes in the strength
of couplings between the SL minibands for anticrossings.
Therefore, sincewj

0 is maintained approximately invariant,
the difference between spectra A and B can be considered to
be exclusively attributed to the reduced-mass mixing effect.

In Fig. 10scd, there is a marked difference in the intensity
and pattern of variance between spectra A and B in the pri-
mary anticrossing region ofF=95–110 kV/cm. However,
they are almost identical when they are observed further
from this region. In particular, the discrepancy looks consid-
erably large around the region ofF=100 kV/cm. Figure 11
shows spectra Asthe solid tracesd and spectra Bsthe dotted
tracesd in the wideE region atF=90, 100, and 110 kV/cm,
indicating that both spectra are almost identical except inE
,«0s1,1d in Fig. 11sbd; however, slight shifts of the exciton
peak positions are observed, in particular, in Fig. 11scd.
Hence, it is likely that the reduced-mass mixing manifests
itself in the lowerE side when Zener tunneling is relatively
strong.67 On the other hand, in Fig. 10sbd for the smallerFs
resulting in weaker Zener tunneling, spectra B are almost
identical to spectra A both in intensity and variance pattern;

however, there is a small overall shift ofF by 1 kV/cm that
renders the observation of any definite physical meaning dif-
ficult. Consequently, the reduced-mass mixing seems minor
in this anticrossing region as compared with that in Fig.
10scd.

C. Spectral modulation

As can be observed from Fig. 9, the Zener tunneling
causes the spectral modulation of the FR spectra as well as
the abovementioned redshift of the absorption tail edge. In
order to trace the modulation pattern in more detail, Fig. 12
shows the spectra in the vicinity of the arrowed peak posi-
tions of the 0s1,1d, 0s1,2d, 0s2,2d, 0s1,3d, and 0s2,1d states for
F=10–110 kV/cm, with the Lorentzian broadening ofG
=2 meV ssolid linesd along with that ofG=0.3 meVsdotted
linesd to indicate shapes of the corresponding natural spectra.
In every state, both the peak position and height vary in an
irregular manner without displaying monotonic changes.
These irregular changes manifest themselves at approxi-
matelyF=70 and 100 kV/cm, in particular, possibly due to
the formation of anticrossings between the electron subbands
1–2 and 1–3, respectively. Thus, it is speculated that these
FR spectra are greatly modulated by the Zener resonance
because of the anomalous changes in the associated subband
wave functions. Moreover, apart from such irregularity, the
spectral intensities of the vertical transitions of 0s1,2d, 0s1,3d,
and 0s2,1d with different miniband indices thatbeÞbh are
enhanced with an increase inF, as is shown in Figs. 12sbd,
12sdd, and 12sed. The enhancement arises exclusively from
the Zener breakdown. This is evident from Figs. 9sad, 9scd,
9sfd, and 9sid by comparing the spectra obtained by the full
calculationssthe solid tracesd with the approximate onessthe
chain tracesd. In actuality, the Kane approximation makes

FIG. 11. The calculated FR spectra of the present WSL withF
=sad 90 kV/cm, sbd 100 kV/cm, andscd 110 kV/cm as a function
of photon energyE, where the Lorentzian convolution is used with
G=2 meV. The spectra indicated by the solid lines are the same as
those in Figs. 9sed–9sgd, while those represented by the dotted lines
are the results obtained by the corresponding model calculations.
Refer to the text for the details on the calculations of the latter.
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these intensities negligible for largeF because both the ap-
proximated subband wave functions ofe and h, which are
mostly confined in the region 0øzeød and 0øzhød, re-
spectively, have different nodal structures and hence an over-
lap between these wave functions is reduced. Further, as seen

in Figs. 12sad and 12sed, the peak positions of 0s1,1d and
0s2,1d exhibit a more pronounced shift to the lower-energy
side, when compared with those of 0s1,2d and 0s2,2d, where
the shift is very slight. This tendency is presumably due to
large modification of the wave function ofbh=1 for a largeF
as compared with that ofbe=1 and 2fsee also Fig. 5sadg.
Finally, we refer to the linewidth broadening due to the Ze-
ner breakdown. In order to extract this from the exciton spec-
tra, the natural widthsFR width modified by the Zener tun-
nelingd of a concerned spectrum should be much greater than
the homogeneous broadening ofG; hence, high-resolution
calculations are indispensable for it. It would be expected
from the results of the spectrum of the 0s1, 1d state in Ref.
27, that the stronger Zener breakdown broadens the spectral
width. However, as far as theFø110 kV/cm region is con-
cerned, the linewidth broadening is not pronounced yet for
every FR spectrum of Fig. 12. One of the possible reasons
for this might be that the SLs employed in Ref. 27sx
=0.08d are so shallow that the Zener tunneling affects the
spectral width to a greater extent than the SLs under consid-
eration here. This issue will be deferred to a subsequent pa-
per.

The 0s1,1d, 0s2,2d, and 0s1,3d transitions will be discussed
in further detailed. As already discussed in Ref. 29, the ab-
sorption spectra of the 0s1,1d state rapidly disappear due to
the field-induced delocalization with an increase inF to
40 kV/cm; however, this is not the case for larger values of
F as stated above. Figure 12sad also indicates the monotonic
redshift akin to the character of the quantum-confined Stark
effect.68,69 Furthermore, in the reported experiment,41 the
change of Fano’sq-value in the FR spectra with respect toF
was measured to approximately 30 kV/cm. This indicates
that by increasingF, uqu increases monotonically without a
change in its sign; i.e., the asymmetric FR spectra become
symmetric. This was conducted for relatively weakF fields
up to a maximum of approximately 30 kV/cm, where the
Zener tunneling is still insignificant. Indeed, in Fig. 12sad,
the spectra forF=10–40 kV/cm with strong peaks andq
,0 appear to follow the monotonic change similar to this
experiment. However, the spectrum exhibits an anomalous
change inq above this; in particular,q appears positive at
F=50 kV/cm, and can be brought back to a negative value
at F=60–80 kV/cm. In this figure, this is more clearly seen
in the dotted curves than in the solid ones.

It is likely that the 0s2,2d state provides the most domi-
nant spectrum for relatively weak biases because of a vertical
transition from theh subband to thee subband with the same
miniband index, apart from the abovementioned 0s1,1d state.
As seen in Fig. 12scd, the pattern of changes in the spectral
height and theq value forF=10–50 kV/cm is similar to that
of the 0s1,1d state. However, the peak abruptly disappears at
F=60 and 70 kV/cm, and is retrieved withuqu@1 at F
=80 kV/cm. The spectral intensity is noticeably reduced by
increasingF to more than 90 kV/cm. Small modifications in
the spectral profile are also noticed due to an overlapping
resonance with the adjacent FR spectra.50,63,69 It is evident
that these patterns of spectral modulation shown here are
very different from those obtained in the abovementioned
experiment.41

As regards the FR spectra pertaining to 0s1,3d, the spec-
tral profile covering the entire Fig. 12sdd is hard to discern

FIG. 12. The FR spectra of the present WSL in the vicinity of
the 1s state pertaining tosad 0s1,1d, sbd 0s1,2d, scd 0s2,2d, sdd 0s1,3d,
andsed 0s2,1d. In each panel, the traces, which are shifted vertically
to enhance the presentation, represent the spectra atF
=10–110 kV/cm in an ascending order ofF from the top to the
bottom. The peak positions of the concerned FR states are indicated
by arrows. The spectra with the Lorentzian broadening ofG=2 and
0.3 meV are represented by the solid and dotted lines, respectively.
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because of its small intensity. Hence, the expanded spectra of
the dotted traces in this figure are depicted in Fig. 13. Al-
though most excitonic FR spectra usually have a negative
Fano’sq value, it is known that the 0s1,3d state exhibits a
characteristic spectral profile with a positiveq-value in
quasi-two-dimensional semiconductor heterostructures, i.e.,
a spectral dip followed by a peak,70,71 and this profile was
observed in the experiment.72 As is seen in Fig. 13, the spec-
tral profile is gradually altered by retainingq.0 for F
=10–40 kV/cm, followed by a disappearance atF
=50 kV/cm. Similar to the modulation pattern of Fig. 12sad,
the spectra are retrieved withuqu@1 andq,0, and with a
large intensity atF=90 kV/cm. Nevertheless, it would be
difficult to confirm such a subtle modulation of this spectral
inversion by experiments. In fact, in Fig. 12sdd, the modula-
tion pattern looks smeared by the external broadening
mechanism withG=2 meV.

IV. SUMMARY

Optical absorption spectra of a WSL exciton under a
strongF field along the direction of crystal growth are com-

prehensively examined by solving the multichannel scatter-
ing problem for the concerned FR. First, the validity and
feasibility of the adopted method have been initially con-
firmed by applying it to the already reported systems for
WSL excitons, followed by a comparison between them.
Next, the FR spectra of the concerned coupled WSL system
have been calculated in order to explore the modulation pat-
tern of these spectra. It is concluded that through delocaliza-
tion of the subband wave functions Zener tunneling plays the
key role of an anomalous variance of the FR spectra with
respect toF. In particular, the spectral modulation is clearly
visible when a series of WSL subband states are energeti-
cally aligned with each other, resulting in anticrossings with
strong repulsion due to Zener resonance. The Zener reso-
nance is observed to cause a notable shift in the absorption
edge toward the lower energy side. However, this effect is
suppressed by a slight variance inF away from the anticross-
ing region. In theF=90–112 kV/cm region, in particular,
the intensities of these tail spectra in theE,«0s1,1d region
change in an oscillating manner with respect toF. Indeed,
the locations of the anticrossings are precisely reflected on
this pattern of variance. According to the model calculations,
the interchannel coupling effect due to the reduced-mass
mixing as well as the overlap effect between the subband
wave functions ofe andh contributes to the enhancement of
the absorption tail spectra. In addition to this unusual phe-
nomenon, it is also shown that the peak positions, heights,
and q values of the FR spectra in theE.«0s1,1d region are
modulated in an irregular manner due to the Zener break-
down asF traverses the anticrossing region. For instance, the
spectra for the 1s state pertaining to the 0s2,2d subband dis-
appear abruptly at a certain bias, followed by the recovery of
the intensities out of this region. Moreover, the spectra of the
0s1,1d and 0s1,3d exhibit a profile inversion from a positive
Fanoq value to a negative one. This is in contrast with the
existing experiment for weakF fields, where theq value
varies monotonically.
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APPENDIX A: METHOD TO SOLVE EQ. (16)

The numerical procedure of obtaining a set of WSL wave
functionshf jk

skdj is presented, wherek=e,h. In particular, the
first stagesid of the stepwise procedure provided in Sec. II A
is explained in detail. For convenience of presentation, the
Schrödinger equation for the particle ofk in a single quan-
tum well is initially expressed as

sT + vkszd − ei
skddji

skdszd = 0, sA1d

where

FIG. 13. Expanded view of the same spectra as those withG
=0.3 meV of Fig. 12sdd for the state pertaining to 0s1,3d.
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T = −
d

dz
S 1

2mz
skdD d

dz
, sA2d

vk is the confining potential with a barrier height ofvk
0, and

ei
skd is the ith energy associated with the eigenfunctionji

skd.
Next, we introduce the following equation for a set of

Sturmian functionshhi
skdj:53,54

fT + aiwkszd − bkghi
skdszd = 0, sA3d

wherewkszd=vk−vk
0 and bk=e1

skd−vk
0; heree1

skd is the lowest
eigenvalue of Eq.sA1d. Moreoverai is the ith eigenvalue
associated withhi

skd. The set of Sturmian functions are
square-integrable since the associated eigenvalueshaij are
always discrete andai ù1. This feature distinguishes from
the set of wave functions of Eq.sA1d that are not square-
integrable for the continuum spectra. It is also evident that
h1

skd coincides withj1
skd for a1=1. The Sturmian functions are

normalized by the following equation:

E fhi
skdg*wkszdh j

skddz= di j . sA4d

The functions are calculated using an expansion with respect
to a set of B-spline functionshBlkszdj as follows:51

hi
skdszd = o

l

BlkszdXli
skd, sA5d

where Blkszd is the lth normalized B-spline of an orderk
with a knot sequencehzlj. Following the BSCM,52 this prob-
lem can be formulated into a standard algebraic equation for
obtaining a set of coefficientshXli

skdj, by imposing vanishing
boundary conditions onhi

skdszd. Some advantages of adopting
the Sturmian basis set and the BSCM have already been
discussed in Sec. II A.

Once the set of the Sturmian functions is obtained, a wave
function zKBk

skd szd of the SLs is expanded as follows:

zKBk

skd szd =
1

ÎNsite
o
L

eiKLdWBk
sz− Ldd, sA6d

whereK and Bk are the Bloch momentum and a miniband
index, respectively, and the Wannier function is expressed as

WBk
szd = o

j

h j
skdszdY jBk

. sA7d

A set of coefficientshY jBk
j is obtained by introducing Eq.

sA6d in the Schrödinger equation relevant to the SL Hamil-
tonian. Equations16d can be solved by further expanding the
WSL wave functionf jk

skd in terms of the set of the SL wave

functionshzKBk

skd j as follows:

f jk
skdszd = o

K,Bk

zKBk

skd szdZKBkjk
, sA8d

wherehZKBkjk
j is a set of expansion coefficients that are to be

determined.

APPENDIX B: VERIFICATION OF NUMERICAL
CONVERGENCE OF THE WSL ENERGIES

AND WAVE FUNCTIONS

The most standard method of verifying the numerical
accuracy of calculated eigenenergies and eigenfunctions is to
trace the changes of these quantities with respect to a size
of the basis set employed for the computations. As is well
known, the eigenvalues calculated on the basis of the
Rayleigh-Ritz variational principle61 decrease monotonically
with an increase in the size of the basis set, eventually reach-
ing the convergence. In this case, the numerical accuracy
of the electron WSL energiese je

and the associated wave
functions f je

, which are obtained withNb=6 andNsite=20
for je=0sbed sbe=1–5d, has been confirmed by changing
the number of the included minibandsNb from 1 to 5 with
fixed Nsite. In Table II, the calculated results are listed
for F=90, 100, and 110 kV/cm, where the transition at
F=100 kV/cm is due to the resonant Zener tunneling, and
the other two transitions are due to the nonresonant Zener
tunneling, as is seen in Fig. 2. The energies provided with
Nb=1 are considered to be only those under the Kane ap-
proximation, and the results thus approximated forbeù2 do
not ensure the validity of the Rayleigh-Ritz variational prin-
ciple. The basis set withNb=6 permit us to obtain an accu-
racy for the coupled WSL subband energies up to at least the
fourth, third, and second digits of the significant figure for
be=1–2, 3–4, and 5,respectively. Thus, the convergence of
the energies with such a small size of the basis set proves to
be excellent. Figure 14 shows the convergence patterns of
the associated wave functions with respect toNb, which are
represented by WF-Nb based on the notation defined in Sec.
II A. Here, the solid line, the dotted line, and the chain line
represent the results of calculations withNb=6, 5, and 4,
respectively, and withNsize=20. Forbeø3 in particular, it is
quite difficult to discern the difference of the results of WF-6
from those of WF-4 and WF-5 from this figure. Therefore,
the excellent convergence of WF-6 is reverified.

APPENDIX C: FREE SPECTRA

The Wannier equation relevant to the free spectra is ex-
pressed as

sH0 − EdC0suru,Vd = 0, sC1d

where

H0sr,ze,zhd = Hexsr,ze,zhd − Vsr,ze − zhd

= −
1

2mi

¹r
2 + hwslsze,zhd. sC2d

The wave functionC0 is expanded with respect to the basis
set hw jj from Eq. s13d as

Ca
0suru,Vd =

1
Îuru

o
j

w jsVdf ja
E surud, sC3d

where the adiabatic channel functionFm from Eq. s6d coin-
cides withw j whenV=0, or, equivalently, whenuru→`, by
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settingm= j , and thes-radial symmetry, i.e.,m=0, has been
applied. The radial wave function to be determined satisfies
the coupled equations

−
1

2
AS d2

dr2 +
1/4

r2 D fEsurud = sEI − «dfEsurud, sC4d

where matrix notations have been employed forfE=sf ja
E d, «

=s« jd j j 8d, and I represents the unit matrix. Moreover,A
=sAjj 8d with

Ajj 8 = kf ju1/miuf j8l, sC5d

wheref j is defined in Eq.s15d, and it is understood that the
integration is implemented overze andzh.

EquationsC4d has been numerically solved, resulting in
the step-shaped spectra already shown in Fig. 9. In order to
extract the underlying physics, it is preferable to solve Eq.
sC4d in a closed analytic form. In view of the eigenvalue
problem ofA:

TABLE II. Variance of the energiese0sbed of the electron WSL subband states expressed in the unit of
10−23Ry with respect to the total number of minibands included in the calculationsNb at F=sad 90, sbd 100,
and scd 110 kV/cm. Note that the resonant Zener tunneling is dominant atF=100 kV/cm while the non-
resonant Zener tunneling is dominant atF=90 and 110 kV/cm. Refer to the text for further detail.

be=1 be=2 be=3 be=4 be=5 be=6

sad F=90 kV/cm

Nb=1 −0.204317 0.466814 1.62776 3.39729 5.92929 9.24860

Nb=4 −0.237256 0.442686 1.74509 3.33703

Nb=5 −0.237343 0.442572 1.73449 3.32202 5.95510

Nb=6 −0.237348 0.442570 1.73304 3.31951 5.94449 9.26318

sbd F=100 kV/cm

Nb=1 −0.252157 0.418974 1.57992 3.34945 5.88145 9.20076

Nb=4 −0.309658 0.381790 1.65020 3.37386

Nb=5 −0.312283 0.380782 1.64726 3.35039 5.91149

Nb=6 −0.312334 0.380733 1.64721 3.34989 5.89168 9.22120

scd F=110 kV/cm

Nb=1 −0.299997 0.371134 1.53208 3.30161 5.83361 9.15292

Nb=4 −0.350466 0.325906 1.59092 3.33847

Nb=5 −0.350496 0.323156 1.58650 3.30195 5.87733

Nb=6 −0.350513 0.323057 1.58547 3.30137 5.85058 9.18137

FIG. 14. The wave functionsf0sbed
sed of the coupled WSL ofe for be=1–5 atF=sad 90 kV/cm,sbd 100 kV/cm, andscd 110 kV/cm. The

traces indicated by the solid, dotted, and chain lines are obtained by usingNb=6, 5, and 4, withNsite=20, in order to confirm the convergence
of the wave functionssWF-Nbd with respect toNb. In the case ofbe=5, the traces withNb=4 are missing because WF-4 is not available. Only
the solid lines can be seen from the present traces and the others are little discernible because the three sets of curve almost completely
overlap. The geometry of the present WSL is specified in each panel.
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AU = UL, sC6d

whereL=slidi jd is an eigenvalue matrix andU is the unitary
matrix associated with the set of eigenvectors, the resulting
equation is

−
1

2
LS d2

dr2 +
1/4

r2 D f̃Esurud = sEI − «̃d f̃Esurud. sC7d

Here, f̃E=U−1fE and «̃=U−1«U. «̃ can be expanded as«̃=«
− ifg,«g+¯, whereU=expsigd, and whereg is Hermitian.
On the basis of the approximation that«̃ can be replaced by
«, Eq. sC7d can be decoupled. Solutions that ensure appro-
priate scattering boundary conditions are provided in terms
of the Bessel function of the first kind, expressed as

f ja
E surud < uru1/2o

j8

Ujj 8J0skj8urudd j8aCa = uru1/2UjaJ0skaurudCa,

sC8d

where kj8=Î2sE−« j8d /l j8, and Ca is a normalization con-
stant denoted byCa=1/Îla so thatf ja

E is energy-normalized.
Therefore, the dipole momentma

0sEd, corresponding to Eq.
s9d, is given by

ma
0sEd < o

j

N

wj
0UjaCa, sC9d

whereJ0s0d=1 has been taken into consideration and

wj
0 =E dzff jsze,zhdgz;ze=zh

. sC10d

The photoabsorption spectraI0sEd are expressed as

I0sEd = o
a

N0

um̃a
0sEdu2, sC11d

where

m̃a
0sEd = m0ma

0sEd. sC12d
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