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The spin-orbit splitting of the electron levels in a two-dimensional quantum dot in a perpendicular magnetic
field is studied. It is shown that at the point of an accidental degeneracy of the two lowest levels above the
ground state the Rashba spin-orbit coupling leads to a level anticrossing and to mixing of spin-up and spin-
down states, whereas there is no mixing of these levels due to the Dresselhaus term. We calculate the relaxation
and decoherence times of the three lowest levels due to phonons. We find that the spin relaxation rate as a
function of a magnetic field exhibits a cusplike structure for Rashba but not for Dresselhaus spin-orbit
interaction.
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I. INTRODUCTION

Recent years have seen an increasing interest in the spin
properties of nanostructures.1 Manipulation and readout of
spins in solids could open the way to the development of a
generation of electronic devices such as spin transistors, spin
filters, and spin memory devices. In addition, the spin of an
electron confined to a quantum dotsQDd is a promising can-
didate for a quantum bit.2 Owing to the zero dimensionality
of QDs, the electronic orbital states are quantized and the
electron spin states are very stable due to a substantial sup-
pression of spin-flip mechanisms.3,4 Progress in nanotechnol-
ogy has allowed the fabrication of QDs with desirable elec-
tronic and spin properties.5–9 However, only recently it has
been possible to measure the spin of an electron in a QD. A
single electron spin has been detected by magnetic resonance
force microscopy10 and the readout of an individual electron
spin in a QD via pulsed relaxation measurements11 and op-
tical orientation experiments12 have been reported. In these
experiments, an external magnetic field was used to distin-
guish spin-up and spin-down states split by the Zeeman en-
ergy. Spin relaxation measurements between Zeeman levels
in a QD sRefs. 11 and 12d confirm the theoretical predictions
that spin-flip relaxation in a QD is suppressed with respect to
a bulk structure.3,4,13Indeed, very long single-spin relaxation
times have been observed: up to 0.85 ms in two-dimensional
s2Dd GaAs QDs,11 and up to 20 ms in self-assembled
GaInAs QDs.12 The spin relaxation is expected to be domi-
nated by hyperfine interactions with the nuclei at magnetic
fields below 0.5 TsRefs. 14–16d and by spin-orbitsSOd in-
teractions for magnetic fields of about 1 Tssee Ref. 4d and
for higher magnetic fieldsssee Ref. 13d. In general, the SO
interaction consists of two distinct contributions: the Dressel-
haus SO coupling17 which is due to bulk inversion asymme-
try of the lattice and the Rashba SO coupling18 which is due
to structure inversion asymmetry along the growth direction.
Both of these SO terms result in the splitting of electron
energy levels and in the mixing of the electron spin states.
The latter makes spin-flip relaxation between Zeeman levels
possible, for example, due to the phonon scattering. Note
that usually it is not simple to separate these two SO mecha-
nisms and estimate the relative contributions of each SO
term. In experiments, to obtain information about one of the

SO couplings, normally the other is neglected.19–21 This
leads to a lack of precision in estimates of the SO coupling
strength and to a neglect of the effects of the interplay of the
Rashba and the Dresselhaus SO couplings.13,22,23Hence, it is
very important to find a way to separate these SO mecha-
nisms, to increase our understanding of the SO relaxation
processes, and to improve predictions of the spin properties
of nanostructures. It is well known24 that for 2D quantum
wells the different SO couplings can be distinguished
experimentally22,25,26 via detection of the associated aniso-
tropy of the spin splitting in the conduction band. In contrast,
such a detection is not possible in QDs since the spin split-
ting of the levels, being quadratically in the SO coupling, is
isotropic. Still, as we point out now, the SO couplings in
QDs can be distinguished via their associated spin relaxation
rates since they strongly differ due to different level mixing
properties.

In this paper, the electron energy spectrum and the spin
relaxation for a 2D QD in magnetic fields perpendicular to
the QD surface are studied. Level anticrossing27 sdue to the
SO couplingd, at a point of accidental level degeneracysdue
to the interplay between the orbital and magnetic confine-
mentd, is analytically investigated. This anticrossing is
caused by the Rashba SO term only, leading to a cusp struc-
ture in the magnetic-field dependence of the spin relaxation
rate, whereas the spin relaxation rate due to the Dresselhaus
SO coupling is a monotonic function of magnetic field in this
region. This qualitative difference in the spin relaxation for
different SO couplings can serve to extract the different con-
tributions in SO coupling.

II. MODEL AND ENERGY SPECTRUM

We consider a 2D isotropic QD with parabolic lateral con-
finement potential. An external magnetic field is applied per-
pendicularly to the surface of the QD. The Hamiltonian of
this system reads

H0 =
P2

2m* +
1

2
m*v0

2sx2 + y2d +
1

2
gmBBsz, s1d

whereP=p+sueu /cdAsrd, Asrd=sB/2ds−y,x,0d is the vector
potential in the symmetric gauge,v0 is the characteristic
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confinement frequency, ands=ssx,sy,szd is the vector of
the Pauli matrices.

The SO interaction is taken into account by adding the
linear Dresselhaus17,28 and Rashba18 terms for conduction
band electrons in af001g two-dimensional electron gas
s2DEGd

HD = bs− sxPx + syPyd, HR = assxPy − syPxd. s2d

The axesx, y, andz are aligned along the principal crystal-
lographic axes of GaAs.

It is convenient to introduce phase coordinates
sq1,q2,p1,p2d which connected to the previous ones
sx,y,px,pyd by the following formula:29

x =
1

Î2V
sÎv1q1 + Îv2q2d,

y =
1

m*Î2V
S p1

Îv1

−
p2

Îv2
D ,

px =ÎV

2 S p1

Îv1

+
p2

Îv2
D ,

py = m*ÎV

2
s− Îv1q1 + Îv2q2d,

where

V = Îv0
2 + vc

2/4, v1,2= V 7
vc

2
.

Here vc= ueuB/m*c is the cyclotron frequency. In the new
phase coordinates,H0 has the canonical form

H0 =
p1

2 + p2
2

2m* +
m*

2
sv1

2q1
2 + v2

2q2
2d +

1

2
gmBBsz. s3d

In this case,H0 can be considered as the Hamiltonian of two
independent harmonic oscillators with hybrid frequencies
v1,2. Therefore, the energy spectrum and eigenstates of elec-
trons in a QD without the SO coupling are given by

Enmsz
s0d = "v1sn + 1/2d + "v2sm+ 1/2d − "vZsz,

kq1q2unmszl = Fnsq1
Îm*v1/"dFmsq2

Îm*v2/"duszl,

wheren,m=0,1,2,…, sz= ±1/2 is theelectron-spin projec-
tion on thez axis, vZ= ugumBB/" is the Zeeman frequency,
andFnsqd are oscillator functions.

Let us consider the three lowest levels

E00↑
s0d = "V − "vZ/2, E00↓

s0d = "V + "vZ/2,

E10↑
s0d = "V + "v1 − "vZ/2.

The first level is the ground state. In the case of weak mag-
netic confinementsv0@vcd, the second level is lower than
the third onesE00↓

s0d ,E10↑
s0d d. However, at high magnetic fields,

when the magnetic confinement is much stronger than the

lateral confinementsv0!vcd, E00↓
s0d .E10↑

s0d , becauseE10↑
s0d

<E00↑
s0d +"v0

2/vc. The condition for a crossing of the levels
E00↓

s0d andE10↑
s0d is given byv1=vZ. In other words, this level

crossing takes place when the magnetic lengthlB
=Î" /m*vc is equal tol0fg*sg* +1dg1/4, wherel0=Î" /m*v0 is
the characteristic lateral size of a QD andg* = ugum* /2m0.
Note that the level crossing occurs at accessible magnetic
fields for QDs with lateral sizel0.15 nm.

Now we take SO coupling into account and find the en-
ergy spectrum and eigenstates of electrons in a QD. For a
GaAs QD the SO lengths arelD=" /m*b ,lR=" /m*a
<8 mm sRef. 21d and are much larger than the hybrid orbital
length l =Î" /m*V of a QD slD ,lR@ ld. Therefore, the SO
terms can be considered as small perturbations.

First we consider the Dresselhaus SO couplingfsee Eq.
s2dg. It is important to note that in first-order perturbation
theory there is no SO interaction between the levelsE00↓

s0d and
E10↑

s0d due to the Dresselhaus termsk00↓ uHDu10↑ l=0d. Hence
we can apply standard perturbation theory for nondegenerate
levels. Thus, in first-order perturbation theory, we getEn

=En
s0d,

u1l = u00↑l +
sl/lDdv1

v1 + vZ
u10↓l, s4d

u2l = u00↓l −
sl/lDdv2

v2 − vZ
u01↑l, s5d

u3l = u10↑l +
Î2sl/lDdv1

v1 + vZ
u20↓l. s6d

Now we consider the Rashba SO coupling term. In this
case, there is a SO interaction between the levelsE00↓

s0d and
E10↑

s0d . Therefore, applying perturbation theory for degenerate
levels, we have

E1 = "V − 1
2"vZ, E2,3= "V +

"

2
sv1 7 vRd, s7d

u1l = u00↑l − lu01↓l, s8d

u2l = cos
g

2
u00↓l − sin

g

2
u10↑l + l sin

g

2
u11↓l, s9d

u3l = sin
g

2
u00↓l + cos

g

2
u10↑l − l cos

g

2
u11↓l, s10d

where

vR = Îsv1 − vZd2 + 4sl/lRd2v1
2,

tang = − 2sl/lRdv1/sv1 − vZd,

l = sl/lRdv2/sv2 + vZd. s11d

As can be seen from Eq.s7d, in the case of strong lateral
confinementfv1−vZ@ sl /lRdv1g, E2=E00↓

s0d , and E3=E10↑
s0d ,

but in the case of strong magnetic confinementfvZ−v1
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@ sl /lRdv1g, the levels E2 and E3 change places:E2

=E10↑
s0d , E3=E00↓

s0d . At the crossing point for the levelsE00↓
s0d and

E10↑
s0d sv1=vZd, E2,3="V+"vZ/27 sl /lRd"vZ. Therefore,the

Rashba SO coupling leads to an anticrossing of the levels E2
and E3 at the point of accidental degeneracy of the levels
E00↓

s0d and E10↑
s0d fsee inset in Fig. 1sbdg.30 The distance between

the levelsE2 and E3 at the anticrossing isD=2sl /lRd"vZ.
For a GaAs QD with"v0=1.1 meV andlR=8 mm, this an-
ticrossing is too small for experimental observationsD
=0.5 meVd, but for an InAs fg<1 sRef. 31d and lR

<0.1 mm sRef. 19dg QD with the same size, the anticrossing
can reach 0.1 meV. Note that this anticrossing features were
numerically studied for narrow-gap QDs in Ref. 27.

Let us study the statesu2l and u3l. As can be seen from
Eqs.s9d and s10d, if v1−vZ@ sl /lRdv1 fg=Osl /lRdg,

u2l = u00↓l + Osl/lRd, u3l = u10↑l + Osl/lRd.

With increasingB, the Zeeman energy becomes larger than
"v1. In the case ofvZ−v1@ sl /lRdv1, g=p+Osl /lRd and
these states change place. Therefore, the spin flips with a
transition trough the anticrossing region. In the region of the
anticrossingsg<−p /2d, the SO coupling of these states due
to the Rashba term becomes essential and leads to a mixing
of spin-up and spin-down states

u2l = su00↓l + u10↑ld/Î2 +Osl/lRd,

u3l = s− u00↓l + u10↑ld/Î2 +Osl/lRd.

Note that, although for a GaAs QD the level anticrossing is a
quite small effect, the mixing of spin-up and spin-down
states occurs in a sufficiently large region of magnetic fields
sfor a GaAs QD with"v0=1.1 meV andlR=8 mm, the mix-
ing occurs essentially in the region of width<1 Teslad and
thus can be observed experimentally. Indeed, let us consider
relaxation processes between the stateu1l sspin upd and the
statesu2l, u3l. Beyond the mixing region one of the latter
states is spin up, the other is spin down. Spin-flip relaxation

is much slower than orbital relaxation,32 therefore, relaxation
to the ground state from the statesu2l and u3l is very differ-
ent. However, in the region of mixing of spin-up and spin-
down states, the spin-flip relaxation strongly increases and
becomes comparable with orbital relaxation. Note that these
anticrossing features in semiconductor QDs are very similar
to the “hot spots” in polyvalent metals.33

Moreover, it is interesting to note that spin relaxation due
to the Rashba SO coupling differs from that due to the
Dresselhaus SO coupling in this mixing region. As men-
tioned above, in the case of the Dresselhaus term there is no
SO interaction between the statesu2l and u3l fsee inset in
Fig. 1sadg, therefore, there is no spin mixing of these states.
Thus, spin relaxation due to the Dresselhaus SO coupling
does not undergo a considerable increase, in contrast to spin
relaxation due to the Rashba SO coupling. Note that, in the
general case, when the SO coupling includes both the
Rashba and Dresselhaus terms, there is no interplay between
the Dresselhaus and Rashba terms in the spin relaxation rate
in perpendicular magnetic fields13 and the total rate is just the
sum of two terms caused by these SO couplings. Therefore,
we can study these two terms separately.

III. SPIN RELAXATION

We consider next phonon-induced relaxation in a QD. The
coupling between electrons and phonons with modek j sk is
the phonon wave vector andj is the branch indexj
=L ,T1,T2 for one longitudinal and two transverse modesd is
given by13

Uk j
phsr d = o

j

Fskzd
Î2rVksj/"

seAk j − ikJk jdeikrbk j
+ + c.c.,

s12d

wherer is the crystal mass density,V is the volume of the
QD, sj is the sound velocity,Ak j =jijldm

k jbilm, j=k /k, dk j is
the phonon polarization vector,Jk j is the deformation poten-

FIG. 1. sColor onlined. Contributions to the relaxation rate 1/T1 of phonon-induced transitions between the statesu1l, u2l, and u3l of a
GaAs QD with"v0=1.1 meV andd=5 nm due tosad the Dresselhaus andsbd the Rashba SO couplingsslD=lR=8 mmd. The dashed and
dot-dashed curves are orbital relaxation rates, the solid and dotted curves are the relaxation rates with a spin flip. The crossingsad and the
anticrossingsbd of the levelsE3 andE2 are shown in the insets. The cusplike structure of the spin relaxation curve due to the Rashba SO
coupling is caused by the mixing of the spin-up and spin-down states at the anticrossing.
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tial, andbilm is the piezotensor, which has nonzero compo-
nents only when all three indicesi , l ,m are different:bxyz
=bxzy=¯ =h14/«S s«S is the static dielectric constantd. For
GaAs, eh14=1.23107 eV/cm, «S=13.2, Jk j =d j ,LJ0, and
J0=6.7 eVd. In Eq.s12d we introduced the form-factorFskzd
which is determined by the spread of the electron wave func-
tion in thez direction:Fskzd=edzeikzzuc0szdu2, wherec0szd is
the ground state envelope wave function of an electron along
the z direction. The form factorFskzd equals unity forukzu
!d−1 and vanishes forukzu@d−1 ssee Ref. 13d.

Let us find contributions to the relaxation rate of transi-
tions between the levelsu1l and u2l sG21d; u2l and u3l sG32d;
u1l and u3l sG31d. In the framework of the Bloch–Redfield
theory, the phonon-induced relaxation rates1/T1d of a two-
level system is a sum of transition probabilities between lev-
els accompanied by absorption and emission of phonons34

and, for a QD, the decoherence time isT2=2T1.
13 Therefore,

using Fermi’s golden rule and the expressions for the three
lowest levels with the Dresselhaus SO couplingfEqs.s5d and
s6dg, we get the rates

G21 =
l4vZ

3sNvZ
+ 1/2d

8p"rlD
2 S v1

v1 + vZ
−

v2

v2 − vZ
D2

3 o
j

sj
−5e−vZ

2l2/2sj
2
I j

s3dsvZd, s13d

G32 =
w5l6sNw + 1/2d

32p"rlD
2 S v1

v1 + vZ
−

v2

v2 − vZ
D2

3 o
j

sj
−7e−w2l2/2sj

2
I j

s5dswd, s14d

G31 =
v1

3sNv1
+ 1/2d

8prm*V
o

j

sj
−5e−v1

2l2/2sj
2
I j

s3dsv1d, s15d

wherew=v1−vZ, Nw=se"w/T−1d−1, and

I j
smdsvd =E

0

2p

dwE
0

p/2

dq sinmqev2l2cos2q/2sj
2
F2sv cosq/sjd

3FseAk jd2 +
v2

sj
2 d j ,LJ0

2G . s16d

In the case of parabolic confinement along the growth direc-
tion of a QD, I j

smdsxd can be expressed in terms of error
functionsssee the Appendixd. In the case of Rashba SO cou-
pling alone, we have

G21 =
w−

3sNw−
+ 1/2d

8prm*V
Ssing/2 +

sl/lRdv2

v2 + vZ
cosg/2D2

3 o
j

sj
−5e−w−

2l2/2sj
2
I j

s3dsw−d, s17d

G32 =
vR

5"sNvR
+ 1/2d

32prsm*Vd2 S1

2
sing +

sl/lRdv2

v2 + vZ
cosgD2

3 o
j

sj
−7e−vR

2l2/2sj
2
I j

s5dsvRd, s18d

G31 =
w+

3sNw+
+ 1/2d

8prm*V
Scosg/2 − sing/2

sl/lRdv2

v2 + vZ
D2

3 o
j

sj
−5e−w+

2l2/2sj
2
I j

s3dsw+d, s19d

wherew±=sv1+vZ±vRd /2 andvR is defined by Eq.s11d.

IV. ANALYSIS AND DISCUSSION

Figure 1 shows these contributions to the relaxation rate
due to the Dresselhaus and the Rashba SO couplings. As can
be seen from this figure, the orbital relaxation ratesthe
dashed and dot-dashed curvesd is independent of the SO cou-
pling. The behavior of the spin relaxation rateG32 sthe dotted
curvesd is qualitatively the same for both the Dresselhaus and
the Rashba SO couplings. Solid curves correspond to the
spin relaxation rateG↓↑ between the Zeeman-split orbital
ground state levelssG↓↑=G21 for the Dresselhaus SO cou-
pling and in the case of the Rashba SO couplingG↓↑=G21 on
the left side of the cusp andG↓↑=G32 on the right of the
cuspd. Significantly,G↓↑, in the case of the Rashba SO cou-
pling, possesses a cusplike structure at the anticrossing
point,35 whereas, in the case of Dresselhaus SO coupling,G↓↑
is a monotonic function ofB.36,37

It should be noted that atB.1 T the relaxation due to
deformational acousticsDAd coupling is much faster than
that due to piezoelectricsPEd coupling, except in
the case of orbital relaxation at high magnetic fields,
when relaxation induced by PE phonons is of the
same order as that due to DA phonons. Sinced! l0
and q< l0

−1, the factor Fsqzd<1 in the electron-phonon
interaction operatorssee Ref. 13d and the relaxation is
practically independent ofd aside from the orbital
relaxation at low magnetic fields:G31sB=0d<v0

4sNv0

+1/2dJ0
2e−v0

2d2/2s1
2
/6prm*s1

7 sthe spin relaxation rates are
zero atB=0d. The orbital relaxation rate has a maximum
when the phonon wave length is comparable to the lateral
size l of a QD sql<3d. At high magnetic fields, the orbital
relaxation rate decreases withB fas sv0/vcd6 for DA cou-
pling and assv0/vcd4 for PE couplingg, sincev1→v0

2/vc at
high B. The rateG32~vZ

2sv1−vZd5 at low magnetic fields, is
zero at the anticrossing, andG32~vZ

4 at high magnetic fields.
The spin relaxation rate between the Zeeman-split levels
G↓↑~vZ

k sat low magnetic fieldsk=7 for DA coupling and
k=5 for PE coupling. At highB, k=3 for DA coupling and
k=1 for PE couplingd. In the anticrossing region, the spin
relaxation rate due to the Dresselhaus SO coupling is a
monotonic function ofB: G↓↑=G21~vZ

3, but that due to the
Rashba SO coupling has a strong increase at the anticrossing
point and near this pointG↓↑~vZ

3 / fs1−vZ/v1d2+4sl /lRd2g.
Therefore, there is both a qualitative differencesin the
magnetic-field dependenced and quantitative differencesat
4.8 T the Rashba SO coupling givesG↓↑<104 s−1 but the
Dresselhaus SO coupling givesG↓↑<70 s−1d in the behavior
of the spin relaxation rateG↓↑ due to the Dresselhaus and
Rashba SO coupling. This can serve as a means of extracting
information on the different contributions to the total SO
coupling strength.39
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Note that, with a decrease in the lateral sizel0 of a QD,
the cusp and the maximum in the orbital relaxation rate are
shifted to high magnetic fields. For a larger SO coupling
ssmaller SO lengthd, the spin relaxation rates have higher
values, becauseG↓↑~lso

−2, and the cusp shape is smoother.
The temperature dependence of the relaxation rates is only
important for transitions between the levels with a separation
comparable to the temperature: the rates decrease with tem-
perature for the orbital relaxation at high magnetic fields
swhen the level spacing,"v0

2/vcd, for the spin relaxation
between Zeeman-split levelsswhen the Zeeman energy,Td
at low magnetic fields, and forG32 at the anticrossingswhen
the level spacinguv1−vZu,Td.

V. CONCLUSIONS

We have shown that at an accidental degeneracy point the
Rashba SO coupling leads to an anticrossing. The mixing of
the spin-up and spin-down states at the anticrossing enhances
the spin relaxation rate due to the Rashba SO coupling rela-
tive to the spin relaxation rate due to the Dresselhaus SO
coupling.
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APPENDIX: PARABOLIC CONFINEMENT ALONG THE
z-DIRECTION

In the case of parabolic confinement along the growth
direction of a QD,Fskzd=exps−d2kz

2/4d, whered is the width
of the quantum well, and integrals in Eq.s16d can be ex-
pressed in terms of the imaginary error functions erfisxd. Af-
ter some algebra we get

IL
s3dsa/tLd = Seh14

«S
D2 9

4a4Fea2S1 +
5

a2 +
105

4a4D
− ÎperfisadSa +

9

2a
+

45

4a3 +
105

8a5DG
+ J0

2f− 2ea2
+ Îperfisads1/a + 2adg/sl2 − d2d,

IT1
s3dsa/tT1d = Seh14

«S
D2 1

a4Fea2S1 +
15

2a2D
− ÎperfisadSa +

3

a
+

15

4a3DG ,

IT2
s3dsa/tT2d = Seh14

«S
D2 1

4a4F− ea2S2a2 + 9 +
45

2a2 +
945

4a4D
+ ÎperfisadS2a3 + 8a +

33

a
+

90

a3 +
945

8a5DG ,

IL
s5dsa/tLd = Seh14

«S
D2 9

4a4Fea2S1 +
13

2a2 +
105

4a4 +
945

8a6D
− ÎperfisadSa +

6

a
+

45

2a3 +
105

2a5 +
945

16a7DG
+ J0

2f− s3 + 2a2dea2

+ Îperfisads3/2a + 2a + 2a3dg/a2sl2 − d2d,

IT1
s5dsa/tT1d = Seh14

«S
D2 1

a4Fea2S1 +
5

a2 +
105

4a4D
− ÎperfisadSa +

9

2a
+

45

4a3 +
105

8a5DG ,

IT2
s5dsa/tT2d = Seh14

«S
D2 1

4a4F− ea2S2a2 + 10 +
51

a2 +
315

2a4

+
8505

8a6 DGF+ ÎperfisadS2a3 + 9a +
45

a
+

345

2a3

+
3465

8a5 +
8505

16a7DG ,

wheret j
2=sl2−d2d /2sj
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