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Spin relaxation and anticrossing in quantum dots: Rashba versus Dresselhaus spin-orbit coupling
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The spin-orbit splitting of the electron levels in a two-dimensional quantum dot in a perpendicular magnetic
field is studied. It is shown that at the point of an accidental degeneracy of the two lowest levels above the
ground state the Rashba spin-orbit coupling leads to a level anticrossing and to mixing of spin-up and spin-
down states, whereas there is no mixing of these levels due to the Dresselhaus term. We calculate the relaxation
and decoherence times of the three lowest levels due to phonons. We find that the spin relaxation rate as a
function of a magnetic field exhibits a cusplike structure for Rashba but not for Dresselhaus spin-orbit

interaction.
DOI: 10.1103/PhysRevB.71.205324 PACS nunt®er73.21.La, 71.70.Ej, 72.25.Rb
. INTRODUCTION SO couplings, normally the other is neglectéd! This

Recent years have seen an increasing interest in the spif@ds t0 a lack of precision in estimates of the SO coupling
properties of nanostructurésManipulation and readout of Strength and to a neglect of the effects of the interplay of the
spins in solids could open the way to the development of &ashba and the Dresselhaus SO couplifigd?*Hence, it is
generation of electronic devices such as spin transistors, spi€ry important to find a way to separate these SO mecha-
filters, and spin memory devices. In addition, the spin of arnisms, to increase our understanding of the SO relaxation
electron confined to a quantum d@D) is a promising can- processes, and to improve predictions of the spin properties
didate for a quantum b#Owing to the zero dimensionality of nanostructures. It is well knowhthat for 2D quantum
of QDs, the electronic orbital states are quantized and thwells the different SO couplings can be distinguished
electron spin states are very stable due to a substantial supxperimentally>2%26via detection of the associated aniso-
pression of spin-flip mechanism4.Progress in nanotechnol- tropy of the spin splitting in the conduction band. In contrast,
ogy has allowed the fabrication of QDs with desirable elec-such a detection is not possible in QDs since the spin split-
tronic and spin properties? However, only recently it has ting of the levels, being quadratically in the SO coupling, is
been possible to measure the spin of an electron in a QD. #sotropic. Still, as we point out now, the SO couplings in
single electron spin has been detected by magnetic resonan@®s can be distinguished via their associated spin relaxation
force microscopdf and the readout of an individual electron rates since they strongly differ due to different level mixing
spin in a QD via pulsed relaxation measurem&namd op-  properties.
tical orientation experiments have been reported. In these  In this paper, the electron energy spectrum and the spin
experiments, an external magnetic field was used to distincelaxation for a 2D QD in magnetic fields perpendicular to
guish spin-up and spin-down states split by the Zeeman erthe QD surface are studied. Level anticros$inglue to the
ergy. Spin relaxation measurements between Zeeman levefO coupling, at a point of accidental level degenergdye
in a QD (Refs. 11 and 1Pconfirm the theoretical predictions to the interplay between the orbital and magnetic confine-
that spin-flip relaxation in a QD is suppressed with respect tanend, is analytically investigated. This anticrossing is
a bulk structuré:**3Indeed, very long single-spin relaxation caused by the Rashba SO term only, leading to a cusp struc-
times have been observed: up to 0.85 ms in two-dimensiondure in the magnetic-field dependence of the spin relaxation
(2D) GaAs QDs!! and up to 20 ms in self-assembled rate, whereas the spin relaxation rate due to the Dresselhaus
GalnAs QDs!? The spin relaxation is expected to be domi- SO coupling is a monotonic function of magnetic field in this
nated by hyperfine interactions with the nuclei at magnetigegion. This qualitative difference in the spin relaxation for
fields below 0.5 T(Refs. 14-1% and by spin-orbifSO) in-  different SO couplings can serve to extract the different con-
teractions for magnetic fields of about 1(3ee Ref. #and tributions in SO coupling.
for higher magnetic fieldésee Ref. 18 In general, the SO
interaction consists of two distinct contributions: the Dressel- [l. MODEL AND ENERGY SPECTRUM

haus SO couplif which is due to bulk inversion asymme- We consider a 2D isotropic QD with parabolic lateral con-

try of the lattice and the Rashba SO couplffrghich is due finement potential. An external magnetic field is applied per-

to structure inversion asymmetry along the growth direction, . P
Both of these SO terms result in the splitting of electronpend'Cm"’1r|y to the surface of the QD. The Hamiltonian of

energy levels and in the mixing of the electron spin statest.hIS system reads

The latter makes spin-flip relaxation between Zeeman levels p2 v 2 a0 o 1

possible, for example, due to the phonon scattering. Note Ho= om + Em w(X=+y*) +§9MBB<TZ, (1)
that usually it is not simple to separate these two SO mecha-

nisms and estimate the relative contributions of each S@vhereP=p+(|e|/c)A(r), A(r)=(B/2)(-y,x,0) is the vector
term. In experiments, to obtain information about one of thepotential in the symmetric gaugey, is the characteristic
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confinement frequency, an=(oy,ay,a) is the vector of lateral confinement(wo<awo), Egy >Eyy, becauseE()

the Pauli matrices. ~E°) +hwjl w.. The condition for a crossing of the levels
The SO interaction is taken into account by adding theE(0> and E<8> is given byw;=w,. In other words, this level

linear Dresselhatd? and Rashb# terms for conduction crossing  takes place when the magnetic lendih

band electrons in 4001] two-dimensional electron gas =7/ . is equal to[g (g +1)]*4, wherelo=\A/m wy is

(2DEG) the characteristic lateral size of a QD agte|gjm’/2my,.

) Note that the level crossing occurs at accessible magnetic

fields for QDs with lateral sizé&>15 nm.

The axesx, y, andz are aligned along the principal crystal- ~ Now we take SO coupling into account and find the en-

lographic axes of GaAs. ergy spectrum and eigenstates of electrons in a QD. For a
It is convenient to introduce phase coordinatesGaAs QD the SO lengths ar@p=A/m B, \g=A/m a

(01,G2,P1,P2) Which connected to the previous ones ~8 um (Ref. 21) and are much larger than the hybrid orbital

Hp = B(= 0Py + 0Py), Hg=aloPy—ayPy).

(X,Y,Px. Py) by the following formula?® length |=\A/m"Q of a QD (\p,A\g>1). Therefore, the SO
1 terms can be considered as small perturbations.
X= —=(Vo,qy + \s’gzqz), First we consider the Dresselhaus SO couplisee Eqg.
12Q) (2)]. It is important to note that in first-order perturbation

theory there is no SO interaction between the IeE%%)? and

1 ﬁ_& E(O) due to the Dresselhaus tei@®0| |Hp|107)=0). Hence
m\20 ' we can apply standard perturbation theory for nondegenerate

levels. Thus, in first-order perturbation theory, we @gt

—g©
o=+ /2<&+&> "
X 2 \e“’wl \r',a)_zl (lh\D)wl

\ w7 v (1)2

1) =[007) + |10l> 4)
m* Q( ’I_q + ’f_q )
=m /5 Vo101 + Vwd), (IN\p)w
2 [2)=l00)) " =2 01, (5)
where “2”
| 2 2 — Wc \ (|/7\D)wl
Q=Voy+ w4, w;,=0%F > 13y =1101) + fIZOU (6)
w7y
Here w.=|e|B/m'c is the cyclotron frequency. In the new  Now we consider the Rashba SO coupling term. In this
phase coordinates], has the canonical form case, there is a SO interaction between the IeEé(j,)? and
02+ 2 E(l%)r Therefore, applying perturbation theory for degenerate
Ho = # ( w20f + wiep) + QMBBO‘Z (3) levels, we have
h
In this caseH, can be considered as the Hamiltonian of two Ei=hQ0~3hw; Ep3=hQ+ E(wl For), (7

independent harmonic oscillators with hybrid frequencies
w; . Therefore, the energy spectrum and eigenstates of elec-

trons in a QD without the SO coupling are given by |1)=001) - xo1l), (8)

ESWO%Q_ fhiwi(n+ 1/2) + hw(Mm+ 1/2) — hw,s,,

4 —aint Y
|2>—c052|00¢> S|n5|10T)+)\sm2|11i>, (9)

(U1 GaINMS) = P (s VM @1/A) P\ M wolf)]s,),

wheren,m=0,1,2,.., s,=+1/2 is theelectron-spin projec- 13) = sin%/|00l> + cos%|lOT> -\ cos%/|111>, (10
tion on thez axis, w;=|g|ugB/# is the Zeeman frequency,
and®,(q) are oscillator functions. where

Let us consider the three lowest levels

wg=V(w; - wz) +4(|/)\R)2w1,

tan‘y: - Z(I/KR)LO]_/((U]_ - (1)2),
EQ = hQ +fiw; — w2,

The first level is the ground state. In the case of weak mag- A= (M) ool (@ + wp). (11
netic confinementwy> w.), the second level is lower than As can be seen from Eq7), in the case of strong Iateral
the third one(E(O) E(O)) However, at high magnetic fields, confinement[w;-w,;> (I/\g)w1], E;= EO%, and Ez=E 101'
when the magnetlc conflnement is much stronger than thbut in the case of strong magnetic conflnemémz w1
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FIG. 1. (Color onling. Contributions to the relaxation rate T,/ of phonon-induced transitions between the stétgs|2), and|3) of a
GaAs QD withzwg=1.1 meV andd=5 nm due toa) the Dresselhaus an®) the Rashba SO couplingsp=Ag=8 um). The dashed and
dot-dashed curves are orbital relaxation rates, the solid and dotted curves are the relaxation rates with a spin flip. Theacevabitng
anticrossing(b) of the levelsE; and E, are shown in the insets. The cusplike structure of the spin relaxation curve due to the Rashba SO
coupling is caused by the mixing of the spin-up and spin-down states at the anticrossing.

>(I/\g)w4], the levels E, and E; change placesE, is much slower than orbital relaxatiGAtherefore, relaxation
:E;%, E3=Eé%ﬁ- At the crossing point for the |eve|:e_,§)‘g))L and  to the ground state from the stadQ$_ and|3) is very differ-
E(l%T (01=wy), E; 3=hQ+hw,/2F (I/\g)fiwz. Thereforethe  ent. However, in the. region of mixing of spin-up and spin-
Rashba SO coupling leads to an anticrossing of the levgls Edown states, the spin-flip relaxation strongly increases and
and E; at the point of accidental degeneracy of the levelsb@comes comparable with orbital relaxation. Note that these
Ef)%) and '5(1%)1 [see inset in Fig. (0)].% The distance between anticrossing features in semiconductor QDs are very similar
the levelsE, and E; at the anticrossing id=2(1/ \phw,  © the "hot spots” in polyvalent metafs. _

For a GaAs QD Withiwy=1.1 meV andh\g=8 um, this an- Moreover, it is mterestmg to note that spin relaxation due
ticrossing is too small for experimental observatios to the Rashba SO cogplmg d".‘fefs.ffom th"’.lt due to the
—0.54eV), but for an InAs[g~1 (Ref. 3) and Ag Dresselhaus SO coupling in this mixing region. As men-
~0.1 um (Ref. 19] QD with the same size, the anticrossing tioned above, in the case of the Dresselhaus term there is no

can reach 0.1 meV. Note that this anticrossing features wergiO 'ﬂggagﬁgpefgféwfﬁgrg}g r?;aﬁnar?](ijxﬁ) [Sfe tehégsee;tgces
numerically studied for narrow-gap QDs in Ref. 27. 9. ’ ’ P g :

Let us study the statd®) and[3). As can be seen flom g . S0 EEALEE T B I e e a1 s
Egs.(9) and(10), if w;-w;> (11 \gw; [y=0O(/N\)], g ’ P

relaxation due to the Rashba SO coupling. Note that, in the
[2) =100]) + O(I/\g), |3)=|107) + O(I/\R). general case, when the SO coupling includes both the
_ . Rashba and Dresselhaus terms, there is no interplay between
With increasingB, the Zeeman energy becomes larger thanhe presselhaus and Rashba terms in the spin relaxation rate
fiwy. In the case oz~ w,> (I/\gwy, y=m+O(I/\p) and  jy perpendicular magnetic fielfand the total rate is just the
these states change place. Therefore, the spin flips with &, of two terms caused by these SO couplings. Therefore,

transition trough the anticrossing region. In the region of thgye can study these two terms separately.
anticrossing y=-m/2), the SO coupling of these states due

to the Rashba term becomes essential and leads to a mixing

of spin-up and spin-down states IIl. SPIN RELAXATION
|2) = (|00} ) + |10T>)/\E +O(/\R), We consider next phonon-induced relaxation in a QD. The
coupling between electrons and phonons with miopék is
13) = (~ |00) + |10T>)/w"§ +O(/Ng). the phonon wave vector angl is the branch indexj

=L,T1,T2 for one longitudinal and two transverse moxes
Note that, although for a GaAs QD the level anticrossing is agiven by
quite small effect, the mixing of spin-up and spin-down F(k)
states occurs in a sufficiently large region of magnetic fields UE?(V) => ———2—(eA, - ikE\)e¥ by +c.c.,
(for a GaAs QD withiwg=1.1 meV anchg=8 um, the mix- i V2pVkslt !
ing occurs essentially in the region of widthl Tesla and (12)
thus can be observed experimentally. Indeed, let us consider
relaxation processes between the staje(spin up and the wherep is the crystal mass density, is the volume of the
states|2), |3). Beyond the mixing region one of the latter QD, s; is the sound veIocityAkl-:gig,dﬁq',B"m, &=k/k, dis
states is spin up, the other is spin down. Spin-flip relaxatiorthe phonon polarization vectdg; is the deformation poten-

205324-3



DENIS V. BULAEV AND DANIEL LOSS

tial, and By, is the piezotensor, which has nonzero compo-

nents only when all three indicasl,m are different: 8,,,
=Byxzy= - =hisles (eg is the static dielectric constant-or
GaAs, eh;,=1.2x 10" eV/cm, e5=13.2, E,;=6, Eo, and
E,=6.7 eV). In Eq.(12) we introduced the form-factd#(k,)

PHYSICAL REVIEW B 71, 205324(2005
- W,3(Ny, +1/2) )2
- 8mpm Q)

_C .y 212/92
XESJ- 5¢ W+I/251~|J(3)(W+),
i

(IR w,

(0037/2 - siny/2
(1)2"'

wz

(19

which is determined by the spread of the electron wave func-

tion in thez direction: F(k,) = [dzé?|y(2)|?, whereyy(z) is
the ground state envelope wave function of an electron alon
the z direction. The form factoiF(k,) equals unity for|k,|
<d™ and vanishes folk,|>d™* (see Ref. 18

Let us find contributions to the relaxation rate of transi-
tions between the leveld) and|2) (I'y); |2) and|3) (T'sy);
|1) and |3) (I'sy). In the framework of the Bloch—Redfield
theory, the phonon-induced relaxation r&ieT,) of a two-

wherew, =(w1+w;+ wg)/2 andwg is defined by Eq(11).

g
IV. ANALYSIS AND DISCUSSION

Figure 1 shows these contributions to the relaxation rate
due to the Dresselhaus and the Rashba SO couplings. As can
be seen from this figure, the orbital relaxation rdthe
dashed and dot-dashed curyvissindependent of the SO cou-
pling. The behavior of the spin relaxation rdtg (the dotted

level system is a sum of transition probabilities between levgurves is qualitatively the same for both the Dresselhaus and

els accompanied by absorption and emission of phottons
and, for a QD, the decoherence timeTis= 2T,.13 Therefore,
using Fermi’s golden rule and the expressions for the thre
lowest levels with the Dresselhaus SO coupliigs.(5) and

(6)], we get the rates
103N, + 1/2)( )2
8mfiphS wz
5 _. 212152
% 2 Sj Se w5l /ZSJ- IJ(3)(wZ)1
]
wWoIS(N,, + 1/2) (
32= 2

_7 _ 2/l
> E 5 Ty wAl 125] |](5)(W),
j

w1 w2

I‘21 -

wtwz wy—

(13)

w1

Wy )2
wtwz Wy~ wz

(14)

wi(Nml +1/2)

-5
31— j

>'s

- =]
J

2 2
el 710 wy),  (15)

8mpm Q)

wherew=w; - w5, N,,=(€"T-1)"%, and

C02

2m 7l2
1™(w) = J de f do sinm9e 700125 E2( cosdls;)
0 0
s

0]

In the case of parabolic confinement along the growth direc
tion of a QD, I}m)(x) can be expressed in terms of error
functions(see the Appendix In the case of Rashba SO cou-
pling alone, we have

<sin 2 +

w3(N,, +1/2)
lyy=————
2 8mpm
Sj—se—\AEIZ/Zszl J(3)(W_) ,

Q)
X2
i
7 2122
% 2 S Tamwgl“2s, |J(5)(wR)’
j

2
LEo

X|:(epkj)2+ 9 (16)

(I/)\R)(l)z

2
cosvy/2
Wy + I )

wz

17)

2
-

(18)

wgﬁ(NwR +1/2)
32mp(m' Q)?

1.
—Siny+

(IR w,
5 ——CO

Igp=
wo +

wz

the Rashba SO couplings. Solid curves correspond to the
spin relaxation ratd™!! between the Zeeman-split orbital
fround state level$l'''=T",, for the Dresselhaus SO cou-
pling and in the case of the Rashba SO coupling=I",; on
the left side of the cusp anB!'=T5, on the right of the
cusp. Significantly,I'T, in the case of the Rashba SO cou-
pling, possesses a cusplike structure at the anticrossing
point3® whereas, in the case of Dresselhaus SO coupling,
is a monotonic function oB.36:37

It should be noted that @ >1 T the relaxation due to
deformational acousti€DA) coupling is much faster than
that due to piezoelectric(PE) coupling, except in
the case of orbital relaxation at high magnetic fields,
when relaxation induced by PE phonons is of the
same order as that due to DA phonons. Simte&l,
and qzlal, the factor F(gq,)=1 in the electron-phonon
interaction operator(see Ref. 1B and the relaxation is
practically independent ofd aside from the orbital
relaxation at low magnetic fieldsT31(B:0)zwg(Nw0

+1/2) 52705125 6mpm's] (the spin relaxation rates are
zero atB=0). The orbital relaxation rate has a maximum
when the phonon wave length is comparable to the lateral
sizel of a QD (gl=3). At high magnetic fields, the orbital
relaxation rate decreases wiBh[as (wy/ w.)® for DA cou-
pling and ag wy/ we)* for PE coupling, sincew; — wj/ w, at
high B. The ratel '3, w3(w,— w,)® at low magnetic fields, is
zero at the anticrossing, ahg,« aé at high magnetic fields.
The spin relaxation rate between the Zeeman-split levels
FHocw§ (at low magnetic field«k=7 for DA coupling and
k=5 for PE coupling. At highB, k=3 for DA coupling and
k=1 for PE coupling. In the anticrossing region, the spin
relaxation rate due to the Dresselhaus SO coupling is a
monotonic function of8: T'''=T",,= w3, but that due to the
Rashba SO coupling has a strong increase at the anticrossing
point and near this poink!! o« w3/[(1-w,/ w,)?+4(1/\g)%].
Therefore, there is both a qualitative differenta the
magnetic-field dependencand quantitative differencéat

4.8 T the Rashba SO coupling givés!=~10* s but the
Dresselhaus SO coupling gives' =70 s) in the behavior

of the spin relaxation rat&'! due to the Dresselhaus and
Rashba SO coupling. This can serve as a means of extracting
information on the different contributions to the total SO
coupling strengtR?
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Note that, with a decrease in the lateral digef a QD, @ ehl4 2 15
the cusp and the maximum in the orbital relaxation rate are 111 (&l 7ry) = _4 el 222
shifted to high magnetic fields. For a larger SO coupling

(smaller SO length the spin relaxation rates have higher _ I fi(a) +§+E

values, becausE''«\_2, and the cusp shape is smoother. vreria) a 4a3) |’

The temperature dependence of the relaxation rates is only

important for transitions between the levels with a separation

comparable to the temperature: the rates decrease with tem- eh, 45 945
perature for the orbital relaxation at high magnetic fields I(3>(a/rT2) < 4) _4[ (23 +9+ S+ _)
(when the level spacing- w3/ w,), for the spin relaxation 4a 2a°  4a
between Zeeman-split levelezhen the Zeeman energyT) 33 90 945
at low magnetic fields, and fdr;, at the anticrossingwhen + 7rerf|(a)<2a3 +8a+ —+ 3+ = )]
the level spacindgw;,—wz|~T). a a g

V. CONCLUSIONS

2
We have shown that at an accidental degeneracy point the |(|_5>(a/7|_) = (e_%) i‘{ea@(l 132 105 945)
Rashba SO coupling leads to an anticrossing. The mixing of s/ 4a 222 4" 8a°

the spin-up and spin-down states at the anticrossing enhances _ 6 45 105 945
the spin relaxation rate due to the Rashba SO coupling rela- - \’Trerfi(a)<a+ + Py + pya + §>
tive to the spin relaxation rate due to the Dresselhaus SO a a1
coupling. +EY-(3+ 2a2)ea
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APPENDIX: PARABOLIC CONFINEMENT ALONG THE B Ferfi(a) a+g+£ 105
2-DIRECTION A 2a 4a° 8a°

In the case of parabolic confinement along the growth
direction of a QDF(k,) =exp(—d?k?/4), whered is the width
of the quantum well, and integrals in E(L6) can be ex- s )_(e_h14>2i <2a +1O+5—1 315
pressed in terms of the imaginary error functions(gyfiAf- T2\ TT2) = 484 23
ter some algebra we get

8505 3 45 345
) ehy)? 9 2 5 105 + 825 +\7Terf|(a) 2a +9a+g+2—a3
IP@/n)={— . e 1+?+4—a4
€s
3465 8505
9 45 105 +85+E>]
—\ﬂ-erfl(a) at_—+—+——< a
2a 4a° 8a
— 2 ’r_ .
+ 55— 26* + \werfi(a)(1/a+ 2a)]/(12 - d?), where7j2=(|2—d2)/251-2.
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