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Tunneling currents of a quantum dot induced by pulsed fields are investigated theoretically using time-
dependent tunneling rates. Taking into account nonadiabatic effects, we present simple analytic expressions for
tunneling currents, which can be used to study the evolution of the occupation probabilities in the quantum dot
as well as extract system parameters governing tunneling measurements.
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I. INTRODUCTION

There has been considerable interest in semiconductor
quantum dots because of both fundamental and applied as-
pects. As well as for optoelectronic nanodevices,1,2 quantum
dots are considered as potential building-blocks for quantum
computation and information processing because electronic
wave functions are easily tailored by patterning electrodes.3,4

For sophisticated implementation of such devices, it is essen-
tial to understand detailed electronic structure of quantum
dots. Tunneling spectroscopy is one of the commonly per-
formed methods to characterize the electronic structure of
quantum dots.5–7 In this method, a quantum dot is placed
between two adjacent macroscopic electrodes and separated
by tunneling barriers. Then, since tunneling is strongly af-
fected by energy levels in the quantum dot, barrier heights,
and capacitances between the quantum dot and leads, cur-
rents through the system contain the information related to
them.

Although, in most experimental work, tunneling currents
are measured in static conditions, we examine responses of
the quantum dot to time-dependent perturbing fields, espe-
cially to square pulsed form in this work. The reasons for this
are twofold. The first is to obtain the information about the
electronic structure of a quantum dot which may be missing
in static cases. Namely, we search for nonadiabatic effects to
give further information about the electronic structure. Along
this aspect, several experimental works have been also
reported.8 The other is the controllability of the occupation
of electrons in the quantum dot by pulsed fields, which can
be extended to basic operations to manipulate quantum bits
in quantum computations.

We consider a semiconductor quantum dot with two
closely-located-energy levels. This situation occurs in a dou-
bly stacked-quantum-dot geometry, where a dot-dot interac-
tion splits energy levels into bond and anti-bonding states
with their energy difference of about a thermal energy or
tunneling rates.9 This geometry is of prime interest because
the bonding and antibonding states can be considered as a
basis of a charge qubit and the occupancy of each state may
be controlled by electrical pulses.7

For such a system, calculations of tunneling currents are
complicated by both nonadiabatic effects from external time-
dependent perturbations and charging effects of electrons in

the quantum dot. To do this, we use the formalism recently
developed by the authors based on the reduced-density-
operator theory.10 In the absence of the charging effects, a
similar problem is investigated by Wingreen, Jauho, and
Meir11 on resonant-tunneling structures. Even though the en-
ergy band diagram of their system is very similar to ours
sFig. 1d, detailed formula governing the occupancy in the
central region is very different. The major difference be-
tween two approaches comes from the constraint about the
total occupancy of two levels. In our case the total occu-
pancy is restricted to be less than one due to a large charging
energy while such a condition is not necessary if it were for
charging effects. Along this aspect, our problem is rather
similar to those studied by Refs. 12 and 13 and their results
for the tunneling currents are also available to obtain our
final forms. However, we adopt the approach of Ref. 10 be-
cause it provides rather explicit expressions for the tunneling
currents and the occupancies as well as is easily extended to
the case of more charged states.

The constraint about the total occupancy is automatically
imposed in the master equation in our problem. According to
the formalism in Ref. 10, the master equation is expressed in
terms of time-dependent tunneling rates. Within a sequential
tunneling regime, the tunneling rates take into account state-
dependent tunneling including spins and provide the associ-
ated selection rules via overlap matrices between states.
Here, we neglect the selection rules in order to focus merely
on time-dependent properties of the system. This is equiva-
lent to the situation that the quantum dot has less-

FIG. 1. A systematic drawing of a tunneling geometry is shown.
Tunneling barriers are model with capacitanceCS andCD, respec-
tively, and a square pulsed fieldVstd is applied to the drain with
respect to the source lead.
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symmetrical shape to give the finite and nearly same over-
laps between many-body states as well as has an even
number of electrons in a ground stateswe call it the vacuum
state in the following sectiond. By the even number of elec-
trons we mean that the excitation by a single-electron tun-
neling is independent of spins and, therefore, releases the
Kondo effects in our problem.14 By introducing simple forms
of the tunneling rates associated with pulsed fields and sepa-
rating them into adiabatic and nonadiabatic contributions, we
derive analytic expressions for the evolution of the electron
occupancy and the tunneling currents. Similar to Refs.
11–13, the nonadiabatic contribution gives rise to ringing
currents which are resulted from the mismatch between
incoming-electron energy and an energy level in the quantum
dot. For easy comparison with experimental measurements
we also propose a simple analytic form for a static compo-
nent of the tunneling currents as a function of pulse ampli-
tude and durations. It is found that the expression is appro-
priate to reveal detailed electronic structure of the system
and its dynamical behavior such as the time evolution of the
electron occupancy. For convincing ones of our results, nu-
merical examples concerning about a typical situation are
given.

II. THE MODEL AND CALCULATIONAL METHODS

As shown in Fig. 1, we consider a small quantum dot
weakly coupled via tunnel barriers with capacitancesCD and
CS to electron reservoirs, called source and drain. By a small
quantum dot we mean well resolved single-particle states in
it due to the electronic confinement. Then, for not too large
perturbations, it is a good approximation to consider several
lowest energy states for tunneling. We denote energies of the
single-particle states byEksk=1,2, . . .d which are measured
relative to the chemical potentials of the reservoirs at equi-
librium, We also assume that these states are located at high
positions over thermalskBT=1/bd and tunneling broadening
s"gD ,"gSd, whereT is a temperature andgD sgSd bare tun-
neling rates of the sourcesdraind lead. Consequently, tunnel-
ing through these state is completely blocked in the absence
of external perturbations.

As for external perturbations, we consider square pulses.
Although it is expected that, in experiments, a shape of a
pulse is distorted due to stray resistances and capacitances of
external circuits, we assume here that an ideal square shape
can be generated and transferred to the system, i.e., a voltage
pulseVstd is modeled by a Heaviside step functionustd

Vstd = V0ustdustp − td, s1d

whereV0 is its amplitude andtp duration, respectively. The
voltage pulseVstd is applied to the drain with a positive
amplitude, so that at the resonant condition, the chemical
potential of the source coincides to one of energy levels in
the quantum dot for a pulse duration oftp.

Due to the rapid variation of external perturbationVstd
beyond typical characteristic times of the system, for in-
stance, inverse of the bare tunnel rates, usual tunneling

formula based on the orthodox theory are not adequate to
analyze its time-dependent properties. Instead, tunneling
rates incorporating nonadiabatic effects should be adopted.
To do this, we use the formalism in Ref. 10sthe nonequilib-
rium approach done by Wingreenet al.11 is also available,
however with modified Green’s functions in the central re-
giond. According to the formalism, the tunneling rateGk

a±std
of a barriera through an energy levelukl is given by

Gk
a±std = gaE

−`

`

deH1 7 tanh
b

2
se + EkdJ Re

2p"

3E
−`

0

dtegat−sie/"dt−sie/"det+t
t dt8vast8d s2d

where superscripts6 represent tunneling intos1d and from
s2d the quantum dot, respectively. Here, a time-dependent
function ofvastd is a voltage difference between the quantum
dot and the leada. In the case of Fig. 1,vastd are given by,

SvDstd
vSstd

D =1
CS

CS+ CD

−
CD

CS+ CD

2Vstd = SVD

VS
Dustdustp − td. s3d

The expression of Eq.s2d is derived by assuming sequen-
tial tunneling process resulted from very opaque tunneling
barriers. So, for only static voltages applied, the tunneling
rates are reduced to the widely used form,

Gk
a±std = gafFD

± sEk + eva + i"gad,

=gaH1

2
7

1

p
Im c0S1

2
−

b

2pi
sEk + eva − i"gadDJ

s4d

where fFD
± sEkd are broaden Fermi-Dirac distribution func-

tions for particless1d and holess2d, respectively, andc0 is
a digamma function. Whereas, when a pulsed perturbation
such as Eq.s1d is applied, the tunneling rates from Eqs.s2d
and s3d become,

Gs
a±std = gafFD

± sEk + evastd − i"gad

± gaFsEk + eVa − i"ga,Ek − i"ga,td s5d

whereFsz1,z2,td is defined by,

Fsz1,z2,td =
2

b
Reo

n=0

`
z2 − z1

sUn + z1dsUn + z2d
Dnsz1,z2,td, s6d
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Dnsz1,z2,td = 50 for t , 0

esUn+z1dt/i" for 0 ø t , tp

esUn+z2dst−tpd/i"se−isUn+z1dtp/i" − 1d for t ù tp
6 s7d

with Un=ps2n+1d / ib. In the first term of Eq.s5d, energy
levels in the quantum dot are simply modulated with the
applied bias voltagevastd and thus the tunneling rates follow
the applied voltages adiabatically. On the other hand, the
second term is the newly generated contribution from the
rapid time variation of applied voltages, say, nonadiabatic
contribution. It is interesting to note thatF is an oscillating
function of time with a frequencysEk+eVad /" for 0ø t
,tp si.e., a pulse is ond andEk/" for tùtp si.e., a pulse is
offd, respectively. In addition, in each time section, these
oscillations decay with about a rate ofga+p /"b, and thusF
is saturated exponentially to a steady value. The oscillatory
behavior is resulted from the mismatch between incoming-
electron energy and a energy level in the quantum dot, and is
a central property representing nonadiabatic effectssa “ring-
ing” current found in Refs. 11–13 is also responsible for this
oscillationd.

In usual experimental situations, since energy levelsEk
are enough high not to be occupied when a pulse is off, we
restrict ourselves to the case ofEk@"ga ,1 /b. Then, as soon
as a pulse is offstùtpd, F shows rapid oscillating behavior
of a frequency ofEk/" compared to a time scale of 1/sga

+p /"bd, and therefore we may neglect its effects. As a re-
sult, the nonadiabatic contributionF has a nonzero value
only when a pulse is on. In other words, for a positive pulse
amplitude, tunneling intosfromd the quantum dot through the
drain barrier is notsalwaysd possible. Then, the tunneling
rate at the drain is simplified as,

Gk
D+std = 0, Gk

D−std = gD s8d

irrelevant of time.
With the time-dependent tunneling rates of Eq.s5d, the

occupation of electrons in the quantum dot is determined by
the master equation,

dP1std
dt

= o
a

hG1
a+stdP0std − G1

a−stdP1stdj + wP2std,

dP2std
dt

= o
a

hG2
a+stdP0std − G2

a−stdP2stdj − wP2std, s9d

wherePkstd andP0 are the occupation probabilities to a state
ukl and the vacuum stateu0l, respectively. Here, terms in the
parenthesis describe usual changes of the probabilityPkstd by
the tunneling process.15–19The last terms are responsible for
the relaxation of electronic states due to the electron-phonon
interaction from the stateu2l to u1l, in which we model its
relaxation rate by a constant value,w for simplicity.8 Using
the fact thatP0std+P1std+P2std=1 and Gk

a+std+Gk
a−std=ga

from Eq. s2d, the master equation is further simplified as

dP1std
dt

= o
a

G1
a+stds1 − P2d − gP1 + wP2,

dP2std
dt

= o
a

G2
a+stds1 − P1d − gP2 − wP2, s10d

with g=gD+gS.
These coupled differential equations do not give analytic

solutions generally, therefore, we solve them in a numerical
way as in the following section. However, approximated so-
lutions can be inferred. To do this, we divide the solutions
into two parts from the adiabatic tunneling ratessPs

Ad and the
nonadiabatic onessPs

Nd of Eq. s5d; Psstd=Ps
Astd+Ps

Nstd. Then,
the solution ofPk

Astd is given by, while a pulse is on,

Pk
Astd = Pk

0 +
1

g0
sGk

0 − gpPk
0de−gmt −

1

g0
sGk

0 − gmPk
0de−gpt,

s11d

where Gk
0=gS Re fFD

+ sEk+eVS− i"gSd is the tunneling rate
into the quantum dot through the source with a static voltage
equal to a pulse amplitude, andPk

0 is corresponding occupa-
tion probabilities,

P1
0 =

G1
0sg + w − G2

0d + wG2
0

gmgp
, P2

0 =
G2

0sg − G1
0d

gmgp
s12d

together withgp=g+sw+g0d /2, gm=g+sw−g0d /2, andg0

=Î4G1
0G2

0−4G2
0w+w2. According to this result, the adiabatic

part of the occupationPk
Astd starts with a zero at a timet

=0 and exponentially approaches to a static value ofPk
0 as

time elapses. By the presence of the phonon relaxationsw
Þ0d, the lower state becomes more rapidly saturated to a
larger value while the occupation to the upper is more re-
duced. On the other hand, the nonadiabatic contribution of
Pk

Nstd can be obtained with a simple perturbed method be-
cause the associated tunneling rates have appreciable value
of Gk

0 only in the small range of times0, t!1/gd and thus it
is expected to have a small value much less than one. Thus,
by substitutingPk

Astd instead ofPkstd in the right-hand side of
Eq. s10d, we obtain,

P1
Nstd = gSE

0

t

dt8FsE1 + eVS− i"gS,E1 − i"gS,t8dh1 − P2
Ast8dj,
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P2
Nstd = gSE

0

t

dt8FsE2 + eVS− i"gS,E2 − i"gS,t8dh1 − P1
Ast8dj.

s13d

Further simplification of these occupations can be made us-
ing Eqs. s7d and s11d, however, still in a series form. It is
found that the nonadiabatic contributionPk

Nstd exhibits weak
oscillatory behavior neart=0 and has a small saturated value
much less than one. This fact is easily deduced if one recalls
oscillatory and decaying properties ofFsz1,z2,td together
with its integrals of Eq.s13d.

When a pulse off, the occupation probabilities have a
simple solution because, in this time section, particles in the
quantum dot just escape from there to both leads. That is,
Gk

a+=0 andGk
a−=ga. Thus, the probabilities become

P1std = egstp−tdhP1stpd + P2stpds1 − ewstp−tddj

P2std = esg+wdstp−tdP2stpd, s14d

to exhibit decaying behavior as time elapses.
As for tunneling currents, since an external perturbation is

time-dependent, it consists of two components; displacement
and tunneling currents. If a positive current at each lead is
defined to flow into the quantum dot, currentsIastd flowing
in the leada are given by,4

SIDstd
ISstd

D =
CDCS

CD + CS

]Vstd
]t

S 1

− 1
D −

ID
t + IS

t

CD + CS
SCD

CS
D + SID

t

IS
t D .

s15d

Here, the first two terms are the displacement currents in-
duced by external perturbations and tunneling processes, re-
spectively, whereas the last term is the tunneling contribu-
tion. Due to the charge conservation, the total currents are
conserved irrelevant of time, i.e., the sum of total currents
sID+ ISd is zero. A tunneling partIa

t std represents the average
number of electrons tunneled from the quantum dot per an
unit time through the barriera, which are given by, in terms
of the tunneling rates and the occupation probabilities,

Ia
t std = eo

s

hGs
a−stdPsstd − Gs

a+stdP0stdj. s16d

As in the orthodox theory,15–19 each term describes the total
number of electrons tunneling out of or into the quantum dot.

Now, we focus on a static component of currents because
it is easier to measure in experiments compared to alternating
components. If a pulse repetition time istr, from Eq.s15d the
dc current is obtained as,

Idc =
1

trsCS+ CDdE0

tr

dthCSID
t std − CDIS

t stdj ; ekNl/tr ,

s17d

where we assume a pulse sequence with a long pulse-off
region compared to the inverse of tunneling rates, so that the
system is always in equilibrium before another pulse arrives.
In other words, this means each pulse is considered as inde-
pendent one andkNl can be interpreted as the average num-

ber of electrons transferred from the source to the drain per a
single pulse.

In order to analyze dynamical behavior of the system, it is
more instructive to measure the dc current as a function of a
pulse duration and amplitude, and consider another dc cur-
rent defined by,

idcstpd = e
dkNl
dtp

=
dIdctr

dtp
, s18d

which is found to give a simpler expression for tunneling
currents than Eq.s17d does. To obtain a final result, we sepa-
rate time into pulse-on and -off regions in Eq.s17d and then
apply the derivative with respect to the pulse duration to get,

idcstpd =
1

CD + CS
hCSID

t std − CDIS
t stdjt=tp

+
gDCS− gSCD

gsCS+ CDd
d

dt
hP1 + P2jt=tp

, s19d

where a sufficiently long pulse-off region is taken into ac-
count. This relation is further simplified by using Eqs.s8d,
s10d, ands16d, and finally we obtain

idcstpd =
egD

g
hG1

S+stpdf1 − P2stpdg + G2
S+stpdf1 − P1stpdgj.

s20d

This is a main result in our work for pulsed responses of
quantum dots. For a large pulse duration, the above expres-
sion gives the same results as those in a static case because
tunneling rates and occupation probabilities approach to their
static values,Gk

0 and Pk
0, respectively. However, it is noted

that for a small pulse durationstp!gd the currentidcstpd
shows different behavior from that in the static case. Let us
assume a small pulse duration in which the occupation prob-
abilities are negligible. Then, the currentidcstpd depends on
tunneling rates through a source directly,

idcstpd =
egD

g
hG1

S+stpd + G2
S+stpdj. s21d

This expression also holds for small pulse heights well below
the lowest level which may give negligible occupations.
From this result, one can estimate time-dependent tunneling
rates of each energy level through the source by adjusting a
pulse amplitude. For a pulse duration longer than the bare
tunneling rateg, the time-dependent tunneling rates become
their static values ofGk

0 and the adiabatic contribution of the
occupation probabilities is dominant. So, in this case the cur-
rent idc becomes,

idcstpd =
egD

g
hG1

0f1 − P2
Astpdg + G2

0f1 − P1
Astpdgj. s22d

Using this, one can see that the current as a function of time
directly reflect the evolution of the occupation probabilities
in the quantum dot. So, by fitting data measured in the whole
range of a pulse duration to the above current expressions, it
is possible to estimate the occupation probability of each
level. Furthermore, comparing this evolution with tunneling
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rates obtained from measured data for short pulse durations,
one may determine the electron-phonon relaxation ratew of
the system.

III. NUMERICAL RESULTS AND DISCUSSION

For better understanding of our results, we now examine
tunneling currents numerically. For this, we consider a typi-
cal case of the system satisfying conditions addressed in the
previous section; in the units of tunneling rate,g=gD+gS,
two energy levels in the quantum dot are assumed to be
located atE1=1000"g and E2=1040"g, respectively, at a
temperature ofT="g /kB. Then, if capacitances of barriers
are equal to each othersCD=CSd, for pulse heights ofV0

=2000, and 2080"g /e, the chemical potential of the source
coincide with the lower and upper energy level, respectively,
while a pulse is on.sThe above numbers should be taken as
suggestive estimates; our scheme is general and does not
depend on these specific values.d

First, in Fig. 2sad, we plot the tunneling rates of Eq.s5d as
a function of time when a square pulse with a duration of
tp=1/g and a amplitude ofV0=2070"g /e is applied at
t=0. Similar to the shape of an applied pulse, the tunneling
rates start with a zero and have an infinite slope att=0. As
expected in the previous section, while a pulse is on, they
shows oscillating behavior about an adiabatic value of
ga Re fFD

+ sEk+eVa− i"gad with a frequency ofsEk+eVad /".
Simultaneously the oscillations are decayed with a rate of
ga+p /"b, so that in the inverse of this rate the oscillating
behavior is nearly disappeared.

The occupations are monotonically increasing functions
while a pulse is on and then decayed in the absence of a
pulse as shown Fig. 2sbd. Overall patterns are mainly re-
sulted from the adiabatic contributions of Eq.s11d and the
contribution from the nonadiabatic term is found to be neg-
ligibly small. Effects of the electron-phonon relaxation from
u2l to u1l are well resolved in the occupation probabilities. As
indicated in Eqs.s11d, s12d, ands14d, more rapid increase of
the occupationP1std is found compared with those forw=0
while P2std shows slower increase and a smaller saturated
value as shown with a thick-dotted line in Fig. 2sbd.

In Fig. 2scd, we plot tunneling currents at the drain and
source as a function of time. It is found that time-dependent
behavior is largely different at the source and drain when a
pulse is on although their total currents of Eq.s15d are equal
to each other. This result is caused by different time-
dependence of tunneling rates at the source and drain. In fact,
the detuning energies ofeVa+Ek are very different between
both electrodes. In the case of the drain, since the detuning
energy is very large, the nonadiabatic contribution to its tun-
neling rate can be neglected and thus is independent of time.
So, its time-dependent behavior comes from the variation of
the occupation probabilities of electrons in the quantum dot.
Whereas, at the source, since the detuning energy is rela-
tively small, the nonadiabatic contribution of the tunneling
rates is appreciable. Thus the time-dependence of tunneling
currents is determined from both the tunneling rates and the
occupation probabilities, in which, however, ringing behav-
ior is mainly responsible for the tunneling rates. When a
pulse is off, tunneling currents decrease exponentially be-
cause only electrons escaping from the quantum dot contrib-
ute to the currents. Since the same tunneling rate ofgD=gS
are used in Fig. 2, the tunneling currents at the drain and
source are calculated to be equal to each other in this time
region.

In Fig. 3, we plot the currentidc as a function of a pulse
duration for several amplitudes. As expected in the previous
section, the currentsidc shows characteristic oscillating be-
havior resulted from the time-dependence of tunneling rates,
where frequencies of the oscillations are equal to the detun-

FIG. 2. ForgD=gS=0.5g and V0=2070"g /e, we plot the tun-
neling rates available to each level insad. For electron-phonon re-
laxation rates ofw=0 sthind, 5g sthick lined, occupation probabili-
ties and tunneling currents are shown as a function of time insbd
andscd, respectively. Here, a pulse widthtp are assumed to be 1/g.

FIG. 3. For a symmetric geometryCD=CS andgD=gS, the cur-
rents idc sdefined in the textd are plotted as a function of pulse
duration for several pulse amplitudes. The dotted lines represent
results in the presence of the energy relaxation ofw=5g, however,
in the most cases they are not resolved from those ofw=0 except
for V0=2080. Here, currents and tunneling rates are measured in
units of eg andg, respectively.
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ing energy of the source,eVS+Ek and thus the oscillations
are modulated with two frequencies ofsE1+eVSd /" and
sE2+eVSd /" for a given amplitude of a pulse. As special
cases, when one of the detuning energy becomes zerosat
V0=2000 and 2080 in Fig. 3d the chemical potential of the
source coincides with the lower or upper level, and the cur-
rent idc oscillates a single frequency ofsE2−E1d /". In addi-
tion, when the chemical potential is located at the middle of
two levelssat V0=2040 in Fig. 3d, no oscillations are found
and the currentidc is rapidly saturated to its static value. This
is because the tunneling rates ofG1

S+ andG2
S+ oscillate out of

phase to each other.
We also examine the dc currentidc for a finite electron-

phonon relaxation ratew. The dotted lines in Fig. 3 show
results of the currentidc when the relaxation ratew is much
larger than the tunneling ratesw=5gd, so that the occupation
of the upper level is largely suppressed. It is found that the
largest modification occurs at the pulse height where the
chemical potential of the source lies at the upper levelsat
V0=2080 in Fig. 3d. Otherwise, the relaxation ratew gives
rise to a small modification toidc.

To model the currentsidc, we compare in Fig. 4 the cal-
culated results with simplified expressions of Eqs.s21d and
s22d. For a small pulse height such asV0=1960 in Fig. 4sad,
it is well fitted to Eq.s21d sits difference is not resolved in
the figured because the occupation probabilities are nearly
zero. However, for the case ofV0=2080, it is more conve-
nient to use Eq.s22d in the range of the long pulse duration
fthe dotted line in Fig. 4sbdg. Consequently, from two
complementary fitting results we expect that it is possible to
obtain a bare tunneling ratega at each barrier and the
electron-phonon relaxation ratew, as well as dynamical
properties of electrons in the quantum dot including energy
levels. For general cases such as an asymmetric barrier ge-
ometry and more energy levels, similar arguments can be
made and it is expected that measured data can be fitted to.

In summary, we investigate time-dependent responses of a
quantum dot coupled weakly to metallic leads by pulsed

fields. Treating the problem in an non-adiabatic regime, we
show that dc tunneling currents as a function of a pulse du-
ration contain detailed dynamical behavior of the system. We
also present simple expressions for the dc current, by which
one can get particle occupations as a function of time as well
as various system parameters by fitting experimental data to
them.
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FIG. 4. We compare calculated resultsssolid linesd of Fig. 3
with the current expressions of Eqs.s21d and s22d. For pulse am-
plitudes of V0=2080, 1960"g /e in sad and sbd, respectively, ap-
proximated currents are represented by dashed and dotted lines. In
the case ofsad, the difference between solid and dashed lines are not
resolved.
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