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We have developed a three-dimensional model for electronic states calculation of interdiffused quantum dots
sQDsd with arbitrary shape by solving the BenDaniel-Duke’s equation in momentum space domain. The
proposed model features several advantages such as automatic solution to the Fick’s diffusion equation, a
relatively compact and efficient Hamiltonian matrix, and natural representation of a large array of QDs.
Without considering the interdiffusion effect, our model yields good agreement with our references of
InAs/GaAs QDs ground state energy calculation. We analyze the interdiffusion effect in QDs with various
shapes of theoretical and practical interest like spherical, cubical, pyramidal, and lens shaped. We study the
effect of QD size and aspect ratio to the blueshift profile due to interdiffusion. We found a similar blueshift
profile in these QDs at almost any size that can be well approximated by sechsxd function. This model will
serve as a valuable tool for QD band gap engineering based on the interdiffusion technique.
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I. Introduction

Semiconductor heterostructures utilizing quantum dots
sQDsd and nanocrystal structure have been subjected to an
extensive research field due to interest in the fundamental
physics of three-dimensional quantum confinement, together
with the device functionality that they can provide. Current
advances in QD heterostructures on III–V compounds semi-
conductor have gradually placed this material system en
route to succeed quantum wellsQWd structure for high per-
formance lasers, as well as other active and passive photonic
components. Using the Stranski-Krastanow growth method,
low threshold, high thermal stability, and high quantum effi-
ciency lasers, and other active components have been dem-
onstrated in InsGadAs/GaAs QD systems.1–4 The interdiffu-
sion effect is expected to play an important role in low
dimensional semiconductor structures, particularly in QDs,
because of the large surface area to volume ratio compared to
the bulk or QW structures. As the dimension for QDs is
typically in the order of nanometerss50–500 Åd, a small
interdiffusion between the dots and the surrounding materials
as illustrated in Fig. 1sbd, is expected to produce a significant
change in the band structure and the optical properties of the
material.5 Recently, the capability of thermal-induced inter-
diffusion salso referred to as intermixing or disorderingd6 in
tailoring the shape and size and thus optical properties of
self-assembled QDssSAQDsd at postgrowth level has been
applied with promising results.7–14The preservation of three-
dimensional confinement in the interdiffused QDs after high
temperature annealing suggests that the postgrowth control
of QDs band gap via the interdiffusion technique is achiev-
able in QD structures. The interdiffusion effect also causes
sharper photoluminescencesPLd intensity indicating an im-
proved optical property desirable for optoelectronics applica-
tion. The ability to control these properties after growth of-
fers a wide range of band gap tunability that is necessary for
some device applications.16,17

In spite of numerous literatures on the interdiffusion in
QWs and quantum wires, theoretical modeling of QDs inter-
diffusion is still lacking; mainly hampered by the complex
three-dimensional nature of QDs system. Theoretical de-
scriptions of interdiffused QD so far are limited to one15,17or
two-dimensional approximation.18 A simple one-dimensional
model provides good approximation for thin QDs where the
interdiffusion is more dominant in the thin direction. How-
ever, this model becomes inaccurate at a high degree of in-
terdiffusion where interdiffusion is comparable in all direc-
tions. Therefore a full three-dimensional modeling of the
interdiffusion effect is required to provide a more complete
and versatile description of the problem.

There are several methods for solving the Schrödinger
equation for QDs electronic structure calculation that mostly
work in real-space domain, such as: the finite element
method sdiscretized Schrödinger equationd19–21 and the
orthonormal-set expansion method.22–24In this paper, we de-
velop an interdiffused QD model in momentum space do-
main. We adopt the BenDaniel-Duke’s25 formulation for the
Schrödinger equation in momentum space and calculate the
complex Fourier coefficientssFCsd of the potential functions
and reciprocal effective mass to solve the Hamiltonian. Com-
pared with the existing approaches in the real-space domain,
our approach in the momentum space domain offers several
advantages, such as the following.

a. Natural representation of large arrays of QDs. The
momentum space model allows us to use periodic boundary
conditions instead of a hard-wall boundary potential like in
the real space model.23,24 Such a boundary condition repre-
sents a periodic distribution of QDs arranged in an infinite
lattice. This serves as a physically realistic model of a typical
SAQD structure where QDs are grown in large numbers.
Furthermore, by choosing a tetragonal lattice structure as
shown Fig. 1sbd, we can model two different fundamental
periodicities in the SAQDs distribution. They are the period-
icity of the wetting layers in vertical direction and QD den-
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sities in horizontal direction. This feature is essential to
model high density SAQDs, where spacing between neigh-
boring QDs is close enough that coupling among adjacent
QDs is significant. On the other hand, if the unit cell is suf-
ficiently large compared to the QDs, the low-lying QD bound
states become insensitive to the boundary conditions. As
such, the model could also be used to describe an isolated
QD, like the real space model with hard-wall boundary con-
dition.

b. Automatic solution to the Fick’s diffusion equation. One
method to solve the Fick’s diffusion equation is by the Fou-
rier decomposition technique. In the reciprocal-space do-
main, one needs to calculate the complex FCs of the poten-
tial functions to solve the Hamiltonian. The same FCs are
also used to express the solution of the Fick’s diffusion equa-
tion. In general, the QD alloy concentration distribution and
their related properties with approximate linear dependencies
like band gap and effective mass can be calculated at any
diffusion length.

c. Small Hamiltonian matrix size and efficient matrix ele-
ment computation. A typical orthonormal-set expansion tech-

nique has small matrix size but computationally inefficient
due to multiple-integration involved in calculating the matrix
elements.23 On the other hand, in the finite-element method
or discretized Schrödinger’s equation technique,19,20 each
matrix element can be calculated rapidly as there is no inte-
gration involved. However, the resulting Hamiltonian matrix
size is very large, in the order of 1053105, thus computa-
tionally expensive. In contrast, the momentum space model
has the best of both worlds where the matrix size is small,
typically in the order of 1033103, and each matrix element
can be computed efficiently. The only integration effort
needed is to compute the FCs of the shape functions, in
which some have analytical solutions. For pyramidal QD,
which is a shape of great interest, analytical expression for
the FCs can be used thus facilitating efficient matrix ele-
ments computation and provides intuitive clues about how
the QD shape parameters will affect the result. One draw-
back in this model is that it requires higher order of FCs to
sufficiently describe QDs with sharp feature, e.g., a pyrami-
dal QD. Fortunately, the ground state of most QDs is not
sensitive to the sharp feature of the QD, especially when they
are heavily interdiffused, thus most of the computation can
be done efficiently using relatively small number of FCs.

In this paper we present calculations for the case of
InsGadAs/GaAs QDs, that are of great interest and have
been well investigated both theoretically and
experimentally.15,17,22,23,26–28For the purpose of modeling the
interdiffusion effect in three dimensions, we choose a basic
single-band model for both conduction and valence band
while neglecting additional effects such as strain, perturba-
tion potential due to piezoelectricity, and multiband Hamil-
tonian model. Nevertheless, we utilize modified material pa-
rameters that incorporate the influence of these effects23 and
also account the effect of effective mass anisotropicity by
using the BenDaniel-Duke’s formulation. Even though the
model does not have the complexities that account for these
additional effects, it should retain the essential physics of
interdiffused QDs. We have attempted to provide a general
and versatile model by investigating most common QD
shapes of interest like cubical, pyramidal, spherical, and lens
shaped QD. The QD shape models are characterized by their
geometrical parameters like base, width, and height, there-
fore QDs with arbitrary size and aspect ratio can be easily
defined. In general our model serves as first-order calculation
that provides a framework and reference point for a more
complicated treatment. It will be of great interest for experi-
mentalists in both epitaxy growth and heterostructures inter-
mixing communities to relate their experiments with a
simple model.

II. Quantum Dots Model

We start from noninterdiffused description of the QDs,
where the QDs are distributed periodically in a tetragonal
superlattice structure with dimensions:a3a3c as shown in
Fig. 1sad. We intentionally choose tetragonal superlattice
structure whose lattice constanta andc reflect two physical
parameters that characterize the distribution of SAQDs in
real space. First is the density of SAQDs that determines the

FIG. 1. sad A superlattice of pyramidal QDs with tetragonal unit
cell. sbd Interdiffusion smears the alloy distribution resulting in
band gap disordering in all directions. Band gap profiles for the
noninterdiffusedsleftd and interdiffusedsrightd QD along thex di-
rection are shown.scd Conduction band edge potential profile atz
=0 plane for: noninterdiffusedsleftd and interdiffusedsrightd QD.
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average spacingsad between QDs in the horizontalsx-yd
plane. Second is the period of the wetting layer that governs
the periodicity of the SAQDsscd in the growth directionszd.
Clearly, the model will reduce to simple lattice structure for
c=a. On the other hand, for most SAQDs system the spacing
between adjacent QDs are very large, therefore the QDs ap-
pear as an isolated QDs. In this regime we can limit the
relative size of the unit cell so that accurate result still can be
obtained with a finite number of FCs in the calculation. In
this case a tetragonal lattice model is essential for efficient
calculation, as often times the QDs have a very low aspect

ratio sh/bd and one can adjust the size of the lattice constant
a andc accordingly.

The three-dimensional band edge potential and the carrier
effective mass depend on the alloy concentration at every
point in space that are essentially determined by the shape of
the QD in the three dimensions. For that purpose, we define
a shape function within a unit cell

fQDsr d = H1 inside QD

0 outside QD
J . s1d

TABLE I. The FCs of the shape functions for the four types of QDs and a WL drawn on thex-z plane of the tetragonal unit cellssee Ref.
29d. The pyramidal QD described here refers to a generalized truncated pyramidal QDssee Ref. 30d.
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For example, using the shape function, the band-edge po-
tential function can be expressed as:VBsr d=VB0fQDsr d,
where the subscriptB represents either conduction or valence
band edge.VB0 has a negative value to represent potential
confinement inside the QD.

Since the shape function is periodic in space, we can ex-
press it in terms of complex Fourier series

fQDsr d = o
K

cKeiK·r , s2d

whereK is the reciprocal lattice vector that runs through all
lattice points. For tetragonal lattice it is defined as

K n,m,l = 2p/afnx̂ + mŷg + 2pl/cẑ s3d

with n, m, and l are integers running from −̀ to `. Occa-
sionally these subscripts are omitted for convenience.

The complex FCs have to be calculated by performing the
required integration within a unit cell. By definition of the
shape function in Eq.s1d, the integration only prevails inside
the QD that allows a great simplification

cK =
1

a2c
E

unit cell

fQDsr de−iK·rdr =
1

a2c
E

QD

e−iK·rdr . s4d

It is desirable to obtain the analytical expression of the
FCs in Eq.s4d to optimize computational speed and accuracy
and more importantly to give a physical insight of how vari-
ous QD geometrical parameters will affect the calculation.
Table I presents the result of our calculation for several QD
shapes of great interest: cubical, pyramidal, spherical, and
lens shaped. For QDs with rectangular symmetry such as
cubical and pyramidal QDs analytical expressions can be de-
rived. However, for spherical and lens-shaped QDs that pos-
sess spherical symmetry, only semianalytical expressions can
be obtained where subsequent numerical integrations are re-
quired.

All QD shape functions have to be real functions, there-
fore the following property applies:c−K =cK

* . This fact is
useful in numerical computation such as for the spherical and
lens-shaped QD, so that only half of the spectrum need to be
calculated. Another noteworthy property is that the volume
of the QD is equal to product of zeroth order FC and the
volume of the unit cellsVQD=cK 0,0,0

a2cd. In other words,
cK 0,0,0

can also be viewed as the average of the QD material
in the unit cell.

For completeness, a special shape function called wetting
layersWLd is presented in Table I to construct composite QD
model by exploiting the linear property of Fourier transform.
A real SAQD system such as QDs grown on WLs can be
represented as a superposition of QDs and WLs. The super-
position applies to the shape function as well as to the FCs.
So in this example, the FC of the composite QD can be
simply expressed as

cK ,QD+WL = cK ,QD + cK ,WL. s5d

However, there is a caveat, each shape function must not
overlap with each other for Eq.s5d to hold. This is a conse-
quence of the way we define QD shape function in Eq.s1d.

A typical WL is very thin with respect to the average
lattice spacinga or c,31 thus higher order of FCssNFCd are
required to sufficiently represent its potential function. A rule
of thumb following “Nyquist” criteria is that we should
chooseNFC.c/ t, wherec is the vertical lattice constant and
t is the WL thickness. This is generally true for any QDs as
well, where the thicknesst represents the critical dimension
susually the thinnest dimensiond that affects the energy levels
the most. If the WL is very thin relative to the size of QD one
could safely neglect it. This is especially true when there is
interdiffusion, as a thin WL will be more quickly interdif-
fused compared to the QD.32 For this reason we normally
neglect any presence of a WL in our calculation presented
here, however, one may be interested to model the WL, for
example to study the coupling between the quantum states in
the WL and QD.

Another useful property of the Fourier transformation for
constructing a composite QD model is the shift theorem. A
translation in real-space domain by a vectorr 0, is simply
reflected by a multiplication of exps−iK n,m,l ·r 0d to the
FCs. For example the FC of the WL has a factor of
exps−i2plz0/cd that reflects a shift of the WL center to co-
ordinatez0 on thez axis. This is used to position the WL just
underneath the QD. Similarly, the lens-shaped QD is shifted
so that the center of the imaginary sphere is located atz0, to
conveniently position the QD in the center of the unit cell
and ensure that the whole QD is contained within the unit
cell.

III. The Hamiltonian Model

To calculate the bound energy levels and the wave func-
tion for the electron and holes we use the single-band
effective-mass approximation to the Schrödinger’s equation.
In the framework of envelope function scheme and effective
mass approximation, the Schrödinger’s equation in
BenDaniel-Duke’s25 formulation is given as

−
"2

2
¹ F 1

m*sr d
¹ Csr dG + Vsr dCsr d = ECsr d. s6d

In semiconductor heterostructures, especially for interdif-
fused heterostructures, the nonuniform distribution of the al-
loy concentration results in anisotropic distribution of effec-
tive mass of the carriers. The BenDaniel-Duke’s equation
formulation ensures that the carrier’s probability current is
conserved throughout the space.

In a periodic potential, the solution of the Schrödinger’s
equation eigenwave functions can be written as

Cksr d = o
K

Ck+Keisk+K d·r , s7d

where k is crystal momentum of the carrier. This form of
solution ensures that the Bloch’s theorem is satisfied.

We then transform the real space BenDaniel-Duke’s equa-
tion into momentum spacesor reciprocal spaced domain,
whose derivation is presented in the Appendix
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o
K8
H"2

2
MK−K8fsk + K 8d2 + sK − K 8d · sk + K 8dg

− dK−K8E + UK−K8JCk+K8 = 0, s8d

wheredK−K8 is the Kronecker delta function, withdK−K8=1
for K =K 8 and 0 otherwise.MK is the FC of the reciprocal
effective mass,UK is the FC of the potential function in the
conduction or valence band edge. WhileE is the eigenenergy
and CK is the FC of the eigenwave functions. Equations8d
above is the secular equation of the Hamiltonian that facili-
tates a rather straight forward programming effort to com-
pute the eigenenergies and wave functions. For our purpose
in this paper, we calculate the bound energy levels atk =0
that represents theG point of the QD superlattices Brillouin
zone. In principle one could derive the multiband version of
the Hamiltonian in momentum space akin to Eq.s8d, to give
more realistic description of the valence band states. How-
ever, in order to focus our study on the three-dimensional
interdiffusion effect, a single-band Hamiltonian model
should be sufficient.

IV. Interdiffusion Model

We present the standard model of interdiffusion in binary
alloy based on simplifying assumption of linear and isotropic
diffusion process. The position-dependent function of the
fractional alloy concentrationxsr d is related to the shape
function as defined in Eq.s1d:

xsr d = xB + sxW − xBdfQDsr d, s9d

where xW is the initial alloy concentration inside the QD
swelld region andxB outside the QDsbarrierd region.

Consider an isotropic interdiffusion process, that can be
desribed by Fick’s law

]xsr d
]sDtd

= ¹2xsr d, s10d

whereDt=Ld
2, with D is the diffusion constant,t is diffusion

time, andLd is the diffusion length. This equation is a linear
second order partial differential equation, therefore quantities
linearly related toxsr d should also obey the same equation
and have similar solution. The Fick’s diffusion equation can
be solved by Fourier decomposition technique, whose solu-
tions can be expressed as

xsr ,Ldd = o
K

suKe−K 2Ld
2
deiK·r . s11d

In other words, upon interdiffusion, the FCs are attenuated
by a factor of exps−K 2Ld

2d:

uKsLdd = uKe−K 2Ld
2
. s12d

This is a useful relationship, as it applies to FCs of any
quantities that are linearly related tox, including the shape
function whose FCs iscK .

Using Vergard’s law, the band gap of most III–V hetero-
structures can be approximated as a linear interpolation of
the fractional alloy concentration

Egsxd = aE + bE x, s13d

where x is the fractional concentration of a III–V element
AxB1−x. Here we can express the potential confinement in
conduction or valence band as

VBsr d = QBfEgsr d − EgBg, s14d

where EgB=aE+bExB is the band gap at the barrier that
serves as the zero reference, andQB is the band offset coef-
ficient. Combining with Eq.s9d, the FCs of this potential
function can be readily expressed as a function of the shape
functions FCscKd:

UB,K = QBbEsxW − xBdcK . s15d

Alternatively, one could substituteQBbE with the potential
depth inside the QDsV0e or V0hhd if it is known. The effec-
tive mass of electron in most III–V heterostructures can also
be written in terms of linear interpolation of the alloy con-
centrationx. However, it is the reciprocal effective mass term
sMKd that is needed to construct the secular Hamiltonian
matrix fEq. s8dg. In the spirit of Vergard’s law we apply the
same interpolation method for the reciprocal effective mass

1

m* = aM + bMx. s16d

Combining this with Eq.s9d we can readily express the
FCs of the reciprocal effective mass as a function of the
shape function’s FCscKd:

MK = saM + bMxBddK + bMsxW − xBdcK . s17d

From Eqs.s15d ands17d, the use of a separate shape func-
tion fQD and its FCs are clearly justified, as four sets of
quantities namelyUB,K andMK for both conduction and va-
lence band, all can be expressed as simple linear functions of
cK .

Following Eq. s12d, the effect of interdiffusion to the
potential function and the reciprocal effective mass are
simply reflected as an attenuation to their FCs by factor
exps−K 2Ld

2d,

UKsLdd = UKe−K 2Ld
2
, s18d

MKsLdd = MKe−K 2Ld
2
. s19d

This fact highlights our main motivation working in mo-
mentum space domain, as the solution to the Fick’s diffusion
equation comes automatically. Figure 1scd presents a two-
dimensional cross section of the conduction band’s potential
function for a noninterdiffused and an interdiffused QD.

Although in real QD structures such as in InAs/GaAs
QD, the presence of strain is significant, there has been no
consensus about to what extent the strain influences the in-
terdiffusion. Ryuet al.33 proposed a non-Fickian diffusion
model that takes into account the effect of strain in
InGaAs/GaAs heterostructure. However, in similar experi-
ment using two multiple QWs of InGaAs/GaAs with four
sets of different Indium concentration each, Gillin34 observed
no effect of the strain on the interdiffusion process. If the
strain fields within the QDs are quite uniform, we can rea-
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sonably assume that the diffusion process is approximately
isotropic.

V. Computation

In this section, we present calculations for InAs/GaAs
QDs system. We use the material parameters set as used in
Ref. 23 where a single band Hamiltonian with constant con-
fining potential model is used. For electron we have:V0e
=450 meV, InAs me

* =0.04me, GaAs me
* =0.0665me. For

heavy hole we have:V0hh=266 meV, InAsmhh
* =0.59me,

GaAsmhh
* =0.377me. We neglect the presence of any WL in

our calculation.
To construct the secular matrix equationfEq. s8dg we need

to calculate the FCs for the potential and the reciprocal ef-
fective mass whose indexK has subindexesn, m, l running
from −NFC…NFC each. The resulting secular matrix has a
total sizes2NFC+1d33 s2NFC+1d3. However, due to the con-
volution in theK index in bothMK−K8 andUK−K8 in Eq. s8d,
FCs up to the order of 2NFC are taken into account, which
actually works to our advantage. MATLAB is used as the
programming platform. It has an eigenvalue solver function
based on the ARPACK routine capable of solving large few
eigenvalue problem. Further reduction in matrix size is pos-
sible by exploiting the symmetry of the QD such as the pyra-
mid and cubic QD that belong toC4v symmetry group.

The critical parameters to yield an accurate bound state
calculation are the number of maximum order of FCssNFCd
and the relative size of unit cell with respect to QDs size
sa/bd which basically determines the boundary condition.
Figure 2 shows the electron ground state energies at varying
a/b values calculated with differentNFC. The calculation is
done for a noninterdiffused InAs/GaAs cubical and pyrami-
dal QDs with the same volume. As we increase the order of
FCssNFCd involved in the calculation, the curves converge to
their asymptotic limitsshown as dotted line labeledNFC=`d.
However, as we bring all QDs closersa/b,2d, the ground
state energy decreases as the coupling between neighboring
QDs becomes stronger due to increased tunneling. We notice
that for pyramidal QDs, the convergence is slower than the
cubic QD. This is due to the sharp feature in the apex of the
pyramid that requires higher order of Fourier components to
sufficiently describe it. A typical parameter we use areNFC
=5 anda/b<3 to obtain sufficiently accurate results with
convergence error not more than 5%. Similar situations ap-
ply in choosing the value of the vertical tetragonal lattice
size scd. In this case, we also usec/h<3 to maintain suffi-
ciently accurate result.

Before investigating the interdiffusion effect in QDs, it is
instructive to validate our model against others’ works in
calculating noninterdiffused QDs bound states. In our model,
a noninterdiffused QDs is simply described by settingLd
=0. For the case of InAs/GaAs pyramidal QD, Cusacket
al.26 and Grundmannet al.27 have calculated the bound states
electron energies using a considerably detailed model incor-
porating strain and piezoelectric effect. The calculations
were performed at varying size of pyramidal QD with a fixed
aspect ratioh/b=0.5. The range of size fromb=60 to 200 Å,
represents a range of typical pyramidal QDs size found in

practice. Using the material parameters as used by Califano
et al.,23 we reproduce the resultsssolid curved as shown in
Fig. 3. In general, our calculation fall within 12% of the
more complicated calculation results of Cusacket al. and
Grundmannet al., a reasonable result considering many sim-
plifications we made in our model.

VI. Results and Discussion

Besides material parameters that one has less control
with, a QD have additional parameters such as the shape,
size, and aspect ratiosif applicabled that uniquely describe it.
In this section we will study the interdiffusion effect to the
QD ground state energy levels and particularly the effect of
QD shape and size.

Figure 4 presents our calculation for the ground state tran-
sition energiessEe0→hh0d on four different shapes of isovol-
ume QDs at increasing degree of interdiffusion represented
by the diffusion lengthsLdd. In general we observe the well
known effect of interdiffusion on quantum heterostructures,
i.e., blueshifting of the energy levels. Despite having the
same volume, the ground energies are different, from lowest
to highest: spherical, cubical, lens-shaped, and pyramidal
QD. This difference is attributed to increasing presence of
sharp feature in those QDs. The carrier wave function tends

FIG. 2. Convergence of electron ground state energies at in-
creasingNFC and as a function ofa/b for: sad cubical QD, sbd
pyramidal QD. Both QDs have the same volume and unit cell. The
dotted line indicates asymptotic curve forNFC=`.
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not to occupy the sharp corners, making the effective size of
the QD is smaller leading to a higher bound state energy. For
the practical application of QD band gap engineering via
interdiffusion technique, one would like to achieve the larg-
est blueshift range possible. Therefore, sharp features and
small aspect ratio in QD shape are undesirable. In this re-
spect, lens shaped QD are preferred over pyramidal QDs.

In Fig. 4, at very high diffusion length all ground state
energies converge to the same value. This situation repre-
sents a completely interdiffused system, where the QDs have
lost confinement and their energy levels merge to the barri-
er’s continuum energy levels. From the point of view of our
model, this can be understood from the fact that at very high
diffusion length all components of FCsfEq. s18dg are com-
pletely attenuated except the zeroth order component
scK 0,0,0

d. Thus since all the QDs and their unit cells have the
same volumessamecK 0,0,0

d, their ground state energies con-
verge to Ee0→hh0=cK 0,0,0

sV0e+V0hhd at very high diffusion
length.

Despite difference in shapes, all the QDs here show quali-
tatively similar blueshift characteristics. This similarity sug-
gests that an empirical equation can be used to describe this
common behavior. Indeed we found that if we normalize the
blue shift curves, they fit reasonably well to sechsxd function.

Here 0% blueshift correspond to ground state transition en-
ergy sEe0→hh0d of noninterdiffused QDsLd=0d and 100% to
a completely interdiffused QDsLd→`d. A very interesting
and important feature of this empirical model is that there is
only one independent parameter, we call blueshift rate coef-
ficient sBRCd designated asb, that characterizes the blueshift
profile. This parameterb actually represents the rate of in-
terdiffusion where a higherb corresponds to a higher inter-
diffusion rate. We can write this empirical model as

de0→hh0 =
DEe0→hh0

Ee0→hh0
= 1 − sechSb

Ld

R
D , s20d

wherede0→hh0 is the normalized transitional ground state en-
ergy blueshift andR represents the size of the QD, which is
the radius of a spherical QD of the same volume, given as
R=Î34VQD/3p.35 The inset in Fig. 4 shows the sechsxd curve
that fits well to the data points of the normalized energy
blueshifts for the four types of QDs.

We are now interested in how the size and aspect ratio
sfor lens-shaped and pyramidal QDd influence the blueshift
characteristics. We calculate the blueshift interdiffusion pro-
file sEe0→hh0 vs Ldd such as the one in Fig. 4 and repeat them
at variousR for all type of QDs. Then we inspect whether
they fit to the sechsxd curve. If they do, we extract the pa-
rameterb using a standard curve-fitting procedure. The re-
sult is presented in Fig. 5.

We found that the blueshift interdiffusion profile fits to the
sechsxd model in almost entire range of QD size, with excep-
tion of very small QDssR,20 Åd. Figure 5 shows a striking
feature, for any given QD size, all QDs have practically the
same parameterb, indicating that the interdiffusion rate
is not sensitive to the shape, but rather it is more sensitive to
the size of the QD. The size dependence becomes stronger
for smaller QDs where the quantum confinement becomes
more significant. In this regime we haveR,lVe and R
,lVhh where lVe=h/Î2me

*V0e and
lVhh=h/Î2mhh

* V0hh, the de-Broglie wavelength of the carri-

FIG. 3. Validation of our modelssolid lined for noninterdiffused
InAs/GaAs pyramidal QDs with the theoretical models from Cu-
sacket al. shollow squaresd and Grundmannet al. sfilled circlesd.
The plots display ground state energies with respect to the un-
strained GaAs conduction and valence band, respectively, forsad
electron andsbd heavy holes.

FIG. 4. The interdiffusion effect on the ground state transitional
energies for the four types of isovolume QDssVQD=167
3103 Å3d with the same unit cell. The lens-shaped and pyramidal
QD have aspect ratioh/b=0.5 sInset:d Normalized blueshift that
follows an empirical sechsxd curve.
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ers having kinetic energy equal to the potential height of the
QDs. Here the smaller size of QD also leads to higher ground
state energies. This fact implies that small QDs are not fa-
vorable for QD band gap engineering, first because the
ground state energy levels are higher causing smaller range
of blueshift tunability, second because the interdiffusion rate
is higher and very sensitive to the size, rendering interdiffu-
sion control more difficult. In another aspect, for these small
QDs since there is a strong dependence for the blueshift rate
sbd with respect to QD size as shown in Fig. 5, it is possible
to deduce the size of the QDs from its blueshift profile using
interdiffusion experiment. This provides an interesting appli-
cation of interdiffusion technique as an alternative for QD
size determination.

Besides the size of QD, lens-shaped and pyramidal QD
have another critical parameter which is the aspect ratio
sh/bd. Figure 6sad shows blueshift profiles of lens-shaped
QDs with varying aspect ratio but constant volumesand also
fixed unit cell’s volumed. The blueshift interdiffusion profiles
for aspect ratioh/b=0.5 down toh/b=0.3 still follow the
sechsxd model. However, for a smaller aspect ratiosh/b
ø0.2d, that represents very thin QDs, significant deviation
appears so that they no longer fit to the sechsxd curves. This
fact indicates a limitation to the model. Apparently for very
thin QDs, initial interdiffusion occurs more dominant in one
direction, rendering them essentially as a one-dimensional
interdiffusion system instead of three-dimensional one. As
the interdiffusion proceeds, interdiffusion in other directions
become comparable. This transition from one-dimensional to
three-dimensional interdiffusion in thin QDs appears as a
kink in the blueshift curve indicated by an arrow in Fig. 6sad.

For lens QD with a higher aspect ratiosh/bù0.3d,36 the
sechsxd model still applies and the parameterb is presented
in Fig. 6sbd, which is essentially no different with Fig. 5.
However, for the aspect ratioh/b=0.3, we notice a small
deviation starts to develop at smallR. We note that the re-
sults presented on lens-shaped QDs here also apply to the
truncated pyramid QDs.

Finally we would like to apply our model to study an
experimental result of interdiffused lens-shaped InAs/GaAs

QD done by Fafardet al.15 This experimental result is chosen
for the availability of the diffusion lengths data deduced
from the WL blueshift thus allowing a direct comparison
with our model. Using standard rapid thermal annealing
technique, the interdiffused QD’s achieved significant blue-
shifts up to 200 meV. Reference 15 presents PL data that
exhibit the expected blueshifts behavior and indicates a typi-
cal aspect ratio of the QDs to beh/b=1/8,however, the size
of the QD for the sample presentedssample Dd15 is not
known. Since the aspect ratio is small we can not use the
sechsxd empirical model described above, so we have to re-
sort to full calculation using our model. From the ground
state transitional energysEe0→hh0d PL peak, we deduced the
base diameter of the QD to beb=s195±20d Å, given the
aspect ratioh/b=1/8. About 10% uncertainty inb comes
from the fact that our model is only that much accurate com-
pared to more sophisticated models discussed in Sec. V. We
neglect the presence of the WL for the reason mentioned in
Ref. 32. Then we calculate the blueshift interdiffusion char-
acteristics shown as a solid curve in Fig. 7. The gray band is
the range of possible blueshift profiles given ±10% uncer-
tainty of b. Our model shows a reasonably good agreement
with the experimental datascirclesd. This result demonstrates
that our model provides a good description for the QD inter-
diffusion problem despite a number of simplifications and

FIG. 5. Variation ofb with respect to the QD sizeR for the four
types of QDs. The lens-shaped and pyramidal QD have aspect ratio
h/b=0.5. The volume ratio of the QD to the unit cell are kept
constantsconstantcK 0,0,0

d.

FIG. 6. sad Blueshift profile of isovolume lens shaped QDs with
varying aspect ratio. The profile for thin lens QDs with aspect ratio
h/bø0.2 do not fit to sechsxd curve anymore and exhibits a kink
indicated by an arrowssee textd. sbd Lens-shaped QDsb parameter
at various size and aspect ratio.
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approximations made in our model. A closer inspection
shows a higher blueshift compared to the theoretical values.
Even though this discrepancy can be attributed to the inac-
curacies of our model, we cannot rule out the fact that there
may be some initial interdiffusion already present that was
induced during sample growth at an elevated temperature.15

A finite initial diffusion length will shift the experimental
data pointsscircled to the right, in better agreement with the
theoretical curve.

VII. Conclusions

In this paper, we present an approach to analyze the elec-
tronic structure of interdiffused quantum dots by solving the
BenDaniel-Duke’s equation in the momentum space. This
approach offers some advantages such as automatic solution
to the diffusion equation, reduction in the Hamiltonian ma-
trix size and natural representation of large arrays of QDs.
Four types of QDs model namely cubical, spherical, pyrami-
dal, and lens shaped were developed. The interdiffusion ef-
fects on the energy levels of these QDs have been analyzed
and some similarities in the blueshift profiles have been ob-
served. Based on this observation we propose a simple em-
pirical model using sechsxd function to estimate the blueshift
profile based on a single parameterb that characterize the
rate of interdiffusion. This model applies to QDs of any
shape and any size where the confinement in all three dimen-
sions are comparable, such as spherical QD, cubic QD, and
also lens-shaped and pyramidal QDs with aspect ratioh/b
ù0.3. We found that smaller QDs not only have a smaller
range of blueshift tunability but also a higher interdiffusion
rate rendering them less desirable for application utilizing
QD interdifusion. We also have related our model to an ex-
perimental data and found a good agreement. The model
presented here will serve as a valuable tool for QD band gap
engineering based on the interdiffusion technique.
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Appendix

Here we derive the secular equation of the Hamitonian for
the BenDaniel-Duke’s formulation in momentum space do-
main. Starting from the Schrödinger’s equation in the
envelope-function scheme and effective-mass approximation

−
"2

2
¹ F 1

m*sr d
¹ Csr dG + Vsr dCsr d = ECsr d. sA1d

Using the identity¹ ·sfAd=s¹fd ·A +f ¹ ·A:

−
"2

2
F 1

m*sr d
¹2Csr d + ¹

1

m*sr d
· ¹ Csr dG + Vsr dCsr d

= ECsr d. sA2d

Since the potential function is periodic, the eigenwave
functions should satisfy the Bloch’s theoremCsr d
=uksr deik·r, where for every wave function having crystal
momentumk it can be expanded in terms of reciprocal lat-
tice vectorK :

Csr d = o
K

Ck+K eisk+K d·r = o
q

Cqeiq·r . sA3d

The potential function can also be expressed in terms of
complex Fourier series

Vsr d = o
K

UKeiK·r , whereUK =
1

a2c
E Vsr de−iK·rdr .

sA4d

Similarly for the reciprocal effective mass

1

m*sr d
= o

K
MKeiK·r , whereMK =

1

a2c
E 1

m*sr d
e−iK·rdr .

sA5d

Where the integrations are carried out within the unit cella
3a3c.

EquationsA2d has three multiplication terms that involve
Fourier series. The products can be rearranged and simplified
as

1

m*sr d
¹2Csr d = − o

q
eiq·rFo

K8

MK−K8Ck+K8sk + K 8d2G ,

sA6d

¹
1

m*sr d
¹ Csr d

= − o
q

eiq·rFo
K8

MK−K8Ck+K8sK − K 8d · sk + K 8dG ,

sA7d

FIG. 7. Comparison of experimental datascirclesd of interdif-
fused InAs/GaAs lens-shaped QDs from Ref. 15 and our calcula-
tion ssolid curved and its uncertaintiessgray bandd. The diffusion
lengths on the horizontal axis are deduced from the blueshift of the
WL.
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Vsr dCsr d = o
q

eiq·rSo
K8

UK−K8Ck+K8D , sA8d

whereq=k +K .
Putting them to the BenDaniel-Duke’s equation in Eq.

sA2d, we now have

o
q

eiq·ro
K8
H"2

2
MK−K8fsk + K 8d2 + sK − K 8d · sk + K 8dg

− dK−K8E + UK−K8JCk+K8 = 0. sA9d

With oqeiq·r =0 as the trivial solution, now we arrive at the
secular equation of the Hamiltonian

o
K8
H"2

2
MK−K8fsk + K 8d2 + sK − K 8d · sk + K 8dg

− dK−K8E + UK−K8JCk+K8 = 0. sA10d

If the carriers’ effective mass is isotropic in real space, the
Fourier expansion of the reciprocal effective mass has only a
single component:MK =s1/m*ddK , thus Eq.sA10d reduces to
the familiar Schrödinger’s equation in momentum space

F "2

2m* sk + K d2 − EGCk+K + o
K8

UK−K8Ck+K8 = 0.

sA11d
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