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Electronics states of interdiffused quantum dots
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We have developed a three-dimensional model for electronic states calculation of interdiffused quantum dots
(QD9) with arbitrary shape by solving the BenDaniel-Duke’s equation in momentum space domain. The
proposed model features several advantages such as automatic solution to the Fick’s diffusion equation, a
relatively compact and efficient Hamiltonian matrix, and natural representation of a large array of QDs.
Without considering the interdiffusion effect, our model yields good agreement with our references of
InAs/GaAs QDs ground state energy calculation. We analyze the interdiffusion effect in QDs with various
shapes of theoretical and practical interest like spherical, cubical, pyramidal, and lens shaped. We study the
effect of QD size and aspect ratio to the blueshift profile due to interdiffusion. We found a similar blueshift
profile in these QDs at almost any size that can be well approximated byxgéahction. This model will
serve as a valuable tool for QD band gap engineering based on the interdiffusion technique.
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. Introduction In spite of numerous literatures on the interdiffusion in

Semiconductor heterostructures utilizing quantum dotsQ}/st.and'qua_ﬂtlljmkv.virgs, th_e?rer:ical modeling ﬁfQDS ir;ter—
(QDs and nanocrystal structure have been subjected to afiffusion is still lacking; mainly hampered by the complex
jree-dimensional nature of QDs system. Theoretical de-

extensive research field due to interest in the fundamentd

=€ lonal cm .
physics of three-dimensional quantum confinement, togethetC/IPtions of |nte|rd|ffuseq QD;? far arel limited to 8h&’or |
with the device functionality that they can provide. CurrentWO-dimensional approximatiort.A simple one-dimensiona

advances in QD heterostructures on I~V compounds semil'0de! provides good approximation for thin QDs where the

conductor have gradually placed this material system eHﬂterdlﬁusmn is more dominant in the thin direction. How-

- _ever, this model becomes inaccurate at a high degree of in-
route to succeed quantum wéeW) structure for high per ﬁ%rdiffusion where interdiffusion is comparable in all direc-

I:?)rrrnnsgr?:nl?sselzss,ir?; mee”gts;aorfzzr-zrca:g{;r?gv(\j/ g?(?vs\/%ergzgﬁgnl ns._The_:refore a full thrt_ae-dimensio_nal modeling of the
o . ) nterdiffusion effect is required to provide a more complete
Iqw threshold, high thermal §tab|I|ty, and high quantum efﬂ—and versatile description of the problem.
ciency lasers, and other active components have been dem-rhere are several methods for solving the Schrédinger
onstrated in 16Ga)As/GaAs QD systems:* The interdiffu- equation for QDs electronic structure calculation that mostly
sion effect is expected to play an important role in lowwork in real-space domain, such as: the finite element
dimensional semiconductor structures, particularly in QDsmethod (discretized Schrodinger equatié$?! and the
because of the large surface area to volume ratio compared gthonormal-set expansion meth&d?*In this paper, we de-
the bulk or QW structures. As the dimension for QDs isvelop an interdiffused QD model in momentum space do-
typically in the order of nanometer§0-500 A, a small main. We adopt the BenDaniel-Duk&gormulation for the
interdiffusion between the dots and the surrounding materialSchrédinger equation in momentum space and calculate the
as illustrated in Fig. (b), is expected to produce a significant complex Fourier coefficient$~Cg of the potential functions
change in the band structure and the optical properties of thend reciprocal effective mass to solve the Hamiltonian. Com-
material®> Recently, the capability of thermal-induced inter- pared with the existing approaches in the real-space domain,
diffusion (also referred to as intermixing or disorderifign our approach in the momentum space domain offers several
tailoring the shape and size and thus optical properties oddvantages, such as the following.
self-assembled QDESAQDS at postgrowth level has been  a. Natural representation of large arrays of QD$he
applied with promising results#The preservation of three- momentum space model allows us to use periodic boundary
dimensional confinement in the interdiffused QDs after highconditions instead of a hard-wall boundary potential like in
temperature annealing suggests that the postgrowth contrtile real space modét?* Such a boundary condition repre-
of QDs band gap via the interdiffusion technique is achiev-sents a periodic distribution of QDs arranged in an infinite
able in QD structures. The interdiffusion effect also causesattice. This serves as a physically realistic model of a typical
sharper photoluminescen¢BL) intensity indicating an im- SAQD structure where QDs are grown in large numbers.
proved optical property desirable for optoelectronics applicafurthermore, by choosing a tetragonal lattice structure as
tion. The ability to control these properties after growth of-shown Fig. 1b), we can model two different fundamental
fers a wide range of band gap tunability that is necessary foperiodicities in the SAQDs distribution. They are the period-
some device applicatiort§.1” icity of the wetting layers in vertical direction and QD den-
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niqgue has small matrix size but computationally inefficient
due to multiple-integration involved in calculating the matrix
elementg? On the other hand, in the finite-element method
or discretized Schrodinger’s equation technié@, each
matrix element can be calculated rapidly as there is no inte-
gration involved. However, the resulting Hamiltonian matrix
size is very large, in the order of 18 10°, thus computa-
tionally expensive. In contrast, the momentum space model
has the best of both worlds where the matrix size is small,
typically in the order of 189X 10°, and each matrix element
can be computed efficiently. The only integration effort
needed is to compute the FCs of the shape functions, in
which some have analytical solutions. For pyramidal QD,
which is a shape of great interest, analytical expression for
the FCs can be used thus facilitating efficient matrix ele-
ments computation and provides intuitive clues about how
the QD shape parameters will affect the result. One draw-
back in this model is that it requires higher order of FCs to
sufficiently describe QDs with sharp feature, e.g., a pyrami-
dal QD. Fortunately, the ground state of most QDs is not
I Eo-hno sensitive to the sharp feature of the QD, especially when they
- are heavily interdiffused, thus most of the computation can
Ey be done efficiently using relatively small number of FCs.
—>x — In this paper we present calculations for the case of
(C) v end) In(Ga)As/GaAs QDs, that are of great interest and have
cB been well investigated both theoretically and
experimentally->17:22.23.26-2f0r the purpose of modeling the
= .0 A " interdiffusion effect in three dimensions, we choose a basic
. 1 S 2 smgle-band r_nodel f(_)_r both conduction and vz_alence band
voom a3 FOM o m oS Xm) while neglecting additional effects such as strain, perturba-
tion potential due to piezoelectricity, and multiband Hamil-
FIG. 1. (a) A superlattice of pyramidal QDs with tetragonal unit tonian model. Nevertheless, we utilize modified material pa-
cell. (b) Interdiffusion smears the alloy distribution resulting in rameters that incorporate the influence of these effeatsd
band gap disordering in all directions. Band gap profiles for thealso account the effect of effective mass anisotropicity by

noninterdiffused(left) and interdiffusedright) QD along thex di- using the BenDaniel-Duke’s formulation. Even though the
rection are shown(c) Conduction band edge potential profilezat model does not have the complexities that account for these
=0 plane for: noninterdiffusedeft) and interdiffusedright) QD. additional effects, it should retain the essential physics of

interdiffused QDs. We have attempted to provide a general

sities in horizontal direction. This feature is essential to@nd versatile model by investigating most common QD
model high density SAQDs, where spacing between neighshapes of interest like cubical, pyramidal, spherlcgl, and Ien;
boring QDs is close enough that coupling among adjacenthaped QD. The QD shape models are characterized by their
QDs is significant. On the other hand, if the unit cell is suf-geometrical parameters like base, width, and height, there-
ficiently large compared to the QDs, the low-lying QD boundfor‘? QDs with arbitrary size and aspect_ratlo can be eas_lly
states become insensitive to the boundary conditions. Agefined. In general our model serves as first-order calculation
such, the model could also be used to describe an isolatdfat provides a framework and reference point for a more
QD, like the real space model with hard-wall boundary con-complicated treatment. It will be of great interest for experi-
dition. mentalists in both epitaxy growth and heterostructures inter-

b. Automatic solution to the Fick’s diffusion equati@ne ~ Mixing communities to relate their experiments with a
method to solve the Fick's diffusion equation is by the Fou-Simple model.
rier decomposition technique. In the reciprocal-space do-
main, one needs to calculate th.e cqmplex FCs of the poten- II. Quantum Dots Model
tial functions to solve the Hamiltonian. The same FCs are
also used to express the solution of the Fick’s diffusion equa- We start from noninterdiffused description of the QDs,
tion. In general, the QD alloy concentration distribution andwhere the QDs are distributed periodically in a tetragonal
their related properties with approximate linear dependenciesuperlattice structure with dimensiorssx ax ¢ as shown in
like band gap and effective mass can be calculated at arfyig. 1(a). We intentionally choose tetragonal superlattice
diffusion length. structure whose lattice constaamtand c reflect two physical

c. Small Hamiltonian matrix size and efficient matrix ele- parameters that characterize the distribution of SAQDs in
ment computatianA typical orthonormal-set expansion tech- real space. First is the density of SAQDs that determines the
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TABLE I. The FCs of the shape functions for the four types of QDs and a WL drawn orzlptane of the tetragonal unit cébee Ref.
29). The pyramidal QD described here refers to a generalized truncated pyramidae®Ref. 3D
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average spacinga) between QDs in the horizontdk-y) ratio (h/b) and one can adjust the size of the lattice constant

plane. Second is the period of the wetting layer that governa andc accordingly.

the periodicity of the SAQDs$c) in the growth directior(z). The three-dimensional band edge potential and the carrier
Clearly, the model will reduce to simple lattice structure for effective mass depend on the alloy concentration at every
c=a. On the other hand, for most SAQDs system the spacingoint in space that are essentially determined by the shape of
between adjacent QDs are very large, therefore the QDs aphe QD in the three dimensions. For that purpose, we define
pear as an isolated QDs. In this regime we can limit thea shape function within a unit cell

relative size of the unit cell so that accurate result still can be

obtained with a finite number of FCs in the calculation. In o
this case a tetragonal lattice model is essential for efficient Foo(r) = 1 inside QD . (1)
calculation, as often times the QDs have a very low aspect @b 0 outside QD
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For example, using the shape function, the band-edge po- A typical WL is very thin with respect to the average
tential function can be expressed ags(r)=Vgofop(r), lattice spacinga or ¢,*! thus higher order of FC&Ngc) are
where the subscrif represents either conduction or valencerequired to sufficiently represent its potential function. A rule
band edgeVgy has a negative value to represent potentialof thumb following “Nyquist” criteria is that we should

confinement inside the QD. chooseN->c/t, wherec is the vertical lattice constant and
Since the shape function is periodic in space, we can ex-is the WL thickness. This is generally true for any QDs as
press it in terms of complex Fourier series well, where the thicknessrepresents the critical dimension
, (usually the thinnest dimensipthat affects the energy levels
fon(r) = > cc ek, (2 the most. If the WL is very thin relative to the size of QD one
K

could safely neglect it. This is especially true when there is
interdiffusion, as a thin WL will be more quickly interdif-
fused compared to the Q¥.For this reason we normally
neglect any presence of a WL in our calculation presented
K nmi = 2a/a[nX + my] + 27l/cz (3) here, however, one may be interested to model the WL, for
. . . example to study the coupling between the quantum states in
with n, m, and| are integers running fromesto «. Occa-  the WL and QD.
sionally these subscripts are omitted for convenience. Another useful property of the Fourier transformation for
The complex FCs have to be calculated by performing theonstructing a composite QD model is the shift theorem. A
required integration within a unit cell. By definition of the translation in real-space domain by a vectgr is simply
shape function in Eq1), the integration only prevails inside reflected by a multiplication of expiKnmiTo) to the

whereK is the reciprocal lattice vector that runs through all
lattice points. For tetragonal lattice it is defined as

the QD that allows a great simplification FCs. For example the FC of the WL has a factor of
1 1 exp(-i2mlzy/c) that reflects a shift of the WL center to co-
Ck = Tf r)e iKrgr = > f e rdr. (4 ordinatez, on thez axis. This is used to position the WL just

aCJ unit cell aCtJqp underneath the QD. Similarly, the lens-shaped QD is shifted

so that the center of the imaginary sphere is locatety, ab

It is desirable to obtain the analytical expression of the Econveniently position the QD in the center of the unit cell
FCs in Eq.(4) to optimize computational speed and accuracy y P

) . LR and ensure that the whole QD is contained within the unit

and more importantly to give a physical insight of how vari- cell.
ous QD geometrical parameters will affect the calculation”
Table | presents the result of our calculation for several QD
shapes of great interest: cubical, pyramidal, spherical, and IIl. The Hamiltonian Model
lens shaped. For QDs with rectangular symmetry such as
cubical and pyramidal QDs analytical expressions can be de- To calculate the bound energy levels and the wave func-
rived. However, for spherical and lens-shaped QDs that pogion for the electron and holes we use the single-band
sess spherical symmetry, only semianalytical expressions caifective-mass approximation to the Schrodinger’s equation.
be obtained where subsequent numerical integrations are r& the framework of envelope function scheme and effective
quired. mass approximation, the Schrédinger’s equation in

All QD shape functions have to be real functions, there-BenDaniel-Duke’® formulation is given as
fore the following property appliesc_K:c*K. This fact is
useful in numerical computation such as for the spherical and 52
lens-shaped QD, so that only half of the spectrum need to be - V [ "0 v \If(r)} +V(n)W(r)=E¥(r). (6)
calculated. Another noteworthy property is that the volume
of the QD is equal to product of zeroth order FC and the In semiconductor heterostructures, especially for interdif-
volume of the unit cell(Vop= Cko.0 a’c). In other words, fused heterostructures, the nonuniform distribution of the al-
Ck g0 CAN also be viewed as the average of the QD materidby concentration results in anisotropic distribution of effec-
in the unit cell. tive mass of the carriers. The BenDaniel-Duke’s equation

For completeness, a special shape function called wettingprmulation ensures that the carrier’s probability current is
layer (WL) is presented in Table | to construct composite QDconserved throughout the space.
model by exploiting the linear property of Fourier transform.  In @ periodic potential, the solution of the Schrédinger’s
A real SAQD system such as QDs grown on WLs can beequation eigenwave functions can be written as
represented as a superposition of QDs and WLs. The super-
position applies to the shape function as well as to the FCs. W (r) = 2 Cpap@KHT, )
So in this example, the FC of the composite QD can be
simply expressed as

(5) wherek is crystal momentum of the carrier. This form of
solution ensures that the Bloch’s theorem is satisfied.
However, there is a caveat, each shape function must not We then transform the real space BenDaniel-Duke’s equa-
overlap with each other for E¢5) to hold. This is a conse- tion into momentum spacéor reciprocal spagedomain,

quence of the way we define QD shape function in @g.  whose derivation is presented in the Appendix

Ck Qp+wL = Ck,op t Ck wiL-
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2 E,(X) = ag + b X, 13
E{_MK-K{(HK')%(K—K'>-<k+K'>] o0 =26+ be 13
K’ 2 wherex is the fractional concentration of a llI-V element
AB,_,. Here we can express the potential confinement in
- &k E+Ux_x (Cesxr =0, (8) conduction or valence band as
Va(r) = QglEg(r) — Eggl, (14)

where 6« _k is the Kronecker delta function, with _x =1 ] ]

for K=K’ and 0 otherwiseMy is the FC of the reciprocal Where Egs=ag+bgxg is the band gap at the barrier that
effective massUy is the FC of the potential function in the Serves as the zero reference, &glis the band offset coef-
conduction or valence band edge. WHés the eigenenergy ficient. Combining with Eq.(9), the FCs of this potential
and Cy is the FC of the eigenwave functions. Equati@  function can be readily expressed as a function of the shape

above is the secular equation of the Hamiltonian that facilifunctions FC(cy):

tates a rather straight forward programming effort to com- Un v = Onbe(X— Xa)C 15
pute the eigenenergies and wave functions. For our purpose _ B = Qabe( W. B)Ck. _ ( _)
in this paper, we calculate the bound energy levelk =0 Alternatively, one could substitut@ghg with the potential

that represents thE point of the QD superlattices Brillouin depth inside the Q@Vy, or Vo) if it is known. The effec-
zone. In principle one could derive the multiband version oftive mass of electron in most Ill-V heterostructures can also
the Hamiltonian in momentum space akin to B8), to give  be written in terms of linear interpolation of the alloy con-
more realistic description of the valence band states. Howeentratiorx. However, it is the reciprocal effective mass term
ever, in order to focus our study on the three-dimensiona(My) that is needed to construct the secular Hamiltonian
interdiffusion effect, a single-band Hamiltonian model matrix [Eq. (8)]. In the spirit of Vergard's law we apply the
should be sufficient. same interpolation method for the reciprocal effective mass
IV. Interdiffusion Model i* —a, + byx. (16)
We present the standard model of interdiffusion in binary m
alloy based on simplifying assumption of linear and isotropic  Combining this with Eq.(9) we can readily express the

diffusion process. The position-dependent function of therCs of the reciprocal effective mass as a function of the
fractional alloy concentratiox(r) is related to the shape shape function’s FGcy):

function as defined in Eq1):

X(r) =xg+ (Xw—Xg)fop(r), 9
. (_ )” 8+ (tw = Xg) ool ). o © From Eqs(15) and(17), the use of a separate shape func-
where xy is the initial alloy concentration inside the QD tion o, and its FCs are clearly justified, as four sets of

My = (ay + byxg) 6k + by (X — Xg)Ck - (17)

(well) region andxg outside the QD(barrien region. quantities namelyg x andMy for both conduction and va-
Consider an isotropic interdiffusion process, that can b@ence band, all can be expressed as simple linear functions of
desribed by Fick’s law Ck.
axX(r) Following Eq. (12), the effect of interdiffusion to the
—==V(r), (10 potential function and the reciprocal effective mass are
d(DY) simply reflected as an attenuation to their FCs by factor

whereDt=L2, with D is the diffusion constant,is diffusion ~ €XP-K?LY),
time, andL is the diffusion length. This equation is a linear

second order partial differential equation, therefore quantities

linearly related tox(r) should also obey the same equation 52
and have similar solution. The Fick’s diffusion equation can My (Lg) = Mg ™ . (19
be solved by Fourier decomposition technique, whose solu-
tions can be expressed as

Uk (Lg) = Uye®?, (18)

This fact highlights our main motivation working in mo-
mentum space domain, as the solution to the Fick’s diffusion
X(rLy=> (uKe—KZLg)eiK-r_ (11) ~ equation comes automatically. Figurécilpresents a two- -
K dimensional cross section of the conduction band’s potential
. o function for a noninterdiffused and an interdiffused QD.
In other words, upor; |£1terd|ffu3|on, the FCs are attenuated Although in real QD structures such as in InAs/GaAs
by a factor of exp-K<Ly): QD, the presence of strain is significant, there has been no
K22 (12) consensus about to what extent the strain_ im_‘luenc_:es ';he in-
' terdiffusion. Ryuet al33 proposed a non-Fickian diffusion
This is a useful relationship, as it applies to FCs of anymodel that takes into account the effect of strain in
guantities that are linearly related xp including the shape InGaAs/GaAs heterostructure. However, in similar experi-
function whose FCs isg. ment using two multiple QWs of InGaAs/GaAs with four
Using Vergard's law, the band gap of most Ill-V hetero- sets of different Indium concentration each, Gifiobserved
structures can be approximated as a linear interpolation afo effect of the strain on the interdiffusion process. If the
the fractional alloy concentration strain fields within the QDs are quite uniform, we can rea-

Uk (Lg) = ue
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sonably assume that the diffusion process is approximately (@) OF a Ne
isotropic. {“Y’ ﬁ 1]
S0 ,.,.,r —
V. Computation = P beooA .,". ]
. . . < -100f ~ a2
In this section, we present calculations for InAs/GaAs £ r /./‘ o ]
QDs system. We use the material parameters set as used in =g [ ,.ﬂﬂ____,ﬂ::j:;&‘,ﬂ © |
Ref. 23 where a single band Hamiltonian with constant con- w 180 ".dl‘“' p
fining potential model is used. For electron we haVig, .
=450 meV, InAsm_=0.04m,, GaAs m,=0.0665m,. For -200- ]
heavy hole we haveVy,,=266 meV, InAsm;h:O.SQme, [
GaAsm,=0.377m,. We neglect the presence of any WL in 2500 L R. 1. L L
our calculation. 1 2 3 4 5 8
To construct the secular matrix equaticty. (8)] we need alb
to calculate the FCs for the potential and the reciprocal ef- () [ 7 N )
fective mass whose indd« has subindexes, m, | running ok J— 1“" 4
from —Ngc...Ngc each. The resulting secular matrix has a [ i . 1

total size(2Ngc+1)3 X (2N +1)3. However, due to the con-

b=100A
5

volution in theK index in bothMy _«, andUyk ¢ in Eq. (8), < 0l / " ]
FCs up to the order of - are taken into account, which g 4 ,,v'“ o 4
actually works to our advantage. MATLAB is used as the ~ ‘,v’" e
programming platform. It has an eigenvalue solver function w’ 100l o I:|:|“cnyo.o°° ]

based on the ARPACK routine capable of solving large few - : E‘fa;g:oio.ooo'
eigenvalue problem. Further reduction in matrix size is pos- I e
sible by exploiting the symmetry of the QD such as the pyra-
mid and cubic QD that belong t6,, symmetry group.

The critical parameters to yield an accurate bound state
calculation are the number of maximum order of RBlgc) alb

and the relative size of unit cell with respect to QDs size FIG. 2. Convergence of electron ground state energies at in-
(a/b) which basically determines the boundary condition.creasingNFC and as a function of/b for: (a) cubical QD, (b)
Figure 2 shows the electron ground state energies at varying,ramidal QD. Both QDs have the same volume and unit cell. The
a/b values calculated with differeiizc. The calculation is  dotted line indicates asymptotic curve fEc=c.

done for a noninterdiffused InAs/GaAs cubical and pyrami-
dal QDs with the same volume. As we increase the order o
FCs(Ngc) involved in the calculation, the curves converge to

their asymptotic Iimﬁt(shown as dotted line labeleg:c=<). Fig. 3. In general, our calculation fall within 12% of the
However, as we bring all QDs closea/b<2), the ground 50 complicated calculation results of Cusaatkal. and

state energy decreases as the coupling between neighborigg,,ndmanret al, a reasonable result considering many sim-
QDs becomes stronger due to increased tunneling. We nou‘iﬂiﬁcations we made in our model.

that for pyramidal QDs, the convergence is slower than the
cubic QD. This is due to the sharp feature in the apex of the
pyramid that requires higher order of Fourier components to
sufficiently describe it. A typical parameter we use Bk
=5 anda/b=3 to obtain sufficiently accurate results with  Besides material parameters that one has less control
convergence error not more than 5%. Similar situations apwith, a QD have additional parameters such as the shape,
ply in choosing the value of the vertical tetragonal latticesize, and aspect rati@ applicable that uniquely describe fit.
size (c). In this case, we also usgh=3 to maintain suffi- In this section we will study the interdiffusion effect to the
ciently accurate result. QD ground state energy levels and particularly the effect of
Before investigating the interdiffusion effect in QDs, it is QD shape and size.
instructive to validate our model against others’ works in  Figure 4 presents our calculation for the ground state tran-
calculating noninterdiffused QDs bound states. In our modelgition energiegEg _.nn) 0N four different shapes of isovol-
a noninterdiffused QDs is simply described by setting ume QDs at increasing degree of interdiffusion represented
=0. For the case of InAs/GaAs pyramidal QD, Cusatk by the diffusion lengti(Ly). In general we observe the well
al.?6 and Grundmanet al2” have calculated the bound states known effect of interdiffusion on quantum heterostructures,
electron energies using a considerably detailed model incoi-e., blueshifting of the energy levels. Despite having the
porating strain and piezoelectric effect. The calculationssame volume, the ground energies are different, from lowest
were performed at varying size of pyramidal QD with a fixedto highest: spherical, cubical, lens-shaped, and pyramidal
aspect ratid/b=0.5. The range of size frolm=60 to 200 A, QD. This difference is attributed to increasing presence of
represents a range of typical pyramidal QDs size found irsharp feature in those QDs. The carrier wave function tends

150

E)ractice. Using the material parameters as used by Califano
et al,?® we reproduce the resultsolid curve as shown in

VI. Results and Discussion
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3 E follows an empirical sedk) curve.
2 200 f
W b ; Here 0% blueshift correspond to ground state transition en-
=230 |- ] ergy (Ee .nro) Of noninterdiffused QD(Ly=0) and 100% to
300 E 3 a completely interdiffused QDLy— ). A very interesting

T and important feature of this empirical model is that there is
8 ol 1_00 It el only one independent parameter, we call blueshift rate coef-
Base width b (A) ficient (BRC) designated ag, that characterizes the blueshift
profile. This parameteB actually represents the rate of in-
terdiffusion where a higheg corresponds to a higher inter-
diffusion rate. We can write this empirical model as

FIG. 3. Validation of our mode{solid line) for noninterdiffused
InAs/GaAs pyramidal QDs with the theoretical models from Cu-
sacket al. (hollow squaresand Grundmanret al. (filled circles.

The plots display ground state energies with respect to the un- AEeo o Ly
strained GaAs conduction and valence band, respectively(ajor Oe0—hho = . - =1l-sechp— R/ (20)
electron andb) heavy holes. €0—hh0

where d4_.nro is the normalized transitional ground state en-

not to occupy the sharp corners, making the effective size o#rgy blueshift andR represents the size of the QD, which is
the QD is smaller leading to a higher bound state energy. Fdhe radius of a spherical QD of the same volume, given as
the practical application of QD band gap engineering viaR=4Vop/ 3.3 The inset in Fig. 4 shows the sdghcurve
interdiffusion technique, one would like to achieve the larg-that fits well to the data points of the normalized energy
est blueshift range possible. Therefore, sharp features ariueshifts for the four types of QDs.
small aspect ratio in QD shape are undesirable. In this re- We are now interested in how the size and aspect ratio
spect, lens shaped QD are preferred over pyramidal QDs. (for lens-shaped and pyramidal Qinfluence the blueshift

In Fig. 4, at very high diffusion length all ground state characteristics. We calculate the blueshift interdiffusion pro-
energies converge to the same value. This situation reprédie (Eq_nno VS Lg) such as the one in Fig. 4 and repeat them
sents a completely interdiffused system, where the QDs havat variousR for all type of QDs. Then we inspect whether
lost confinement and their energy levels merge to the barrithey fit to the sectx) curve. If they do, we extract the pa-
er’'s continuum energy levels. From the point of view of ourrameterg using a standard curve-fitting procedure. The re-
model, this can be understood from the fact that at very higlsult is presented in Fig. 5.
diffusion length all components of FG&q. (18)] are com- We found that the blueshift interdiffusion profile fits to the
pletely attenuated except the zeroth order componergectix) model in almost entire range of QD size, with excep-
(ck, 0) Thus since all the QDs and their unit cells have thetion of very small QDSR< 20 A). Figure 5 shows a striking
same vqume(samecK () their ground state energies con- feature, for any given QD size, all QDs have practically the
verge 10 Eey nro=Cic, (V0e+V0hh) at very high diffusion same parametep, indicating that the interdiffusion rate
length. is not sensitive to the shape, but rather it is more sensitive to

Despite difference in shapes, all the QDs here show qualithe size of the QD. The size dependence becomes stronger
tatively similar blueshift characteristics. This similarity sug- for smaller QDs where the quantum confinement becomes
gests that an empirical equation can be used to describe thiore significant. In this regime we_haw<\y. and R
common behavior. Indeed we found that if we normalize the<Avhn where Ave=h/V2m Vo, and
blue shift curves, they fit reasonably well to segHunction.  Aynn=h/ V’Zm;hVOhh, the de-Broglie wavelength of the carri-
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FIG. 5. Variation ofg with respect to the QD sizR for the four 7 A/ 1h ... nb=03 |
types of QDs. The lens-shaped and pyramidal QD have aspect ratio | —— h/b=05
h/b=0.5. The volume ratio of the QD to the unit cell are kept 6l i
constant(constantci | ).

. o . : 51 -
ers having kinetic energy equal to the potential height of the b |
QDs. Here the smaller size of QD also leads to higher ground 4l |
state energies. This fact implies that small QDs are not fa- I
vorable for QD band gap engineering, first because the sl 3 1
ground state energy levels are higher causing smaller range | R =43Vqgp /4Tt
of blueshift tunability, second because the interdiffusion rate | PP DTS PPTIR POPEE PUTEL PP
is higher and very sensitive to the size, rendering interdiffu- 0 50 100 150 200 250 300
sion control more difficult. In another aspect, for these small R(A)

QDs since there is a strong dependence for the blueshift rate
(B) with respect to QD size as shown in Fig. 5, it is possible  FIG. 6. (a) Blueshift profile of isovolume lens shaped QDs with
to deduce the size of the QDs from its blueshift profile usingvarying aspect ratio. The profile for thin lens QDs with aspect ratio
interdiffusion experiment. This provides an interesting appli-h/b=<0.2 do not fit to seatx) curve anymore and exhibits a kink
cation of interdiffusion technique as an alternative for QDindicated by an arrowsee text (b) Lens-shaped QDg parameter
size determination. at various size and aspect ratio.

Besides the size of QD, lens-shaped and pyramidal QD
have another critical parameter which is the aspect rati®@D done by Fafar@t all® This experimental result is chosen
(h/b). Figure Ga) shows blueshift profiles of lens-shaped for the availability of the diffusion lengths data deduced
QDs with varying aspect ratio but constant volufaed also  from the WL blueshift thus allowing a direct comparison
fixed unit cell's volumé. The blueshift interdiffusion profiles with our model. Using standard rapid thermal annealing
for aspect ratich/b=0.5 down toh/b=0.3 still follow the  technique, the interdiffused QD’s achieved significant blue-
sectix) model. However, for a smaller aspect ratio/b  shifts up to 200 meV. Reference 15 presents PL data that
=<0.2), that represents very thin QDs, significant deviationexhibit the expected blueshifts behavior and indicates a typi-
appears so that they no longer fit to the ggLleurves. This  cal aspect ratio of the QDs to Iéb=1/8, however, the size
fact indicates a limitation to the model. Apparently for very of the QD for the sample presentédample D'®° is not
thin QDs, initial interdiffusion occurs more dominant in one known. Since the aspect ratio is small we can not use the
direction, rendering them essentially as a one-dimensionaleclix) empirical model described above, so we have to re-
interdiffusion system instead of three-dimensional one. Assort to full calculation using our model. From the ground
the interdiffusion proceeds, interdiffusion in other directionsstate transitional energfE«_.nmo) PL peak, we deduced the
become comparable. This transition from one-dimensional thase diameter of the QD to de=(195+20 A, given the
three-dimensional interdiffusion in thin QDs appears as aspect ratioh/b=1/8. About 10% uncertainty irb comes
kink in the blueshift curve indicated by an arrow in Figas  from the fact that our model is only that much accurate com-

For lens QD with a higher aspect raib/b=0.3),*® the  pared to more sophisticated models discussed in Sec. V. We
sectix) model still applies and the paramej@iis presented neglect the presence of the WL for the reason mentioned in
in Fig. 6(b), which is essentially no different with Fig. 5. Ref. 32. Then we calculate the blueshift interdiffusion char-
However, for the aspect ratib/b=0.3, we notice a small acteristics shown as a solid curve in Fig. 7. The gray band is
deviation starts to develop at sm&l We note that the re- the range of possible blueshift profiles given +10% uncer-
sults presented on lens-shaped QDs here also apply to thainty of b. Our model shows a reasonably good agreement
truncated pyramid QDs. with the experimental dataircles. This result demonstrates

Finally we would like to apply our model to study an that our model provides a good description for the QD inter-
experimental result of interdiffused lens-shaped InAs/GaAdliffusion problem despite a number of simplifications and
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O . . . 100 thank Professor Mansour Shayegan, Professor Stephen Lyon
50k 6—_{,, oo ~ of Princeton University, and Dr. Wirawan Purwanto of The
= College of William and Mary for support and illuminating
< 190F b o0 2 discussion.
£ -150F  h/b= o) $
= %]
f-zoo 3 140 B Appendix
[4 (2}
w250 420 & Here we derive the secular equation of the Hamitonian for
300F @ the BenDaniel-Duke’s formulation in momentum space do-
10 main. Starting from the Schrédinger’s equation in the
S50k, - e e 1 envelope-function scheme and effective-mass approximation
Diffusion length Ly (A) 52 1
ey \Y m*_(r) V() [ +V()W(r)=E¥(r). (Al)

FIG. 7. Comparison of experimental da@rcles of interdif-

fused InAs/GaAs lens-shaped QDs from Ref. 15 and our calcula- Using the identityV - (¢A)=(Vp)-A+¢ V -A:
tion (solid curve and its uncertaintieggray bang. The diffusion

lengths on the horizontal axis are deduced from the blueshift of the r?l 1 9 1
WL. - —| —=——=VU(Ir)+ V—F——-VU(r) | +V(r)¥(r)
2 m(r) m (r)
=EW(r). (A2)

approximations made in our model. A closer inspection
shows a higher blueshift compared to the theoretical values. Since the potential function is periodic, the eigenwave
Even though this discrepancy can be attributed to the inagunctions should satisfy the Bloch’s theoren¥(r)
curacies of our model, we cannot rule out the fact that ther&uk(r)eik-r, where for every wave function having crystal
may be some initial interdiffusion already present that wasnomentumk it can be expanded in terms of reciprocal lat-
induced during sample growth at an elevated temperature.tjce vectorK :

A finite initial diffusion length will shift the experimental

data pointgcircle) to the right, in better agreement with the W(r) =, Crag €€HOT= quiqf, (A3)
theoretical curve. K q

The potential function can also be expressed in terms of
complex Fourier series

In this paper, we present an approach to analyze the elec-
tronic structure of interdiffused quantum dots by solving the _ iK.r _ i _iKer
BenDaniel-Duke’s equation in the momentum space. This V(r)_% Uie™, whereUy = = V(rje™"dr.
approach offers some advantages such as automatic solution

VII. Conclusions

to the diffusion equation, reduction in the Hamiltonian ma- (A4)
trix size and natural representation of large arrays of QDs. Similarly for the reciprocal effective mass

Four types of QDs model namely cubical, spherical, pyrami-

dal, and lens shaped were developed. The interdiffusion ef- 1 _ iKer 1 1
fects on the energy levels of these QDs have been analyzed m'(r) ~ % My €™, whereMy = a%c m*(r)e dr.
and some similarities in the blueshift profiles have been ob- (A5)

served. Based on this observation we propose a simple em-
profile based on a single paramej@ithat characterize the xgxec.

rate of interdiffusion. This model applies to QDs of any  Equation(A2) has three multiplication terms that involve
shape and any size where the confinement in all three dimefourier series. The products can be rearranged and simplified
sions are comparable, such as spherical QD, cubic QD, angk

also lens-shaped and pyramidal QDs with aspect fatlp L
=0.3. We found that smaller QDs not only have a smaller 2 __ iqr "2
range of blueshift tunability but also a higher interdiffusion m*(r)V T(r=-2e [2 Mic-k- Ciearer (K +K) }
rate rendering them less desirable for application utilizing

QD interdifusion. We also have related our model to an ex- (AB)
perimental data and found a good agreement. The model

q K’

presented here will serve as a valuable tool for QD band gap 1
engineering based on the interdiffusion technique. Vm*(r) V(r)
ACKNOWLEDGMENTS -_% e‘q'f[E My Cuarcr (K = K') - (K + K')] ,
Part of this work was performed at the Nanyang Techno- a K’
logical University Singapore. The authors would like to (A7)
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- iq-r ﬁ2
V(r)\P(r)—Eq:e' (g UK—K’Ck+K’>1 (A8) E{EMK—K’[(k—FK,)Z-i-(K _K/) (k+K/)]
K!
whereq=k +K.
Putting them to the BenDaniel-Duke’s equation in Eg. =0k E+Ug k' (Crixr =0. (A10)

(A2), we now have
52 If the carriers’ effective mass is isotropic in real space, the
>gary {_MK—K’[(k +K)2+(K-K') - (k+K"] Fourier expansion of the reciprocal effective mass has only a
q L2 single component =(1/m") &, thus Eq.(A10) reduces to

the familiar Schrédinger’s equation in momentum space
_5K—K’E+ UK—K’}CK+K’:O' (Ag) hZ 5
2m*(k +K)2=E |Ciak + 2 Uy /Craxs = 0.
With =,€/9"=0 as the trivial solution, now we arrive at the K
secular equation of the Hamiltonian (A11)

* Author to whom correspondence should be addressed. Mailing Smith, Phys. Rev. B49, 8109(1994).
address: Center for Optical Technologies, Lehigh University, Sin1°C. Pryor, M.-E. Pistol, and L. Samuelson, Phys. Rev.5B,
clair Laboratory, Room 226, 7 Asa Drive, Bethlehem, PA 18015, 10404(1997.
USA. Email address: bsooi@lehigh.edu 20C. Pryor, Phys. Rev. B57, 7190(1998.
1L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Ler-2*Q. Stier, M. Grundmann, and D. Bimberg, Phys. Re\6® 5688
oux, Appl. Phys. Lett.47, 1099(1985. (1999.
2D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars?’M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev5§
and P. M. Petroff, Appl. Phys. Let63, 3203(1993. 4047(1997).
3D. Bimberg, N. N. Ledentsov, M. Grundmann, N. Kirstaedter, O.23M. Califano and P. Harrison, Phys. Rev. @&, 10959(2000.
G. Schmidt, M. H. Mao, V. M. Ustinov, A. Y. Egorov, A. E. 24M1. Roy and P. A. Maksym, Phys. Rev. B8, 235308(2003.
Zhukov, P. S. Kopev, Zh. I. Alferov, S. S. Ruvimov, U. Gosele, 2°D. J. BenDaniel and C. B. Duke, Phys. Re\62, 683 (1966.
and J. Heydenreich, Jpn. J. Appl. Phys., Pag5] 1311(1996. 26M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev58
4R. Leon, Y. Kim, C. Jagadish, J. Zou, and D. J. H. Cockayne, R2300(1996.

Appl. Phys. Lett.69, 1888(1996. 2TM. Grundmann, O. Stier, and D. Bimberg, Phys. Rev.5B,
5R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental- 11969(1995.

Weber, Phys. Rev. B68, R4262(1998. 28M. Califano and P. Harrison, J. Appl. Phy88, 5870(2000.
6N. Holonyak, Jr., IEEE J. Sel. Top. Quantum Electreh.584  29To avoid division by zero, one could use an approximation of a

(1998. For a comprehensive review see, E. H. Li,.Semicon- very small numbets ~ 1x 10°°) for zeron, m, or| indexes and

ductor Quantum Wells IntermixindGordon and Breach Sci- for pyramidal FCs the following identity can be used: @bs

ence, Amsterdam, 2000 —i tanila/b)=b cos¢—ia sin ¢.
’S. Malik, C. Roberts, R. Murray, and M. Pate, Appl. Phys. Lett. *°Complete pyramid and cubic QD are special cases of truncated

71, 1987(1997. pyramid from which their FCs can be derived. For cubic QD:
8C. Lobo, R. Leon, S. Fafard, and P. G. Piva, Appl. Phys. L&2f. d=h=b, and complete pyramid QI=0.

2850(1998. 31D, M. Bruls, J. W. A. M. Vugs, P. M. Koenraad, H. W. M. Sale-
°R. Leon and S. Fafard, Phys. Rev. 3, R1726(1998. mink, J. H. Wolter, M. Hopkinson, M. S. Skolnick, Fei Long,
105, s. Liand J. B. Xia, J. Appl. Phys34, 3710(1998. and S. P. A. Gill, Appl. Phys. Lett81, 1708(2002.

115, J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang2Caution should be taken when modelling WL in interdiffused QD
and X. G. Xie, Appl. Phys. Lett72, 3335(1998. system. Unless the WLs are really closely spaced, the unit cell
12X, C. Wang, S. J. Xu, S. J. Chua, Z. H. Zhang, W. J. Fan, C. H. lattice constant should be sufficiently large so that the WL

Wang, J. Jiang, and X. G. Xie, J. Appl. Phy&6, 2687 (1999. does not represent a significant fraction of the unit cell, for oth-
133, J. Dubowski, C. N. Allen, and S. Fafard, Appl. Phys. L&, erwise it will yield erroneously lower bound state energies at

3583(2000. high diffusion length.
14y Ji, W. Lu, G. Chen, X. Chen, and Q. Wang, J. Appl. Ph98,  33S. W. Ryu, I. Kim, B. D. Choe, and W. G. Jeong, Appl. Phys.

1208(2003. Lett. 67, 1417(1995.

153, Fafard and C. N. Allen, Appl. Phys. Leff5, 2374(1999. 34W. P. Gillin, J. Appl. Phys.85, 790(1999.
163, H. Marsh, D. Bhattacharyya, A. S. Helmy, E. A. Avrutin, and 3°The choice ofR= §4VQD/37T to represent the size of QD is mo-

A. C. Bryce, Physica EAmsterdam 8, 154 (2000. tivated by the spherical resemblance of the probability density

17N. Perret, D. Morris, L. Franchomme-Fosse, and R. Cote, S. Fa- isosurface of the ground state wave functions.
fard, V. Aimez, and J. Beauvais, Phys. Rev6R, 5092(2000. 36We do not consider lens-shaped or pyramidal QDs with aspect
18F, E. Prins, S. Y. Nikitin, G. Lehr, H. Schweizer, and G. W.  ratio h/b>0.5 as they are not practically relevant.

205319-10



