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Electron transport through parallel double quantum dot system with interdot tunneling and strong on-site
Coulomb interaction is studied in the Kondo regime by using the finite-U slave boson technique. For a system
of quantum dots with degenerate energy levels, the linear conductance reaches the unitary limits2e2/hd due to
the Kondo effect at low temperature when interdot tunneling is absent. As the interdot tunneling amplitude
increases, the conductance decreases in the singly occupied regime and a conductance plateau structure ap-
pears. In the crossover to the doubly occupied regime, the conductance increases to reach a maximum value of
G=2e2/h. For parallel double dots with different energy levels, we show that the interference effect plays an
important role in electron transport. The linear conductance is shown to have an asymmetric line shape of the
Fano resonance as a function of gate voltage.
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I. INTRODUCTION

Due to the wave nature of electrons and the confined ge-
ometries in mesoscopic systems, the interplay between inter-
ference and interaction becomes one of the central issues in
mesoscopic physics. Preservation of quantum coherence in
electron transport through an interacting regime has been
manifested in the observed Kondo effect in semiconductor
quantum dot systems,1 and more explicitly in the conduc-
tance Aharonov-BohmsABd oscillation in the interference
experiment with a quantum dot embedded in one arm of an
AB interferometer.2 Recently, the Fano resonance has at-
tracted much research interest as another important interfer-
ence effect in mesoscopic systems. The Fano effect was first
proposed as a result of the interference between resonant and
nonresonant processes in the field of atomic physics.3 It is
found to be a ubiquitous phenomenon observed in a large
variety of experiments, including neutron scattering, atomic
photoionization, Raman scattering, and optical absorption.
There has been recent progress in the observation of the Fano
resonances in condensed matter systems, including an impu-
rity atom on a metal surface,4 single-electron transistors,5,6

and quantum dots in an AB interferometer.7,8

In this paper we show that the Fano effect, which can be
manifested by gate voltage dependence of the linear conduc-
tance, is also important for electron transport through double
quantum dotssDQDsd in parallel configuration. For electron
tunneling through quantum dots, it is well known that the
strong on-site Coulomb interaction leads to the Kondo effect
at low temperatures, so that the coexistence of the Fano reso-
nance with the Kondo effect is expected to yield interesting
transport phenomena. Electron transport through DQDs with
series9 and parallel10 configurations has been realized in ex-
periments, through which studies on the molecular states of
the double dots and also the interference effect are carried
out. Most of theoretical studies11–14 are devoted to electron
transport through DQDs connected in series, while relatively
little attention is paid to the parallel configuration case, es-
pecially for the system in the Kondo regime.13 For the DQD
system with a parallel coupling, the interference effect

should play an important role. Thus, in order to understand
the role of the Fano effect, it is essential to take into account
the coherence of the whole system. A model of the electron
transport through a closed AB interferometer containing two
single-level quantum dots, which assumes the electron trans-
port through quantum dots is in full coherence, has been
investigated in Ref. 15. Interesting phenomena, such as flux-
dependent level attraction and interference-induced suppres-
sion of conductance, have been found. However, the effects
of on-site Coulomb interaction and the interdot tunneling
have not been considered. Ghost Fano resonance has also
been observed in the study of electron transport through par-
allel DQDs with interdot tunneling but no on-site Coulomb
interaction.16

In this paper we shall investigate electron transport
through parallel DQDssschematically plotted in Fig. 1d with
interdot tunneling and on-site Coulomb interaction using the
finite-U slave boson mean field theorysSBMFTd approach
developed by Kotliar and Ruckenstein.17 This formulation
reproduces the results derived from the well known
Gutzwiller variation wave function at zero temperature, and
therefore is believed to be a powerful tool to study strong
correlation effect of electron systems. The finite-U SBMFT
has already been applied to investigate electron transport
through a single quantum dot,18, DQDs in series in the
Kondo regime19 and persistent current in a mesoscopic
ring,20 and was found to give good quantitative results for
the Kondo effect on linear conductance.

FIG. 1. Parallel double quantum dots with interdot tunneling
tc.
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II. THE FINITE- U SLAVE BOSON MEAN FIELD THEORY
OF PARALLEL COUPLED DQDS

Electron transport through parallel DQDs with interdot
tunneling and on-site Coulomb interation can be described
by the following Anderson impurity model:

H = o
khs

ekhsckhs
† ckhs + o

is

eidis
† dis + o

i

Undi↑ndi↓

+ tco
s

sd1s
† d2s + d2s

† d1sd + o
khsi

svhidis
† ckhs + H.c.d,

s1d

whereckhssckhs
† d denote annihilationscreationd operators for

electrons in the leadssh=L ,Rd, and dissdis
† d those of the

single-level state in theith dot si =1,2d. U is the intradot
Coulomb interaction between electrons,tc is the interdot tun-
nel coupling, andvhi is the tunnel matrix element between
lead h and doti. We consider the symmetric coupling case
with Gi

L=Gi
R=Gi, whereGi

h=2pokuvhiu2dsv−ekhsd is the hy-
bridization strength between theith dot and the leadh.

In the finite-U slave boson approach,17,18a set of auxiliary
bosonsei, pis, di are introduced for each dot, which act as
projection operators onto the empty, singly occupiedswith
spin up and spin downd, and doubly occupied electron states
on the quantum dot, respectively. The fermion operatorsdis

are replaced bydis→ f iszis, with zis=ei
†pis+pis̄

† di. In order
to eliminate unphysical states, the following constraint con-
ditions are imposed:ospis

† pis+ei
†ei +di

†di =1, and f is
† f is

=pis
† pis+di

†diss= ↑ , ↓ d. Therefore, the Hamiltonians1d can
be rewritten as the following effective Hamiltonian in terms
of the auxiliary bosonei, pis, di, and the pesudo-fermion
operatorsf is:

Heff = o
khs

ekhsckhs
† ckhs + o

is

ei f is
† f is + o

i

Udi
†di

+ tco
s

sz1s
† f1s

† f2sz2s + H.c.d

+ o
khsi

svhizis
† f is

† ckhs + H.c.d

+ o
i

li
s1dSo

s

pis
† pis + ei

†ei + di
†di − 1D

+ o
is

lis
s2dsf is

† f is − pis
† pis − di

†did, s2d

where the constraints are incorporated by the Lagrange mul-
tipliers li

s1d andlis
s2d. The first constraint can be interpreted as

a completeness relation of the Hilbert space in each dot, and
the second one equates the two ways of counting the fermion
occupancy of a given spin.17 In the framework of the finite-
U SBMFT, the slave boson operatorsei, pis, di, and the pa-
rameterzs are replaced by realc numbers. In this paper, we
only consider the spin degenerate case without external mag-
netic field, so that all parameters are independent of the elec-
tron spin. We can neglect the spin indexs in the parameters
hereafter. Thus in the mean field approximation, the effective
Hamiltonian is given as

Heff
MF = = o

khs

ekhckhs
† ckhs + o

is

ẽi f is
† f is + t̃co

s

sf1s
† f2s + H.c.d

+ o
khsi

sṽhi f is
† ckhs + H.c.d + Eg, s3d

where t̃c= tcz1z2 and ṽhi =vhizi represent the renormalized
tunnel coupling between quantum dots and the renormalized
tunnel amplitude betweenith quantum dot and the leadh,
respectively.z1 andz2 can be regarded as the wave function
renormalization factors in the quantum dots.ẽi =ei +li

s2d is
the renormalized dot energy level andEg=oifli

s1ds2pi
2+ei

2

+di
2−1d−2li

s2dspi
2+di

2d+Udi
2g is an energy constant.

Within this mean field effective Hamiltonians3d, the cur-
rent formula through the DQDs is given as15

I =
e

h
o
s
E dvfnLsvd − nRsvdgTsvd, s4d

where the transmission probability Tsvd
=TrfGasvdG̃RGrsvdG̃Lg, and

G̃L = G̃R =S G̃1
ÎG̃1G̃2

ÎG̃1G̃2 G̃2

D ,

with G̃i =zi
2Gi. The retarded/advanced Green’s functionssGFd

Gr/asvd have 232 matrix structures, which account for the
double dot structure of the system. The matrix elements of
the retarded GF are defined in time space asGij

r st− t8d
=−iust− t8dkhf isstd , f js

+ st8djl. By applying the equation of mo-
tion method,21 one can obtain the retarded GF explicitly as

Grsvd =S v − ẽ1 + iG̃1 − t̃c + iÎG̃1G̃2

− t̃c + iÎG̃1G̃2 v − ẽ2 + iG̃2

D−1

, s5d

The advanced GF is given byGasvd=fGrsvdg†. Substituting
the retarded/advanced GF to the formula of transmission
probability, one obtains

Tsvd =
fG̃1sv − ẽ2d + G̃2sv − ẽ1d + 2t̃c

ÎG̃1G̃2g2

fsv − ẽ1dsv − ẽ2d − t̃c
2g2 + fG̃1sv − ẽ2d + G̃2sv − ẽ1d + 2t̃c

ÎG̃1G̃2g2
. s6d
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The conductanceG at the absolute zero temperature in the
limit of zero bias voltage is given by

G = U dI

dV
U

V=0
=

2e2

h
Tsv = 0d.

It is noticed that the formula for the transmission probability
and conductance is equivalent to that of the transport through
noninteracting DQD system, except that, in this case, the dot

levels ẽi, the coupling strengthG̃i, and t̃c are renormalized.
Therefore, electron transport through DQDs is characterized

by the parametersẽi, G̃i, and t̃c. However, it should be noted

that ẽi, G̃i, andt̃c show strong dependence on the gate voltage
applied to the quantum dots; hence, the result of linear con-
ductance is quite different from the noninteracting model. In
the spin degenerate case, we have ten unknown parameters
ei, pi, di, li

s1d, li
s2dsi =1,2d in total to determine. From the

constraints and the equation of motion of the slave boson
operators in the effective Hamiltonian, we obtain one set of
self-consistent equations, which is a straightforward general-
ized form of the single dot case, as discussed in Ref. 18. In
this set of equations, the distribution GF of the quantum dots
Gij

,st− t8d= ikf js
+ st8df isstdl is involved, and its Fourier trans-

form is given byG,svd= iGrsvdfG̃LnLsvd+G̃RnRsvdgGasvd.
We have solved the self-consistent equations numerically.

In the following, we discuss the result of our calculation.
First, we consider two identical QDs case:e1=e2=ed and

G1=G2=G. Following Eq.s5d, the transmission probability in
this case has a Breit-Wigner resonance form, given by

Tsvd =
4G̃2

sv − ẽd − t̃cd2 + 4G̃2
. s7d

The retarded GF on each dot is also explicitly given as

Gii
r svd =

1

2F 1

v − sẽd − t̃cd + 0+
+

1

v − sẽd + t̃cd + 2iG̃
G .

s8d

The spectral density in theith QD follows from the relation
risvd=−Im Gii

r sv+ i0+d /p. It shows that the spectral density
is the sum of one Lorentizan with the peak position located
at ẽbond= ẽd+ t̃c and one Diracd peak at ẽantibond= ẽd− t̃c,
whereẽbond and ẽantibondcorrespond to energy of the bonding
and the antibonding state of quantum dots, respectively. The

bonding state of DQDs has level broadening 2G̃ due to its
coupling with the leads. Thed peak structure indicates that
the antibonding state is totally decoupled from the leads.
Therefore, the electrons transport only through the channel
of the bonding state, which gives a Breit-Wigner resonance
form in the transmission.

In Fig. 2 we study the effect of interdot tunneling on the

FIG. 2. sad The transmission probabilityTsvd and sbd the local
density of state for the system with two identical quantum dots.
Parameters used areU=4.0, GL=GR=1.0, anded=−2.0. The inter-
dot tunnel couplingtc are 0.0ssolid lined, 0.5 sdashed lined, and 1.0
sdotted lined. sWe take the energy unit asG=1, andv=0 corre-
sponds to the Fermi energy of the leads.d

FIG. 3. sadThe linear conductance as a function of the dot level
at zero temperature. Parameters used areU=4.0, andGL=GR=1.0,
and the interdot tunnelingtc=0.0 ssolid lined, 0.2 sdashed lined, 0.5
sdotted lined, and 1.0sdash-dotted lined. sbd The bonding state en-
ergy ẽbond ssolid lined, the antibonding state energyẽantibondsdashed

lined, and the level broadening 2G̃ of the bonding statesdotted lined
for tc=1.0.
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transmission probability and the local density of state of the
QD in the singly occupied regime. Here we take the hybrid-
ization strength as the energy unitG=1, anded=−2. Figure
2sad shows that with increasing the interdot couplingtc, the
line shape of Breit-Wigner resonance of transmission is pre-
served, while the center of the resonance shifts to higher
energy. Thus, the value of transmission probability at zero
frequencyTsv=0d decreases, which, in turn, results in sup-
pression of the linear conductance at zero bias voltage. For
the local density of state shown in Fig. 2sbd, we see that the
antibonding state energy is always nearby the Fermi energy
of the lead, whereas the center of spectral density contributed
from the bonding state shifts to higher energy along with
increasingtc.

The linear conductanceG as a function of the energy level
ed of the QD at zero temperature is plotted in Fig. 3sad for
several values of interdot tunnelingtc. When there is no di-
rect tunneling between two dotsstc=0d, the conductance
reaches the unitary limitsG=2e2/hd in the Kondo regime, as
expected. Upon increasing tunnel couplingtc, the conduc-
tance becomes suppressed and forms a plateau structure in
the regime of the singly occupied QD state. When QDs cross
over to the doubly occupied state regime, the conductance
increases to the maximum valueG=2e2/h. The line shape of
the linear conductance can be explained from the gate volt-
age dependence of the spectral density and the zero fre-
quency transmission of the QD. In Fig. 3sbd we plot the
bonding state energyẽbond, the antibonding state energy

ẽantibond, and the level broadening 2G̃ as functions ofed with

tc=1. One can see that in the singly occupied regime with
decreasinged, the antibonding state energyẽantibond, is fixed
around the Fermi energy of the leadsseF=0d. This indicates

that ẽd< t̃c, and the conductanceG/ s2e2/hd=4G̃2/ fsẽd+ t̃cd2

+4G̃2g<1/st̃c
2/ G̃2+1d. For this identical quantum dot case,

the value oft̃c
2/ G̃2 is given by its bare valuet̃c

2/ G̃2= tc
2/G2.

Consequently, the conductance shows a plateau structure and
the ratio of tc/G determines the height of the conductance
plateau. This is in agreement with the value of conductance
at the plateau structure for differenttc as shown in Fig. 3sad.
With ed deceasing further, the QD state crosses over from the
singly occupied to the doubly occupied regime, andẽbond
goes through from positive value to negative value. At the
point ẽbond= ẽd+ t̃c=0, we obtain the maximum conductance

G=2e2/h. Further down, the level broadening 2G̃ approaches
zero and the DQD will be totally decoupled from the leads;
thus, the conductance becomes zero.

Next, we consider DQD system with different dot levels,
e1Þe2, and defineē=se1+e2d /2 andDe=e1−e2. For the sake
of simplicity, we still assumeG1=G2=G. It is noted that in

this case the renormalized hybridization strengthG̃1Þ G̃2. In
Fig. 4 we plot the linear conductance as a function of average
energy of the dot levels. The parametersDe=0.5,1.0 andtc
=0.0,0.5,1.0,1.5 are used. In the case of DQDs without di-
rect tunnel couplingstc=0d, Fig. 4sad shows that the conduc-
tance curve has a narrow dip around the pointē=−U /2.
From the formula for transmissionfEq. s6dg, we note that the

conductance vanishes when the conditionG̃1ẽ2+G̃2ẽ1

FIG. 4. The linear conductance at zero temperature for parallel double quantum dots with different energy levels. Here we defineē
=se1+e2d /2 andDe=e1−e2. Parameters used areU=4.0, andGL=GR=1.0. The energy level differences areDe=0.5 ssolid lined, 1.0 sdashed
lined. sad, sbd, scd, andsdd correspond to the interdot tunnelingtc=0.0,0.5,1.0,1.5, respectively.
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=2t̃cÎG̃1G̃2 is satisfied. The strictly zero transmission is a
consequence of destructive quantum interference for electron
transport through the parallel DQDs, and it is absent for sys-
tems with DQDs connected in series. It is interesting to no-
tice that only when the DQDs with different energy levels
sDeÞ0d, is this characteristic of interference revealed. This
originates from the fact that, in this case, both the bonding
and antibonding state channels are involved in the transmis-
sion. As the energy differenceDe increases, the dip becomes
more broadened. For nonzero interdot tunnel couplings as
shown in Figs. 4sbd–4sdd, the conductance curves have
asymmetric line shapes, which are typical for the Fano reso-
nance. This results from the constructive and destructive in-
terference processes for electrons transmitted through the
channels of bonding and antibonding states. It is noted that
line broadening of the Fano dip or peak depends on the value
of dot level differenceDe, which is similar to the noninter-
acting DQD case.16 The effect of on-site interactionU is to
introduce strong renormalization of the dot levels and the

hybridization strength, hence, the center of the Fano reso-
nance and line broadening have nonlinear dependence on the
interdot tunnelingtc and the level differenceDe. It is inter-
esting to notice the Fano resonances obtained in this study
have some similarity with the experiment results in Ref. 5.
Although their experiment is on electron transport through a
single QD, the coupling strength between the quantum dot
and the lead is strong and the Kondo effect and multilevels
of the QD might be involved in the electron transport. Re-
cently, Büsseret al.22 have studied electron transport through
multilevel quantum dots using exact-diagonalization tech-
niques. It is interesting to notice that they have also found a
conductance dip structure induced by an interference effect,
as shown in Fig. 4sad. Actually, whentc=0, the model stud-
ied in our paper is equivalent to considering two levels in a
single quantum dot.

For a DQD system with an energy level difference, the
local density of state in theith QD si =1,2d is given by

risvd =
fÎG̃isv − ẽīd + ÎG̃ī t̃cg2

fsv − ẽ1dsv − ẽ2d − t̃c
2g2 + fG̃1sv − ẽ2d + G̃2sv − ẽ1d + 2t̃c

ÎG̃1G̃2g2
. s9d

In Fig. 5, we plot the local density of state in each dot. The
line shape of the density of the state can be regarded as a
superposition of a Fano line shape close to the antibonding
state energy and a Breit-Wigner resonance around the bond-
ing state energyssee Ref. 16 for detailed discussiond. The

interference effect on the local density of state is manifested
clearly as compared with that in Fig. 2sbd.

III. SUMMARY

In summary, we have studied the electron transport
through DQDs in parallel configuration with interdot tunnel-
ing in the Kondo regime. The strong Coulomb repulsion in
the dots is taken into account via the finite-U slave boson
technique. The results of our calculation indicate several dis-
tinct features from the noninteracting model:16 The conduc-
tance shows a plateau structure as a function of the dot level
in the singly occupied regime; without interdot tunneling
stc=0d, there is a dip structure on the conductance plateau
when the energy levels of two dots are different. Whentc
Þ0, the conductance has a Fano resonance line shape on the
conductance plateau as a function of the average dot level;
the energies of the bonding and antibonding states and the
level broadening of the bonding state are strongly renormal-
ized compared to the noninteracting model case. For in-
stance, the antibonding state energy is almost fixed around
the Fermi energy of the lead in the singly occupied region.
The results are also different from those of the DQDs in
series, in which the maximum conductance is achieved when
the interdot tunnelingtc=1.0 and no Fano resonance is
observed.11–14,19 The Fano effect for parallel DQDs origi-
nates from the interference effect for electron transport
through the two channels of bonding and antibonding states
of parallel DQDs. In one recent experiment, Chenet al.10

FIG. 5. The local density of state for each quantum dot. Param-
eters used areU=4.0, ē=−2.0,De=1.0, andtc=1.0.
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studied the Kondo effect in parallel DQDs system. However,
the maximum conductance obtained in their experiment is
only about 0.1e2/h by varying the gate voltage and interdot
tunneling, so that we think the full coherent electron trans-
port through DQDs was not achieved and the interference
effect was not manifested. One may expect, in further experi-
ments on the parallel DQDs system, to observe the

conductance plateau structure and also the Fano resonance,
as discussed above.

ACKNOWLEDGMENTS

This research was supported by the BK21 project and
Korea Research FoundationsKRF-2003-005-C00011d.

1D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-
Magder, U. Meirav, and M. A. Kastner, NaturesLondond 391,
156 s1998d; S. M. Cronenwett, T. H. Oosterkamp, and L. P.
Kouwenhoven, Science281, 540s1998d; W. G. van der Wiel, S.
De Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha, and L.
P. Kouwenhoven, Science289, 2105s2000d.

2A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys.
Rev. Lett. 74, 4047s1995d; R. Schuster, E. Buks, M. Heiblum,
D. Mahalu, V. Umansky, and H. Shtrikman, NaturesLondond
385, 417 s1997d; Y. Ji, M. Heiblum, D. Sprinzak, D. Mahalu,
and H. Shtrikman, Science290, 779 s2000d.

3U. Fano, Phys. Rev.124, 1866s1961d.
4V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S.

Wingreen, Science280, 567 s1998d.
5J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H.

Shtrikman, D. Mahalu, and U. Meirav, Phys. Rev. B62, 2188
s2000d; I. G. Zacharia, D. Goldhaber-Gordon, G. Granger, M. A.
Kastner, Y. B. Khavin, H. Shtrikman, D. Mahalu, and U. Mei-
rav, ibid. 64, 155311s2001d.

6A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Phys. Rev. Lett.93, 106803s2004d.

7K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Phys. Rev.
Lett. 88, 256806s2002d; Phys. Rev. B68, 235304s2003d; K.
Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye,ibid.
70, 035319s2004d.

8B. R. Bułka and P. Stefański, Phys. Rev. Lett.86, 5128 s2001d;
W. Hofstetter, J. König, and H. Schoeller,ibid. 87, 156803
s2001d.

9R. H. Blick, D. Pfannkuche, R. J. Haug, K. v. Klitzing, and K.

Eberl, Phys. Rev. Lett.80, 4032 s1998d; G. Schedelbeck, W.
Wegscheider, M. Bichler, and G. Abstreiter, Science278, 1792
s1997d; T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K.
Ishibashi, R. V. Hijman, S. Tarucha, and L. P. Kouwenhoven,
NaturesLondond 395, 873 s1998d; H. Jeong, A. M. Chang, and
M. R. Melloch, Science293, 2221s2001d.

10J. C. Chen, A. M. Chang, and M. R. Melloch, Phys. Rev. Lett.92,
176801s2004d; A. W. Holleitner, R. H. Blick, A. K. Hüttel, K.
Eberl, and J. P. Kotthaus, Science297, 70 s2002d; A. W. Holle-
itner, C. R. Decker, H. Qin, K. Eberl, and R. H. Blick, Phys.
Rev. Lett. 87, 256802s2001d.

11A. Georges and Y. Meir, Phys. Rev. Lett.82, 3508s1999d.
12R. Aguado and D. C. Langreth, Phys. Rev. Lett.85, 1946s2000d.
13R. López, R. Aguado, and G. Platero, Phys. Rev. Lett.89,

136802s2002d.
14B. R. Bułka and T. Kostyrko, Phys. Rev. B70, 205333s2004d.
15B. Kubala and J. König, Phys. Rev. B65, 245301s2002d.
16M. L. Ladrón de Guevara, F. Claro, and P. A. Orellana, Phys. Rev.

B 67, 195335s2003d.
17G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett.57, 1362

s1986d.
18B. Dong and X. L. Lei, Phys. Rev. B63, 235306s2001d.
19B. Dong and X. L. Lei, Phys. Rev. B65, 241304sRd s2002d.
20G. H. Ding and B. Dong, Phys. Rev. B67, 195327s2003d.
21H. Haug and A. P. Jauho,Quantum Kinetics in Transport and

Optics of SemiconductorssSpringer Verlag, Berlin, 1998d.
22C. A. Büsser, G. B. Martins, K. A. Al-Hassanieh, A. Moreo, and

E. Dagotto, Phys. Rev. B70, 245303s2004d.

DING, KIM, AND NAHM PHYSICAL REVIEW B 71, 205313s2005d

205313-6


