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The temperature dependence of the dispersion relation of the transverse plasmon in a two-dimensional
electron gas is calculated using the Sommerfeld expansion for the retarded current response function and the
self-consistent linear response approximation for the electromagnetic field. The index of refraction and the
penetration depth for the electromagnetic wave propagating in the two-dimensional electron gas are obtained.
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I. INTRODUCTION

Recent experimental progress in semiconductor superlat-
tices and quantum wells1,2 have stimulated renewed theoret-
ical interests in the electromagnetic properties of a stack of
layers of two-dimensional electron gass2DEGd systems.3–5

The propagating electromagnetic wave in such a system,
whose dispersion relation is equivalent to that of the trans-
verse plasmon excitation in the many-electron system, seems
to be of particular importance to understand the microscopic
mechanism of the semiconductor laser such as AlGaAs/
GaAs double-heterostructure diode laser.6

In 1977 Dahl and Sham7 calculated the nonlocal dielectric
tensor of quasi-two-dimensional electrons and investigated
the electromagnetic properties, particularly in the limiting
case where the retardation effects are negligible. In 1984
Toyoda, Gudmundsson, and Takahashi8 calculated the re-
tarded current response function of a 2DEG with finite thick-
ness and obtained the dispersion relation of the transverse
plasmon by fully taking account of the retardation effects. In
the same year Tselis and Quinn9 calculated the current re-
sponse function of a 2DEG under a static magnetic field and
also obtained the corresponding dispersion relation.

The response of the electron current to an external elec-
tromagnetic field can be calculated in terms of the retarded
current response function. Then the dispersion relation of the
transverse plasmon can be derived by using the linear re-
sponse formula for the electron current expectation value
with the Maxwell equation in a self-consistent way, i.e., the
self-consistent linear response approximationsSCLRAd.8–10

The effects of electron-electron interaction on the current
response can also be included by solving the Bethe-Salpeter
equation for the two-particle Green’s function.11,12

Although there have been further developments in the the-
oretical investigation of the transverse plasmon in 2DEG,13,14

the thermal effects on the transverse plasmon have not been
fully understood. The aim of this paper is to investigate the
effects of finite temperature on the dispersion relation of the
transverse plasmon in a 2DEG. There have been no calcula-
tions of the temperature dependence of the retarded current
response function of a 2DEG nor that of the dispersion rela-
tion of the transverse plasmon, to the best of the knowledge
of the present authors.

We first calculate the retarded current response function
of a 2DEG at finite temperatures. Starting with the same
formula for the retarded current response function given in

Ref. 8, we use the Sommerfeld expansion to evaluate the
temperature dependence up toT2 order. Then, using the
SCLRA, we obtain the dispersion relation of the transverse
plasmon with the temperature dependence up to the same
order. Using the dispersion relation we also calculate the
index of refraction and the penetration length.

In Sec. II we define a 2DEG with a finite thickness in
terms of the second quantized field operators describing the
electrons. In Sec. III we define the retarded current response
function following Ref. 8. In Sec. IV we apply the Sommer-
feld expansion to the formula for the retarded current re-
sponse function and calculate the temperature correction up
to T2 order in the small wave number expansion. In Sec. V
we use the SCLRA to derive the dispersion relation of the
transverse plasmon with the finite temperature effects. In
Sec. VI we calculate the index of refraction and the penetra-
tion length.

II. CURRENT RESPONSE FUNCTION

We assume the electrons are confined in thex1-x2 plane
by a potentialVsx3d, which yields the ground-state wave
function xsx3d satisfying

F− "2

2m

d2

dx3
2 + Vsx3dGxsx3d = E3xsx3d, s1d

wherem is the electron effective mass andE3 is the lowest
energy eigenvalue with respect to the confining potential.
The second quantized field operatorCs that describes the
dynamics of the electrons in thex1-x2 plane has the form

Cssr ,x3,td = xsx3dFssr ,td, s2d

wheres is the spin variable andr ;sx1,x2d. The field opera-
tor Fssr ,td andFs

†sr ,td are assumed to satisfy the equal-time
canonical anticommutation relation

Fssr ,tdFs8
† sr 8,td + Fs8

† sr 8,tdFssr ,td = dss8dsr − r 8d. s3d

The electromagnetic electron current density along thex1-
x2 plane is
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Jm
s3Ddsr ,x3,td = − ejm

s3Ddsr ,x3,td

−
e2

mc
uxsx3du2Amsr ,x3,tdo

s

Fs
†sr ,tdFssr ,td,

s4d

where the electron charge is −e and m=1,2. The three-
dimensional current density operatorjm

s3Ddsr ,x3,td is defined
by

jm
s3Ddsr ,x3,td =

− i"

2m
o

s

Cs
†sr ,x3,tds]m − ]m

QdCssr ,x3,td. s5d

Using the two-dimensional current density operator

jmsr ,td =
− i"

2m
o

s

Fs
†sr ,tds]m − ]m

QdFssr ,td, s6d

the three-dimensional current density operator can be written
as

jm
s3Ddsr ,x3,td = uxsx3du2jmsr ,td. s7d

Because the wave functionx is real, the componentj3
s3Dd

simply vanishes.
The retarded current response function with respect to the

current densityjm
s3Dd is defined by

Lmn
s3Ddsr ,x3,t;r 8,x38,t8d

= − iust − t8dkf jm
s3Ddsr ,x3,td, jn

s3Ddsr 8,x38,t8dgl. s8d

Here the notationk¯l stands for the grand canonical ensem-
bel expectation value with the Hamiltonian of the form

H = o
s
E d2rFs

†sr ,tdh− "2s2md−1¹2 − mjFssr ,td, s9d

where m is the chemical potential for the two-dimensional
electrons including the effects ofE3. We define the two-
dimensional transverse current density

jm
t sr ,td = o

n=1

2

Tmn
2Ds¹d jnsr ,td sm = 1,2d, s10d

with the transverse projection operator

Tmn
2Ds¹d = dmn −

]m]n

¹2 , ¹2 = ]1
2 + ]2

2. s11d

Then, the transverse part of the response function can be
written as

Lmn
s3Ddtsr ,x3,t;r 8,x38,t8d = uxsx3dxsx38du

2Lmn
t sr ,t;r 8,t8d,

s12d

where Lmn
t is the two-dimensional transverse current re-

sponse function defined by

Lmn
t sr ,t;r 8,t8d = − iust − t8dkf jm

t sr ,td, jn
t sr 8,t8dgl s13d

and jm
t is the transverse part of the two-dimensional current

density defined by Eq.s6d. BecauseL3n
t =Lm3

t =0, it is
straightforward to showom=1

3 ]mLmn
s3Ddt=0. Using the Fourier

transforms of the transverse current response function

Lmn
t sr ,t;r 8,t8d =

1

s2pd3 E d2k E dveik·sr−r8d−ivst−t8dLmn
t sk,vd

s14d

and the transverse projection operator

Tmnskd = dmn −
kmkn

k2 , s15d

the retarded current response function reduces to the form

Lmn
t sk,vd = TmnskdLsk,vd. s16d

With the explicit time dependence of the electron field op-
erators, which is given by the Hamiltonians9d, the real part
of the retarded current response functionLsk ,vd becomes

ReLsk,vd =
"

pmk
E

0

`

dpfspdp2h− u+ + sgnsu+dusu+
2 − 1d

3Îu+
2 − 1 +u− − sgnsu−dusu−

2 − 1dÎu−
2 − 1j,

s17d

whereu± , sgnsxd, andusxd are defined by

u± =
mv

"kp
±

k

2p
, s18d

sgnsxd ;
x

uxu
, usxd ;

1

2
f1 + sgnsxdg, s19d

and fspd is the Fermi distribution function

fspd =
1

1 + ebf«spd−mg , «spd =
"2p2

2m
. s20d

Similarly, the imaginary part ofLsk ,vd can be written as

Im Lsk,vd

=
"

pmk
E

0

`

dpfspdpHuSp − Umv+

"k
UDÎp2 − Umv+

"k
U2

− uSp − Umv−

"k
UDÎp2 − Umv−

"k
U2J , s21d

wherev± is defined by

v± = v ±
"k2

2m
. s22d

In the zero-temperature limit the integrations in Eqs.s17d
and s21d can be carried out.8 For finite temperatures, the
integrals cannot be calculated analytically.

III. SOMMERFELD EXPANSION

The Fourier transforms of the retarded current response
function given by Eqs.s17d and s21d contain the Fermi dis-
tribution functions in the integrals and the Sommerfeld ex-
pansion can be applied to calculate the temperature depen-
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dence. The result of the Sommerfeld expansion of the real
part of the retarded current response function ReL can be
cast in the form

ReLsk,vd = R0sk,vd + R2sk,vd + OsT4d, s23d

whereR0 is the zero-temperature term andR2 is theT2 cor-
rection term. Since we are interested in the dispersion rela-
tion of the transverse plasmon, we consider the smallk re-
gion. We have calculatedR0 and R2 by expanding them in
powers ofk. The zero-temperature term has been calculated
in Ref. 8:

R0 =
2m

p"
H− 1

2
+

u2

12
+ Sn

u
D2

− g+su,nd + g−su,ndJ
=

m

4p"
HSu

n
D2

+
1

2
Su

n
D4

+ Osu6dJ , s24d

whereu, n , v±, andg± are defined as

u ;
k

kF
, n ;

mv

"kF
2 , v± ;

n

u
±

u

2
s25d

and

g±su,nd ;
1

3u
sgnsv±dusv±

2 − 1dÎsv±
2 − 1d3. s26d

Calculating theT2 correction term in the Sommerfeld expan-
sion, we have obtained

R2 =
pm

12"sbmd2uFsgnsv−d
1

Îv−
2 − 1

usv−
2 − 1d

− sgnsv+d
1

Îv+
2 − 1

usv+
2 − 1dG

=
pm

12"sbmd2HSu

n
D2

+
3

2
Su

n
D4

+ Osu6dJ , s27d

whereb=1/kBT. Combining Eqs.s24d ands27d, the explicit
temperature dependence of the real part ofL becomes

ReLsk,vd =
m

4p"
FH1 +

p2

3b2m2JSu

n
D2

+
1

2
H1 +

p2

3b2m2J
3Su

n
D4

+ Osu6;T4dG . s28d

In order to express the result of the Sommerfeld expan-
sion applied to the imaginary part of the retarded current
response function ImL, we introduce the functionf± such
that

f±su,nd =
1

3u
us1 − v±

2dÎs1 − v±
2d3. s29d

Because of the step funcionu in this function, we have to
consider the following four domains separately in the first
quadrant of thek-v plane:

I
"

2m
sk + kFd2 −

"kF
2

2m
, v, s30d

II U "

2m
sk − kFd2 −

"kF
2

2m
U , v ,

"

2m
sk + kFd2 −

"kF
2

2m
,

s31d

III v ,
− "

2m
sk − kFd2 −

"kF
2

2m
, s32d

IV v ,
"

2m
sk − kFd2 −

"kF
2

2m
. s33d

The result of the Sommerfeld expansion of the imaginary
part ImL can be written as

Im L = I0 + I2 + OsT4d, s34d

whereI0 is the zero-temperature term andI2 is theT2 correc-
tion term. The zero-temperature termI0 has been calculated
in Ref. 8,

I0 =
2m

p"
hf+su,nd − f−su,ndj. s35d

We have calculated the temperature dependent termI2. The
results depend on the domains

I I2 = 0, s36d

II I2 =
− pm

6"3b2kFk

1

Î1 − v−
2

, s37d

III I2 =
pm

6"3b2kFkH 1

Î1 − v+
2

−
1

Î1 − v−
2J , s38d

IV I2 = 0. s39d

Note that in the domains I and IV, the imaginary part van-
ishes. This means even at finite temperatures there are the
same undamped domains as the zero-temperature case. That
the imaginary part vanishes in the domain I even at finite
temperatures indicates that the possibility of the undamped
transverse plasmon mode as in the zero-temperature case.

To conclude this section it should be remarked that math-
ematically the Sommerfeld expansion fails in the vicinity of
these domain boundaries defined by Eqs.s30d–s33d. These
singularities are responsible for the Friedel oscillations and
further investigation of the temperature effects in the bound-
ary areas seems to be of great interest.

IV. TRANSVERSE PLASMON

In the linear response theory, the response of the electrons

to a transverse electromagnetic vector potentialAW t is ex-
pressed as the expectation value of the current density
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kJm
s3Ddtsr ,x3,tdl =

− ne2

mc
uxsx3du2Am

t sr ,x3,td

−
e2

"c
uxsx3du2E

−`

`

dt8E d2r 8E dx38uxsx38du
2

3o
n=1

3

Lmn
t sr ,t;r 8,t8dAn

t sr 8,x38,t8d, s40d

where the retarded current response functionLmn
t is calcu-

lated for an ideal electron gas andn is the two-dimensional
electron number density. The basic idea of the self-consistent
linear response approximation is to assume the electromag-

netic field AW t in the linear response formula is the induced
field due to the transverse current of the electrons and satis-
fies the Maxwell equation. Theoretically this idea can be
realized by replacing the current term in the Maxwell equa-
tion by the linear response expectation value

So
h=1

3

]h
2 − c−2]t

2DAm
t sr ,x3,td = − 4pc−1kJm

s3Ddtsr ,x3,tdl.

s41d

As the right-hand side contains the electromagnetic vector

potentialAW t linearly, this equation yields a linear wave equa-
tion. If certain conditions are met, it may produce a propa-

gating electromagnetic wave. We can also eliminateAW t from
Eqs.s40d and s41d to obtain a wave equation for the expec-
tation value of the electron transverse currentkJm

s3Ddtl, whose
propagating mode corresponds to the transverse plasmon of
the electrons. In the following we shall pursue this approach.

In order to eliminate the electromagnetic fieldAW t from the
Maxwell equation and the linear response expectation value
for the electron transverse current, it is convenient to intro-
duce the Fourier transform of Eq.s40d

kJm
s3Ddtsk,k3,vdl =

− ne2

2pmc
E dq3rsk3 − q3dAm

t sk,q3,vd

−
e2

2p"c
rsk3dLmn

t sk,vd E dq3rs− q3d

3An
t sk,q3,vd, s42d

and the Fourier transform of the Maxwell equations41d

Am
t sk,k3,vd =

4p

c
D−1sk,k3,vdkJm

s3Ddtsk,k3,vdl, s43d

where we have definedDsk ,k3,vd;k2+k3
2−c−2sv+ i0+d2.

Using Eq.s43d it is straightforward to eliminate the vector

potentialAW t from Eq. s42d. After eliminating the vector po-
tential field, we find

kJm
s3Ddtsk,k3,vdl =

− ne2

2pmc
E dq3rsk3 − q3dVmnsk,q3,vd

3kJn
s3Ddsk,q3,vdl −

e2

2p"c
rsk3dLml

t sk,vd

3E dq3rs− q3dVlnsk,q3,vd

3kJn
s3Ddsk,q3,vdl, s44d

where we have defined

Vmnsk,k3,vd ;
4p

c
D−1sk,k3,vdTmn

3Dsk,k3d s45d

with the transverse projection operator

Tmn
3Dsk,k3d = dmn −

kmkn

k2 + k3
2 . s46d

Equations44d gives the collective excitation of the transverse
current of the electrons and contains the dispersion relation
of the transverse plasmon. Since we are interested in the
transverse plasmon propagating in thex1-x2 plane, we con-
sider the casek3=0. Then, the first term on the right-hand
side of Eq.s44d can be written as

− ne2

2pmc
E dq3rs− q3dVmnsk,q3,vdkJn

s3Ddsk,q3,vdl

=
− ne2

2pmc
Gsk,vdkJm

t sk,vdl, s47d

where we have defined

Gsk,vd ;
4p

c
E dq3rs− q3drsq3dD−1sk,q3,vd. s48d

The second term on the right-hand side of Eq.s44d can be
written as

−
e2

2p"c
rsk3dLml

t sk,vd E dq3rs− q3dVlnsk,q3,vd

3kJn
s3Ddsk,q3,vdl =

− e2

2p"c
Lml

t sk,vdGsk,vdkJl
t sk,vdl.

s49d

We write the left-hand side of Eq.s44d as kJm
t sk ,vdl. Then

we combine Eqs.s44d, s47d, ands49d to obtain

kJm
t sk,vdl =

− ne2

2pmc
Gsk,vdkJm

t sk,vdl

−
e2

2p"c
Lml

t sk,vdGsk,vdkJl
t sk,vdl, s50d

which can be written as
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H1 +
e2n

2pmc
Gsk,vd +

e2

2p"c
Lsk,vdGsk,vdJkJm

t sk,vdl = 0.

s51d

This is the SCLRA equation for the transverse current of a
2DEG.8

V. DISPERSION RELATION

If the SCLRA equation for the two-dimensional trans-
verse current densitys51d has a nontrivial solution for the
expectation value of the electron current, then it can be con-
cluded that there is a collective excitation mode of the elec-
tron transverse current, i.e., the transverse plasmon. There-
fore, the dispersion relation for the transverse plasmon can
be obtained by solving the equation

1

Gsk,vd
+

e2n

2pmc
+

e2

2p"c
Lsk,vd = 0. s52d

To proceed further it is necessary to specify the functional
form of the wave functionxsx3d. In Ref. 8 three different
models for the wave function were calculated and it was
found that there are no essential differences. Therefore, here
we consider the Gaussian model

uxsx3du2 =
a

Î2p
expS− a2x2

2
D . s53d

The Fourier transform of this Gaussian model is

rsq3d = expS− q3
2

2a2 D . s54d

By making use of the fact thatrsqd has a sharp peak atq
=0, we approximate the integral inG by8

Gsk,vd =
− 4p3/2ac

v2 − c2k2 + ie
. s55d

Substituting this result into Eq.s52d, we obtain

v2 − c2k2 −
2Îpae2n

m
−

2Îpae2

"
Lsk,vd = 0. s56d

From this equation one can derive the dispersion relation for
the transverse plasmon. In order to calculate the temperature
dependence of the dispersion relation of the transverse plas-
mon under the condition of a fixed electron number, the
chemical potential appeared in the Sommerfeld expansion of
Lsk ,vd given by Eq.s27d must be expressed as a function of
the electron number density and temperature. The relation
between the chemical potential and the other thermodynami-
cal variables in general depends on the temperature. How-
ever, in the two-dimensional case, the result

kF
2 = 2pn ;

2mm

"2 s57d

holds for theT2 order. Using the result of the Sommerfeld
expansion forLsk ,vd given by Eq. s27d and taking into

account the chemical potential relations57d, we have ob-
tained

v2 = vp
2 + c2k2 +

vp
2m

2m
F1 +

p2

3
SkBT

m
D2GS k

v
D2

+
vp

2m2

2m2 F1 + p2SkBT

m
D2GS k

v
D4

+ Osk6;T4d, s58d

where the plasma frequencyvp is defined as

vp
2 =

2Îpane2

m
. s59d

This dispersion relations58d has a strong resemblance to the
three-dimensional result.6 The main reason for this resem-
blance between the present two-dimensional case and the
three-dimensional case is that the Maxwell equation for the
present calculation is written in the three-dimensional space.
Only the current term in the Maxwell equations41d has been
assumed to be confined in thex1-x2 plane. The two-
dimensional characteristics appears through the current re-
sponse function.

VI. CONCLUDING REMARKS

We have calculated the temperature dependence of the
real part and the imaginary part of the retarded current re-
sponse function of an ideal two-dimensional electron gas.
Then, using the SCLRA, we have derived the dispersion re-
lation of the transverse plasmon at finite temperatures up to
the T2 order in the Sommerfeld expansion. We have shown
that in the domain I the transverse plasmon is undamped
even at finite temperatures and obtained the dispersion rela-
tion s58d.

Starting with the Maxwell equations41d and the linear
response equations42d, we have eliminated the transverse
vetor potential and obtained the SCLRA equation for the
transverse current expectation value of the electronss51d,
from which we have derived the dispersion relations58d. It is
also possible to eliminate the transverse current expectation
value of the electrons and to obtain a SCLRA equation for
the transverse vector potential. Then we can derive the same
dispersion relation. That is, the dispersion relation for the
transverse electromagnetic wave propagating in the two-

FIG. 1. Plot of uxsx3du2 given by Eq. s53d with a=2
3107 scm−1d.
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dimensional electrons is identical to that of the transverse
plasmon.

In view of a possible application of the present theoretical
formulation to the physics of laser diodes, it seems to be of
great physical interest to compute the index of refraction and
the penetration depth. By keeping up to thek2 terms in the
dispersion relations58d, we have calculated the index of re-
fraction

n2D =Îv2 − vp
2

v2 + D
s60d

and the penetration depth

d2D =
c

Îvp
2 − v2

Î1 +
D

v2 , s61d

where we have defined

D =
vp

2m

2mc2F1 +
p2

3
SkBT

m
D2G . s62d

As it can be expected from the form of the dispersion rela-
tion s58d, the resultss60d and s61d have the same forms as
the three-dimensional case.15 The two-dimensional character-
istics appears inD which is the result of the retarded current
response function of the 2DEG.

It is interesting to estimate the plasma frequencyvp for
the parameters of the inversion layer of a typical GaAs semi-
conductor. Although the electron number densityn and the
effective massm can be specified without ambiguity,1 the
parametera, which is directly connected to the thickness of
the two-dimensional electron system, is a subtle quantity due
mainly to the Gaussian assumption ofuxsx3du2 given by Eq.
s53d. For the thickness 50 Å1,6 we assume a=2
3107 scm−1d, which corresponds to the Gaussianuxsx3du2
shown in Fig. 1. With the values of the parametersn
=1012 scm−2d andm=0.074me sRef. 2d the plasma frequency
is vp=4.931014 ss−1d, which corresponds to the vacuum
electromagnetic wave lengthlvac=3.83103 snmd. This
value is much larger than the typical wave length of GaAs
laser 840snmd. These values of the parameters also giveD
=0.103 sn2+2.331019T2d. Although thisD is much smaller
thanvp

2, the temperature term can make significant contribu-
tion comparable to then2 term at room temperature and the
effects may be observed in the measurement of the penetra-
tion depth given by Eq.s61d.

ACKNOWLEDGMENTS

T.T. thanks Professor S. Yamaguchi for valuable com-
ments on AlGaAs/GaAs double-heterostructure laser diodes.

1K. Seeger,Semiconductor PhysicssSpringer, Berlin, 1989d.
2A. Y. Shik, Quantum Wells; Physics and Electronics of Two-

dimensional SystemssWorld Scientific, Singapore, 1998d.
3P. Hawrylak, Phys. Rev. B44, 3821s1991d.
4K. I. Golden, G. Kalman, L. Miao, and R. R. Snapp, Phys. Rev. B

57, 9883s1998d.
5M. Zaluzny, W. Zietkowski, and C. Nalewajko, Phys. Rev. B65,

235409s2002d.
6See, for example, M. Fukuda,Optical Semiconductor Devices

sWiley, New York, 1999d.
7D. A. Dahl and L. J. Sham, Phys. Rev. B16, 651 s1977d.

8T. Toyoda, V. Gudmundsson, and Y. Takahashi, Physica A127,
529 s1984d.

9A. C. Tselis and J. J. Quinn, Phys. Rev. B29, 2021s1984d.
10T. Toyoda, Physica A253, 498 s1998d.
11A. K. Rajagopal, Phys. Rev. B15, 4264s1977d.
12T. Toyoda, Phys. Rev. A39, 2659s1989d.
13L. Wendler and E. Kandler, Phys. Status Solidi B177, 9 s1993d.
14A. V. Andreev and A. B. Kozlov, Phys. Rev. B68, 195405

s2003d.
15T. Fukuda and T. Toyoda, Phys. Rev. B70, 205117s2004d.

TADASHI TOYODA AND TATURO FUKUDA PHYSICAL REVIEW B 71, 205312s2005d

205312-6


