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Transverse plasmon in a two-dimensional electron gas at finite temperature
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The temperature dependence of the dispersion relation of the transverse plasmon in a two-dimensional
electron gas is calculated using the Sommerfeld expansion for the retarded current response function and the
self-consistent linear response approximation for the electromagnetic field. The index of refraction and the
penetration depth for the electromagnetic wave propagating in the two-dimensional electron gas are obtained.
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I. INTRODUCTION Ref. 8, we use the Sommerfeld expansion to evaluate the

Recent experimental progress in semiconductor superlafemperature dependence up T8 order. Then, using the
tices and quantum welig have stimulated renewed theoret- SCLRA, we obtain the dispersion relation of the transverse
ical interests in the electromagnetic properties of a stack oflasmon with the temperature dependence up to the same
layers of two-dimensional electron gé3DEG) systems> order. Using the dispersion relation we also calculate the
The propagating electromagnetic wave in such a systenindex of refraction and the penetration length.
whose dispersion relation is equivalent to that of the trans- In Sec. Il we define a 2DEG with a finite thickness in
verse plasmon excitation in the many-electron system, seentérms of the second quantized field operators describing the
to be of particular importance to understand the microscopi€lectrons. In Sec. Il we define the retarded current response
mechanism of the semiconductor laser such as AlGaAsfunction following Ref. 8. In Sec. IV we apply the Sommer-
GaAs double-heterostructure diode ld&er. feld expansion to the formula for the retarded current re-

In 1977 Dahl and Shahtalculated the nonlocal dielectric sponse function and calculate the temperature correction up
tensor of quasi-two-dimensional electrons and investigatetp T2 order in the small wave number expansion. In Sec. V
the electromagnetic properties, particularly in the limitingwe use the SCLRA to derive the dispersion relation of the
case where the retardation effects are negligible. In 198&ransverse plasmon with the finite temperature effects. In
Toyoda, Gudmundsson, and Takah&stalculated the re- Sec. VI we calculate the index of refraction and the penetra-
tarded current response function of a 2DEG with finite thick-tion length.
ness and obtained the dispersion relation of the transverse
plasmon by fully taking account of the retardation effects. In
the same year Tselis and Qufncalculated the current re-

sponse function of a 2DEG under a static magnetic field and We assume the electrons are confined insxhe, plane

also obtained the corresponding dispersion relation. by a potentialV(xs), which yields the ground-state wave
The response of the electron current to an external elecf—

tromagnetic field can be calculated in terms of the retardedu nction x(xs) satisfying
current response function. Then the dispersion relation of the
transverse plasmon can be derived by using the linear re-
sponse formula for the electron current expectation value
with the Maxwell equation in a self-consistent way, i.e., the
self-consistent linear response approximatiSCLRA).8-10

The effects of electron-electron interaction on the curren

response can also be included by solving the Bethe-SaIpetqrhe second quantized field operatdr, that describes the

equation for the two-particle Green's functiéh’ dynamics of the electrons in thg-x, plane has the form
Although there have been further developments in the the—y he-x; p

oretical investigation of the transverse plasmon in 20&&,
the thermal effects on the transverse plasmon have not been W1, X3,1) = x(%g) Py(r 1), (2)
fully understood. The aim of this paper is to investigate the
effects of finite temperature on the dispersion relation of thevheres is the spin variable and= (x;,x,). The field opera-
transverse plasmon in a 2DEG. There have been no calculger d(r,t) andCDl(r ,t) are assumed to satisfy the equal-time
tions of the temperature dependence of the retarded currepinonical anticommutation relation
response function of a 2DEG nor that of the dispersion rela-
tion of the transverse plasmon, to the best of the knowledge
of the present authors.

We first calculate the retarded current response function
of a 2DEG at finite temperatures. Starting with the sameThe electromagnetic electron current density along xpe
formula for the retarded current response function given i, plane is

II. CURRENT RESPONSE FUNCTION

2 42

{_z_md_x2 + V(X3)}X(X3) = Eax(x3), @
3

wherem is the electron effective mass ahidg is the lowest
%nergy eigenvalue with respect to the confining potential.

Dr DL (r' 1) + DL HDr,t) = g dr —1"). (3)
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<3D>(r Xa,t) = — <3D> (r,Xs,t) transforms of the transverse current response function
_ = 2 T t el 1) — 2 ik-(r=r")-iw(t-t") A t
mc|X(X3)| Aﬂ(r,xg,t)zs‘, DUr, t)Dg(r,1), AL (r e’ t) = (277)3fd kfdwel (r=rietOAL (K, o)
(4) (14)
where the electron charge ise-and u=1,2. Thethree- and the transverse projection operator
dimensional current density operaljé?D)(r ,X3,t) is defined Kk k
by TulK)=6,,- ‘ﬁ? (15
(3D (r,Xs,t) = —E \If’f(r X3,1)(d,, — 5;)\Ifs(r,x3,t). (5) the retarded current response function reduces to the form
. . . . ALK @) =T (KA K, ). (16)
Using the two-dimensional current density operator _ o )
" With the explicit time dependence of the electron field op-
- _—1n + = erators, which is given by the Hamiltoni&®), the real part
JurV 2 ()3, = 3 1Y ) of the retarded current response functibtk , w) becomes
the three-dimensional current density operator can be written /N
as yop ReA(k,w)=—— f dpf(p)p¥- u, + sgr(u,) 6(uZ - 1)
mk
<3D) —
(r,xg,t) = |X(X3)| J (r,t). (7) X\ru _1+u - sgr(u_ )0(u _1)\’ _ 1}
Because the wave functiog is real, the componeri!égD) a7

simply vanishes.

The retarded current response function with respect to th¥/nereus, sgrix), and é(x) are defined by
(3D)

current densityf ™ is defined by mo k
(3D Uy = (18
A (rXs,tir X5, ) ﬁkp 2p
= -0t - )P %3, 0,00 XD, (8)
Here the notation - -) stands for the grand canonical ensem- sgrix) = | | o(x) = 5[1 +sgrix)], (19
bel expectation value with the Hamiltonian of the form
andf(p) is the Fermi distribution function
H=> f dr ®l(r,0){-#22m) V2 - Wl (r,1), (9) 1 #2p?
s fp) = T P =7 (20)

where u is the chemical potential for the two-dimensional

electrons including the effects d&. We define the two- Similarly, the imaginary part oA(k, ) can be written as

dimensional transverse current density Im A(K, o)
it 2D # * Mo M. |2
(r,t):ET Vi) (w=1,2), (10 =—J dpf 0( —‘ - ) = -
LltD = 2 : a k), GPTPIPL AP | S | VP |
with the transverse projection operator Mo Mo_ | 2
—0\p- | PPl [ (21)
. .0, ) fik hik
T2(V) =38, - 45, V2= +dk. (12) o
\Y where w, is defined by
Then, the transverse part of the response function can be a
written as W =oEo . (22

(3D)t el ool 4 — 2t R
A (X 615, 1) = X (X)X OQ) A, (r 1,1, In the zero-temperature limit the integrations in E¢7)

(12 and (21) can be carried out.For finite temperatures, the

. . . integrals cannot be calculated analytically.
where A! is the two-dimensional transverse current re- 9 y y

sponse function defined by

t el f I — ’ it H
ALty =—i6t =t ([, (r,0,j,r" )] (13 The Fourier transforms of the retarded current response
andjL is the transverse part of the two-dimensional currenfunction given by Egs(17) and(21) contain the Fermi dis-
density defined by Eq(6). BecauseAgV:A;B:O, it is tribution functions in the integrals and the Sommerfeld ex-
straightforward to show>_ AN 3D)t—0. Using the Fourier pansion can be applied to calculate the temperature depen-

IIl. SOMMERFELD EXPANSION

205312-2
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dence. The result of the Sommerfeld expansion of the real

part of the retarded current response functionARean be
cast in the form

ReA(k,w) = Ry(k, ) + Ry(k,w) + O(T?), (23)

whereR, is the zero-temperature term aRd is the T? cor-

rection term. Since we are interested in the dispersion rela-

tion of the transverse plasmon, we consider the skad-
gion. We have calculateB, and R, by expanding them in

powers ofk. The zero-temperature term has been calculated

in Ref. 8:
2ul-1 2
Ro= ﬁ{; + L11_2+ (E) - g.(u,v) + 9-(U,V)}
2 4
w | (u 1<u> 6
== +Z| =) +OWd, 24
47Tﬁ{<v)+2 v + O (24
whereu, v, vy, andg, are defined as
Tk om Tt U2
and
1 e
0:(U, ) = 2 sgrlv,) 60: - DV(E =D (26)

Calculating theT? correction term in the Sommerfeld expan-

sion, we have obtained

T 1 2
Ro=———"— | sgnv.)————0(vZ-1
? 12ﬁ(ﬂ,u)2ul on )\r’vf—l ( )

1
- sgr(v,) ———=60(?-1)
grlv, o1 (v 1

T 2 3 4
e [T e e

where 8=1/kgT. Combining Eqs(24) and(27), the explicit
temperature dependence of the real parhdiecomes

2 (w2 1f 2
ReAlk.w) = 45&[{1 * 33%}(5) ¥ 5{1 ¥ 33%}

X <2)4 + O(u6;T4)] .

(28)

In order to express the result of the Sommerfeld expan
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# 7ikZ k2
I | ——(k-ke)? - —F| << —(k+kp)2-—,
‘Zm( 7 2m © 2m( F) 2m
(31
-% k2
Il < —(k-kg)2— —F, 32
w 2m( F) om (32
# k2
IV < —(k-ke)2— —.
w 2m( F) o (33

The result of the Sommerfeld expansion of the imaginary
part ImA can be written as

ImA =ly+1,+0O(TY, (34)

wherel is the zero-temperature term ahds theT? correc-
tion term. The zero-temperature tetghas been calculated
in Ref. 8,

2

lo= ﬁ{n(u,y) —f_(u, )} (35)

We have calculated the temperature dependent tgrifihe
results depend on the domains

(36)

= —m 1
27 6hBkek |1 - 0?2

I (37)

mo1,=—n 1 ! (39)
2T en ek | 102 V1-02]

IV 1,=0. (39

Note that in the domains | and IV, the imaginary part van-
ishes. This means even at finite temperatures there are the
same undamped domains as the zero-temperature case. That
the imaginary part vanishes in the domain | even at finite
temperatures indicates that the possibility of the undamped
transverse plasmon mode as in the zero-temperature case.

sion applied to the imaginary part of the retarded current To conclude this section it should be remarked that math-

response function Im, we introduce the functiori, such
that

f.(u,v) = 3—1ue(1 -1 -v2)s. (29)

Because of the step funciofin this function, we have to

consider the following four domains separately in the first

quadrant of the&k-w plane:

A k2
I —(k+kp)? - —F <o,
2m( 7 2m @

(30)

ematically the Sommerfeld expansion fails in the vicinity of
these domain boundaries defined by E@)—(33). These
singularities are responsible for the Friedel oscillations and
further investigation of the temperature effects in the bound-
ary areas seems to be of great interest.

IV. TRANSVERSE PLASMON

In the linear response theory, the response of the electrons

to a transverse electromagnetic vector poterﬁihlis ex-
pressed as the expectation value of the current density
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—né - né?
P 5)) = x5 O ko) = 5 [ s~ )00, 5.0)
- & )P f ar f or’ f dxa|x(x3)| XD, G ) = 5ol AL K, 0)
ﬁCX 3 . 3| X (X3 v 13, 271'hcp 343
3
X3 ALLEL DAL XG),  (40) X f d0p(~ ds) Dy (K, G, )
v=1
(3P, G5, ), (44)

where the retarded current response funcrzfqn, is calcu-
lated for an ideal electron gas ands the two-dimensional
electron number density. The basic idea of the self-consistent -

linear response approximation is to assume the electromag- Q,,(K ks 0) = —D‘l(k,kg,w)Ti,D,(k,kg) (45)
netic field At in the linear response formula is the induced ¢

field due to the transverse current of the electrons and satigith the transverse projection operator

fies the Maxwell equation. Theoretically this idea can be

where we have defined

realized by replacing the current term in the Maxwell equa- Kk k

. . . 3D - 24

tion by the linear response expectation value T (K Kg) =38, - 21l (46)
3

3 Equation(44) gives the collective excitation of the transverse
(2 &~ c'zaf)AL(r,xs,t) =- 4wc‘1<JfD)t(r,x3,t)>. current of the electrons and contains the dispersion relation
of the transverse plasmon. Since we are interested in the
(41) transverse plasmon propagating in thex, plane, we con-
sider the cas&;=0. Then, the first term on the right-hand

As the right-hand side contains the electromagnetic vecto?Ide of Eq.(44) can be written as

potential,&t linearly, this equation yields a linear wave equa- -n
tion. If certain conditions are met, it may produce a propa-

gating electromagnetic wave. We can also elimin&térom @
: : i -n
Egs.(40) and(41) to obtain a wave equation for the expec _ F(k,w)utﬂ(k,w», 47

7=1

&
Py f daap(— 4a)Q,,,(K, Gs, 0)(IZP (K, G, ))

tation value of the electron transverse curr@‘lﬁmt>, whose 2m7mc

propagating mode corresponds to the transverse plasmon of ]
the electrons. In the following we shall pursue this approachwhere we have defined

In order to eliminate the electromagnetic fiedd from the 4
Maxwell equation and the linear response expectation value (K, w) = &7 f doep(— 93)p(0)D K, Gsy ). (48)
for the electron transverse current, it is convenient to intro- c

duce the Fourier transform of E40) ) )
The second term on the right-hand side of Etd) can be

written as

-ne
O k)= 5 [ dpths~ @ K, g 2
- P(ks)ALx(k,w)fd%P(_ d3),(K, 03, )

&2 . 2mhe
~ o Pk A V(k,w)jdoep(— 0s) _
gmhct =" XK o) = S AL (), 0) (0 K 0).
X ALK, 03, ), 42 2mhic

(49)

and the Fourier transform of the Maxwell equati@ii) We write the left-hand side of Eq44) as (3t (k,®)). Then

we combine Eqgs(44), (47), and(49) to obtain
AL (K kg, ) = A%TD‘l(k,kg,,w)(JfD)t(k,k3,w)>, (43) e
(Ju(k,0)) = Sl (k. 0)(J,(k,®))

where we have define®(k ks, w) =k?+ki-c2(w+i0%)>. &€ .

Using Eq.(43) it is straightforward to eliminate the vector - ZMCAM(k,w)F(k,w)UA(k,w>>, (50)
potential At from Eq. (42). After eliminating the vector po-

tential field, we find which can be written as

205312-4



TRANSVERSE PLASMON IN A TWO-DIMENSIONAL.. PHYSICAL REVIEW B 71, 205312(2005

e’n e? . account the chemical potential relatigh7), we have ob-
1+2 I'k,w)+ iy Ak, 0)'(k,w) (JM(k,w))=0. tained

mmc 2mhc
2 2 2
(51) wzzwg_,_czkz_,_M[l_,_ﬂ_z(kLT) ](E)

This is the SCLRA equation for the transverse current of a 2m 3\ ®
2DEG?8 22 KT\ 21/ K\

+ [1 + ﬂ2<i) }(—) +O(K% T, (58)

2m s 1)
V. DISPERSION RELATION where the plasma frequenay, is defined as
If the SCLRA equation for the two-dimensional trans- 5 2\ mané

verse current density51) has a nontrivial solution for the W= (59

expectation value of the electron current, then it can be con-

cluded that there is a collective excitation mode of the elecThis dispersion relatio(68) has a strong resemblance to the
tron transverse current, i.e., the transverse plasmon. Therthree-dimensional restitThe main reason for this resem-
fore, the dispersion relation for the transverse plasmon cahlance between the present two-dimensional case and the

be obtained by solving the equation three-dimensional case is that the Maxwell equation for the
present calculation is written in the three-dimensional space.
1 &n & Ak, w) = 0. (52) Only the current term in the Maxwell equatiéfl) has been

+ +
I'k,w) 2mmc 2whc assumed to be confined in the-x, plane. The two-
imensional characteristics appears through the current re-

To proceed further it is necessary to specify the functlonagponse function.

form of the wave functiony(xs). In Ref. 8 three different
models for the wave function were calculated and it was
found that there are no essential differences. Therefore, here

. . VI. CONCLUDING REMARKS
we consider the Gaussian model

a 2.2 We have calculated the temperature dependence of the
Ix(x9)|?= ,=exp< ) (53) real part and the imaginary part of the retarded current re-
N2m 2 sponse function of an ideal two-dimensional electron gas.

Then, using the SCLRA, we have derived the dispersion re-
lation of the transverse plasmon at finite temperatures up to

@) '{_(ﬁ) the T2 order in the Sommerfeld expansion. We have shown
plQs) = ex

The Fourier transform of this Gaussian model is

P (54) that in the domain | the transverse plasmon is undamped
even at finite temperatures and obtained the dispersion rela-
By making use of the fact thai(q) has a sharp peak at  tion (58).

=0, we approximate the integral in by® Starting with the Maxwell equatio41) and the linear
4302 response equatiof¥2), we have eliminated the transverse
F(k,w):#. (55  Vvetor potential and obtained the SCLRA equation for the
w? - +ie transverse current expectation value of the electi@is,

from which we have derived the dispersion relat{68). It is
also possible to eliminate the transverse current expectation
2maen 2\Vmaé value of the electrons and to obtain a SCLRA equation for
— A(k,)=0. (56) the transverse vector potential. Then we can derive the same
dispersion relation. That is, the dispersion relation for the
From this equation one can derive the dispersion relation fotransverse electromagnetic wave propagating in the two-
the transverse plasmon. In order to calculate the temperature
dependence of the dispersion relation of the transverse plas-
mon under the condition of a fixed electron number, the
chemical potential appeared in the Sommerfeld expansion of
A(k,w) given by Eq.(27) must be expressed as a function of
the electron number density and temperature. The relation
between the chemical potential and the other thermodynami-
cal variables in general depends on the temperature. How-
ever, in the two-dimensional case, the result

Substituting this result into Eq52), we obtain

w? - K-

omu 25 20 15 <10 -5 0 5 10 15 20 25

2 _ —

ki=2mn= " (57) x; (A)

holds for theT? order. Using the result of the Sommerfeld  FIG. 1. Plot of |x(xg)]> given by Eg. (53 with a=2
expansion forA(k,w) given by Eq.(27) and taking into  x 10" (cm™).
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dimensional electrons is identical to that of the transverse It is interesting to estimate the plasma frequengyfor
plasmon. the parameters of the inversion layer of a typical GaAs semi-
In view of a possible application of the present theoreticalconductor. Although the electron number densitand the
formulation to the physics of laser diodes, it seems to be oéffective massm can be specified without ambiguitythe
great physical interest to compute the index of refraction angharameteia, which is directly connected to the thickness of
the penetration depth. By keeping up to #feterms in the the two-dimensional electron system, is a subtle quantity due
dispersion relatior{58), we have calculated the index of re- mainly to the Gaussian assumption |gfxs)|? given by Eq.

fraction (53). For the thickness 50 ¥ we assume a=2
R X 107 (cmi™Y), which corresponds to the Gaussigy(xs)|?

Nop = @ "% (60) shown in Fig. 1. With the values of the parameters

w?+A =10% (cm™) andm=0.074n, (Ref. 2 the plasma frequency

is w,=4.9x10" (s7!), which corresponds to the vacuum
electromagnetic wave length\,,.=3.8X10° (nm). This
P c /1 +A (61) value is much larger than the typical wave length of GaAs
2D \sz w2’ laser 840(nm). These values of the parameters also glve

P =0.10X (n?+2.3x 10'°T?). Although thisA is much smaller

and the penetration depth

where we have defined than?, the temperature term can make significant contribu-
w2 72 (kT \2 tion comparable to the? term at room temperature and the
A= —iﬁ[l —(i) } (62)  effects may be observed in the measurement of the penetra-
2mc 3\ u tion depth given by Eq(61).
As it can be expected from the form of the dispersion rela-
tion (58), the results60) and (61) have the same forms as ACKNOWLEDGMENTS
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